
A Unified Approach to Fully Lazy Sharing

Thibaut Balabonski

To cite this version:

Thibaut Balabonski. A Unified Approach to Fully Lazy Sharing. 2011. <hal-00637048>

HAL Id: hal-00637048

https://hal.archives-ouvertes.fr/hal-00637048

Submitted on 29 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47105181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00637048

A Unified Approach to Fully Lazy Sharing

Thibaut Balabonski
Univ Paris Diderot, Sorbonne Paris Cité,

PPS, UMR 7126, CNRS,
F-75205 Paris, France

thibaut.balabonski@pps.jussieu.fr

October 29, 2011

Abstract

We give an axiomatic presentation of sharing-via-labelling for weak
λ-calculi, that allows to formally compare many different approaches to
fully lazy sharing, and obtain two important results. We prove that the
known implementations of full laziness are all equivalent in terms of the
number of β-reductions performed, although they behave differently
regarding the duplication of terms. We establish a link between the
optimality theories of weak λ-calculi and first-order rewriting systems
by expressing fully lazy λ-lifting in our framework, thus emphasizing
the first-order essence of weak reduction.

This technical report extends [Bal12] with comprehensive proofs.

1 Introduction

A fundamental problem in the implementation of functional programming
languages is the efficient evaluation of β-reduction, which has been studied
for a long time. The difficulty of the problem comes from the fact that one
has to minimize the number of β-steps as well as control the actual (amor-
tized) cost of single β-reduction steps. The minimization of the number of
β-steps requires, in turn, to handle two different issues: avoiding non-needed
computations, and minimizing duplications of unfinished work.

In λ-calculus, some reduction strategies [BKKS87] can completely avoid
non-needed computations. However, it is also known that no reduction
strategy can completely avoid duplications [Lam90]. Hence, in any case,
one has to cope with duplications that still occur, and find some appropriate
ways to deal with them.

This is exactly the point of sharing: building implementations in which
the duplicated occurrences of a given original subterm keep a unique shared
representation allowing to evaluate all the copies at the same time, as if they
were only one. The idea is to make sure that some parts of a program which

1

are logically duplicated (in the term representation of the program) remain
physically single pieces (in the memory of the evaluator).

Sharing cannot be achieved using only λ-terms: it requires the use of
other technical tools, for instance graphs, closures, or program transforma-
tions. The various resulting formalisms may be hardly comparable.

This paper focuses on one particularly rich flavor of sharing called fully
lazy sharing (described in section 1.2) and aims at formally relating its var-
ious implementations. This is done by defining a framework called sharing-
via-labelling systems in which they can all be expressed and compared.

This unified approach provides compiler writers with increased knowl-
edge on the wide panorama of full laziness. In particular, it replaces a series
of sometimes informal justifications of equivalence by a central theorem en-
suring that all the considered approaches are equivalent with respect to the
number of shared β-steps. As a consequence, one can safely restrict any sub-
sequent comparison of two fully lazy models to other parameters of interest
such as their space consumption or the actual cost of maintaining sharing.
Having a unified framework will also simplify the task of comparing full lazi-
ness to the other efficient implementation techniques, such as other degrees
of laziness (up to optimality), or partial evaluation.

The rest of the introduction is organized as follows: Section 1.1 presents
the various technical tools commonly used to specify sharing, Section 1.2
describes how these tools have been used and combined over the past 40
years to propose different definitions of fully lazy sharing, and Section 1.3
details our approach and the contributions of the paper.

1.1 Many tools for sharing

This section reviews several different technical tools that have been used to
deal with sharing.

Graphs. The most intuitive way of expressing sharing might be by using
graphs. In the following pictures, we denote application by the binary node
@, and redexes1 are marked with bold lines. For instance in the center of
the following picture, an abstraction λx.t is applied to an argument a. The
function body t contains two occurrences of the formal parameter x, and
the argument a is thus logically duplicated (on the left).

t

a a

@

t

λx

x x
a t

a

1a reducible expression, or redex, designs a place where an evaluation step can take
place

2

The simplest notion of sharing, which may be referred to as lazy sharing,
or just laziness, prevents the previous duplication by keeping a physically
unique, with two pointers to its location (right hand side part of the previous
picture).

Here the term laziness is to be taken in literal sense: the duplications are
postponed as long as it is possible, but some of them will eventually happen.
For instance, a shared function has to be copied prior to any instantiation,
as shown in the picture below.

@

t

C

λx

x x
a t

λx

x x

C
t

a

Extraction of free parameters. The previous pictures feature graphs
built with λ-calculus constructs and in particular with binders. This re-
quires either to define variable renaming (α-conversion) or to add some
special structure to represent binding. In any case the resulting graph for-
malism is quite complex. Graph reduction can be made easier by turning
λ-terms (that are higher-order terms) to applicative expressions (that are
first-order terms). This is the point when compiling the λ-calculus into com-
binators [Tur79] or supercombinators [Hug82], techniques that finally led to
the λ-lifting program transformation [Joh85, Jon87].

This transformation extracts all the free variables from a function and
replaces what remains of the function by a symbol called supercombinator.
New reduction rules are added to deal with the new symbols.

Closures and memory heaps. While graphs are a simple and old way
to describe lazy sharing, the reference system for the semantics of lazy eval-
uation is J. Launchbury’s natural semantics [Lau93]. It introduces let ...
in ... constructs to name the arguments of the applications, and then puts
these arguments in a heap. Sharing then appears as memoization: when
one needs to access the content of a variable, the corresponding expression
found in the heap is evaluated, and the heap is updated with the obtained
result.

In contrast to the previous big-step approach, a small-step description
of lazy evaluation based on terms is the call-by-need λ-calculus of Z. Ariola
et al. [AFM+95]. Here again, sharing is expressed thanks to additional let
... in ... constructs used as closures. Similar effects can also be achieved by
expressing sharing using explicit substitutions [Yos94].

Labels and weak reduction. Finally, laziness is seen in [Yos94, Mar91]
as the optimal way of sharing in weak λ-calculi: variants of the λ-calculus

3

where reduction under λ-abstractions is restricted. After J.-J. Lévy de-
scribed optimal sharing for the plain λ-calculus (unrestricted, untyped, usual
λ-calculus) by means of labelled λ-terms [Lé80], L. Maranget [Mar91] adapted
these ideas for a weak λ-calculus and for first-order rewriting and got an
additional result that is not valid for the plain λ-calculus: labelled terms
represent graphs implementing optimal sharing.

In [Mar91] the link between labelled terms and graphs is made by inter-
preting the label of a term as its location in memory, or graphically by its
coordinate:

@α

λxβ

@γ

xι

t

t
δ

δ
@

λx

@
x

t

We call this principle sharing-via-labelling. The idea is also explored
in [DLLL05]. In this setting the equality of labels corresponds to the physical
equality of two terms, which should in turn imply their syntactic equality:
two terms stored/drawn at the same place ought to be equal. The reduction
of a graph-redex is simulated by the reduction of all the labelled term-redexes
with a given label. One then needs to ensure that the sharing property (terms
with equal labels are syntactically equal) is preserved by reduction.

1.2 Full laziness: State of the art

The main idea. Full laziness is based upon the following remark: the
constant parts of a function body are not affected by the instantiation of the
function, hence they need not be duplicated.

A similar idea exists in the optimization of imperative programs: a con-
stant expression without effect in the body of a loop need not be evaluated
at each iteration, and can be lifted out of the loop by the compiler.

This can be formalized by means of the notion of free expression. We
recall the definition given in [Jon87]. Say a subterm s of t is free in λx.t if
all the free variables of s are free in λx.t. A maximal free expression of
λx.t is a free expression of λx.t which is not contained into any other free
expression of λx.t.

Fully lazy sharings. The various definitions of fully lazy sharing come
from a combination of the previous idea with one or more of the technical
tools described in section 1.1.

The first description of fully lazy sharing is in the graph evaluation tech-
nique presented by C.P. Wadsworth [Wad71]. This graph reduction performs
only a partial copy of a duplicated function body, by avoiding the copy of its

4

maximal free expressions (see Example 1a). O. Shivers and M. Wand [SW04]
enrich the graph structure of [Wad71] to allow a simple and efficient imple-
mentation. For this they also use a different characterization of what has to
be copied, which we detail in Section 3.1.

Two other approaches combine graphs with other tools. First S. Peyton-
Jones [Jon87] reaches a simple graph formalism thanks to a fully-lazy version
of λ-lifting which replaces the extraction of the free variables of a function
by the extraction of its maximal free expressions, following [Hug82]. Sec-
ond, T. Blanc, J.-J. Lévy and L. Maranget [BLM07] derive a graph imple-
mentation of fully lazy sharing through the sharing-via-labelling principle,
using labels that characterize optimal sharing for a weak λ-calculus studied
in [ÇH98]. This approach can copy fewer graph nodes of the duplicated
abstractions (see Example 1b).

Finally, Z. Ariola and M. Felleisen [AF97] and P. Sestoft [Ses97] use the
extraction of maximal free expressions to build fully lazy versions of (re-
spectively) the call-by-need λ-calculus [AFM+95] and Launchbury’s natural
semantics for laziness [Lau93]. Both solutions are based on closures repre-
sented by let ... in ... constructs. The former solution [AF97] uses a more
restrictive definition of free expressions and hence may in some cases copy
more nodes than the others (see Example 1c).

Example 1.

Bold lines identify the parts of the function that are duplicated by the differ-
ent models. See Section 3.1 for a formal statement.

λx

@
λz

z

λy

@
x@

y y

λx

@
λz

z

λy

@
x@

y y

λx

@
λz

z

λy

@
x@

y y

(a) [Wad71] (b) [BLM07] (c) [AF97]

Summary. The following table sums up how each of the previous works
gives its own view on fully lazy sharing, with different interpretations of the
same main idea and using various combinations of technical tools that are
sometimes hardly comparable. We use the symbol = to mean “as many
copied nodes as [Wad71]”.

5

Tools
Dupl. Graphs Extraction Closures Labels

[Wad71] = X
[Jon87] = X X
[AF97] More X X
[Ses97] = X X
[SW04] = X

[BLM07] Fewer X X

This paper proposes a formal setting in which all the approaches men-
tioned above can be expressed. This allows to formally compare them and
leads us to the two following conclusions:

• The previous approaches correspond to at least three different graph
implementations. This means that, strictly speaking, they do not all
induce the same amount of sharing. Hence, despite the fact that all
these approaches intend to implement the same idea their equivalence
is not obvious.

• However, all these approaches have the same reduction space, which
in turn means that the different implementations of fully lazy sharing
perform the same number of β-reductions. In other words, any further
comparison of these approaches need not anymore take this parameter
into account.

1.3 Content of the paper

An axiomatic framework for sharing-via-labelling. To express all
the previous approaches, we build in Section 2 an axiomatic framework
which generalizes the work of T. Blanc, J.-J. Lévy and L. Maranget [BLM07].
We use labelled terms to describe the graphs realizing optimal sharing for
a given notion of weak reduction. Various weak reduction notions are de-
fined thanks to an axiomatic description of the parts of the program where
reduction is forbidden. In any case the restrictions concern only evaluation
in the body of a non-instantiated function, called partial evaluation. This
implies that the call-by-value and call-by-name strategies are always valid.
However, the different weak calculi may or may not be confluent (see [ÇH98]
and Example 3).

This approach of sharing-via-labelling allows in Section 3 to relate all
the definitions of fully lazy sharing that do not rely on supercombinators
and λ-lifting. In other words this axiomatic framework, which is designed in
higher-order rewriting, covers the definitions of full laziness which directly
operate in the higher-order world [Wad71, AF97, Ses97, SW04, BLM07].
The remaining approaches using a translation to first-order rewriting by λ-
lifting [Hug82, Jon87] are studied separately in Section 4. The translation to

6

first-order by means of combinators of D. Turner [Tur79] is out of the scope
of the present paper, since these combinators simulate explicit substitutions
and then introduce additional reduction steps.

Notably due to its axiomatic nature, our framework is not suitable for
an immediate implementation. On the other hand, this approach teaches us
something about full laziness in general and on its various concrete imple-
mentations. The novelty of our framework lies in the fact that it cannot be
seen as a straightforward generalization of any of the aforementioned embod-
iments of full laziness taken in isolation: the axiomatization rather comes
from an analysis of the similarities and the differences of all the concrete
systems. This yields a new system whose specific properties may be under-
stood as the intersection of the particular properties of the various concrete
systems. In other words, our axiomatization tries to grasp the essence of
full laziness.

A formal coding of higher order into first order by λ-lifting. The
λ-lifting program transformation turns a λ-term into a first-order term. The
main feature of λ-lifting is the transformation of λ-abstractions into function
symbols, also called supercombinators, over which first-order reduction rules
are defined. As emphasized in [LM09], this transformation unveils a tight
relation between weak λ-calculus and first-order rewriting.

Usual definitions of λ-liftings [Joh85] proceed by first defining the trans-
formation of λ-abstractions, and then iteratively applying the process to a
λ-term until it contains no more λ-abstractions. Definitions differ in par-
ticular in the way in which a single λ-abstraction is transformed and on
the order in which the iteration is applied. For instance, [Jon87] describes a
bottom-up transformation, while [Ses97] iterates in an unspecified order. We
ensure the consistence of these two views by giving a definition of fully-lazy
λ-lifting in which the order of the iterative process is irrelevant.

Since λ-lifting is an iterative process that turns progressively a λ-term
into a first-order term, none of the intermediate steps is in either of these
worlds. Nevertheless, we would like to embody the source, the target, and all
the intermediate steps of the transformation into a single formalism. To this
aim we use Combinatory Reduction Systems (CRS), a higher-order rewriting
framework introduced by J.W. Klop and reviewed in [KvOvR93] that mixes
abstractions and symbols. The β-reduction as well as the target first-order
reduction have a straightforward encoding into CRS rules. Moreover, fully
lazy λ-lifting itself can then be seen as a rewriting process: it is expressed in
Section 4 as a confluent and strongly normalizing CRS reduction relation.

We provide a new proof of correctness of fully lazy λ-lifting by showing
that the transformation preserves reduction sequences: each single reduc-
tion step in the source (resp. target) system is simulated by exactly one
single step in the target (resp. source) system. The proof is small-step: the

7

reduction sequences are proved to be preserved in every intermediate step of
the transformation. Moreover, we prove that the notion of optimal sharing
is also preserved, which has two consequences:

• The direct [Wad71] and the λ-lifting based [Jon87] approaches of full
laziness are reduction-wise equivalent.

• Fully-lazy λ-lifting establishes a link between optimal sharing in the
weak λ-calculus [BLM07] and the better known optimality theory of
first-order rewriting [Mar91, Ter03]. This emphasizes in a new way the
“first-order” nature of weak reduction, without any de Bruijn indices
or explicit substitutions (contrary to [Mar91]).

A final bonus remark is an incidental point which happens to have some
theoretical significance: while β-reduction and λ-lifting considered sepa-
rately can be seen as orthogonal systems2, their combination cannot. As
far as the author is aware, the system derived in this paper is the first
successful optimality-oriented labelling of a non-orthogonal system.

Outline. The paper comprises three main parts: Section 2 presents the
abstract notions of prefix, weak reduction, and sharing-via-labelling and
gives a proof of the sharing property for the axiomatic framework. Section 3
restricts the axiomatics to enforce full laziness and proves a generic equiv-
alence between several notions of fully lazy sharing. Section 4 focuses on
the particular fully lazy system of [Wad71, SW04] whose properties allow a
clean definition of fully lazy λ-lifting which establishes a strong link between
weak β-reduction and first-order rewriting.

2 Sharing and β-reduction

We define in this section an axiomatic framework in which the higher-order
approaches [Wad71, AF97, Ses97, SW04, BLM07] to fully lazy sharing can be
expressed. We propose an axiomatic notion of weak β-reduction in Subsec-
tion 2.1, whose optimal sharing is characterized by the sharing-via-labelling
systems introduced in Section 2.2. Section 2.3 then shows that reduction
of labelled terms in sharing-via-labelling systems represents reduction of
graphs.

All this is expressed in Combinatory Reduction Systems (CRS). By lack
of space we recall only the basic syntax and refer the reader to [KvOvR93]
for details. The grammar of metaterms in a CRS is:

t ::= x | [x]t | f(t1, ..., tn) | Z(t1, ..., tn)

2in brief, a system is orthogonal when no two rules are applicable to overlapping sets
of positions of a term, see for instance [Ter03, Bru03]

8

where x is a variable, [x] denotes the binding of a variable, f is an n-
ary function symbol taken in a signature Σ, and Z is an n-ary meta-
variable. A term is a metaterm without meta-variable, and a reduction
rule is a pair L→ R of closed metaterms satisfying the following conditions:
the meta-variables in L appear as Z(x1, ..., xn) with x1, ..., xn distinct bound
variables, and all the meta-variables of R also appear in L. A rule matches
a term by application of a valuation σ that maps n-ary meta-variables to
n-ary contexts avoiding variable capture. Reduction by a rule L→ R with
valuation σ in a context c is c[Lσ]→ c[Rσ].

2.1 Weak β-reduction systems

This section gives an abstract definition of weak reduction in the λ-calculus
and states one of its crucial properties: disjoint redexes remain disjoint along
any reduction (Lemma 1). This lemma serves in particular in the definition
of graph reduction in Section 2.3.

Weak reduction forbids the reduction of so-called frozen redexes, which
are identified by their belonging to the prefix of some λ-abstraction. Prefixes
are parts of λ-abstractions defined by a prefix function satisfying the axioms
of a weak β-reduction system.

Weak β-reduction systems are CRS over the signature Σ comprising:

• a binary symbol @ for application,

• a unary symbol λ for λ-abstraction,

• a unary dummy symbol ε,

• for all n ∈ N, a countable set Fn of n-ary symbols.

From now on, by term we mean a CRS term over the signature Σ (notation
t, u, v, w, a). We use the usual notion of positions of terms (notation q),
contexts and free variables [KvOvR93]. We write t{x:=u} the substitution
by u of all the free occurrences of the variable x in t.

Application and λ-abstraction symbols are used to embody λ-terms
in this signature, which is made in the usual way: the λ-term (λx.x)y
for instance is encoded in the CRS term @(λ([x]x), y). We write λx.t as
a shorthand for λ([x]t). Hence the encoding of (λx.x)y is simply writ-
ten @(λx.x, y), and the usual β-reduction is represented by the CRS rule
@(λx.Z(x), Z ′)→ Z(Z ′).

The symbols in the sets Fn are used in Section 4 to represent supercom-
binators. Until then they play no role and may be ignored.

The dummy symbol ε has no meaning in itself. It is needed for labelling
(Subsection 2.2), and serves in particular as a container for dynamically cre-
ated labels. In the graphical interpretation of labelled terms, the occurrences

9

of ε will represent indirections (see Subsection 3.1). As a consequence, occur-
rences of ε should not interfere with β-reduction. This leads to the following
countable set of rules to simulate β-reduction by allowing any number of ε’s
between the application and the λ-abstraction:

β0: @(λx.Z(x), Z ′) →β ε(Z(ε(Z ′)))
β1: @(ε(λx.Z(x)), Z ′) →β ε(Z(ε(Z ′)))
β2: @(ε(ε(λx.Z(x))), Z ′) →β ε(Z(ε(Z ′)))
...

The two ε’s in the right hand sides are used for the correct labelling of
collapsing reductions (see Subsection 2.2). The use of the dummy symbol
ε is inspired by the notion of expansion in term rewriting systems [Ter03,
Chap. 8].

Write ρ : t→ t′ a reduction ρ of a term t to a term t′. The usual notions of
ancestors and descendants, which allow to track subterms along reduction
in the λ-calculus are straightforwardly adapted, as illustrated in Example 2.
A residual of a redex r is a descendant of r which is still a redex.

Example 2.

The term t = @(ε(λx.@(x, x)), y) reduces by rule β1 to t′ = ε(@(ε(y), ε(y))).
The two occurrences of y in t′ are the descendants of the y in t, and the
latter is the ancestor of the formers. The ε in t has no descendant and the
ε’s in t′ have no ancestor.

We call plain λ-calculus the usual reduction relation where the previous
rules can be applied in any context. Weak reduction consists in restrict-
ing this reduction relation. Particularly, it affects the reduction under λ-
abstractions. Before introducing the formal definition, let us present two
different well-known examples:

Example 3.

1. The naive weak reduction simply forbids any reduction under λ-
abstractions.

2. A more refined version, studied in particular in [ÇH98], allows no
reduction between an occurrence of a bound variable and its binder.
Formally, if r is a redex of contractum r′, then the reduction C[r] →
C[r′] is allowed if and only if the context C binds no variable that
appears free in r. We call this version CH-weak reduction.

It is known that CH-weak reduction yields a confluent weak calculus while
naive weak reduction does not [ÇH98].

10

To specify the previous notions, we introduce a notion of prefix: call a n-
ary closed prefix of a term t a n-ary context p which does not contain any
free variable and such that there are terms t1, ..., tn satisfying t = p[t1, ..., tn].
Example 4 gives two closed prefixes of the same term. Call a prefix func-
tion a function that takes a term t as input and returns a closed prefix of
t.

Example 4.

Let t = λx.@(@(z1, z2), λy.@(@(y, z3), x)). The two contexts λx.@([], λy.@([], x))
and λx.@([], λy.@(@(y, []), x)) are two closed prefixes of t, called respectively
spine and skeleton (see Section 3.1). These two prefixes are marked with
bold lines in the two following pictures.

λx

@
@

z1 z2

λy

@
x@

y z3

λx

@
@

z1 z2

λy

@
x@

y z3

Spine Skeleton

A weak β-reduction system is defined below by a prefix function P sat-
isfying some conditions. The first condition is a simple restriction linked to
bound variables. The second condition controls the evolution of P(t) when
free variables of t are substituted by terms. In particular, P(t{x:=u}) is re-
quired to contain P(t), and the extension from P(t) to P(t{x:=u}) has to be
uniform. This uniformity is enforced by the use of an auxiliairy function
P�.

Call a weak β-reduction system a prefix function P such that:

• For any term λx.t such that P(λx.t) = p and λx.t = p[t1, ..., tn], the
variable x does not appear free in any of the ti’s (which are called
the parameters of λx.t). In other words, P(λx.t) contains all the
occurrences of x that are free in t.

• There is an auxiliary prefix function P� such that for any p in the
codomain of P and for any terms t1, ..., tn where no free variable of
a ti is bound in p, the equation P(p[t1, ..., tn]) = p[P�(t1), ...,P�(tn)]
holds.

A weak β-reduction system defines a notion of weak reduction as fol-
lows: β-reduction is forbidden in the prefix of any λ-abstraction. Call a
frozen position of a term t a position that is in the prefix of some λ-
abstraction of t. Call a frozen β-redex a redex whose main @ symbol
occurs at a frozen position.

11

Example 5.

The two weak reductions of Example 3 can be captured by our axiomatic
definition:

1. Naive weak reduction is given by Pn such that Pn(t) = p where t =
p[x1, ..., xn] and x1, ..., xn are all the free variable occurrences of t. The
auxiliary function is P�n = Pn (the whole substituted term is included
into the prefix).

2. CH-weak reduction can be given by Pch such that Pch(t) = p where
t = p[t1, ..., tn] and t1, ..., tn are all the maximal free expressions of
t. The auxiliary function P�ch is the constant mapping returning the
empty unary context [] (the prefix is stable by substitution). We will
see in Section 3.2 that Pch is not the unique representation of CH-weak
reduction.

A weak β-reduction system is said to be safe when the descendants of
a non frozen redex are not frozen.

Example 6.

CH-weak reduction is safe, while naive weak reduction is not: let t = @(λx.λy.x,@(λz.u, v)),
where the redex @(λz.u, v) is not frozen in t. We have the reduction t →β

ε(λy.ε(@(λz.u, v))) = t′.

@
λx

λy

x

@
λz

u

v

λy

@
λz

u

v

In the case of naive weak reduction @(λz.u, v) is frozen in t′, which is not
the case in CH-weak reduction since y does not appear in @(λz.u, v). This
example also suggests why naive weak reduction is not confluent.

An important feature of weak reduction is that it cannot nest the resid-
uals of disjoint redexes. This fact is formalized in Lemma 1, and will be
useful in Section 2.3 to ground the notion of parallel reduction.

Lemma 1 (Disjoint residuals). Let ρ : t→ t′ be a reduction and r1, ..., rn
(non frozen) redexes of t occurring at disjoint positions. Then the descen-
dants of r1, ..., rn also occur at disjoint positions.

Proof. If a descendant r′i of ri is below a descendant r′j of rj then r′i has
been substituted into rj , which means that rj contains an occurrence of a
variable bound above rj . Hence rj is frozen, contradiction.

Example 7 shows why Lemma 1 is a feature of weak reduction which is
not valid in the plain λ-calculus.

12

Example 7.

Suppose r1 and r2 are two redexes. In the left term r1 is frozen for any weak
β-reduction system.

@

r1

λx

x

r2

r1

r2

To prepare the implementation of optimal sharing for weak β-reduction
systems in next section (2.2), we give a characterization of redex creation in
these systems. Suppose ρ : t →β t

′ in a weak β-reduction system. A redex
of t′ is created by ρ if it is not the descendant of a (non frozen) redex of t.
The reduction can create redexes in t′ at exactly three places:

1. At the root of the contractum, the body of the main λ-abstraction is
connected to the context. This can create a new contact between an
application and a λ-abstraction.

2. At the places where a substitution occurs, the argument is connected
to the body of the main λ-abstraction, or to the context if the body is
degenerated.

3. In the prefix of the main λ-abstraction, a previously frozen redex can
be “unfrozen” by ρ, as r1 in Example 7. In other words, a reduction
forbidden by the weak restriction in t can be authorized in t′.

2.2 Sharing-via-labelling systems

We define in this section a labelling for weak β-reduction systems which char-
acterizes optimal sharing and yields a graph implementation. As in [Lé80],
the labels record the past history of a term. This is done in a distributed
way since each label remembers only what is relevant to its position. The
important point for optimality is that the labels of a redex r are character-
ized by the past reductions that contributed to the creation of r, which is
ensured by the concluding lemmas 2 and 3. These two lemmas also play a
key role in the proof of the preservation of the graph structure (so-called
sharing property) in Section 2.3.

To embody this contribution relation into the labels, we build compound
labels of the form [Ω, α] where a pre-existing label α is modified by the name
Ω of a contributing redex. The labelled β-reduction then modifies the labels
of the positions where the reduction can contribute to something, following

13

the characterization of redex creation given at the end of the previous sub-
section. Names and contribution are required to satisfy three axioms which
ensure that the name of a redex correctly reflects its contributors.

The labelled terms are formalized as usual CRS terms over a labelled
signature. Since the labels should not interfere with the normal reduction
behaviour, the labelled β-reduction is defined for any possible labelling of
the source.

For any countable set L whose elements are called labels (and written α,
β, γ...), a labelled signature ΣL is defined as the set {fα|f ∈ Σ, α ∈ L}.
From now on, a L-labelled term denotes a CRS term over ΣL. In other
words, the labels are associated to the symbols, and never directly to the
variables or the bindings. Remark that the labels are arbitrary objects: in
a concrete definition they can be simple letters as well as richly structured
objects.

We write λαx.t (resp. xα) as a shorthand for λα([x]t) (resp. εα(x)).
Write τ(t) for the label of the root symbol of the labelled term t. Write
εα1...αk
k (t) as a shorthand for εα1(...εαk(t)), where the case k = 0 represents
t.

Write |.| the (trivial) map from terms over ΣL to terms over Σ that
removes the labels of all symbols. By requiring the condition |P(t)| = P(|t|),
we get a straightforward extension to ΣL of any weak β-reduction system P
over Σ.

Since neither ε’s nor labels shall interfere with β-reduction, labelled β-
redexes allow any number of ε occurrences and can be decorated with any
labels: for any L, a L-labelled β-redex is a L-labelled term of the form
@α(εβ1...βk

k (λγx.t), a). Labelled β-reduction is defined later, since it requires
an additional notion of sharing-via-labelling systems given below.

We consider sets of labels of the form L = VN , generated by the following
grammar for any two countable sets V and N :

VN ::= V | [N ,VN]

The label [Ω, α] denotes “the label α modified by Ω”. Write [Ω1...Ωn, α] as
a shorthand for [Ω1, ...[Ωn, α]]. Any Ωi is called a modifier of [Ω1...Ωn, α].
The virginal labels (the labels in V) denote positions that are free from any
past history, they will be modified into labels of the form [Ω1...Ωn, α] along
the reductions.
Let S be a tuple 〈P,N ,V, η, ↪→〉 where:

• P is a weak β-reduction system.

• N is a countable set whose elements are called (redex) names (no-
tation Ω).

• V is a countable set whose elements are called virginal labels, with
two distinguished elements > and ⊥.

14

• η is a function from VN -labelled redexes to names.

• ↪→ is a transitive and irreflexive relation on N called contribution
relation.

The terms considered in S are the VN -labelled terms. Call virginal term
a term whose labels are all virginal and different.

Write ↑Ω = {Ω′ | Ω′ ↪→ Ω} the set of all the contributors of the name
Ω. Contribution is extended to labels: define ↑α = ∅ if α is a virginal label,
and ↑ [Ω, α] = {Ω} ∪ ↑Ω ∪ ↑α otherwise. Write Ω ↪→ α when Ω ∈ ↑α.
S is a sharing-via-labelling system if the following axioms are satisfied:

• (Redex contributors)

↑η(@α(εβ1...βk
k (λγx.t), a))

=
↑α ∪ (

⋃
i ↑βi) ∪ ↑γ

• (Name scope) If λγx.p is in the codomain of P, and at, au are any
terms and t1, ..., tn, u1, ..., un are terms whose free variables are not
bound in λγx.p, then

η(@α(εβ1...βk
k (λγx.p[t1, ..., tn]), at))

=

η(@α(εβ1...βk
k (λγx.p[u1, ..., un]), au))

• (Name equality) If η(r) = η(r′) then τ(r) = τ(r′).

The axiom Redex contributors states that the name of a redex collects
the contributors of the essential parts of the redex, that means its main
application, its main λ-abstraction, and all that lays in between these two
positions. The axiom Name scope states that the name of a redex does not
depend of what is deeper than the smallest prefix of the main abstraction,
while axiom Name equality states that the equality of the names of two
redexes implies the equality of their respective root labels.

Example 8.

Let V be any countable set.

1. The names in Nseq are sequences of labels. Since the names also take
part into the definition of the labels, a mutually recursive definition of
names and labels is required:

Nseq ::= L; ...;L
L ::= VNseq

15

Define the name of a redex as

ηseq(@
α(εβ1...βk

k (λγx.t), a)) = α;β1; ...;βk; γ

The contribution relation is defined by: Ω ↪→seq α1; ...;αn if and only
if there is at least one i such that Ω ↪→seq αi.

For P ∈ {Pn,Pch}, the system 〈P,Nseq,V, ηseq, ↪→seq〉 is a sharing-via-
labelling system. The definitions of Nseq, ηseq, and ↪→seq correspond
to the system presented in [BLM07].

2. The names in Nctx are L-labelled contexts, with once again a mutually
recursive definition using L ::= VNctx. Define

ηctx(@α(εβ1...βk
k (λγx.t), a)) = @α(εβ1...βk

k (λγx.p), [])

where P(λγx.t) = λγx.p.
Write Ω ↪→ctx c if there is a label α in c such that Ω ↪→ctx α.

For 〈Pch,Nctx,V, ηctx, ↪→ctx〉 to be a sharing-via-labelling system, the
axiom Redex contributors requires that the prefixes satisfy the following
property: all the contributors of the labels of a prefix λγx.p contribute
to γ. Fortunately, in this system this property is an invariant of la-
belled β-reduction (defined below).
The system 〈Pn,Nctx,V, ηctx, ↪→ctx〉 is not a sharing-via-labelling sys-
tem since it breaks the axiom Name scope.

Labelled β-reduction is defined by a rule scheme which propagates the
name of the reduced redex in the reduced term for recording of the contribu-
tions. For this, the constructor [., .] extends to a function on labelled terms:
[Ω, t] is defined as the labelled term t in which all the labels are modified by
the function α 7→ [Ω, α].

Labelled β-reduction in a sharing-via-labelling system is defined by
the rule scheme:

@α(εβ1...βk
k (λγx.p[t1, ..., tn]), a)

→β

ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn]

where λγx.p = P(λγx.p[t1, ..., tn]) and

where Ω = η(@α(εβ1...βk
k (λγx.p[t1, ..., tn]), a)).

The name Ω is added in three areas of the reduced term:

1. At the root of the contractum, with the new label [Ω,>].

2. At the places where a substitution occurs, with the new label [Ω,⊥].
Remark in Example 9 how > and ⊥ work as parentheses in the syn-
tactic tree of the term.

16

3. In the prefix of the main abstraction of the redex, as an additional
modifier to pre-existing labels.

Remark that these three places follow the three cases of redex creation given
in Section 2.1 and that removing the labels in this rule yields exactly the
unlabelled β-reduction of Section 2.1.

Example 9.

Let r = @α(λγx.@δ(@ι(xµ, xν), λκy.yσ), a) be a β-redex. We reduce r in two
sharing-via-labelling systems of Example 8.

1. In 〈Pn,Nseq,V, ηseq, ↪→seq〉 the name of r is the sequence Ω = α; γ, and
the prefix of the λ-abstraction is its whole body. Then all the labels are
modified in the contractum:

@α

λγx

@δ

@ι

xµ xν
λκy

yσ

a
ε[Ω,>]

@[Ω,δ]

@[Ω,ι]

ε[Ω,µ] ε[Ω,ν]

ε[Ω,⊥] ε[Ω,⊥]

λ[Ω,κ]y

y[Ω,σ]

a a

2. In 〈Pch,Nctx,V, ηctx, ↪→ctx〉, the name of r is the labelled context Ω =
@α(λγx.@δ(@ι(xµ, xν), []), []). The only modified labels are those of the
prefix of the λ-abstraction, marked with bold lines below.

@α

λγx

@δ

@ι

xµ xν
λκy

yσ

a
ε[Ω,>]

@[Ω,δ]

@[Ω,ι]

ε[Ω,µ] ε[Ω,ν]

ε[Ω,⊥] ε[Ω,⊥]

λκy

yσ

a a

Example 10 tells why the root occurrence of ε is necessary for a correct
recording of the history of the reduction into labels. The other occurrences
of ε in the right hand side of the β-rule are useful to get some other properties
of the labelling such as the reconstruction property defined in [Ter03, Chap.
8].

17

Example 10.

Consider the term λγx.yδ in a sharing-via-labelling system based on the CH-
weak reduction system Pch. Since x does not appear in the body of the
abstraction we have Pch(λγx.yδ) = λγx.[]. Take Ω as the name of the reduced
redex, then we have

@α(λγx.yδ, u)→β ε
[Ω,>](yδ)

Remark that the only sign of a reduction step in ε[Ω,>](yδ) is the label [Ω,>]
on the ε symbol.

This section ends with the two lemmas 2 and 3, which show how the
labels reflect the contribution relation between redexes. In particular, the
name of a redex r characterizes the past reductions that led to the creation
of r.

Lemma 2 (Redex stability). Let r be a (non frozen) redex of a term t.
If rd is a descendant of r after a reduction ρ : t →β t′, then rd is still a
(possibly frozen) redex and η(rd) = η(r).

Proof. Case on the relative positions of r and ρ:

• If r is below ρ, then:

– Since r is not frozen its root can not be in the prefix of the main
abstraction of ρ.

– In all the other cases rd = r and hence η(rd) = η(r).

• If ρ is below r, then:

– Since the redex of ρ is not frozen its root can not be in the prefix
of the main abstraction of r.

– In all the other cases η(rd) = η(r) (axiom Name scope).

Lemma 3 (Direct contribution). If a redex of name Ωc is created by the
reduction of a redex of name Ω, then Ω ↪→ Ωc.

Proof. By case on the redex creation (given in Section 2.1), using the axiom
Redex contributors.

2.3 Sharing

This section proves the main property of sharing-via-labelling systems: par-
allel labelled reduction simulates graph reduction (Theorem 1). As in [BLM07],
the labelled terms are linked to graphs with the sharing-via-labelling prin-
ciple seen in the introduction: labels are interpreted as memory locations.
The proof of the simulation is then done by ensuring that the two following
invariants are preserved by parallel labelled reduction:

18

1. A term t has the sharing property, written S(t), when any two
subterms of t with same label are syntactically equal. This is the
main property we want to preserve.

2. A term t has the maximality property, written M(t), when for any
(non frozen) redex of name Ω and any subterm of label α in t it is
not true that Ω ↪→ α. This property is widely used in the subsequent
proofs, it ensures in particular that all the occurrences of a given label
are created at the same time (see Example 11). Lemmas 2 and 3 are
the cornerstone of the preservation of the maximality property.

Parallel labelled reduction is defined for any term t satisfying the
sharing property S(t): let α be the label of a (non frozen) redex of t. Since
S(t) holds, all the redexes labelled by α are equal and have disjoint positions
(however, some may be frozen). The parallel labelled reduction of α, written
t

α
=⇒β t′, is then defined as the simultaneous replacement of all the (non

frozen) redexes with label α by their contractum. By lemmas 1 and 2,
parallel labelled reduction is well defined as a sequence of single steps, for
instance any iterated reduction of the non frozen redexes with label α.

Theorem 1 (Preservation of sharing). If M(t), S(t) and t
α0=⇒β t

′, then
M(t′), and S(t′).

Proof. By S(t) all the occurrences of the label α0 denote the same redex.
Write r0 the redex, Ω0 its name, and r′0 its contractum.

Verification of M(t′). Suppose there is a redex r′ with name Ω′ and a
subterm u′ with label α′ in t′ such that Ω′ ↪→ α′. Case on the origin of r′:

• If the redex r′ is created by the reduction, then Ω0 ↪→ Ω′ by Direct
contribution lemma 3, and Ω0 ↪→ α′ by transitivity. Since M(t) holds,
α′ does not appear in t and is created by the reduction. Hence α′ is
of the form [Ω0, α] where α is >, ⊥ or a label of t. The labels > and
⊥ are virginal. If α is a label of t then Ω′ ↪→ α is also false because by
transitivity it would imply Ω0 ↪→ α and M(t) would be broken. Then
by definition either Ω′ ↪→ Ω0 or Ω′ = Ω0. In particular, in any case
Ω0 ↪→ Ω0, which contradicts irreflexivity of ↪→.

• If the redex r′ is a residual of a redex r of t with name Ω, then by
Redex stability lemma 2 we have Ω = Ω′. As above, since M(t) holds
α′ is created by the reduction, and Ω ↪→ Ω0 or Ω = Ω0. Case Ω = Ω0

is impossible, because by the axiom Name equality all the non frozen
redexes with name Ω0 have the label α0 and are reduced by the parallel
reduction. Then Ω ↪→ Ω0, and by axiom Redex contributors there is a
α in r0 such that Ω ↪→ α, which breaks M(t).

Finally M(t′) holds.

19

Verification of S(t′). Let u′ and v′ be two subterms of t′ with same label
α′. By case on the origin of both labels α′:

• If one is created and the other is a descendant of a label α′ in t. Since
α′ is created by the parallel reduction Ω0 we have Ω0 ↪→ α′, which
contradicts M(t).

• If both are created:

– If α′ = [Ω0,>], then u′ = v′ = r′0.

– If α′ = [Ω0,⊥], then u′ = v′ = ε[Ω0,⊥](a), where a is the argument
of the β-redex.

– If α′ = [Ω0, α], then u′ and v′ are the descendants of two subterms
u and v of t with same label α. By S(t) we have u = v. Moreover,
u and v are affected by the same substitution. Hence u′ = v′.

• If both are descendants of themselves: u′ and v′ have ancestors u and
v in t with same label α = α′. By S(t) we have u = v. Since α = α′

neither u nor v are affected by a substitution in the parallel reduction.
Hence either u = u′ and v = v′ or u

α0=⇒β u
′ and v

α0=⇒β v
′. In any case

u′ = v′.

Finally S(t′) also holds.

Example 11 shows why maximality M is necessary to the preservation
of sharing S.

Example 11.

Consider the system 〈Pch,Nseq,V, ηseq, ↪→seq〉 defined in Example 8 and the
labelled term t = @α(x[γ;δ,ι],@γ(λδz.zι, yκ)). The property S(t) holds since
all the labels of t are different. Remark that t contains a redex @γ(λδz.zι, yκ)
of name γ; δ. Hence M(t) does not hold since t contains a label [γ; δ, ι].

Then t
γ

=⇒β @α(x[γ;δ,ι], ε[γ;δ,ι](yκ)) = t′ where the two subterms of t′ with label
[γ; δ, ι] are different: S(t′) is falsified.

Finally, labelled terms represent graphs and parallel labelled reduction
represents graph reduction.

3 Full laziness

This section shows how the various known implementations of full laziness
correspond to several (at least three) different sharing-via-labelling systems
(Section 3.1). Thus, they correspond to different graph reductions featuring
different amounts of sharing. However, we are going to prove in Section 3.2
that these implementations are reduction-wise equivalent.

Along this section, the signature Σ is restricted to {@, λ, ε}.

20

3.1 Encodings into sharing-via-labelling systems

The motto of sharing-via-labelling is “labels denote memory locations”.
What happens to the labels during reduction describes directly what hap-
pens to the nodes of the corresponding graph:

• A new label corresponds to a new node. There are two cases:

– A label of the form [Ω,>] or [Ω,⊥] appears only on ε. It represents
a new indirection node that contains a pointer leading to the
term.

– Any other [Ω, α] denotes a new copy of a node labelled α.

• A label which does not change corresponds to a node unaffected by
the reduction.

The key of the encoding of graph reduction systems or closure-based systems
into sharing-via-labelling systems is to modify exactly the labels of what is
needed to be copied. Since the rules of a sharing-via-labelling system modify
exactly the labels of the prefix of the main λ-abstraction, this amounts to
take as prefix of a λ-abstraction exactly what has to be duplicated of its
body.

Remark 1. In this interpretation, an ε node represents an indirection node
in the graph. Hence in a concrete implementation we cannot contract an
arbitrary number of ε’s in unit time, contrarily to what our β-rule suggests.
The techniques presented in [Jon87, Chap. 12] to avoid chains of indirec-
tions can be used to circle this issue.

To describe the encodings of the higher-order approaches to full laziness
into sharing-via-labelling systems, we formally define two useful prefixes
mentioned in Example 4.

• Call spine of a term λx.t the prefix λx.p where p is the prefix of t
which contains exactly the positions that are above a free occurrence
of x, including the free occurrences of x. Remark that in any weak
β-reduction system P, any prefix P(λx.t) contains the spine of λx.t.

• Call skeleton of a term λx.t the prefix λx.p where p is the prefix of
t containing exactly the positions that are not in a free expression of
λx.t. As done in [SW04] the skeleton can also be seen as an iterated
spine: to get the skeleton of λx.t, start with the spine of λx.t and iter-
atively add to the obtained prefix the spines of all the λ-abstractions
that are in the prefix built so far.

The two approaches by C.P. Wadsworth [Wad71] and O. Shivers and
M. Wand [SW04] reach fully lazy sharing by two graph implementations in

21

which the duplicated part of an instantiated function is its skeleton. The
former uses the definition based on the maximal free expressions while the
latter follows the characterization by iterated spine. They are both rep-
resented by the weak β-reduction system Pch such that Pch(λx.t) is the
skeleton of λx.t.

In [Ses97], P. Sestoft revises Launchbury’s lazy semantics [Lau93] and
proposes a fully lazy variant using additional let-bindings: if λx.p is the
skeleton of λx.t and λx.t = λx.p[t1, ..., tn], then λx.t is replaced by let x1 =
t1, ..., xn = tn in λx.p[x1, ..., xn] with x1, ..., xn fresh variables. After this
extraction of the maximal free expressions t1, ..., tn of λx.t, a duplication
of the λ-abstraction duplicates the subterm λx.p[x1, ..., xn] but does not
duplicate the let-parameters t1, ..., tn. This is again represented by the weak
reduction system Pch.

The work by T. Blanc, J.-J. Lévy and L. Maranget [BLM07] already
uses a system isomorphic to a sharing-via-labelling system. Their labelled
β-reduction modifies only the labels of the spine of the main λ-abstraction.
Thus it corresponds to a weak β-reduction system Pblm where Pblm(λx.t) is
the spine of λx.t. Moreover their frozen redexes are the redexes containing
a free occurrence of a variable bound above, which means that they coincide
with those given by Pch.

In their call-by-need λ-calculus [AF97], Z. Ariola and M. Felleisen allow
the substitution, and thus the duplication, of values. Their fully lazy exten-
sion consists in restricting these allowed duplications to a set of fully lazy
values: values that do not contain any “free expression”. The difference
with the previous cases lies in their non-standard definition of free expres-
sions: they use the usual criterion given in Section 1.2 but they exclude the
variables and the λ-abstractions. Hence their fully lazy values correspond
to the prefixes of the weak β-reduction system Paf such that:

• If λx.p is the skeleton of λx.t and λx.t = λx.p[t1, ..., tn] then Paf (λx.t) =
λx.p[P�af (t1), ...,P�af (tn)].

• P�af (λx.t) = Paf (λx.t).

• P�af (@(t1, t2)) = [].

• If P�af (t) = [] then P�af (ε(t)) = [] else P�af (ε(t)) = ε(P�af (t)).

Finally, the higher-order approaches [Wad71, AF97, Ses97, SW04, BLM07]
to full laziness correspond to three different weak β-reduction systems Pch,
Pblm and Paf , which we are going to relate in the next section. Example 12
illustrates how the systems Pblm and Paf can yield the same parallel labelled
reduction in spite of their differences.

22

Example 12.

Let t = λx.λy.@(@(x, r1), λz.r2) be a term such that r1, r2 are two redexes
that do not contain any free occurrence of x. Hence a duplication of the
spine Pblm(t) of t (marked with bold lines in the picture) do not duplicate
these redexes.

λx

λy

@

@
x

r1

λz

r2
y z

If r1 contains a free occurrence of y and r2 contains a free occurrence of z,
then both redexes are at least partially contained in Paf (t), and thus dupli-
cated in this system. However, in this case r1 and r2 are and remain frozen
in both systems, and their label will change before they are unfrozen. Hence
the additional duplications are not harmful.

3.2 Equivalence of the parallel labelled reductions

In this section we define a family W of weak β-reduction systems that con-
tains Pch, Pblm and Paf and we show that all the sharing-via-labelling sys-
tems based on the weak β-reduction systems of W are equivalent, in the
sense that they can simulate one another using exactly the same number of
shared reduction steps. For this we define a relation ∼ on labelled terms
which is stable by reduction, and prove that any two terms in relation share
the same non-frozen redexes. The relation ∼ relates two terms t1 and t2
of two different systems S1 and S2 whenever t1 and t2 can be reached from
a common source by two equivalent reduction sequences in S1 and S2 (the
whole being called a mirror reduction sequence).

The definition of W follows two ideas: the weak β-reduction systems in
W shall enforce CH-weak reduction (for this the third point in particular
prevents some applications to be included into a prefix), and all the prefixes
are built from spines and skeletons (the first two points, which make the
proofs tractable).

A weak β-reduction system P is in W if the following additional condi-
tions are satisfied:

• For each abstraction t = λx.u, either P(t) is the spine of t, or P(t) =
p[P�(t1), ...,P�(tn)] where p is the skeleton of t and t = p[t1, ..., tn].

• For any λx.t, P�(λx.t) = [] or P�(λx.t) = P(λx.t).

23

• P�(@(t1, t2)) = [].

• If P�(t) = [] then P�(ε(t)) = [] else P�(ε(t)) = ε(P�(t)).

Remark 2. In any system of W, the frozen applications of any term are
exactly the applications contained in the spine of some abstraction. Hence
any system of W defines the same frozen redexes for any term. Moreover,
all the systems of W are safe.

Let P1 and P2 be two systems of W. A mirror reduction sequence
in the systems P1 and P2 is a pair (%1, %2) such that %i = ρ1

i ...ρ
n
i is a

reduction sequence in Pi and for any j ∈ {1...n} the redexes reduced by the
single steps ρj1 and ρj2 have the same position qj in the respective source
terms. The notion of mirror reduction sequence extends to parallel labelled
reduction in two sharing-via-labelling systems based on two (possibly equal)
weak β-reduction systems of W.

Let t1 (resp. t2) be a term in a sharing-via-labelling system S1 (resp.
S2). Write t1 ∼ t2 when there is a virginal term t0 in the intersection of S1

and S2 and a mirror reduction sequence (%1, %2) in the systems S1 and S2

such that %i is a parallel labelled reduction sequence from t0 to ti.

Remark 3. If t1 ∼ t2 then the two terms have the same set of positions. In
particular, they contain the same number of ε occurrences.

For any labelled term t, the labels in t induce an equivalence relation
on the subterms of t. Say that two subterms u1 and u2 of t are label-
equivalent if and only if τ(u1) = τ(u2).

Lemma 4 (Spine stability). Suppose S(t), M(t) and t =⇒β t
′. Let p′ be a

spine in t′, and p be the ancestor of p′ in t. Then p is a spine of t such that
|p| = |p′| and p and p′ define the same label-equivalence on their application
subterms.

Proof. If p is disjoint from the prefix of the main abstraction of a redex, then
its labels are unchanged. Suppose the prefix intersects p. Write p[t1, ..., tn]
and p′[t′1, ..., t

′
n] the subterms of t and t′ delimited by p and p′. Let λx.u be

the smallest superterm of p[t1, ..., tn] free in t. Two possible cases:

• If P(λx.u) contains the skeleton of λx.u, then in particular P(λx.u)
contains p and every label α in p is turned into [Ω, α]. In particular
the equivalence classes do not change.

• If P(λx.u) is the spine of λx.u, then the label α of a subterm v of
p[t1, ..., tn] is modified (to [Ω, α]) if and only if v contains a free occur-
rence of x. Hence, suppose two applications in p have the same label α.
By S(t) the two applications are equal: one contains a free occurrence
of x if and only if the other does so. Then their descendants still have

24

the same label (either α or [Ω, α]). Now suppose that two applications
in p′ share the same label α′ but their ancestors have different labels
α1 and α2. For instance α1 = α′ and [Ω, α2] = α′. Then Ω ↪→ α′ and
α′ appears in t. Contradiction by M(t).

Theorem 2 (Sharing equivalence). If t1 ∼ t2 then the labellings of t1
and t2 induce the same label-equivalence on their non frozen applications.

Proof. We prove two invariants on the pair (t1, t2):

1. The equivalence classes of non frozen applications are equal.

2. In each spine, the equivalence classes of applications are equal.

By definition of t1 ∼ t2 there is a parallel labelled mirror reduction sequence
(%1, %2) leading from a virginal term t0 to (t1, t2). The proof of both invari-
ants is by induction on the number of parallel steps in (%1, %2). Remark by
Theorem 1 that any intermediate term t in the mirror reduction sequence
satisfies M(t) and S(t).

• For an empty reduction, t1 = t2.

• Suppose (t1, t2) satisfies the two invariants, and t1 =⇒β t
′
1 and t2 =⇒β t

′
2

by two parallel labelled reductions affecting the same positions. The
pair (t′1, t

′
2) satisfies the invariants:

1. A descendant of a non frozen application of label α is a non
frozen application of label α. On the other hand, a non frozen
descendant of a frozen application α is an application of label
[Ω, α]. Let q′1, q

′
2 be the positions of two applications of t′1 with

same label α′. Suppose one if a descendant of label α′ and the
other is a modified label. Then there is a α such that α′ = [Ω, α],
and α′ appears in t1: contradiction of M(t1). Then the ancestors
are positions q1, q2 of t1 with same label. By induction hypothesis
the positions q1, q2 also have the same label in t2, and either both
are non frozen, or both are in the main spine. In any case the
descendants at positions q′1, q

′
2 in t′2 have the same label α′2. The

other direction is symmetrical.

2. Let p′1 be a spine in t′1, and p′2 be the corresponding spine in t′2.
By Lemma 4 p′i define the same equivalence classes as its ancestor
pi in ti. By induction hypothesis p1 and p2 have the same classes.

25

Theorem 2 proves in particular that ∼ is a bisimulation:

any diagram
t

t′

u
β

∼
or

t u

u′

∼
β can be closed as

t

t′

u

u′
β

∼
β

∼
This means that in W, two sharing-via-labelling systems generate the same
notion of parallel labelled reduction. In other words, their (possibly dif-
ferent) sharings have the same impact on the reduction. This applies in
particular to Pch, Pblm and Paf , and thus it shows that all the notions of
full laziness in [Wad71, AF97, Ses97, SW04, BLM07] define the same reduc-
tion spaces.

4 Fully lazy λ-lifting

The primary goal of the present section is to prove that the notion of full
laziness defined by fully lazy λ-lifting in [Hug82, Jon87] is equivalent to the
unified notion of the previous section. This study of λ-lifting also reveals a
strong relationship between optimal sharing in weak λ-calculi [BLM07] and
the optimality theory of first-order rewriting [Mar91, Ter03].

In this section fully lazy λ-lifting is ultimately seen as a morphism be-
tween two systems: the source is the set of the λ-terms equipped with weak
β-reduction, whereas the target is the set of first-order terms built with su-
percombinators equipped with their associated first-order reduction rules.
However, the source and the target system are mixed in the intermediate
steps. Fully lazy λ-lifting is then defined as an endomorphism of an object
system combining the source and the target.

Our object system is a CRS over a labelling of the signature Σ defined
in Section 2.1. The weak β-reduction is as defined in Section 2. The super-
combinators forming the target subsystem are represented by the symbols
in F =

⋃
nFn and their reduction rules are defined in Section 4.1. Fully

lazy λ-lifting itself is represented by a set of CRS rules which is proved to
be confluent (Lemma 5), to be strongly normalizing (Lemma 6), to preserve
one-step reduction (Theorem 3) and to preserve shared reduction (Theo-
rem 4). Since we aim for this last result on shared reduction and since
shared reduction is formalized in this paper by the labels, our λ-lifting is
defined on labelled terms.

Section 4.1 introduce an extension of sharing-via-labelling systems and
defines fully lazy λ-lifting as a rewriting process. Section 4.2 then proves
that fully lazy λ-lifting is a bisimulation between the source system and
the target system, and Section 4.3 proves that parallel labelled fully lazy
λ-lifting preserves optimal sharing.

26

4.1 Fully lazy λ-lifting systems

This section introduces the fully lazy λ-lifting systems as an extension of the
sharing-via-labelling systems. Then, λ-lifting is defined as a CRS reduction
in a fully-lazy λ-lifting system. This reduction is confluent and strongly
normalizing.

The basic mechanism of λ-lifting is the replacement of a whole prefix
by a supercombinator, the prefix and the supercombinator being related
by an abstract invertible function called contractor. In order to preserve
sharing, this replacement has to preserve all the information contained in
the labels. Our solution consists in labelling the supercombinator with a
structured label containing all the labels of the contracted prefix. Hence
the basic operations of λ-lifting are reversible, and we define two inverse
transformations (contraction and expansion) which allow to reversibly relate
labelled prefixes and labelled supercombinators.

Fully lazy λ-lifting is related in this paper to the weak β-reduction system
Pch of Example 5, whose definition is reminded below. We also recall that
the system Pch is safe (Remark 2). The ch subscript is omitted along this
section.

• P(λx.t) is the skeleton of λx.t.

• P�(t) = [] for any term t.

The structured labels used for labelled λ-lifting are tree-shaped, similarly to
terms (see Example 13). For any countable set V (whose elements are called
atomic labels), the set V̂ of tree labels over V is defined by the following
grammar:

V̂ ::= � | > | ⊥ | V | V̂(V̂, ..., V̂)

The label � is an “empty” label which is used to denote the lack of label of
the empty context [] (see Example 13). The labels in V̂ are used as virginal
labels along this section. A tree label is well-formed when no atomic label
appears twice in it. For any Ω1, ...,Ωn, a label [Ω1...Ωn, α] with α ∈ V̂ is
well-formed when α is well-formed.

The clash relation is defined on tree labels as: α o β when α and β have
an atomic label in common. The notion is used in Section 4.3 to express
invariants on labels. For any V and any N , the clash extends to V̂N as
follows: α o β if and only if α = [Ω1...Ωn, α

∗] and β = [Ω1...Ωn, β
∗] with

α∗, β∗ ∈ V̂ and α∗ o β∗.
A contractor is an injective partial function ϕ mapping unlabelled n-

ary skeletons to unlabelled n-ary function symbols. For any set of atomic
labels V and any set of names N , a contractor ϕ is extended to V̂N -labelled
skeletons and V̂N -labelled symbols by the following rules.

• If p is labelled with virginal labels, then ϕ(p) = fα such that f = ϕ(|p|)
and α = ‖p‖, where

27

‖[]‖ = �
‖xα‖ = α
‖εα(t)‖ = α(‖t‖)
‖λαx.t‖ = α(‖t‖)

‖@α(t1, t2)‖ = α(‖t1‖, ‖t2‖)
‖fα(t1, ..., tn)‖ = α(‖t1‖, ..., ‖tn‖)

• If p can be decomposed as p = [Ω, p′], then ϕ(p) = [Ω, ϕ(p′)].

• Else, ϕ(p) is undefined.

The extension of ϕ to labelled skeletons is still injective, hence the labelled
ϕ admits an inverse.

Example 13.

1. Consider the skeleton p = λαx.@β([], λγy.@δ(@κ(yν , []), xι)). The col-
lected label is ‖p‖ = α(β(�, γ(δ(κ(ν,�), ι)))). It is interesting to com-
pare the graphical representations of the prefix and the label:

λx

@

[] λy

@
x@

y []

α

β

� γ

δ
ικ

ν �

2. Suppose ϕ(λx.@([], x)) = g. Then

• ϕ−1(gα(β(�,γ))) = λαx.@β([], xγ)

• ϕ−1(g[Ω,α(β(�,γ))]) = λ[Ω,α]x.@[Ω,β]([], x[Ω,γ])

• ϕ−1(gα(β(δ(ι),γ))) is undefined because the label has not the same
structure as ϕ−1(g).

• ϕ(λ[Ω1,α]x.@[Ω2,β]([], x[Ω2,γ])) is undefined because the labels have
different modifiers Ω1 and Ω2.

For any set of atomic labels V, for any set of names N and for any
contractor ϕ, ϕ-contraction and ϕ-expansion are two CRS rule schemes
on V̂N -labelled terms. For any skeleton λαx.p and symbol fβ such that
ϕ(λαx.p) = fβ we have the two rules:

(ϕ-contraction) λαx.p[Z1, ..., Zn] →c fβ(Z1, ..., Zn)
(ϕ-expansion) fβ(Z1, ..., Zn) →e λαx.p[Z1, ..., Zn]

Call an object redex a labelled term having one of the two following
forms:

28

(source redex) @α(εβ1...βk
k (λγx.t), a)

(target redex) @α(εβ1...βk
k (fγ(t1, ..., tn)), a)

Remark that the set of object redexes is stable by →c and →e.
A fully lazy λ-lifting system is a tuple 〈ϕ,N ,V, η, ↪→〉 such that:

• 〈P,N , V̂, η, ↪→〉 is a sharing-via-labelling system.

• ϕ is a contractor.

• P commutes with ϕ-contraction and ϕ-expansion.

• η is a function from object redexes to names that is stable by ϕ-
contraction and ϕ-expansion.

In a fully lazy λ-lifting system 〈ϕ,N ,V, η, ↪→〉 we consider L-labelled terms
with L = V̂N .

Example 14 shows a straightforward extension of the function ηseq of
Example 8 which is not stable by contraction. Example 15 then gives stable
variants of the functions ηseq and ηctx.

Example 14.

Consider the redex r = @α(λγx.@δ(xι, yκ), a), which can be ϕ-contracted to
r′ = @α(fγ(δ(ι,�))(yκ), a) for some unary symbol f . Then ηseq(r) = α; γ and
ηseq(r

′) = α; γ(δ(ι,�)): the name is not stable.

Example 15.

1. Define η′seq(@
α(εβ1...βk

k (λγx.t), a)) = α;β1; ...;βk; δ with γ = [Ω1...Ωn, γ
∗]

and δ = [Ω1...Ωn, δ
∗] where γ∗ is virginal and δ∗ is the leftmost atomic

label of γ∗. This name function is stable since the leftmost atomic label
is stable by contraction and expansion.

2. If P(λx.t) = p, then define η′ctx(@α(εβ1...βk
k (λγx.t), a)) = @α(εβ1...βk

k (f δ([], ..., [])), [])
where f δ is the unique normal form of λγx.p by λ-lifting (see definition
of λ-lifting and lemmas 5 and 6 below). This name function is stable
by normalization.

We call source reduction the β-reduction, whose rule scheme can be
simplified:

@α(εβ1...βk
k (λγx.p[Z1, ..., Zn]), Z)

→β

ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](Z)}[Z1, ..., Zn]

where λγx.p is a skeleton and
where Ω = η(@α(εβ1...βk

k (λγx.p[z1, ..., zn]), z)).

29

We call target reduction the first-order reduction defined by the scheme:

@α(εβ1...βk
k (fγ(Z1, ..., Zn)), Z)

→t

ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](Z)}[Z1, ..., Zn]

where ϕ−1(fγ) = λδx.p and

where Ω = η(@α(εβ1...βk
k (fγ(z1, ..., zn)), z)).

Call object reduction the union of source reduction and target reduc-
tion: →o = →β ∪ →t.

Remark 4. Target reduction can be decomposed by ϕ-expanding the function
symbol and then applying β-reduction.

Remark 5. Consider the system S = 〈Pch,Nctx,V, η′ctx, ↪→ctx〉 where Nctx
and ↪→ctx are defined in Example 8, η′ctx is defined in Example 15, and V is
any countable set. The target reduction of S is isomorphic to what is called
Lévy-labelling in [Ter03, Chap. 8].

For a clean definition of λ-lifting and for simple proofs of its basic prop-
erties we use an extended notion of positions of a term. The so-called ϕ-
positions contain the usual syntactic positions but also the positions that
are “hidden” in supercombinators: through the contractor ϕ each symbol
represents a prefix, and the positions of these prefixes are taken into account
in ϕ-positions.

The set Q(t) of ϕ-positions of t is defined by:

Q(x) = {ε}
Q([]) = {ε}
Q(ε(t)) = {ε} ∪ 1.Q(t)

Q(λαx.t) = {ε} ∪ 1.Q(t)

Q(@α(t1, t2)) = {ε} ∪ 1.Q(t1) ∪ 2.Q(t2)

Q(fα(t1, ..., tn)) = {ε} ∪ 0.Q(ϕ−1(fα)) ∪ (
⋃
i

i.Q(ti))

The following cases define λ-lifting as a CRS reduction:

• (Reify) If λαx.p is a skeleton such that ϕ(λαx.p) = fβ, then

λαx.p[Z1, ..., Zn]
ε−→lft fβ(Z1, ..., Zn)

• (Inside) If ϕ−1(fα)[x1, ..., xn]
q−→lft ϕ

−1(gβ)[x1, ..., xn] where x1, ..., xn
are fresh variables then

fα(Z1, ..., Zn)
0.q−−→lft gβ(Z1, ..., Zn)

30

• (Context) If t
q1−→lft t

′ and c is a unary context with a hole at position
q2, then

c[t]
q2.q1−−−→lft c[t′]

While Reify is the main rule of λ-lifting, Inside allows to close confluence
diagrams (see Example 16) and consider λ-lifting as an orthogonal rewrit-
ing system (in the sense of [GKK05], after the extension of the notion of
descendants given below). An Inside reduction can be seen as a reduction
Reify inside a symbol. An equivalent of Inside naturally appears in [AF97]
or [Ses97] as a reduction in the context of a let ... in ... construct. Please
note that in the rule Context, c is an arbitrary context. This means that
there is no particular weak restriction here.

Example 16.

Let t = λαx.@β(@(z1, z2), λγy.@δ(@κ(yν , z3), xι)) be a labelled term, where
some labels are omitted. Write

ϕ−1(f) = λx.@([], λy.@(@(y, []), x))
µ = α(β(�, γ(δ(κ(ν,�), ι))))

ϕ−1(g) = λy.@(@(y, []), [])
σ = γ(δ(κ(ν,�),�))

ϕ−1(f ′) = λx.@([], g([], x))
µ′ = α(β(�, σ(�, ι)))

The dotted lines denote the skeleton of the abstraction λγy, while the bold
lines (solid or dotted) denote the skeleton of the abstraction λαx.

λαx

@β

@
z1 z2

λγy

@δ

xι@κ

yν z3

1.2

λαx

@β

@
z1 z2

gσ

xιz3

ε
ε

fµ

@
z1 z2

z3
0.1.2

Inside

f ′µ
′

@
z1 z2

z3

Remark 6. The reduction Reify is a straightforward use of contraction
→c, and the reduction Inside can be factorized using contraction →c and
expansion →e: if t →lft t

′ by Inside, then there are u and u′ such that
t→e u→c u

′ →c t
′.

The notion of descendant is extended to ϕ-positions:

31

• If t →β t
′ and q = q1.0.q2 is a position of t such that there is no 0

in q1, then the ϕ-descendants of q are the q′1.0.q2 such that q′1 is a
descendant of q1.

• If t→c t
′ at position q1 and q2 is a ϕ-position of the prefix of t|q1 , then

q1.q2 has exactly one descendant in t′, which is q1.0.q2.

• If t→e t
′ at position q1 and q2 is a ϕ-position of the symbol at position

q1 in t, then q1.0.q2 has exactly one descendant in t′, which is q1.q2

The notion of descendant extends to→lft and→t by decomposition of these
reductions on →β, →c and →e (along Remark 6). Remark that in Exam-
ple 16, the east (resp. south) reduction is a residual of the west (resp. north)
reduction.

Lemma 5 (Diamond property). If t→lft u and t→lft v with u 6= v then
there is w such that u→lft w and v →lft w.

Proof. Remark that the descendance relation after→c (resp. →e) is a bijec-
tion between the ϕ-positions of the source and the target. Then the same is
valid for →lft. Moreover, the descendant of a →lft-redex is still a →lft-redex
(thanks to the rule Inside). From this we easily derive the orthogonality
of →lft in the sense of [GKK05], and deduce that →lft has the diamond
property.

Lemma 6 (Termination). The system →lft is strongly normalizing.

Proof. We define a measure §(.) on terms denoting the number of →lft-
redexes. Formally: §(x) = 0

§([]) = 0
§(λx.t) = 1 + §(t)

§(@(t1, t2)) = §(t1) + §(t2)
§(ε(t)) = §(t)

§(f(t1, ..., tn)) = §(p) + Σi§(ti) with ϕ−1(f) = λx.p

An important part of the definition is that we ignore the λ at the root of
ϕ−1(f).

If t →c t
′ then §(t′) = §(t) − 1, and if t →e t

′ then §(t′) = §(t) + 1. By
decomposition of →lft on →c and →e (remark 6) we deduce than if t→lft t

′

then §(t′) = §(t) − 1. Hence the measure strictly decreases and →lft is
strongly normalizing.

Lemma 5 implies that →lft is confluent, and that all the →lft-sequences
between two given terms have the same length [Ter03]. An immediate corol-
lary of lemmas 5 and 6 is that any term has a unique →lft-normal form.

32

4.2 Fully-lazy λ-lifting as a bisimulation

This section proves that →lft does not only transform terms but also reduc-
tion sequences, and that the transformation operates forward as well as back-
ward. Formally, the reflexive-transitive closure of the relation →lft (written
�lft) is a bisimulation between→o and itself. Thanks to the CRS formalism
which allows reasoning on the intermediate steps of the transformation, the
proof can be reduced to a one-step simulation property (Lemma 8).

Lemma 7. If t→lft t
′ then tσ →lft t

′σ and [Ω, t]→lft [Ω, t′].

Proof. By induction on t →lft t
′, using stability of P by substitution and

ϕ([Ω, t]) = [Ω, ϕ(t)].

Lemma 8 (One-step simulation).

• If t′ o← t→lft u then there is u′ such that t′ �lft u
′
lft← u.

• It t→lft u→o u
′ then there is t′ such that t→o t

′ �lft u
′.

Proof. Forward simulation (first point). By case on the relative positions of
the two redexes. Write Ω the name of the →o redex. Most of the cases use
the stability of η (which means here the stability of Ω), and the commutation
of P with →lft.

• Reduction →lft on the main function of the →o-redex. Case on →lft.

– Case Reify.
t = @α(εβ1...βk

k (λγx.p[t1, ..., tn]), a), with λγx.p a skeleton, t1, ..., tn

free expressions. Then t→β t
′ = ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn].

Let f δ = ϕ(λγx.p), then t→lft u = @α(εβ1...βk
k (f δ(t1, ..., tn)), a)

and u→t ε
[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn] = t′.

– Case Inside.
t = @α(εβ1...βk

k (fγ(t1, ..., tn)), a), with λδx.p = ϕ−1(fγ).

t→t t
′ = ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn].

We have t →lft u = @α(εβ1...βk
k (fηu (t1, ..., tn)), a) with λιx.pu =

ϕ−1(fηu) and
λγx.p[x1, ..., xn] →lft λιx.pu[x1, ..., xn] for x1, ..., xn fresh vari-
ables.
Then u→t ε

[Ω,>]([Ω, pu]){x:=ε[Ω,⊥](a)}[t1, ..., tn] = u′, and t′ →lft u
′

by Lemma 7.

– Case Context.

∗ In the prefix of a →β reduction.

t = @α(εβ1...βk
k (λγx.p[t1, ..., tn]), a) with λγx.p a skeleton and

t1, ..., tn free expressions, then t→β t
′ = ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn].

33

We have t →lft u = @α(εβ1...βk
k (λγx.pu[t1, ..., tn]), a) with

λγx.pu a skeleton and p[x1, ..., xn]→lft pu[x1, ..., xn] for x1, ..., xn
fresh variables.
Hence u →β ε[Ω,>]([Ω, pu]){x:=ε[Ω,⊥](a)}[t1, ..., tn] = u′ and
t′ →lft u

′ by Lemma 7.

∗ In a parameter.

· Reduction →β.

t = @α(εβ1...βk
k (λγx.p[t1, ..., tn]), a), with λγx.p a skeleton

and t1, ..., tn free expressions, then t→β t
′ = ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn].

We have t →lft u = @α(εβ1...βk
k (λγx.p[u1, t2, ..., tn]), a)

with t1 →lft u1 (wlog).

Thus u →β ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[u1, t2, ..., tn] = u′,
and moreover t′ →lft u

′.

· Reduction →t.
t = @α(εβ1...βk

k (fγ(t1, ..., tn)), a), with λδx.p = ϕ−1(fγ).

Then t→t t
′ = ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn].

We have t →lft u = @α(εβ1...βk
k (fγ(u1, t2, ..., tn)), a) with

t1 →lft u1 (wlog).

Thus u →β ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[u1, t2, ..., tn] = u′,
and moreover t′ →lft u

′.

• Reduction →lft in the argument of the →o-redex.

– Reduction →β.

t = @α(εβ1...βk
k (λγx.p[t1, ..., tn]), a), with λγx.p a skeleton and

t1, ..., tn free expressions, then t→β t
′ = ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn].

We have t→lft u = @α(εβ1...βk
k (λγx.p[t1, ..., tn]), a′) with a→lft a

′.

Thus u→β ε
[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a′)}[t1, ..., tn] = u′, and moreover

t′ �lft u
′.

– Reduction →t.
t = @α(εβ1...βk

k (fγ(t1, ..., tn)), a), with λδx.p = ϕ−1(fγ),

then t→t t
′ = ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn].

We have t→lft u = @α(εβ1...βk
k (fγ(t1, ..., tn)), a′) with a→lft a

′.

Thus u→β ε
[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a′)}[t1, ..., tn] = u′, and moreover

t′ �lft u
′.

• Reduction →o in a parameter of the →lft-redex.

– Case Reify.
t = λαx.p[t1, ..., tn] with λαx.p a skeleton, fβ = ϕ(λαx.p).
t→o t

′ = λαx.p[t′1, t2, ..., tn] with t1 →o t
′
1 wlog.

Then t→lft u = fβ(t1, ..., tn)→o f
β(t′1, t2, ..., tn) = u′.

Thus t′ →lft u
′ by Reify.

34

– Case Inside.
t = fα(t1, ..., tn) with λβx.p = ϕ−1(fα).
t→o t

′ = fα(t′1, t2, ..., tn) with t1 →o t
′
1 wlog.

Then t →lft u = fγu (t1, ..., tn) →o fγu (t′1, t2, ..., tn) = u′ with
λδx.pu = ϕ−1(fγu) and λβx.p[x1, ..., xn] →lft λδx.pu[x1, ..., xn]
where x1, ..., xn are fresh variables.
Thus t′ →lft u

′ by Inside.

• Reduction →o in the prefix of the →lft-redex: forbidden by weak re-
duction.

The backward simulation lemma (second point) is similar.

Lemma 8 yields as immediate corollary:

Theorem 3 (Bisimulation). The relation �lft is a bisimulation between
the reduction →o and itself, which means that:

any diagram
t

t′

u
o

lft

or
t u

u′

lft

o can be closed as
t

t′

u

u′
o

lft

o

lft

This bisimulation is a strong property for λ-lifting: it associates a pro-
gressive transformation of reduction sequences to the progressive transfor-
mation of terms. Moreover, there is a bijection between the single steps of
the image and the antecedent reduction sequences. In the next section, we
show that this holds also for parallel labelled reduction.

4.3 Fully-lazy λ-lifting as a graph bisimulation

For r ∈ {β, t, o, c, e, lft}, write
α
=⇒r the simultaneous reduction of all the →r-

redexes of label α in a term satisfying the sharing property S. This last
section shows that =⇒lft preserves sharing: the same subterms are shared in
the source and in the target of this reduction. This allows to conclude that
the full lazinesses of [Wad71] and [Jon87] are bisimilar.

In this section we use again the invariants S and M introduced in Sec-
tion 2.3. In our new setting we extend M to any object redex. We moreover
use the following three invariants:

3. Say a term t has the independent labelling property, written I(t),
when all the labels of t are well-formed and there is no pair of labels
(α, β) of t such that α 6= β and α o β. This property is useful to ensure
that contraction and expansion do not break the sharing property.

4. Say a term t has the tuned skeletons property, written T(t), when
every skeleton p in t is of the form [Ω1...Ωn, p

∗] where p∗ has only
virginal labels. This property allows to apply a contractor ϕ to any
prefix, and rules out the last case of Example 13.

35

5. Say a term t has the harmonious binding property, written H(t),
when any two variables with the same label are either both free or
both bound by abstractions bearing the same label. This property
strengthens the sharing property: when both are present, two whole
skeletons are shared whenever one of their nodes is shared.

Finally, say a term t has the SMITH property (written SMITH(t)) when
the five properties are satisfied by t as well as by ϕ−1(fα) for any fα ap-
pearing in t (or recursively in the antecedent by ϕ of a symbol).

Lemma 9. For any r ∈ {β, t, o, c, e, lft} and any two terms t, t′, if SMITH(t)

and t
α0=⇒r t

′ then SMITH(t′).

Proof. By remarks 4 and 6 we need only consider the cases where r ∈
{β, c, e}.

Case
α0=⇒β. The properties S(t′) and M(t′) are satisfied by Theorem 1.

Verification of I(t′). Suppose there are two terms u′ and v′ of labels α′

and β′ in t′ such that α′ o β′. Case on the origins of α′ and β′.

• If one is a descendant of itself and not the other, then by M(t′) we
have a contradiction, since α′ and β′ have the same modifiers.

• If they are descendants of terms u and v in t with labels α′ and β′,
then contradiction by I(t).

• Else, they are descendants of terms u and v in t with labels α and β
such that α′ = [Ω0, α] and β′ = [Ω0, β]. Hence α oβ, which contradicts
I(t).

Verification of T(t′). Let p′ be a skeleton in t′ and p be its ancestor in t.
Write p = [Ω1...Ωn, p

∗] with p∗ virginal. If p does not intersect the prefix of
a reduced redex then p′ = p. On the other hand, if p intersects the prefix of
a reduced redex, then it is contained in this prefix, and p′ = [Ω, p]. In both
cases p′ has the expected form.

Verification of H(t′). Let xα
′
and yα

′
be two labelled variable occurrences

of t′. By case on the origin of both labels α′:

• If one is created and the other is a descendant of a label α′ in t, then
Ω0 ↪→ α′, which contradicts M(t).

• If both are descendants of labelled variables xα
′

and yα
′

of t, then H(t)
applies:

– Either both are free, which is still true in t′.

– Or both are bound, by abstractions with the same label β. Then
by T(t′) the binders of xα

′
and yα

′
in t′ both have the label β.

36

• Else, both are descendants of labelled variables xα and yα of t such
that α′ = [Ω0, α,], then H(t) applies:

– Either both are free, which is still true in t′.

– Or both are bound, by abstractions with the same label β. Then
by T(t′) the binders of xα

′
and yα

′
in t′ both have the label [Ω0, β].

Case
α0=⇒c. Verification of H(t′). Let xα

′
be a labelled variable in t′. Its

ancestor in t is xα
′

(with same label). And if x is bound, then its binder
has also the same label as its ancestor. Then H(t′) immediately follows from
H(t).

Verification of T(t′). Straightforward since ϕ([Ω, p]) = [Ω, ϕ(p)].
Verification of I(t′). Let u′ and v′ be two terms in t with different labels

α′ and β′ such that α′ o β′. By case on the origins of α′ and β′.

• If both are descendants of themselves, then contradiction by I(t).

• If both are created by the reduction, then α′ = β′, which is not the
case.

• If α′ is created and β′ descends from β′, then write α′ = [Ω1...Ωn, ‖p‖].
Let α∗ be an atomic label that appears in α′ and β′. In particular α∗

appears in a label α of p, and there is a label [Ω1...Ωn, α] in t, which
is such that [Ω1...Ωn, α] o β′. Contradiction by I(t).

• The case where α′ descends from α′ and β′ is created is symmetrical.

Verification of M(t′). Suppose there is a redex r′ of name Ω′ and a
subterm u′ of label α′ in t′ such that Ω′ ↪→ α′. The redex r′ is the residual
of a redex r of t with the same name Ω′ (by stability of η). Reason by case
on the origin of α′:

• If u′ is the descendant of a subterm u of t with label α′ then there is
a contradiction with M(t).

• If α′ is created then α′ is of the form [Ω1...Ωn, ‖p‖] and there is at least
one α of the form [Ω1...Ωn, α

∗] in t with α∗ a virginal label appearing
in p. Then ↑α′ = ↑α and there is a contradiction with M(t).

Verification of S(t′). Let u′ and v′ be two terms of t′ with the same label
α′. Reason by case on the origin of both occurrences of α′.

• If one is created by the reduction and the other is a descendant of
itself, then α′ = [Ω1...Ωn, ‖p‖] and there is a label α in the redex such
that α = [Ω1...Ωn, α

∗] and with α∗ virginal and α∗ appearing in p. In
particular α∗ o ‖p‖ and α o α′, which contradicts I(t).

• If both are created by the reduction, then u′ = v′ = r′.

37

• If both are descendants of terms u and v with same label α′, then by
S(t) we have u = v, u

α0=⇒c u
′ and v

α0=⇒c v
′. Thus u′ = v′.

Case
α0=⇒e. Verification of H(t′). Let xα

′
and yα

′
be two labelled variables

in t′. By case on their origins:

• If both have an ancestor in t, then the ancestors are xα
′

and yα
′

(with
the same labels), and the conclusion comes from H(t).

• If xα
′

has an ancestor in t (equal to xα
′
) and the other is created,

then α0 = [Ω1...Ωn, ‖p‖] and α′ = [Ω1...Ωn, α
∗] with α∗ virginal and

α∗ appears in ‖p‖, which contradicts I(t).

• If both are created, then there is a labelled symbol fα0 such that xα
′

and yα
′

both appear in ϕ−1(fα0). Conclusion by H(ϕ−1(fα0)).

Verification of T(t′). Straightforward since ϕ([Ω, p]) = [Ω, ϕ(p)].
Verification of I(t′). Let u′ and v′ be two terms in t with different labels

α′ and β′ such that α′ o β′. By case on the origins of α′ and β′.

• If both are descendants of themselves, then contradiction by I(t).

• If both are created by the reduction, then α0 = [Ω1...Ωn, ‖p‖], α′ =
[Ω1...Ωn, α

∗] and β′ = [Ω1...Ωn, β
∗] with α∗ and β∗ two sublabels of

‖p‖ and α∗ o β∗. We have a contradiction since α′ 6= β′ and ‖p‖ is
well-formed by SMITH(t).

• If α′ is created and β′ descends from β′, then in particular α0 =
[Ω1...Ωn, ‖p‖] and α′ = [Ω1...Ωn, α

∗] where α∗ appears in ‖p‖. Then
α′ o β′ implies α0 o β′, which contradicts I(t).

• The case where α′ descends from α′ and β′ is created, is symmetrical.

The verifications of M(t′) and S(t′) are similar to those given in the case

of
α0=⇒c.

Theorem 4 (Preservation of optimal sharing). Let t be a term such

that SMITH(t). Suppose t
α0=⇒lft t

′. Let u′ (resp. v′) be a subterm of t′, with
ancestor u (resp. v) in t. Then τ(u′) = τ(v′) if and only if τ(u) = τ(v).

Proof. Suppose τ(u′) = τ(v′) = α′. Case on the origin of α′:

• If τ(u) = τ(v) = α′, it’s over.

• If τ(u) = α′ and τ(v) 6= α′, then τ(v) = α0 such that α0 = [Ω1...Ωn, α
∗
0]

and α′ = [Ω1...Ωn, α
∗] with α∗0 appearing into α∗, which implies α′ o α0

and contradicts I(t).

38

• If τ(u) 6= α′ and τ(v) 6= α′ then τ(u) = τ(v) = α0.

Suppose τ(u) = τ(v) = α. If α 6= α0, then τ(u′) = τ(u) = τ(v) = τ(v′).

Else u = v, u
α0=⇒lft u

′, v
α0=⇒lft v

′ and u′ = v′. In particular τ(u′) = τ(v′).

Finally, write t ≈ t′ is t and t′ are =⇒lft-convertible.

We deduce that any
t

t′

u
o

≈
or

t u

u′

≈
o can be closed as

t

t′

u

u′
o

≈
o

≈
This implies that the implementations of full laziness in [Wad71] and [Jon87]
define the same reduction space, which also correspond to optimal sharing
along [Mar91, Ter03] for the first-order system defined by the target reduc-
tion →t, and to optimal sharing along [BLM07] for the CH-weak reduction
of the λ-calculus.

5 Conclusion

Sharing, and in particular fully lazy sharing, is described and implemented
by different technical tools including graphs, closures, and program trans-
formations. As a consequence, the many definitions of fully lazy shar-
ing [Wad71, Jon87, Ses97, AF97, SW04, BLM07] are sometimes hardly com-
parable. Yet they all intend to implement the same basic ideas.

This paper unifies all these views of full laziness. To achieve this we de-
fine an axiomatic framework of sharing-via-labelling systems, in which the
various approaches can be expressed. Then we prove that all the result-
ing systems are bisimilar, in the sense that they have isomorphic reduction
spaces.

In particular, by linking [BLM07] to other definitions of full laziness, we
confirm the intuition of its authors that fully lazy sharing gives an optimal
sharing for the weak λ-calculus of [ÇH98].

Last but not least, we show that weak reduction in λ-calculus can be
expressed in orthogonal first-order rewriting by means of fully lazy λ-lifting,
with a one-to-one correspondence between their reduction steps. This re-
markable last property makes our first-order formulation really different
from the formulations that use de Bruijn indices or explicit substitutions [Tur79,
Mar91]. Moreover, our transformation preserves optimal sharing and ex-
presses fully lazy sharing as optimal sharing for the target first-order system.

5.1 Related work

Related approaches to the efficient implementation of functional program-
ming languages include in particular the study of optimal reduction and the
attempts to implement it. The study of optimal reduction [Lé80, Mar91,
GK96, vO96, BLM07] traditionally uses three equivalent characterizations

39

called labelling, extraction, and zig-zag. This paper extends the labelling-
based characterization of optimality to weak β-reduction systems.

The possibility of a straightforward implementation in graphs of the
label-based characterization of optimality has for long been known to be a
feature of first-order rewriting [Mar91] that did not hold in the λ-calculus.
However, more recently this feature has been observed in a weak restriction
of the λ-calculus [BLM07]. The present paper confirms this observation by
showing that it holds in any weak β-reduction system, and explains this
first-order behaviour of weak reduction by expliciting a link between weak
β-reduction systems and first-order rewriting.

Two kinds of implementations are known to perform less shared β-
reduction steps than some fully lazy implementations. In particular partial
evaluation [HG91] has been compared to [Jon87], and optimality [Lé80] is
born as an idealization of [Wad71]. Hence this paper shows that partial eval-
uation [HG91] as well as any implementation of optimality [AG98, PQ07] is
able to perform less shared β-reduction steps than any implementation of
full laziness.

On the other hand, a global comparison between all these approaches
is still missing. In particular, the following facts keep the question open
for now: the number of shared β-reduction steps in a fully lazy system is
polynomially related to the actual cost of performing the reduction on a
Turing machine (simple extension of [LM09]), but this does not hold with
optimal sharing [LM96].

5.2 Future work

Fully lazy λ-lifting is shown to be a powerful tool to give a faithful first-order
account of higher-order systems. This phenomenon prompts us to carry on
investigations in at least two directions:

• Generalization of λ-lifting to any weak β-reduction system satisfying
our axioms. Two interesting and challenging examples would be:

– The plain λ-lifting of [Joh85], in which the prefixes are not stable
by reduction, as shown in Example 6.

– A new notion of λ-lifting based on Pblm, which would turn the
spines into supercombinators. Since the spines can bind vari-
ables in their holes, some function symbols would also bind some
variables in their arguments (in the intermediate steps of the
transformation).

• Generalization of sharing and λ-lifting to any higher-order system.
This would include richer rewriting systems working on functions, such
as proof assistants and compilers. As far as the author is aware, general

40

higher-order rewriting knows no notion of weak reduction, sharing-via-
labelling, or λ-lifting. However, the present work seems to be abstract
enough to be generalized to higher-order rewriting frameworks such as
combinatory reduction systems.

Acknowledgements

The author would like to thank Delia Kesner for her continuous support,
Vincent van Oostrom for a mysterious but insightful remark that triggered
this investigation, and the anonymous reviewers for numerous helpful com-
ments and suggestions.

References

[AF97] Z.M. Ariola and M. Felleisen. The call-by-need lambda calculus.
J. Funct. Program., 7(3):265–301, 1997.

[AFM+95] Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and
P. Wadler. The call-by-need lambda calculus. In POPL, pages
233–246, 1995.

[AG98] A. Asperti and S. Guerrini. The optimal implementation of
functional programming languages. Cambridge University Press,
1998.

[Bal12] T. Balabonski. A Unified Approach to Fully Lazy Sharing. In
POPL, 2012.

[BKKS87] H.P. Barendregt, R. Kennaway, J-W. Klop, and M. Ronan
Sleep. Needed reduction and spine strategies for the lambda
calculus. Inf. Comput., 75(3):191–231, 1987.

[BLM07] T. Blanc, J.-J. Lévy, and L. Maranget. Sharing in the Weak
Lambda-Calculus Revisited. In Reflections on Type Theory,
Lambda Calculus and the Mind, 2007.

[Bru03] H.J.S. Bruggink. Residuals in higher-order rewriting. In RTA,
pages 123–137, 2003.

[ÇH98] N. Çaǧman and J. R. Hindley. Combinatory weak reduction in
lambda calculus. TCS, 198(1-2):239–247, 1998.

[DLLL05] D. Dougherty, P. Lescanne, L. Liquori, and F. Lang. Addressed
Term Rewriting Systems: Syntax, Semantics, and Pragmatics:
Extended Abstract. ENTCS, 127(5):57–82, 2005.

41

[GK96] J.R.W. Glauert and Z. Khasidashvili. Relative normalization
in deterministic residual structures. In CAAP, pages 180–195,
1996.

[GKK05] J.R.W. Glauert, D. Kesner, and Z. Khasidashvili. Expression
reduction systems and extensions: An overview. In Processes,
Terms and Cycles, pages 496–553, 2005.

[HG91] C.K. Holst and D.K. Gomard. Partial evaluation is fuller lazi-
ness. SIGPLAN Not., 26(9):223–233, 1991.

[Hug82] R.J.M. Hughes. Super combinators: A new implementation
method for applicative languages. In Symposium on LISP and
Functional Programming, pages 1–10, 1982.

[Joh85] T. Johnsson. Lambda lifting: Transforming programs to recur-
sive equations. pages 190–203, 1985.

[Jon87] S. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice-Hall, Inc., 1987.

[KvOvR93] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Com-
binatory reduction systems: Introduction and survey. Theor.
Comput. Sci., 121(1&2):279–308, 1993.

[Lam90] J. Lamping. An algorithm for optimal lambda calculus reduc-
tion. In POPL, pages 16–30, 1990.

[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In
POPL, pages 144–154, 1993.

[LM96] J.L. Lawall and H.G. Mairson. Optimality and inefficiency:
What isn’t a cost model of the lambda calculus? In ICFP,
pages 92–101, 1996.

[LM09] U. Dal Lago and S. Martini. On constructor rewrite systems
and the lambda-calculus. In ICALP (2), pages 163–174, 2009.

[Lé80] J.-J. Lévy. Optimal reductions in the lambda-calculus. In To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalisms, pages 159–191, 1980.

[Mar91] L. Maranget. Optimal Derivations in Weak Lambda-calculi and
in Orthogonal Terms Rewriting Systems. In POPL, pages 255–
269, 1991.

[PQ07] M. Pedicini and F. Quaglia. Pelcr: Parallel environment for op-
timal lambda-calculus reduction. ACM Trans. Comput. Logic,
8, July 2007.

42

[Ses97] P. Sestoft. Deriving a lazy abstract machine. J. Funct. Pro-
gram., 7(3):231–264, 1997.

[SW04] O. Shivers and M. Wand. Bottom-up β-reduction: Uplinks and
λ-DAGs. Technical Report RS-04-38, BRICS, 2004.

[Ter03] Terese. Term Rewriting Systems. Cambridge Univ.Press, 2003.

[Tur79] D.A. Turner. A new implementation technique for applicative
languages. Software: Practice and Experience, 9(1):31–49, 1979.

[vO96] V. van Oostrom. Higher-order families. In RTA, pages 392–407,
1996.

[Wad71] C. P. Wadsworth. Semantics and Pragmatics of the Lambda
Calculus. Ph.D. thesis, 1971.

[Yos94] N. Yoshida. Optimal reduction in weak-λ-calculus with shared
environments. J. of Computer Software, 11(5):2–20, 1994.

43

