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Poncelet’s theorem and Billiard knots
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Abstract
Let D be any elliptic right cylinder. We prove that every type of knot can be realized

as the trajectory of a ball in D. This proves a conjecture of Lamm and gives a new proof
of a conjecture of Jones and Przytycki. We use Jacobi’s proof of Poncelet’s theorem by
means of elliptic functions.
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1 Introduction

The Poncelet closure theorem is one of the most beautiful theorems in geometry. It says
that if there exists a closed polygon inscribed in a conic E and circumscribed about another
conic, then there exist infinitely such polygons, one with a vertex at any given point of E.
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When the conics are concentric circles the proof is very simple, each Poncelet polygon
is obtained by rotating any one of them. What makes Poncelet’s theorem great, is that it
is impossible to generalize this simple proof.

Poncelet’s proof ( [Po]) uses ”pure” projective geometry, see [Be, DB, Sa] for modern
proofs along these lines. Shortly after the publication of Poncelet’s book, Jacobi ( [Ja] )
gave a proof by means of Jacobian elliptic functions. He discovered what is now called
a uniformization of the problem by an elliptic curve. Most modern developments and
generalizations follow Jacobi’s proof, see [Lau, GH, BKOR, Sc, LT] .

A beautiful example of Poncelet polygonal lines is given by elliptic billiards. If a segment
of a billiard trajectory in an ellipse E does not intersect the focal segment [F1F2] of E, then
there exists an ellipse C called a caustic, such that the trajectory is a Poncelet polygonal
line inscribed in E and circumscribed about C, see [St, T, LT].

On the other hand, Jones and Przytycki defined billiard knots as periodic billiard tra-
jectories without self-intersections in a three-dimensional billiard. They proved that billiard
knots in a cube are very special knots, the Lissajous knots. They also conjectured that every
knot is a billiard knot in some convex polyhedron. ([JP], see also [La2, C, BHJS, BDHZ, P]).

Lamm and Obermeyer [La1, LO] proved that not all knots are billiard knots in a cylinder.
Then Lamm conjectured that there exists an elliptic cylinder containing all knots as billiard
knots ([La1, O]). It is easy to see that Lamm’s conjecture implies the conjecture of Jones
and Przytycki: if K is a billiard knot in a convex set, then it is also a billiard knot in the
polyhedron delimited by the tangent planes. Dehornoy constructed in [D] (see also [O]) a
billiard which contains all knots, but this billiard is not convex.

In this paper we will use Jacobi’s method to study billiard trajectories in a right cylinder
with an elliptic basis. We obtain a proof of Lamm’s conjecture. Our result is more precise:

Theorem 20 Let E be an ellipse which is not a circle, and let D be the elliptic cylinder
D = E × [0, 1]. Every knot (or link) is a billiard knot (or link) in D.

Billiard trajectories in an ellipse are introduced in section 2. We show that an elementary
theorem of Poncelet implies the existence of a caustic. We also show that Poncelet polygons
in a pair of nested ellipses are projections of torus knots. Then, by a theorem of Manturov
([M]), we deduce that every knot has a projection which is a billiard trajectory in an ellipse.

In section 3, we recall the basic definitions and properties of the Jacobian elliptic func-
tions sn(z) and cn(z). Then we give the Hermite–Laurent version of Jacobi’s proof, which
is based on Jacobi’s uniformization lemma.

In section 4, we use Jacobi’s lemma to compute the coordinates of the crossings and
vertices of a billiard trajectory in E. We deduce that if the number of sides of a periodic
billiard trajectory is odd, then it is generally completely irregular. This means that if we
start at any vertex, 1 and the arc lengths of the other vertices and crossings are linearly
independent over Q. We also see how our proofs generalize in the link case.

In section 5, we use Kronecker’s density theorem to obtain our main result. The same
strategy was used in [KP2] to give an elementary proof of the Jones–Przytycki conjecture.
There is another application of Kronecker’s theorem to the construction of knots in [KP1].
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2 Billiard trajectories in an ellipse

The study of billiard trajectories in an ellipse was introduced by Birkhoff in 1927 ([Bi]), see
also [T] for a modern exposition of the subject.

2.1 Some elementary facts

The following elementary theorem is due to Poncelet ([Po, Be]).

Theorem 1 (The second little Poncelet theorem)

Let E be an ellipse (or a hyperbola) with foci F1 and F2. Let PM1 and PM2 be the

tangents to E at the points M1 and M2. Then the angles M̂1PM2 and F̂1PF2 have the
same bisectors.

P

F1 F2

M1

M2

F ′

1

F ′

2

Figure 1: The second little Poncelet theorem.

Proof. Suppose that E is an ellipse (the case of a hyperbola is similar).

Reflect F1 in PM1 to F ′

1, and F2 in PM2 to F ′

2. As PM1 is a bisector of ̂F1M1F2, we see
that F ′

1,M1, F2 are collinear and F ′

1F2 = M1F1 +M1F2 is the major axis of E. We deduce
that F ′

1F2 = F1F
′

2. Consequently, the triangles F ′

1PF2 and F1PF
′

2 are congruent, because

their sides are of equal length. This implies F̂ ′

1PF2 = F̂1PF
′

2, and then

F̂ ′

1PF1 = F̂ ′

1PF2 − F̂1PF2 = F̂ ′

2PF1 − F̂1PF2 = F̂ ′

2PF2,

which concludes the proof. 2

Theorem 2 Suppose that some segment of a billiard trajectory in an ellipse does not in-
tersect the focal segment [F1F2]. Then the billiard trajectory remains forever tangent to a
fixed confocal ellipse called the caustic.
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P1

M1

P0

M2

Figure 2: Existence of an elliptic caustic.

Proof. Let P0P1 be a segment of a billiard trajectory in an ellipse E, and suppose that P0P1

does not intersect [F1F2].

Reflect F1 in P0P1 to F ′

1, and consider the ellipse C = {MF1 +MF2 = F2F
′

1. We see

that M1 = F2F
′

1

⋂

P0P1 belongs to E, and since P0P1 is a bisector of ̂F1M1F2, it is the
tangent to C at M1.

Draw P1M2 the second tangent to C. By the second little Poncelet theorem, the angles
M̂1P1M2 and F̂1P1F2 have the same bisectors. Hence P1M2 is the second segment of our
billiard trajectory, and is tangent to C.

2

Remark 3 When some segment contains only one focus, then every segment contains a
focus, and there is no caustic. When some segment intersects the interior of the focal
segment then there is a caustic, which is a hyperbola with foci F1 and F2. But the tangency
points need not be at a finite distance. This fact will be illustrated by the following example.

Example

Consider the points P0 = (−1,−1), P1 = (1, 1), P2 = (1,−1), and P3 = (−1, 1). The
trajectory P0P1P2P3 is a periodic billiard trajectory in the ellipse E = {x2 +2y2 = 3}. The
caustic is the hyperbola C = {x2 − y2 = 1}, and P0P1, P2P3 are tangent to C at infinity.

By Poncelet’s theorem, if we apply the Poncelet construction from another pointQ0 ∈ E,
then we obtain another periodic billiard trajectory Q0Q1Q2Q3. Moreover, the diagonals
Q1Q3 and Q0Q2 remain forever parallel to the x-axis (this is a consequence of a theorem
of Darboux that we will see later). Consequently, all these Poncelet quadrilaterals are
symmetric with respect to the y-axis.

If we start from Q1 = Q3 = A = (0,
√

3/2), then the quadrilateral degenerates into a
trajectory of the form ABAC A, where B = (

√

5/3,−
√

2/3), C = (−
√

5/3,−
√

2/3).

The preceding example shows that a billiard trajectory A0, . . . , An such that An = A0

needs not be n-periodic. Moreover, a billiard trajectory in an ellipse is not necessarily a
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P0

P1

P2

P3

Figure 3: A billiard quadrilateral in an ellipse. The caustic is a hyperbola.

Poncelet polygonal line. Consider for example an ellipse E with foci F1, F2 and a chord
AB such that AB is the internal bisector of F̂1BF2. The polygonal line ABA is a billiard
trajectory in E, but generally it is neither a Poncelet polygonal line, nor a periodic billiard
trajectory.

Happily, these defects cannot occur for billiard trajectories that do not intersect the
focal segment.

Corollary 4 Let P0, P1, . . . , Pn−1, Pn = P0 be a billiard trajectory in an ellipse E such that
P0P1 does not intersect the focal segment [F1F2]. Then it is a periodic billiard trajectory
inscribed in E and circumscribed about a confocal ellipse C.

Proof. Since Pn−1P0 does not intersect the focal segment, its reflection at P0 cannot be
P0Pn−1. Since it is another tangent to C through P0, it must be P0P1, and then Pn+1 = P1.

2

Now, we shall prove the existence of billiard polygons with n sides and rotation number
p. Following an idea due to Chasles and Birkhoff ([Be, Bi]), we will obtain them as polygons
of maximum perimeter among the n-polygons of rotation number p inscribed in E.We shall
need the following classic lemma

Lemma 5 Let A,B be (not necessarily distinct) points of an ellipse E. If the function
f(M) = MA+MB, M ∈ E has a local maximum at C ∈ E, then CB is the reflection of
CA in the normal to E at C.

Proof. See [LT]. 2

Proposition 6 Let P0 be a point of an ellipse E. Let n and p be coprime integers such
that n ≥ 2p + 1. There exists a billiard trajectory in E, of period n, winding number p and
starting at P0.
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Proof. We shall consider the following maximum problem. The domain of definition of the
function to maximize is A = {(α1, . . . , αn) ∈ [0, π]n,

∑

αi = 2πp}, it is a compact set. For
α ∈ A and P0 ∈ E, let us define the inscribed polygon P0, P1, . . . , Pn = P0 by the angular

condition
̂

(
−−−−→
FPi−1,

−−→
FPi) = αi, where F denotes a focus of E. We want to maximize the

perimeter of this polygon, which is f(α) = P0P1 + P1P2 + · · · + Pn−1P0.

Since A is compact and f continuous, this maximum exists. By lemma 5, it is a billiard
trajectory at the points P1, . . . , Pn−1.

Let us show that no segment Pi−1Pi intersects the open focal segment (FF ′) of E. If it
was the case, then all segments of the trajectory would intersect (FF ′), hence the winding
number of this trajectory about F would be zero, which is impossible by the definition of
our polygon.

If some segment was the major axis, then all segments would be this axis, and all αi = π,
which is impossible since

∑

αi = 2pπ < nπ.

If some segment contains only one focus, then it is known that the billiard trajectory
converges to the major axis and is not periodic ( see [St, Fr] ).

We deduce that P0P1 does not intersect the focal segment [FF ′] of E. By lemma 5 and
corollary 4, we conclude that P0, P1, . . . Pn−1 is a periodic billiard trajectory in E.

The exact period d of our trajectory is a divisor of n, and we have n = du. By the
angular condition, u is a divisor of p. Since n and p are coprime u = 1 thus n is the exact
period of our trajectory.

2

Remark 7 This does not not prove that the caustics Cn do not depend on the initial point
P0. This is true by Poncelet’s theorem, which we shall prove later. Using a theorem of
Graves [Be] , it can be shown that all the Poncelet polygons in two confocal ellipses have the
same perimeter.

2.2 Poncelet polygons and toric braids

A toric braid is a braid corresponding to the closed braid obtained by projecting the
standardly embedded torus knot into the xy-plane. A toric braid is a braid of the form

τp,n =
(

σ1 σ2 · · · σp−1

)n

, where σ1, . . . , σp−1 are the standard generators of the full braid

group Bp.

Remark 8 Let E and C be nested ellipses such that there exists a Poncelet polygon inscribed
in E and circumscribed about C. Every Poncelet polygon is the projection of a torus knot of
type T (n, p), n ≥ 2p+1. More precisely, if we cut the elliptic annulus delimited by E and C
along a half-tangent, then we see that such a polygon is ambient isotopic to the projection
of the closure of the toric braid τp,n. Consequently, it is also ambient isotopic to the star
polygon

{

n
p

}

, see [KP2].
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Figure 4: Some Poncelet polygons (or unions of Poncelet polygons) in nested ellipses. They
are projections of the toric braids τ3,10, τ2,10 and τ3,9, and are denoted

{

10
3

}

,
{

10
2

}

and
{

9
3

}

.

We shall need the following results on braids, due to Manturov [M]. A quasitoric braid
of type B(p, n) is a braid obtained by changing some crossings in the toric braid τp,n.

Manturov’s theorem tells us that every knot (or link) is realized as the closure of a
quasitoric braid ([M]). More precisely, he proved that any µ-component link can be realized
as the closure of a quasitoric braid of type B(pµ, nµ) where (p, n) = 1, p even and n odd.

The quasitoric braids form a subgroup of the full braid group, hence there exist trivial
quasitoric braids of arbitrarily great length. Hence we can suppose n ≥ 2p+1 in Manturov’s
theorem. Using this theorem, proposition 6, and Poncelet’s theorem, we obtain the main
result of this section.

Theorem 9 Let E be an ellipse. Every µ-component link has a projection which is the
union of µ billiard trajectories in E with the same odd period, and with the same caustic C.

3 Jacobi’s proof of Poncelet’s theorem

We shall only need the following properties of elliptic functions, see [WW] for proofs.

3.1 The Jacobian elliptic functions sn z, cn z and dn z.

They depend on the choice of a parameter k, 0 < k < 1, called the elliptic modulus.

The Jacobi amplitude ϕ = am(z) is defined by inverting the elliptic integral

z =

∫ ϕ

0

dt
√

1− k2 sin2 t
.

It verifies am(u+ 2nK) = am(u) + nπ, where am(K) = π
2 , and n ∈ Z.

The Jacobian elliptic functions are defined for z real by

sn z = sin
(

am(z)
)

, cn z = cos
(

am(z)
)

, dn z =
√

1− k2sn2z,

and can be extended to meromorphic functions on C. When k = 0, these functions de-
generate into the ordinary circular function sin z and cos z. But, contrarily to the circular
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functions, they are doubly periodic functions with periods 4K ∈ R, and 4iK ′ ∈ iR, and
they have poles. For example, the poles of sn z are congruent to iK ′ (mod.2K, 2iK ′), its
zeros are the points congruent to 0 (mod.2K, 2iK ′), and its exact periods are 4K, 2iK ′. The
zeros of cn z are the points congruent to K (mod.2K, 2iK ′). We have sn(z + 2K) = −sn z,
and cn(z+2K) = −cn z. We also have sn(K + iK ′) = k−1, which implies that the zeros of
dn z are the points congruent to K + iK ′ (mod.2K, 2iK ′).

We have the following addition formulas

sn(x+ y) =
snx cn y dn y + sn y cnxdnx

1− k2 sn2 x sn2 y
, cn(x+ y) =

cnx cn y − snx sn y dnxdn y

1− k2 sn2x sn2y

When k = 0, these formulas degenerate into the usual addition formulas for the circular
functions.

In the next section we will use the following formula due to Jacobi ([WW] p.529).

sin
(

am(u+ v) + am(u− v)
)

=
2 snu cnudn v

1− k2 sn2u sn2v

3.2 Jacobi’s uniformisation

The next result is a variant of Jacobi’s uniformization of the Poncelet problem. It is due to
Hermite and Laurent ([Lau]).

P (ϕ+ β)

M(ϕ)

P (ϕ− β)

Figure 5: Jacobi’s lemma.

Lemma 10 Let E and C be the ellipses defined by

E =
{x2

a2
+
y2

b2
= 1
}

, a > b > 1, C =
{

x2 + y2 = 1
}

.

Let us parameterize E by P (ψ) = (a cnψ, b snψ), and C by M(ϕ) = (cnϕ, snϕ), where the
elliptic modulus k is defined by k2(a2 − 1) = (a2 − b2). Let β be a real number such that
cn β = 1/a.

Then the tangent to C at M(ϕ) intersects E at P (ϕ− β) and P (ϕ+ β).
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Proof. We have dn2β = 1− k2 sn2β = b2/a2, hence dnβ = b/a.

Let us show that P (ϕ + β) belongs to the tangent to C at M(ϕ). The equation of this
tangent is x cnϕ+ y snϕ = 1. Let us compute S = a cn(ϕ+ β) cnϕ+ b sn(ϕ+ β) snϕ.

Using the addition formulas we obtain

S (1− k2 sn2ϕ sn2β) = cn2ϕ+ sn2ϕdn2β = cn2ϕ+ sn2ϕ (1 − k2 sn2β) = 1− k2 sn2ϕ sn2β.

Consequently, S = 1, and P (ϕ + β) belongs to the tangent to C at M(ϕ). Changing β to
−β, we see that P (ϕ− β) also belongs to this tangent. 2

Remark 11 By affinity, Jacobi’s lemma extends easily in the case of two nested ellipses
with the same two axis, meeting transversally in P2(C). When this pair of ellipses is affinely
equivalent to a pair of concentric circles, the elliptic parametrizations degenerate into the
usual circular ones.

3.3 Proof of Poncelet’s closure theorem

P (ϕ+ β)

M(ϕ)

P (ϕ− β)

P (ϕ+ 2β)

Figure 6: Proof of Poncelet’s closure theorem.

We shall now present the Hermite–Laurent proof of Poncelet’s theorem for a pair of
confocal ellipses. Since any pair of conics meeting transversally in P2(C) is projectively
equivalent to a pair of confocal ellipses ( [LT]), we obtain a proof of the generic case of
Poncelet’s theorem. For the nongeneric cases see [Be, Sa], and for the original proof of
Jacobi see [BKOR]. Proof. Let P0, P1, . . . Pn−1P0 be a Poncelet polygon inscribed in E
and circumscribed about C. Let PjPj+1 be tangent to C at Mj . We will use the Jacobi
parametrizations of E and C. If M0 = M(ϕ), then by Jacobi’s lemma we can suppose
P1 = P (ϕ + β). Using Jacobi’s lemma again, we have M1 = M(ϕ + 2β), and by induction
Mj =M(ϕ+ 2jβ).

Since the polygon closes after n steps, we have Mn =M0, or M(ϕ+ 2nβ) =M(ϕ).

That means am(ϕ+2nβ) = amϕ+2qπ = am(ϕ+4qK) by the properties of the Jacobi
amplitude. Consequently we obtain 2nβ = 4qK, or β = 2qK/n.
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Now, let us consider a Poncelet polygon starting from an arbitrary point M ′

0 = M(ϕ′)
of C. By Jacobi’s lemma we have M ′

n =M(ϕ′ + 2nβ) =M(ϕ′ + 4qK) =M(ϕ′) =M ′

0.

Consequently, we see that every Poncelet polygonal line closes after n steps. 2

Corollary 12 Let E and C be confocal ellipses, and let P be a Poncelet polygon with an
even number of sides. Then P possesses a central symmetry.

Proof. We use the same notation as before. We have β = 2qK/n , where n = 2h is the
number of sides of P. The numbers n and q are coprime, hence q is odd. For every ϕ, we
have

Mh(ϕ) =M(ϕ+2hβ) =M(ϕ+2qK) =M(ϕ+2K) =
(

cn(ϕ+2K), sn(ϕ+2K)
)

= −M0(ϕ).

2

By projective equivalence, this implies a remarkable theorem of Darboux ([Da]).

Theorem 13 Let P be a Poncelet polygon with an even number of sides inscribed in a
conic E and circumscribed about another conic C. Then the diagonals of P pass through a
point, which is the same for every Poncelet polygon.

4 Irregularity of Poncelet odd polygons

Most regularity properties of a polygon can be expressed by rational linear relations between
some of its segments. Let us parameterize a (crossed) polygon by arc length, starting at a
vertex P0. We shall say that this polygon is completely irregular if 1 and the arc lengths of
its crossings and vertices (except P0) are linearly independent over Q.

The purpose of this section is to prove that if E and C is a pair of confocal ellipses
possessing a Poncelet polygon with an odd number of sides, then there exists a completely
irregular Poncelet polygon. We will give an analogous result for unions of finitely many
Poncelet polygons.

4.1 Two lemmas on elliptic functions

We shall use elliptic functions to compute the arc lengths of the crossings and vertices of
Poncelet polygons. We shall need the following two technical lemmas.

Lemma 14 Let n and p be coprime integers, with n odd. For every integer j, let us define
the function fj(z) = sn2(z+jθ)+r2, where r2 > 0 and θ = 4pK/n. Then, if h 6≡ j (mod n),
the functions fj(z) and fh(z) do not possess any common zero.
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Proof. First, let us study the zeros of the elliptic function g(z) = sn z + ir, r > 0. By
considering its restriction to the y-axis, we see that there exists a pure imaginary α, such
that g(α) = 0. Since we have sn(2K − α) = snα, we see that 2K − α is another zero of
g(z). As g(z) is an elliptic function of order two, its zeros are the points congruent to α
or 2K − α (mod. 4K, 2iK ′). By parity, we deduce that the zeros of fj(z) are the numbers
which are congruent to ±α− jθ, or 2K ± α− jθ, (mod. 4K, 2iK ′).

If we had α−jθ ≡ α−hθ, or α−jθ ≡ 2K+α−hθ (mod.4K, 2iK ′), then we would deduce
(h − j)θ ≡ 0 (mod 2K). This implies that 2(h − j)p/n is an integer, which is impossible
since n is odd, (n, p) = 1, and h 6≡ j (mod n).

If we had α− jθ ≡ −α− hθ or α− jθ ≡ 2K − α− hθ, (mod.4K, 2iK ′), then we would
have 2α ≡ ((j − h)θ (mod. 2K, 2iK ′). Taking the real parts, we would obtain (j − h)θ ≡
0 (mod 2K) which is impossible.

Consequently, α− jθ cannot be a zero of fh(z). The proof that the other zeros of fj(z)
cannot be zeros of fh(z) is entirely similar. 2

Remark 15 As the proof shows it, the condition n odd is necessary in lemma 14.

Lemma 16 Let n and p be coprime integers. For j 6≡ 0 (mod n), let us define the functions
Dj(z) and Fj(z) by

Dj(z) = sn(z + jθ) cn z − cn(z + jθ) sn z, Fj(z) =
sn(z + jθ)− sn z

Dj(z)
, where θ =

4pK

n
.

Then, for every integer j there exists a complex number αj such that Fj(αj) = ∞, and if
h 6≡ j (mod n), then Fh(αj) 6= ∞.

Proof. We have

Dj(z) = sin
(

am(z + jθ)− am z
)

= sin
(

am(z + jθ) + am(−z)
)

Now, using the Jacobi formula for sin
(

am(u+ v) + am(u− v)
)

, we obtain

Dj(z) =
2 sn(jβ) cn(jβ) dn(z + jβ)

1− k2 sn2(jβ) sn2(z + jβ)
, where β =

θ

2

Let αj = −jβ+K+iK ′.We have dn(αj+jβ) = dn(K+iK ′) = 0. Since dn2z+k2 sn2z = 1,
we obtain sn2(αj + jβ) = 1/k2, and then Dj(αj) = 0.

The numerator of Fj(αj) is

N(αj) = sn(αj + jθ)− sn(αj) = sn(K + iK ′ + jβ)− sn(K + iK ′ − jβ).

Using the addition formula for the function sn z, we obtain

N(αj) = 2
sn(K + iK ′) cn(jβ) dn(jβ)

1− k2 sn2(K + iK ′) sn2(jβ)
.
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Since sn(K + iK ′) = k−1, we obtain N(αj) = 2k−1dn(jβ)

cn(jβ)
6= 0, and then Fj(αj) = ∞.

On the other hand, if h 6≡ j (mod n), we have αj + hβ = K + iK ′ + 2(h− j)pK/n.
First, we see that αj+hβ 6≡ K+iK ′ (mod.2K, 2iK ′), which implies that dn(αj+hβ) 6= 0.
We also see that αj + hβ 6≡ iK ′ (mod.2K, 2iK ′), which implies that sn(αj + hβ) 6= ∞.

We conclude that Dh(αj) 6= 0.

Let us show that if sn z = ∞, then Fh(z) 6= ∞.
Since the functions sn z and sn(z + hθ) do not have common poles, sn(z + hθ) 6= ∞.
On the other hand, as sn2z + cn2z = 1, we obtain

cn2 z

sn2 z
= −1, and then Fh(z) =

−1

sn(z + hθ)
cn z

sn z
− cn(z + hθ)

If we had Fh(z) = ∞, then

sn(z + hθ)
cn z

sn z
= cn(z + hθ),

whence sn2(z + hθ) = −cn2(z + hθ) 6= ∞, and sn2(z + hθ) + cn2(z + hθ) = 0, which is
impossible.

Similarly, we see that if sn(z + hθ) = ∞, then Fh(z) 6= ∞.
Now, let us prove that Fh(αj) 6= ∞. We have Dh(αj) 6= 0, and we have proved that we

can suppose sn(αj) 6= ∞ and sn(αj + hθ) 6= ∞, then

Fh(αj) =
sn(αj + hθ)− snαj

Dh(αj)
6= ∞.

2

4.2 Irregular Poncelet polygons with an odd number of sides

Proposition 17 Let E and C be confocal ellipses such that there exists a Poncelet polygon
P inscribed in E and circumscribed about C. We suppose that the number of sides of P is
odd. Then there exists a Poncelet polygon satisfying the following condition.

If the arc lengths ti of the vertices and crossings are measured from a vertex P0, then
the numbers 1 and ti, ti 6= 0 are linearly independent over Q.

Proof.

Let E = {x
2

a2
+
y2

b2
= 1}, a > b > 1, and C = {x2 + y2

c2
= 1}, c < 1

be our ellipses. The condition on the eccentricity of C means that 2c2 > 1.
Let us consider the Jacobi parametrizations of E and C by means of elliptic functions,

and let θ = 4pK/n. To each real number ϕ corresponds a Poncelet polygon Pϕ through
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M(ϕ) =
(

cnϕ, c snϕ
)

. Let us denote ϕj = ϕ+ jθ, Mj =M(ϕj), and let ℓj be the tangent
to C at Mj . The equation of ℓj is

x cnϕj +
y

c
snϕj = 1.

Let Qh,j = ℓh
⋂

ℓh+j, j 6≡ 0 (mod n). The abcissa xh,j of Qh,j is

xh,j =
− snϕh + sn(ϕh + jθ)

sn(ϕh + jθ) cnϕh − cn(ϕh + jθ)snϕh

= Fj(ϕh)

where Fj is the function defined in lemma 16. The abcissa of Ph = Qh,−1 = Qh−1,1 will also
be denoted by xh = xh,−1. The distance PhQh,j is |dh,j| where

dh,j = dh,j(ϕ) =

√
1− c2

snϕh

√

sn2ϕh +
c2

1− c2

(

xh − xh,j

)

Since c2/(1 − c2) > 1, the function dh,j(ϕ) is meromorphic in a neighborhood of the real
axis.

Our first step is to prove that the functions 1 and dh,j(ϕ), j 6≡ −1 (mod n) are linearly
independent over C.

Let λh,j and λ be complex numbers such that
∑n

h=1

∑n−2
j=1 λh,jdh,j = λ, or

n
∑

h=1

√
1− c2

snϕh

√

sn2ϕh +
c2

1− c2

(

n−2
∑

j=1

λh,j(xh − xh,j)

)

= λ.

Since c2/(1−c2) > 0, we see by lemma 14 that the functions fh(ϕ) =
√

sn2ϕh + c2/(1− c2)
do not possess any common zero. Hence, in the neighborhood of a zero of fh(ϕ) this function
is not meromorphic, while the other functions are.

This implies that for every h = 1 . . . n we have

n−2
∑

j=1

λh,j
(

xh − xh,j
)

= 0, and then λ = 0.

Using our expressions of the abcissas xh,j, we obtain the following relation between mero-
morphic functions

n−2
∑

j=1

λh,j
(

F−1(z) − Fj(z)
)

= 0.

By lemma 16, for every integer j 6= 0 there exists a number αj such that Fj(αj) = ∞, and
Fh(αj) 6= ∞ if h 6≡ j (mod n). Letting z = αj , we obtain λh,j = 0, which concludes the
proof of the linear independence of our functions.

Now, we shall prove that for most ϕ ∈ R, the numbers dh,j(ϕ) and 1 are linearly
independent over Q.
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For every nonzero collection of rational numbers Λ = (λ, λh,j), let us define the function
FΛ by FΛ(ϕ) = λ − ∑h,j λh,j dh,j(ϕ). By our first step, this function is not identically
zero, and it is meromorphic in a neighborhood of R. Therefore, the set of its real zeros
is countable. Consequently, the set of all real numbers ϕ such that 1 and the numbers
dh,j(ϕ) are linearly dependent over Q is countable. By cardinality, we deduce that the
complementary set is not countable, hence nonempty. Consequently, there exists a real ϕ
such that 1 and the numbers |dh,j(ϕ)| are linearly independent over Q.

Now, let us parameterize our Poncelet polygon by arc length, starting from P0 for t0 ∈ Q.
The arc length th,j of Qh,j is

th,j = t0 + d(P0, P1) + d(P1, P2) + . . . + d(Ph−1, Ph) + d(Ph, Qh,j)

= t0 + |d0,1|+ |d1,1|+ |d2,1|+ . . .+ |dh−1,1|+ |dh,j|.

The result follows from the independence of the numbers 1 and |dh,j|. 2

We shall also need an analogous result for links.

Proposition 18 Let E and C be confocal ellipses such that there exists a polygon of an
odd number of sides inscribed in E and circumscribed about C.

For any integer µ, there exist µ Poncelet polygons P(0),P(1), . . . ,P(µ−1) satisfying the
following condition:

for each such polygon, if ti are the arc lengths corresponding to its vertices , its crossings,
an its intersections with the other polygons, then the numbers 1 and ti, i 6= 0 are linearly
independent over Q.

Proof. Let τ =
θ

µ
, and let us denote Mh = M(ϕ + hτ) ∈ C, and ℓh the tangent to C at

Mh. Let us consider the Poncelet polygons P = P(0), P(1), . . . ,P(µ−1) through the points
M0,M1, . . . ,Mµ−1. The polygon P is tangent to C at the points M0,Mµ,M2µ, . . . ,M(n−1)µ.
The vertices and crossings of P are the points Qh,j = ℓh

⋂

ℓh+j, where h ≡ 0 (mod µ).
Just as before, it can be proved that the distances 1 and |dh,j(ϕ)|, h ≡ 0, j 6≡ 0, j 6≡

−1 (mod µ) are linearly independent over Q, except for a countable set of numbers ϕ.
Consequently, the number 1 and the arc lengths ti, i 6= 0 of the crossings and vertices

of P are linearly independent over Q except on a countable set of values of ϕ.
By cardinality, we can suppose that the same property is true for each polygon P(j), j =

0, . . . , µ− 1, which proves our result. 2

5 Proof of the theorem

We will use Kronecker’s theorem ( see [HW, Theorem 443]):

Theorem 19 If θ1, θ2, . . . , θk, 1 are linearly independent over Q, then the set of points
(

(nθ1), . . . , (nθk)
)

is dense in the unit cube. Here (x) denotes the fractional part of x.
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Now, we can prove our main theorem.

Theorem 20 Let E be an ellipse which is not a circle, and let D be the elliptic cylinder
D = E × [0, 1]. Every knot (or link) is a billiard knot (or link) in D.

Proof. First, we consider knots. By theorem 9 there exists a knot isotopic to K, whose pro-
jection on the xy-plane is a billiard trajectory of odd period in the ellipse E. If t0, t1, . . . , tk
are the arc lengths corresponding to the vertices and crossings, we can suppose by propo-
sition 17 that the numbers t1, . . . , tk, and 1 are linearly independent over Q. Using a
dilatation, we can suppose that the total length of the trajectory is 1.

Let us consider the polygonal curve defined by (x(t), y(t), z(t)), where z(t) is the saw-
tooth function z(t) = 2|(nt+ϕ)−1/2| depending on the integer n and on the real number ϕ.
If the heights z(Pj) of the vertices are such that z(Pj) 6= 0, z(Pj) 6= 1, then it is a periodic
billiard trajectory in the elliptic cylinder D = E × [0, 1] (see [JP, La2, LO, P, KP1]). If we
set ϕ = 1/2 + z0/2, z0 ∈ (0, 1), we have z(0) = z0. Now, using Kronecker’s theorem, there
exists an integer n such that the numbers z(ti) are arbitrarily close to any chosen collection
of heights, which completes our proof.

The case of µ-component links is similar. First, by theorem 9, we find a diagram that is
the union of µ Poncelet polygons with the same odd number of sides. Then, by proposition
18 and Kronecker’s theorem, we parameterize each component so that the heights of the
vertices and crossings are close to any chosen numbers. 2
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[LT] M. Levi, S. Tabachnikov, The Poncelet Grid and Billiards in Ellipses, Amer. Math.
Monthly 114 (10), pp. 895-908, 2007.

[M] V. O. Manturov, A combinatorial representation of links by quasitoric braids, Euro-
pean J. Combin. 23 no 2, pp. 207-212, 2002.

[O] J. O’Rourke, Tying knots with reflecting lightrays,

http://mathoverflow.net/questions/38813/, 2010.



Poncelet’s theorem and billiard knots 17
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