

Enhanced Wegner and Minami estimates and eigenvalue statistics of random Anderson models at spectral edges

François Germinet, Frédéric Klopp

▶ To cite this version:

François Germinet, Frédéric Klopp. Enhanced Wegner and Minami estimates and eigenvalue statistics of random Anderson models at spectral edges. 2011. <a href="https://doi.org/10.2013/10.2013/10.2013-10.2013

HAL Id: hal-00638598

https://hal.archives-ouvertes.fr/hal-00638598

Submitted on 6 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ENHANCED WEGNER AND MINAMI ESTIMATES AND EIGENVALUE STATISTICS OF RANDOM ANDERSON MODELS AT SPECTRAL EDGES

FRANÇOIS GERMINET AND FRÉDÉRIC KLOPP

ABSTRACT. We consider the discrete Anderson model and prove enhanced Wegner and Minami estimates where the interval length is replaced by the IDS computed on the interval. We use these estimates to improve on the description of finite volume eigenvalues and eigenfunctions obtained in [GKl10]. As a consequence of the improved description of eigenvalues and eigenfunctions, we revisit a number of results on the spectral statistics in the localized regime obtained in [GKl10, Kl10] and extend their domain of validity, namely:

- the local spectral statistics for the unfolded eigenvalues;
- the local asymptotic ergodicity of the unfolded eigenvalues;

In dimension 1, for the standard Anderson model, the improvement enables us to obtain the local spectral statistics at band edge, that is in the Lifshitz tail regime. In higher dimensions, this works for modified Anderson models.

1. Introduction

Anderson models are known to exhibit a region of localized states, either at the edges of the spectrum, or in a given range of energies if the disorder is large enough. Within this region of localization it is natural to study the two basic components of the spectral theory in this case: the eigenfunctions (how localized they are, etc), and the eigenvalues (their multiplicity, their statistics, etc). The localization properties of eigenfunctions in the localized phase are by now quite well understood (e.g. [Kir08, GK01, ASFH01, GK06]). The precise description of these localization properties plays an important role in the understanding of many physical phenomena (e.g. dynamical localization, constancy of the Hall conductance in quantum Hall systems, Mott formula). Much less works have been devoted to the understanding of the eigenvalues statistics of the Anderson model; while for random matrices many more results are available (e.g. [CL95, T00, Gu05]). Poisson statistics of Anderson eigenvalues have been studied in [Mol82, Min96, CGK10].

An important ingredient that enters the proof of localization is a so called Wegner estimate that controls the probability of finding an eigenvalue of the finite volume operator in a small interval of energy. As for Poisson statistics, the analysis of [Min96, CGK10] relies on localization properties, the Wegner estimate and on a so called Minami estimate that enables one to control the probability of the occurrence of two eigenvalues of the finite volume operator in a small interval of energy.

 $^{2000\} Mathematics\ Subject\ Classification.\ 81Q10,47B80,60H25,82D30,35P20.$

 $Key\ words\ and\ phrases.$ random Schrödinger operators, Wegner estimate, Minami estimate, eigenvalue statistics.

The authors are supported by the grant ANR-08-BLAN-0261-01. The authors would also like to thank the Centre Interfacultaire Bernoulli (EPFL, Lausanne) for its hospitality.

It is worth mentioning that simplicity of the spectrum is a direct consequence of localization properties combined with a Minami estimate [KM06].

Recently, in [GKl10], the present authors introduced a refined way of describing eigenvalues and centers of localization in finite volumes, through a reduction procedure that enables one to approximate eigenvalues at finite volume by independent and identically distributed random variables. With this reduction in hand, they could in particular extend known results about Poisson statistics and obtain the first asymptotic result for the eigenlevel spacings distribution. [Kl10] used this reduction to study the local ergodicity of the unfolded eigenvalues.

In the present article, we introduce enhanced Wegner and Minami estimates that we only only within the region of localization. The main novelty is that they take into account the weight that the integrated density of states (IDS) gives to intervals to estimate the probabilities of the occurrence of a single or of multiple eigenvalues in a small energy interval. These estimates enable us to revisit the reduction procedure mentioned above and get better controls. We thus remove some limitations of [GKl10] and cover situations where the IDS gets too small for the analysis of [GKl10] to be valid: this happens when the IDS is exponentially small in an inverse power of the length of the interval. As an application, our results enable us to prove Poisson statistics for the unfolded eigenvalues in dimension 1 at the band edges, that is where a Lifshitz tail regime occurs. To our best knowledge, this is the first such result.

As another application, we provide improved large deviation estimates for the number of finite volume eigenvalues contained in suitably scaled intervals, as well as a central limit theorem for this quantity.

2. Main results

We consider the discrete Anderson Hamiltonian

$$H_{\omega} := H_0 + V_{\omega},\tag{2.1}$$

acting on $\ell^2(\mathbb{Z}^d)$, where

- \bullet H_0 is a convolution matrix with exponentially decaying off-diagonal coefficients i.e. exponential off-diagonal decay that is $H_0 = ((h_{k-k'}))_{k,k' \in \mathbb{Z}^d}$ such
 - $-h_{-k} = \overline{h_k}$ for $k \in \mathbb{Z}^d$ and for some $k \neq 0$, $h_k \neq 0$. there exists c > 0 such that, for $k \in \mathbb{Z}^d$,

$$|h_k| \le \frac{1}{c} e^{-c|k|}. (2.2)$$

Define

We denote by

$$h(\theta) = \sum_{k \in \mathbb{Z}^d} h_k e^{ik\theta} \text{ where } \theta = (\theta_1, \dots, \theta_d) \in \mathbb{R}^d.$$
 (2.3)

• V_{ω} is an Anderson potential:

$$V_{\omega}(x) := \sum_{j \in \mathbb{Z}^d} \omega_j \Pi_j. \tag{2.4}$$

Where Π_j is the projection onto site j, and $\omega = \{\omega_j\}_{j \in \mathbb{Z}^d}$ is a family of independent identically distributed random variables whose common probability distribution μ is non-degenerate and has a bounded density g.

- $\Sigma \subset \mathbb{R}$ the almost sure spectrum of H_{ω} (see e.g. [Kir08, PF92]); it is known that $\Sigma = h(\mathbb{R}^d) + \sup g$;
- $\Sigma_{SDL} \subset \Sigma \subset \mathbb{R}$ the set of energies where strong dynamical localization holds; we refer to Theorem 4.1 for a precise description of Σ_{SDL} ; it is known that such a region of energies exists at least near the edges of the spectrum Σ (see e.g. [Kir08, GK01, ASFH01, GK04, GK06]).

Recall (see [Kir08]) the integrated density of states (IDS) may be defined as

$$N(E) = \mathbb{E}\operatorname{tr}(\Pi_0 \mathbf{1}_{]-\infty,E]}(H_\omega)\Pi_0) = \mathbb{E}\langle \delta_0, \mathbf{1}_{]-\infty,E]}(H_\omega)\delta_0 \rangle. \tag{2.5}$$

In particular, if I is an interval, we define N(I) as

$$N(I) := \mathbb{E}\operatorname{tr}(\Pi_0 \mathbf{1}_I(H_\omega)\Pi_0) = \mathbb{E}\langle \delta_0, \mathbf{1}_I(H_\omega)\delta_0 \rangle. \tag{2.6}$$

For L > 1, consider $\Lambda = [-L, L]^d \cap \mathbb{Z}^d$, a cube on the lattice and let $H_{\omega}(\Lambda)$ be the random Hamiltonian H_{ω} restricted to Λ with periodic boundary conditions. Our analysis allows for the class of (continuous) random Schrödinger operators for which a Minami estimate has been derived, namely Anderson type operators satisfying to a covering condition and single site probabilities having a bounded

Notations: by $a \lesssim b$ we mean there exists a constant $c \in]0, \infty[$ so that $a \leq cb$. By $a \approx b$ we mean there exists a constant $c \in]1, \infty[$ such that $c^{-1}b \leq a \leq cb$.

2.1. Improved versions of the Wegner and Minami estimates. We show Wegner and Minami estimates where the upper bounds keep trace of the integrated density of states. In particular, they enable to take advantage of the smallness of the integrated density when this happens.

Let us first recall the usual Wegner and Minami estimates that are known to hold for H_{ω} (see e.g. [Kir08, BHS07, GV07, CGK09] and references therein):

(W):
$$\mathbb{E}\left[\operatorname{tr}(\mathbf{1}_{J}(H_{\omega}(\Lambda)))\right] \leq C|J||\Lambda|;$$

(M):
$$\mathbb{E}\left[\operatorname{tr}(\mathbf{1}_J(H_\omega(\Lambda)))\cdot\left[\operatorname{tr}(\mathbf{1}_J(H_\omega(\Lambda)))-1\right]\right] \leq C(|J||\Lambda|)^2$$
.

Our main result is

density [CGK10, CGK11].

Theorem 2.1. Fix $\xi \in (0,1)$. There exists constants $c, C \in (0,+\infty)$ such that for L > 1 the following holds.

(1) Let $I \subset \Sigma_{SDL}$ be a compact interval. Then

$$|\mathbb{E}\operatorname{tr}\mathbf{1}_{I}(H_{\omega}(\Lambda)) - N(I)|\Lambda|| \le C\exp(-cL^{\xi}). \tag{2.7}$$

As a consequence, if $|N(I)| \ge C \exp(-cL^{\xi})$ we get the Wegner estimate:

$$\mathbb{E}(\operatorname{tr} \mathbf{1}_{I}(H_{\omega}(\Lambda))) \le 2N(I)|\Lambda|. \tag{2.8}$$

(2) (High order Minami) Given $n \geq 2$ and $I_1 \subset \cdots \subset I_n \subset \Sigma_{SDL}$ intervals so that $|N(I_n)| \geq C \exp(-cL^{\xi})$,

$$\mathbb{E}\left(\prod_{k=1}^{n} \left(\operatorname{tr} \mathbf{1}_{I_{k}}(H_{\omega}(\Lambda)) - k + 1\right)\right) \leq 2\left(\prod_{k=1}^{n-1} \|\rho\|_{\infty} |I_{k}| |\Lambda|\right) N(I_{n}) |\Lambda|.$$
 (2.9)

In particular, for n=2, if $|N(I)| \geq C \exp(-cL^{\xi})$, we get the Minami estimate:

$$\mathbb{E}\left[\operatorname{tr}\mathbf{1}_{I}(H_{\omega}(\Lambda))(\operatorname{tr}\mathbf{1}_{I}(H_{\omega}(\Lambda))-1)\right] < 2N(I)|I||\Lambda|^{2}.\tag{2.10}$$

Remark 2.1. (i) The constant 2 in (2.8), (2.9) and (2.10) can be replaced by any constant larger than 1, provided $|\Lambda|$ is large enough.

- (ii) The improved Minami estimates can also be proved for the continuous Anderson models considered in [CGK10, CGK11] near the bottom of the spectrum.
- 2.2. Local spectral statistics. We shall combine Theorem 2.1 with the description of the eigenvalues of $H_{\omega}(\Lambda)$ obtained in the paper [GKl10] to obtain new results for the spectral statistics of the Anderson model. In particular, the improved Minami estimate enables us to remove the restriction on the smallness of the density of states that was imposed in [GKl10, Kl10] to obtain results locally in energy.

Consider the eigenvalues of $H_{\omega}(\Lambda)$ ordered increasingly and repeated according to multiplicity and denote them by

$$E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_{|\Lambda|}(\omega, \Lambda).$$

Following [Min07, Min11], define the unfolded eigenvalues as

$$0 \le N(E_1(\omega, \Lambda)) \le N(E_2(\omega, \Lambda)) \le \cdots \le N(E_{|\Lambda|}(\omega, \Lambda)) \le 1.$$

Let E_0 be an energy in Σ_{SDL} . The unfolded local level statistics near E_0 is the point process defined by

$$\Xi(\xi; E_0, \omega, \Lambda) = \sum_{j \ge 1} \delta_{\xi_j(E_0, \omega, \Lambda)}(\xi), \tag{2.11}$$

where

$$\xi_i(E_0, \omega, \Lambda) = |\Lambda|(N(E_i(\omega, \Lambda)) - N(E_0)). \tag{2.12}$$

The unfolded local level statistics are described by

Theorem 2.2. Pick E_0 be an energy in Σ_{SDL} such that the integrated density of states satisfies, for some $\rho \in (0, 1/d)$, $\exists a_0 > 0$ s.t. $\forall a \in (-a_0, a_0) \cap (\Sigma - E_0)$,

$$|N(E_0 + a) - N(E_0)| \ge e^{-|a|^{-\rho}}. (2.13)$$

When $|\Lambda| \to +\infty$, the point process $\Xi(E_0, \omega, \Lambda)$ converges weakly to

- a Poisson point process on the real line with intensity 1 if $E_0 \in \Sigma$, the interior of Σ .
- a Poisson point process on the half line with intensity 1 if $E_0 \in \partial \Sigma$, the half-line being \mathbb{R}^+ (resp. \mathbb{R}^-) if $(E_0 \varepsilon, E_0) \cap \Sigma = \emptyset$ (resp. $(E_0, E_0 + \varepsilon) \cap \Sigma = \emptyset$) for some $\varepsilon > 0$.

The main improvement over [GKl10, Theorem 1.2] is that the decay in assumption (2.13) can be taken exponential (compare with [GKl10, (1.12)]); it does not depend anymore on the Minami estimate.

In [GKl10], we state and prove stronger uniform results for the convergence to Poisson of the local unfolded statistics (see [GKl10, Theorems 1.3 and 1.6]). In the present case, these results still hold under assumption (2.13). Moreover, the size of intervals over which the uniform convergence of Poisson statistics is proved in [GKl10] can be notably improved thanks to the improved Wegner and Minami estimates of Theorem 2.1 if the density of states is zero at the point E_0 . We refer to Remark 4.1 for further precisions.

2.3. Local spectral statistics at spectral edges. In dimension one, for any H_0 (thus, in particular, for the free Laplace operator), the condition (2.13) is satisfied at all the spectral edges, i.e. in the Lifshitz tails region as the Lifshitz exponent is 1/2 if the density g does not decay too fast at the edges of its support (see [Kl98]). So, we get the Poisson behavior for the unfolded eigenvalues at all the spectral edges, namely,

Theorem 2.3. Assume d = 1. Let $E_0 \in \partial \Sigma$.

When $|\Lambda| \to +\infty$, the point process $\Xi(E_0, \omega, \Lambda)$ converges weakly to a Poisson point process on the half line with intensity 1 if $E_0 \in \partial \Sigma$, the half-line being \mathbb{R}^+ (resp. \mathbb{R}^-) if $(E_0 - \varepsilon, E_0) \cap \Sigma = \emptyset$ (resp. $(E_0, E_0 + \varepsilon) \cap \Sigma = \emptyset$) for some $\varepsilon > 0$.

To the best of our knowledge, this is the first proof of Poisson asymptotics for the unfolded eigenvalues at the spectral edges. In [GrMS90, T00], for fixed k, the authors studied the joint law of the first k eigenvalues of special one-dimensional random (continuous) models; for these models, the density of states N(E) can be computed explicitly.

Theorem 2.3 admits an analogue for the continuous Anderson model in one dimension (with or without a background periodic potential) provided the single site potential satisfies the assumptions of [CGK10, CGK11], the study of Lifshitz tails at band edges being a classical result (see e.g. [Mez93]).

In higher dimensions, if H_0 is the free Laplace operator, the Lifshitz exponent at spectral edges is usually d/2, even more so at the bottom of the spectrum (see e.g. [KirM07, Kl99, Kl01]); so condition (2.13) is not satisfied in this case. Nevertheless, it may be satisfied if H_0 is not the free Laplace operator as we shall see now.

By assumption, the function h defined n (2.3) is real analytic on $\mathbb{T}^d = \mathbb{R}^d/(2\pi\mathbb{Z}^d)$. Under some additional assumptions on h near its, say, minimum, one can show that condition (2.13) is satisfied near the infimum of the almost sure spectrum of H_{ω} (see e.g. [Kl98, Kl02b])

Theorem 2.4. Assume that $\min_{\theta \in \mathbb{T}^d} h(\theta) = 0$, that $h^{-1}(0)$ is discrete and that, for $\theta_0 \in h^{-1}(0)$, there exists $\alpha > d/2$ such that, for θ close to θ_0 , one has $h(\theta) \leq |\theta - \theta_0|^{\alpha}$.

Let $E_{-} = \inf \Sigma$ where Σ is the almost sure spectrum of H_{ω} .

When $|\Lambda| \to +\infty$, the point process $\Xi(E_-, \omega, \Lambda)$ converges weakly to a Poisson point process on the half line \mathbb{R}^+ with intensity 1.

In the case of continuous models, the above analysis could also be useful in the case of internal edges (see e.g. [KlW02]). It also presumably should be sufficient to deal with the Anderson model in a constant magnetic field (see e.g. [KlR06, Kl09]). However we note that for continuous models, the proofs of Minami's estimate of [CGK10] and [CGK11] do not readily extend to the gap situation.

2.4. Ergodicity of the local eigenvalue distribution. The local results of [Kl10] can also be improved along the same lines. For J=[a,b] a compact interval such that N(b)-N(a)=N(J)>0 and a fixed configuration ω , consider the point process

$$\Xi_J(\omega, t, \Lambda) = \sum_{E_n(\omega, \Lambda) \in J} \delta_{N(J)|\Lambda|[N_J(E_n(\omega, \Lambda)) - t]}$$
(2.14)

under the uniform distribution in [0,1] in t; here we have set

$$N_J(\cdot) := \frac{N(\cdot) - N(a)}{N(b) - N(a)}.$$
 (2.15)

Theorem 2.5. $Pick E_0 \in \Sigma_{SDL}$.

Fix $(I_{\Lambda})_{\Lambda}$ a decreasing sequence of intervals such that $\sup_{I_{\Lambda}} |x| \underset{|\Lambda| \to +\infty}{\to} 0$. Assume that, for some $\delta \in (0,1)$, one has

$$|\Lambda|^{\delta} \cdot N(E_0 + I_{\Lambda}) \to +\infty,$$
 (2.16)

and

if
$$\ell' = o(L)$$
 then $\frac{N(E_0 + I_{\Lambda_{L+\ell'}})}{N(E_0 + I_{\Lambda_L})} \underset{|\Lambda| \to +\infty}{\longrightarrow} 1.$ (2.17)

Then, ω -almost surely, the probability law of the point process $\Xi_{E_0+I_\Lambda}(\omega,\cdot,\Lambda)$ under the uniform distribution $\mathbf{1}_{[0,1]}(t)dt$ converges to the law of the Poisson point process on the real line with intensity 1.

The main improvement over [Kl10, Theorem 1.5] is that there is no restriction anymore on the relative sizes of $N(E_0 + I_{\Lambda})$ and $|I_{\Lambda}|$ respectively the density of states measure and the length of $E_0 + I_{\Lambda}$.

2.5. **Eigenvalue spacings statistics.** As a consequence of Theorem 2.5, using the results of [Min07], we obtain the following result which improves upon [GKl10, Theorem 1.5] and [Kl10, Theorem 1.5] in the sense that we cover a larger region of energies and the required lower bound on the IDS is relaxed.

Theorem 2.6. Fix $E_0 \in \Sigma_{SDL}$ and $(I_{\Lambda})_{\Lambda}$ a decreasing sequence of intervals satisfying (2.16) and (2.17). Define

$$\delta N_i(\omega, \Lambda) = |\Lambda|(N(E_{i+1}(\omega, \Lambda)) - N(E_i(\omega, \Lambda))) \ge 0. \tag{2.18}$$

Define the empirical distribution of these spacings to be the random numbers, for $x \ge 0$

$$DLS(x; E_0 + I_{\Lambda}, \omega, \Lambda) = \frac{\#\{j; \ E_j(\omega, \Lambda) \in E_0 + I_{\Lambda}, \ \delta N_j(\omega, \Lambda) \ge x\}}{N(E_0 + I_{\Lambda}, \Lambda, \omega)}, \quad (2.19)$$

where $N(E_0 + I_\Lambda, \Lambda, \omega)$ is the random number of eigenvalues of $H_\omega(\Lambda)$ in $E_0 + I_\Lambda$. Then, with probability 1, as $|\Lambda| \to +\infty$, $DLS(x; E_0 + I_\Lambda, \omega, \Lambda)$ converges uniformly to the distribution $x \mapsto e^{-x}$, that is, with probability 1,

$$\sup_{x \ge 0} \left| DLS(x; E_0 + I_\Lambda, \omega, \Lambda) - e^{-x} \right| \underset{|\Lambda| \to +\infty}{\to} 0. \tag{2.20}$$

Spacings statistics over intervals of macroscopic size are also available (see [GKl10, Theorem 1.6] and [Kl10, Theorem 1.2]) in the present context.

2.6. A large deviation and a central limit theorem for the eigenvalue counting function. Finally, in some regimes, we also can improve upon the large deviation estimate obtained for the eigenvalue counting function in [GKl10, Theorem 1.9] for which we also prove a central limit theorem in

Theorem 2.7. For L > 1, let $\Lambda = \Lambda_L$. Pick a sequence of compact intervals $I_{\Lambda} \subset \Sigma_{SDL}$ so that, for some $1 \leq \beta \leq \beta' < \alpha' \leq \alpha < \infty$, for all L, one has

$$|I_{\Lambda}|^{-\alpha'} \lesssim |\Lambda| \lesssim |I_{\Lambda}|^{-\alpha} \quad and \quad |I_{\Lambda}|^{\beta'} \lesssim N(I_{\Lambda}) \lesssim |I_{\Lambda}|^{\beta}. \tag{2.21}$$

$$Set \ \nu_0 = \frac{1}{\alpha - \beta} \min\left(\alpha' - \beta', \frac{1}{d+1}\right).$$

(1) Large deviation estimate. For $\varepsilon > 0$ small enough (depending on ν_0),

$$\mathbb{P}\left\{|\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda)) - N(I_{\Lambda})|\Lambda|| \geq (N(I_{\Lambda})|\Lambda|)^{\max(\frac{1}{2},1-\nu_{0})+\varepsilon}\right\} \\ \leq \exp\left(-(N(I_{\Lambda})|\Lambda|)^{\varepsilon}\right).$$

(2) Central limit theorem. Assume $\nu_0 > \frac{1}{2}$. Then the random variable

$$\frac{\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda)) - N(I_{\Lambda})|\Lambda|}{(N(I_{\Lambda})|\Lambda|)^{\frac{1}{2}}}$$

converges in law to the standard Normal distribution.

We first point out that only the size of the intervals I_{Λ} matters, more precisely, their relative size compared to the volume and the density of states (see (2.21)). In particular, the intervals I_{Λ} need not be centered at a given point.

Let us also note that, by the standard Wegner estimate (W), one can always pick $\beta = 1$.

Let us close this section with a brief outline of the paper. In Section 3, we prove the enhanced Wegner and Minami estimates, namely Theorem 2.1. Then, we turn to the proofs of the results on spectral statistics. In Section 4, we prove

- three different theorems of approximation of the eigenvalues of $H_{\omega}(\Lambda)$ by eigenvalues on smaller cubes as in [GKl10, Theorems 1.15 and 1.16] (each theorem being optimized according to a given point of view),
- the distribution functions of these approximated eigenvalues as in [GKl10, Lemma 2.1].

In Section 5, we derive the spectral statistics theorem $per\ se$, namely Theorem 2.2, Theorem 2.5, Theorem 2.6 and Theorem 2.7.

3. The proofs of the enhanced Wegner and Minami estimates

We start with the proof of Theorem 2.1. Then, we use it to derive the distribution of the "unique" eigenvalue of $H_{\omega}(\Lambda)$ in I when $N(I)|\Lambda|$ is small.

3.1. Proof of the improved Wegner and Minami estimates.

Proof of Theorem 2.1. The proof of point (1) is analogous to that of [GKl10, Lemma 2.2]. The main gain is obtained by the use of covariance which relies on the specific approximations we take for the finite volume Hamiltonians.

To that end, note that by covariance

$$\mathbb{E}[\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda))] = |\Lambda| \, \mathbb{E}[\operatorname{tr}(\chi_{0} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda))\chi_{0})]. \tag{3.1}$$

Recall (2.5): the increase of the integrated density of states of H_{ω} on I_{Λ} is given by

$$N(I_{\Lambda}) = N(b_{\Lambda}) - N(a_{\Lambda}) = \mathbb{E}[\operatorname{tr}(\chi_0 \mathbf{1}_{I_{\Lambda}}(H_{\omega})\chi_0)].$$

To control $|\mathbb{E}[\operatorname{tr}(\chi_0 \mathbf{1}_{I_\Lambda}(H_\omega(\Lambda))\chi_0)] - \mathbb{E}[\operatorname{tr}(\chi_0 \mathbf{1}_{I_\Lambda}(H_\omega)\chi_0)]|$, we use localization estimates after having smoothed out the characteristic function. Let f_δ be a \mathcal{C}^∞ and compactly supported function such that $f_\delta = 1$ in I_Λ , and $f_\delta = 0$ outside a neighborhood of length δ of I_Λ (δ is small enough so that the support of f_δ lies in Σ_{SDL}). Note that, by Wegner's estimate (W) and the Lipschitz continuity of N,

$$|\mathbb{E}[\operatorname{tr}(\chi_0[\mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda)) - f_{\delta}(H_{\omega}(\Lambda))]\chi_0)]| + |\mathbb{E}[\operatorname{tr}(\chi_0(\mathbf{1}_{I_{\Lambda}}(H_{\omega}) - f_{\delta}(H_{\omega}))\chi_0)]| \le C\delta.$$
(3.2)

To estimate $|\mathbb{E}[\operatorname{tr}(\chi_0(f_\delta(H_\omega(\Lambda)) - f_\delta(H_\omega))\chi_0)]|$, we use a Helffer-Sjöstrand formula to represent $f_\delta(H_\omega(\Lambda))$ and $f_\delta(H_\omega)$. As the support of f_δ lies in the localization region and as f is of \mathcal{C}^∞ regularity, the exponential decay estimate for the resolvents of $H_\omega(\Lambda)$ and H_ω imply that, for $\xi' \in (\xi, 1)$, there exists C > 0 such that, for Λ sufficiently large (see e.g. the computation of [CGK10, (6.23)]), one has,

$$|\mathbb{E}[\operatorname{tr}(\chi_0(f_{\delta}(H_{\omega}(\Lambda)) - f_{\delta}(H_{\omega}))\chi_0)]| \leq \delta^{-C} e^{-\ell^{\xi'}}.$$

We set $\delta = e^{-\ell^{\xi''}}$ with $\xi'' \in (\xi, \xi')$. Plugging this into (3.2) and (3.1) yields (2.7) and completes the proof of (2.7). We turn to point (2) and shall take advantage of the strategy introduced in [CGK10] to prove a Minami estimate from spectral averaging and Wegner estimate. We adapt [CGK09, Theorem 2.3] to get Minami's estimate in its generalized form. The proof is the same except at the very last step, [CGK09, (4.17)], where the estimate (2.8) is used in replacement of the usual Wegner bound.

Remark 3.1. The periodic boundary conditions imposed upon the restrictions $H_{\omega}(\Lambda)$ are important as they enable us to preserve covariance.

This covariance for the restricted operators can also be achieved for some continuous models e.g. for models having the following structure

$$H_{\omega} = H_0 + \sum_{\gamma \in \mathbb{Z}^d} V(x - \gamma, \omega_{\gamma}) \tag{3.3}$$

where $(\omega_{\gamma})_{\gamma}$ are i.i.d. random variables and H_0 is e.g. \mathbb{Z}^d -periodic.

Then, for $\Lambda = [0, L]^d$, as local restriction $H_{\omega}(\Lambda)$, one considers the restriction of following $L\mathbb{Z}^d$ -periodic operator to Λ

$$H_{\omega}^{L} = H_{0} + \sum_{\beta \in \mathbb{Z}^{d}} \sum_{\gamma \in \Lambda} V(x - \gamma - L\beta, \omega_{\gamma}).$$

It is well known that such restrictions yield very fast convergence towards the integrated density of states (see e.g. [Kl99, Kl02a]).

This can be used for the continuous Anderson model considered in [CGK10].

- 3.2. The distribution of the "local" eigenvalues. Consider a cube Λ of side length ℓ and an interval $I_{\Lambda} = [a_{\Lambda}, b_{\Lambda}] \subset I$ (i.e. I_{Λ} is contained in the localization region). Consider the following random variables:
 - $X = X(\Lambda, I_{\Lambda})$ is the Bernoulli random variable

$$X = \mathbf{1}_{H_{\omega}(\Lambda)}$$
 has exactly one eigenvalue in I_{Λ} ;

- $\tilde{E} = \tilde{E}(\Lambda, I_{\Lambda})$ is the eigenvalue of $H_{\omega}(\Lambda)$ in I_{Λ} conditioned on X = 1;
- $\tilde{\xi} = \tilde{\xi}(\Lambda, I_{\Lambda}) = (\tilde{E}(\Lambda, I_{\Lambda}) a_{\Lambda})/|I_{\Lambda}|.$

Clearly $\tilde{\xi}$ is valued in [0, 1]; let $\tilde{\Xi}$ be its distribution function.

In the present section, we will describe the distribution of these random variables as $|\Lambda| \to +\infty$ and $|I_{\Lambda}| \to 0$. We prove

Lemma 3.1. For any $\nu \in (0,1)$ and K compact interval in Σ_{SDL} , there exists C > 1 such that, for $\Lambda = \Lambda_{\ell}$ and $I_{\Lambda} \subset K$ such that $N(I_{\Lambda}) \geq e^{-\ell^{\nu}/C}$, one has

$$\mathbb{P}(X=1) = N(I_{\Lambda})|\Lambda| \left(1 + O(|I_{\Lambda}||\Lambda|) + O\left(e^{-\ell^{\nu}}\right)\right)$$
(3.4)

where $O(\cdot)$ are locally uniform in Σ_{SDL} . Moreover, for $(x,y) \in [0,1]$, one has

$$(\tilde{\Xi}(x) - \tilde{\Xi}(y)) P(X = 1) = [N(a_{\Lambda} + x|I_{\Lambda}|) - N(a_{\Lambda} + y|I_{\Lambda}|)] |\Lambda| (1 + O(|x - y||I_{\Lambda}||\Lambda|) + O((|x - y|)^{-C} e^{-\ell^{\nu}/C})$$
(3.5)

where $O(\cdot)$ are locally uniform in Σ_{SDL} .

This lemma is to be compared with [GKl10, Lemma 2.1]; it gives a fairly good description of the random variables X and $\tilde{\xi}$ if $|I_{\Lambda}||\Lambda| \ll 1$.

Proof of Lemma 3.1. We follow the proof of [GKl10, Lemma 2.1]. Using (2.10), the estimate [GKl10, (2.5)] becomes

$$0 \le \mathbb{E}(\operatorname{tr}[\mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda))]) - \mathbb{P}(X = 1) \le CN(I_{\Lambda})|I_{\Lambda}||\Lambda|^{2}$$

Thus, the proof of [GKl10, Lemma 2.1] yields

$$\mathbb{P}(X=1) = N(I_{\Lambda})|\Lambda|(1 + O(|I_{\Lambda}||\Lambda|) + O\left(|I_{\Lambda}|^{-C}e^{-\ell^{\nu}/C}\right)$$
(3.6)

Recall that, by Wegner's estimate, $N(I_{\Lambda})|\Lambda| \leq C|I_{\Lambda}||\Lambda|$. Thus, as $N(I_{\Lambda}) \geq e^{-\ell^{\nu}/C}$, enlarging possibly C, one obtains (3.4).

Replacing I_{Λ} with the interval $I_{x,y,\Lambda}$ in the estimation of P(X=1) yields the proof of (3.5).

The proof of Lemma 3.1 is complete.

4. Box reduction and description of the eigenvalues

After giving a precise description of Σ_{SDL} , we shall state three different reductions, that improve on the ones given in [GKl10] thanks to Theorem 2.1. Each of them is optimized according to a given point of view, depending on the application it will be used for (Poisson statistics, local ergodicity of eigenvalues and level spacings statistics, or deviation estimates and CLT).

4.1. The strong dynamical localization regime. Before turning to the local description of the eigenvalues, let us underline that we will give this description in the discrete setting. In particular, we will use the fact that in the localization region Σ_{SDL} , we have true exponential decay. In the continuous setting, one generally only has sub-exponential decay (see e.g. [ASFH01, GK04, GKl10]). The only change that this implies is that the length scales of size $\log |\Lambda|$ have to be replaced by length scales of size $\log^{1/\xi} |\Lambda|$ (for some $\xi \in (0,1)$).

We first recall

Theorem 4.1 ([GKl10]). Let $I \subset \Sigma$ be a compact interval and assume that Wegner's estimate (**W**) holds in I. For L given, consider $\Lambda = \Lambda_L(0)$ a cube of side length L centered at 0, and denote by $\varphi_{\omega,\Lambda,j}$, $j = 1, \dots, \operatorname{tr} \mathbf{1}_I(H_\omega(\Lambda))$, the normalized eigenvectors of $H_\omega(\Lambda)$ with corresponding eigenvalue in I. The following are equivalent

- (1) $I \subset \Sigma_{\text{SDL}}$
- (2) For all $E \in I$, there exists $\theta > 3d 1$,

$$\limsup_{L \to \infty} \mathbb{P}\left\{ \forall x, y \in \Lambda, |x - y| \ge \frac{L}{2}, \|\chi_x(H_\omega(\Lambda) - E)^{-1}\chi_y\| \le L^{-\theta} \right\} = 1. \quad (4.1)$$

(3) There exists $\xi \in (0,1)$,

$$\sup_{y \in \Lambda} \mathbb{E} \left\{ \sum_{x \in \Lambda} e^{\xi |x-y|} \sup_{j} \|\varphi_{\omega,\Lambda,j}\|_{x} \|\varphi_{\omega,\Lambda,j}\|_{y} \right\} < \infty.$$
 (4.2)

(4) There exists $\xi \in (0,1)$,

$$\sup_{y \in \Lambda} \mathbb{E} \left\{ \sum_{x \in \Lambda} e^{\xi |x-y|} \sup_{j} \|\varphi_{\omega,\Lambda,j}\|_{x} \|\varphi_{\omega,\Lambda,j}\|_{y} \right\} < \infty. \tag{4.3}$$

(5) There exists $\xi \in (0,1)$,

$$\sup_{y \in \Lambda} \mathbb{E} \left\{ \sum_{x \in \Lambda} e^{\xi |x-y|} \sup_{\substack{\text{supp } f \subset I \\ |f| \le 1}} \|\chi_x f(H_{\omega}(\Lambda)) \chi_y\|_2 \right\} < \infty.$$
 (4.4)

(6) There exists $\xi \in (0,1)$,

$$\sup_{y \in \Lambda} \mathbb{E} \left\{ \sum_{x \in \Lambda} e^{\xi |x-y|} \sup_{\substack{\text{supp } f \subset I \\ |f| \le 1}} \|\chi_x f(H_{\omega}(\Lambda)) \chi_y\|_2 \right\} < \infty.$$
 (4.5)

(7) There exists $\xi \in (0,1)$,

$$\sup_{\substack{y \in \Lambda \text{ supp } f \subset I \\ |f| \le 1}} \mathbb{E} \left\{ \sum_{x \in \Lambda} e^{\xi |x-y|} \| \chi_x f(H_{\omega}(\Lambda)) \chi_y \|_2 \right\} < \infty.$$
 (4.6)

(8) (SUDEC for finite volume with polynomial probability) For all p > d, there is $q = q_{p,d}$ so that for some $\xi \in (0,1)$, for any L large enough, the following holds with probability at least $1 - L^{-p}$: for any eigenvector $\varphi_{\omega,\Lambda,j}$ of $H_{\omega,\Lambda}$, with energy in I, for any $(x,y) \in \Lambda^2$, one has

$$\|\varphi_{\omega,\Lambda,j}\|_x \|\varphi_{\omega,\Lambda,j}\|_y \le L^q e^{-\xi|x-y|}.$$
(4.7)

(9) (SULE for finite volume with polynomial probability) For all p > d, there is $q = q_{p,d}$ so that, for some $\xi \in (0,1)$, for any L large enough, the following holds with probability at least $1 - L^{-p}$: for any eigenvector $\varphi_{\omega,\Lambda,j}$ of $H_{\omega,\Lambda}$, with energy in I, there is a center of localization $x_{\omega,\Lambda,j} \in \Lambda$, so that for any $x \in \Lambda$, one has

$$\|\varphi_{\omega,\Lambda,j}\|_{x} \le L^{q} e^{-\xi|x-x_{\omega,\Lambda,j}|}.$$
(4.8)

(10) (SUDEC for finite volume with sub-exponential probability) For all $\nu, \xi \in$ $(0,1), \nu < \xi$, for any L large enough, the following holds with probability at least $1 - e^{-L^{\nu}}$: for any eigenvector $\varphi_{\omega,\Lambda,j}$ of $H_{\omega,\Lambda}$, with energy in I, for any $(x,y) \in \Lambda^2$, one has

$$\|\varphi_{\omega,\Lambda,j}\|_x \|\varphi_{\omega,\Lambda,j}\|_y \le e^{2L^{\nu}} e^{-\xi|x-y|}.$$
(4.9)

(11) (SULE for finite volume with sub-exponential probability) For all $\nu, \xi \in$ $(0,1),\ \nu<\xi,\ {\it for\ any}\ L\ {\it large\ enough},\ {\it the\ following\ holds\ with\ probabil-}$ ity at least $1 - e^{-L^{\nu}}$: for any eigenvector $\varphi_{\omega,\Lambda,j}$ of $H_{\omega,\Lambda}$, with energy in I, there is a center of localization $x_{\omega,\Lambda,j} \in \Lambda$, so that for any $x \in \Lambda$, one has

$$\|\varphi_{\omega,\Lambda,j}\|_{x} \le e^{2L^{\nu}} e^{-\xi|x-x_{\omega,\Lambda,j}|}.$$
(4.10)

Moreover one can pick q = p + d in (8) and $q = p + \frac{3}{2}d$ in (9).

4.2. Controlling all the eigenvalues. Assume E_0 is such that (2.13) holds for some $\rho \in (0, 1/d)$. Let us first explain why the restriction $\rho < 1/d$ is necessary. For an interval I_{Λ} to contain a large number of eigenvalues of $H_{\omega}(\Lambda)$ (at least in expectation), one needs that $N(I_{\Lambda})|\Lambda|$ be large. On the other hand, as we shall see in the proof of the next result, we also need that $|I_{\Lambda}|(\log |\Lambda|)^d$ be small. This second restriction is essentially enforced by the localization of the eigenfunctions in region of (linear) size $\log |\Lambda|$. These two requirements can only be met if (2.13) holds.

We prove

Theorem 4.2. Assume E_0 is such that (2.13) holds for some $\rho \in (0, 1/d)$. Fix $0 < d\rho < \rho' < \rho'' < 1$ and $0 < \alpha < \min(d/\rho' - d/\rho'', 1/\rho - d/\rho')$. Pick I_{Λ} centered at E_0 such that $N(I_{\Lambda})|\Lambda| = \log^{\alpha}|\Lambda|$. For L sufficiently large and $\ell = \log^{1/\rho'}L$, we have a decomposition of Λ into disjoint cubes of the form $\Lambda_{\ell}(\gamma_j) := \gamma_j + [0, \ell]^d$:

- $\cup_{i} \Lambda_{\ell}(\gamma_{i}) \subset \Lambda_{L}$,
- $\operatorname{dist}(\Lambda_{\ell}(\gamma_{j}), \Lambda_{\ell}(\gamma_{k})) \geq \log^{1/\rho''} |\Lambda| \text{ if } j \neq k,$ $\operatorname{dist}(\Lambda_{\ell}(\gamma_{j}), \partial\Lambda) \geq \log^{1/\rho''} |\Lambda|$ $|\Lambda_{L} \setminus \cup_{j} \Lambda_{\ell}(\gamma_{j})| \lesssim |\Lambda| \log^{d/\rho'' d/\rho'} |\Lambda|,$

such that, there exists a set of configurations \mathcal{Z}_{Λ} s.t.:

- $\mathbb{P}(\mathcal{Z}_{\Lambda}) \geq 1 (\log L)^{-(\min(d/\rho' d/\rho'', 1/\rho d/\rho') \alpha)/2}$.
- for $\omega \in \mathcal{Z}_{\Lambda}$, each centers of localization associated to $H_{\omega}(\Lambda)$ belong to some $\Lambda_{\ell}(\gamma_j)$ and each box $\Lambda_{\ell}(\gamma_j)$ satisfies:
 - (1) the Hamiltonian $H_{\omega}(\Lambda_{\ell}(\gamma_j))$ has at most one eigenvalue in I_{Λ} , say, $E(\omega, \Lambda_{\ell}(\gamma_i));$
 - (2) $\Lambda_{\ell}(\gamma_i)$ contains at most one center of localization, say $x_{k_i}(\omega, L)$, of an eigenvalue of $H_{\omega}(\Lambda)$ in I_{Λ} , say $E_{k_j}(\omega, L)$;
 - (3) $\Lambda_{\ell}(\gamma_j)$ contains a center $x_{k_j}(\omega, L)$ if and only if $\sigma(H_{\omega}(\Lambda_{\ell}(\gamma_j))) \cap I_{\Lambda} \neq$ \emptyset ; in which case, one has, with $\ell' = \log^{-1/\rho''} L$,

 $|E_{k_i}(\omega, L) - E(\omega, \Lambda_{\ell}(\gamma_i))| \le e^{-\ell'}$ and $\operatorname{dist}(x_{k_i}(\omega, L), \Lambda_L \setminus \Lambda_{\ell}(\gamma_i)) \ge \ell'$. In particular, if $\omega \in \mathcal{Z}_{\Lambda}$, all the eigenvalues of $H_{\omega}(\Lambda)$ are described by (4.11).

Remark 4.1. (i) In Theorem 4.2, the condition $N(I_{\Lambda})|\Lambda| = \log^{\alpha}|\Lambda|$ does not, in general, provide the largest possible interval I_{Λ} where our analysis works. It is chosen so as to work in all regimes provided (2.13) holds; it is optimal only

in regimes where the integrated density of states $N(I_{\Lambda})$ is exponentially small in $|I_{\Lambda}|^{-1}$. In other regimes, one may actually take $N(I_{\Lambda})|\Lambda|$ larger. Note that, as in Theorem 4.2, one has $|I_{\Lambda}|\ell^{d} \ll 1$, Lemma 3.1 gives a precise description of:

- the probability distribution of the γ 's for which $H_{\omega}(\Lambda_{\ell}(\gamma))$ has exactly one eigenvalue in I_{Λ} ,
- the distribution of this eigenvalue when this is the case
- (ii) If the integrated density of states $N(I_{\Lambda})$ is exponentially small in $|I_{\Lambda}|^{-1}$ then as pointed out in (4.12) below, the typical size of intervals where we can control all the eigenvalues, and thus prove Poisson convergence, is of order an inverse power of $\log |\Lambda|$. This should be compared to [GKl10] where the admissible size for $|I_{\Lambda}|$ was of order $|\Lambda|^{-\alpha}$, with $\alpha > (1 + (d+1)^{-1})^{-1}$ (see [GKl10, (1.43)] with $\rho = 1$ and $\rho' = 0$). If now we have $N(I_{\Lambda}) \approx |I_{\Lambda}|^{1+\rho'}$, $\rho' \geq 0$, then the admissible size for $|I_{\Lambda}|$ is of order $|\Lambda|^{-\alpha}$, with $\alpha > (1 + \rho' + (d+1)^{-1})^{-1}$, with no restriction on ρ' (compare to [GKl10, (1.12)]). In particular α can be close to zero if ρ' is large. These improvements are direct consequences of the improved Wegner and Minami estimates of Theorem 2.1 above.

Proof of Theorem 4.2. As $N(I_{\Lambda})|\Lambda| = \log^{\alpha} |\Lambda|$, assumption (2.13) yields, for $|\Lambda|$ sufficiently large,

$$|I_{\Lambda}| \le 2\log^{-1/\rho}|\Lambda|. \tag{4.12}$$

We follow the proof of [GKl10, Theorem 1.15]. First we note that, by the localization property (Loc), we need ℓ to be larger than $\log^{1/\rho'} L$ for some large C to get (4.11). With the choices made in Theorem 4.2, the estimate (3.1) in [GKl10] becomes

$$\mathbb{P}(\#\mathcal{S}_{\ell,L} \ge 1) \lesssim \frac{L^d}{\log^{d/\rho'} L} N(I_{\Lambda}) |I_{\Lambda}| (\log L)^{2d/\rho'} \lesssim L^d \left(\log^{d/\rho'} L\right) N(I_{\Lambda}) |I_{\Lambda}|$$

$$\lesssim \log^{\alpha - (1/\rho - d/\rho')} L$$
(4.13)

by our choice of I_{Λ} .

In the same way, the estimate (3.3) in [GKl10] becomes

 $\mathbb{P}(H_{\omega}(\Lambda))$ has a localization center in Υ)

$$\lesssim |\Upsilon|N(I_{\Lambda})$$

$$\lesssim |I_{\Lambda}|^{-1}N(I_{\Lambda})|I_{\Lambda}||\Lambda| \left(\log^{d/\rho''-d/\rho'}|\Lambda|\right)$$

$$\lesssim \log^{\alpha-d(1/\rho'-1/\rho'')}|\Lambda|$$
(4.14)

by our choice of I_{Λ} .

This completes the proof of Theorem 4.2.

4.3. Controlling most eigenvalues. We will give two versions of this reduction. In Theorem 4.3, the first version, we consider region where the density of states is not too small: it can be polynomially small to any order but not smaller. In this region, we give a version of the reduction that minimizes the estimate on the probability of the bad set (where our description does not work) as well as the number of eigenvalues that is not described by our scheme.

In Theorem 4.4, the second version of the reduction theorem, we want to allow exponentially small density of states as in Theorem 4.2. The control will still be

obtained with a good probability but we don't control as many eigenvalues. This version is used in the proofs of Theorems 2.5 and 2.6.

The reduction goes back to the results obtained in [GKl10, Theorem 1.14] and improves upon it. We follow the proof of that result and only indicate the differences.

Theorem 4.3. Set $\ell' = R \log |\Lambda|$ with R large and consider intervals $I_{\Lambda} \subset \Sigma_{SDL}$. Assume that for some $1 \leq \beta \leq \beta' < \alpha' \leq \alpha < \infty$, for $|\Lambda|$ large, we have

$$|I_{\Lambda}|^{-\alpha'} \lesssim |\Lambda| \lesssim |I_{\Lambda}|^{-\alpha}$$
 and $|I_{\Lambda}|^{\beta'} \lesssim N(I_{\Lambda}) \lesssim |I_{\Lambda}|^{\beta}$

Set

$$\delta_0 = (\alpha - \beta)^{-1} > 0, \quad \zeta = \frac{\alpha - \beta}{\alpha' - \beta'} \ge 1, \quad \nu_0 = \min\left(\zeta^{-1}, \frac{\delta_0}{d+1}\right) \le 1. \quad (4.15)$$

Note that $\nu_0 \zeta \leq 1$.

For any $\nu < \nu_0$ and $\kappa \in (0,1)$, there exists

- a decomposition of Λ_L into $\mathcal{O}(|\Lambda|/\ell_{\Lambda}^d)$ disjoint cubes of the form $\Lambda_{\ell}(\gamma_i) :=$ $\gamma_j + [0,\ell]^d$, where $\ell \sim (|I_{\Lambda}|\ell')^{-\frac{1}{d+1}}$, so that:
 - $\cup_j \Lambda_\ell(\gamma_j) \subset \Lambda_L,$
 - $-\operatorname{dist}(\Lambda_{\ell}(\gamma_j), \Lambda_{\ell}(\gamma_k)) \ge \ell' \text{ if } j \ne k,$
 - $-\operatorname{dist}(\Lambda_{\ell}(\gamma_i),\partial\Lambda) \geq \ell'$
 - $|\Lambda_L \setminus \cup_j \Lambda_\ell(\gamma_j)| \lesssim |\Lambda|\ell'/\ell,$
- a set of configurations \mathcal{Z}_{Λ} satisfying $\mathbb{P}(\mathcal{Z}_{\Lambda}) \geq 1 \exp\left(-(N(I_{\Lambda})|\Lambda|)^{\delta_{\kappa,\nu}}/C\right)$, with $\delta_{\kappa,\nu} = \min(1 - \nu\zeta, \kappa\nu) \in]0, \frac{1}{2}[$,

such that, for $|\Lambda|$ sufficiently large (depending only on β , β' , α , α' , ν and κ),

- for all $\omega \in \mathcal{Z}_{\Lambda}$, there exists at least $\frac{|\Lambda|}{\ell^d}(1+o(1))$ disjoint boxes $\Lambda_{\ell}(\gamma_j)$ satisfying the properties (1), (2) and (3) described in Theorem 4.2 with $\ell' = R \log |\Lambda|$
- the number of eigenvalues of $H_{\omega,L}$ that are not described by the above picture is bounded by $C(N(I_{\Lambda})|\Lambda|)^{\gamma_{\kappa,\nu}}$, with $\gamma_{\kappa,\nu} = 1 - (1-\kappa)\nu \in]0,1[$.

Particular cases:

- If $|I_{\Lambda}| \simeq |\Lambda|^{-\alpha^{-1}}$ and $N(I_{\Lambda}) \simeq |I_{\Lambda}|^{\beta}$, then $\zeta = 1$. If n(E) > 0 and I_{Λ} 's are centered at E, then $\beta = \beta' = 1$.

Proof of Theorem 4.3. We proceed as in [GKl10, Proof of Theorem 1.14] but take advantage of Theorem 2.1 above.

By assumption, we have

$$|I_{\Lambda}|^{-(\alpha'-\beta')} \lesssim N(I_{\Lambda})|\Lambda| \lesssim |I_{\Lambda}|^{-(\alpha-\beta)}. \tag{4.16}$$

or equivalently, with notations defined in (4.15),

$$(N(I_{\Lambda})|\Lambda|)^{-\zeta\delta_0} \lesssim |I_{\Lambda}| \lesssim (N(I_{\Lambda})|\Lambda|)^{-\delta_0}. \tag{4.17}$$

First, use in the reduction procedure (2.8) and (2.10) as the Wegner and Minami estimates. As in [GKl10], we consider a collection of $\mathcal{O}(|\Lambda|\ell^{-d})$ boxes $\Lambda_{\ell}(\gamma_i)$ two by two distant by at least ℓ' , and such that $|\Lambda \setminus \bigcup_j \Lambda_\ell(\gamma_j)| \lesssim |\Lambda|\ell'/\ell$. Let $\mathcal{S}_{\ell,L}$ be the set of boxes $\Lambda_{\ell}(\gamma_i) \subset \Lambda$ containing at least two centers of localization of $H_{\omega,L}$ (see the proof of [GKl10, Theorem 1.16] for more details). Set

$$K := 4eN(I_{\Lambda})|\Lambda||I_{\Lambda}|\ell^{d} \tag{4.18}$$

Then, by (2.10),

$$\mathbb{P}(\#\mathcal{S}_{\ell,L} \ge K) \lesssim 2^{-K}.\tag{4.19}$$

Next, cover $\Lambda \setminus \bigcup_j \Lambda_\ell(\gamma_j)$ with a partition of boxes $\Lambda_{\ell'}(\gamma'_j)$ and let $\mathcal{S}'_{\ell,L}$ be the set of boxes $\Lambda_{\ell'}(\gamma_j) \subset \Lambda$ containing at least one center of localization of $H_{\omega,L}$ (see the proof of [GKl10, Theorem 1.16] for more details). Set

$$K' := 2^{d+1} N(I_{\Lambda}) |\Lambda| \frac{\ell'}{\ell}. \tag{4.20}$$

It follows from (2.8) that

$$\mathbb{P}(\#\mathcal{S}'_{\ell,L} \ge K') \lesssim 2^{-K'}.\tag{4.21}$$

To evaluate the number of eigenvalues of $H_{\omega}(\Lambda)$ we may miss because of this reduction, we need to control the number of centers $x_k(\omega, \Lambda)$ that may fall into K boxes of $\mathcal{S}_{\ell,L}$ and K' boxes of $\mathcal{S}'_{\ell,L}$. In [GKl10] we used the crude deterministic bound given by the volume of the considered boxes. Here we estimate this number using the high order Minami estimate (2.9). Given an integer $r \geq 1$, it follows from (2.9) that

$$\mathbb{P}\left\{ \frac{\exists \text{ a box } \Lambda_{\ell}(\gamma_{j}) \text{ s.t.}}{\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda_{\ell}(\gamma_{j}))) \geq r} \right\} \lesssim \frac{|\Lambda|}{\ell^{d}} \mathbb{P}\left\{ \operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda_{\ell})) \geq r \right\}
\lesssim \frac{1}{r!} N(I_{\Lambda}) |\Lambda| (C|I_{\Lambda}|\ell^{d})^{r-1}
\lesssim N(I_{\Lambda}) |\Lambda| \left(\frac{C|I_{\Lambda}|\ell^{d}}{r} \right)^{r-1}.$$
(4.22)

In the same way, we have, for $r' \ge 1$ an integer,

$$\mathbb{P}\left\{ \frac{\exists \text{ a box } \Lambda_{\ell'}(\gamma_j') \text{ s.t.}}{\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda_{\ell'}(\gamma_j'))) \geq r'} \right\} \lesssim \frac{|\Lambda|}{\ell^d} \frac{\ell'}{\ell} \mathbb{P}\left\{ \operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda_{\ell'})) \geq r' \right\} \\
\leq N(I_{\Lambda})|\Lambda| \left(\frac{\ell'}{\ell}\right)^{d+1} \left(\frac{C|I_{\Lambda}|(\ell')^d}{r'}\right)^{r'/C-1} .$$
(4.23)

The additional constant C in the exponent in the right hand side of (4.23) comes form the fact that the Hamiltonians $(H_{\omega}(\Lambda_{\ell'})_{\Lambda_{\ell'} \in \mathcal{S}'_{\ell,L}})$ need not be independent, but there are finitely many subfamilies of independent Hamiltonians.

We pick $r \approx r' \approx (N(I_{\Lambda})|\Lambda|)^{\delta}$, with $\delta > 0$ to be chosen later. We thus end up with

$$(4.22), (4.23) \lesssim \exp(-(N(I_{\Lambda})|\Lambda|)^{\delta}).$$
 (4.24)

Hence, with a probability at least $1 - \exp(-(N(I_{\Lambda})|\Lambda|)^{\delta})$, the number of eigenvalues of $H_{\omega}(\Lambda)$ we miss with our reduction is bounded by

$$C(K+K')(N(I_{\Lambda})|\Lambda|)^{\delta}. \tag{4.25}$$

We now optimize in ℓ by requiring $K \sim K'$, that is

$$|I_{\Lambda}|\ell^d = \frac{\ell'}{\ell}.\tag{4.26}$$

In other terms we choose $\ell = (|I_{\Lambda}|\ell')^{-\frac{1}{d+1}}$. So that any K, K' satisfying

$$K \sim K' \gtrsim K_0 := (N(I_{\Lambda})|\Lambda|)|I_{\Lambda}|^{\frac{1}{d+1}}(\ell')^{1+\frac{1}{d+1}},$$
 (4.27)

is good enough. To ensure that K and K' grow fast enough (in order to get a fast decaying probability in (4.19) and (4.21), we actually enlarge them and set for any $\nu < \nu_0$ (note that $\log(N(I_{\Lambda})|\Lambda|) \simeq \log |\Lambda|$),

$$K \sim K' \sim (N(I_{\Lambda})|\Lambda|)|I_{\Lambda}|^{\nu\delta_0^{-1}}.$$
(4.28)

Taking (4.17) into account, we have the following lower and upper bound,

$$(N(I_{\Lambda})|\Lambda|)^{1-\nu\zeta} \lesssim K \sim K' \lesssim (N(I_{\Lambda})|\Lambda|)^{1-\nu}. \tag{4.29}$$

Next, let $\kappa \in]0,1[$ be given, and fix δ above so that $\delta = \kappa \nu$. It follows from (4.19), (4.21), (4.24), (4.25) and (4.29) that the number of missing eigenvalues is bounded by $1 - \exp(-(N(I_{\Lambda})|\Lambda|)^{1-\zeta\nu}) - \exp(-(N(I_{\Lambda})|\Lambda|)^{\kappa\nu})$. At last, to see that $\delta_{\kappa,\nu} < \frac{1}{2}$, note that $\min(1-\zeta\nu,\kappa\nu) \leq (1+\zeta\kappa^{-1})^{-1} < \frac{1}{2}$, since $\kappa < 1$ and $\zeta \geq 1$. The theorem

We now turn to the second version of our reduction theorem. One has

Theorem 4.4. Pick $\rho \in (0, 1/d)$. For a cube $\Lambda = \Lambda_L$, consider an interval $I_{\Lambda} =$ $[a_{\Lambda}, b_{\Lambda}] \subset I$, I a fixed compact in Σ_{SDL} . Pick $\rho < \rho' < \rho'' < 1/d$. There exists $\alpha_0 > 0$ such that, for $\alpha_0 \leq \alpha < \alpha'$, if (I_{Λ}) satisfies

$$\log^{\alpha} |\Lambda| \le N(I_{\Lambda})|\Lambda| \le \log^{\alpha'} |\Lambda| \quad and \quad N(I_{\Lambda}) e^{|I_{\Lambda}|^{-\rho}} \ge 1. \tag{4.30}$$

then, picking $(\tilde{\ell}_{\Lambda}, \ell'_{\Lambda})$ such that

$$\tilde{\ell}_{\Lambda}^{d}|I_{\Lambda}| \approx \log^{1/\rho'-1/\rho}|\Lambda| \quad and \quad (\ell_{\Lambda}')^{d} \approx \tilde{\ell}_{\Lambda}^{d}\log^{1/\rho''-1/\rho'}|\Lambda|, \tag{4.31}$$

there exists

- a decomposition of Λ_L into disjoint cubes of the form $\Lambda_{\ell_{\Lambda}}(\gamma_j) := \gamma_j + [0, \ell_{\Lambda}]^d$ where $\ell_{\Lambda} = \tilde{\ell}_{\Lambda}(1 + o(1))$ such that
 - $-\cup_{j}\Lambda_{\ell_{\Lambda}}(\gamma_{j})\subset\Lambda_{L},$
 - $\operatorname{dist}(\Lambda_{\ell_{\Lambda}}(\gamma_{j}), \Lambda_{\ell_{\Lambda}}(\gamma_{k})) \geq \ell'_{\Lambda} \text{ if } j \neq k, \\ \operatorname{dist}(\Lambda_{\ell_{\Lambda}}(\gamma_{j}), \partial \Lambda) \geq \ell'_{\Lambda}$

 - $|\Lambda_L \setminus \bigcup_j \Lambda_{\ell_\Lambda}(\gamma_j)| \lesssim |\Lambda| \ell'_\Lambda / \ell_\Lambda,$
- a set of configurations \mathcal{Z}_{Λ} satisfying $\mathbb{P}(\mathcal{Z}_{\Lambda}) \geq 1 e^{-\log^{\alpha-2}|\Lambda|}$.

so that, for L sufficiently large (depending only on $(\alpha, \alpha', \rho, \rho', \rho'')$), one has

- for $\omega \in \mathcal{Z}_{\Lambda}$, there exists at least $\frac{|\Lambda|}{\ell_{\Lambda}^{d}} \left(1 + O\left(\log^{1/\rho' 1/\rho} |\Lambda|\right)\right)$ disjoint boxes $\Lambda_{\ell_{\Lambda}}(\gamma_{j})$ satisfying the properties (1), (2) and (3) described in Theorem 4.2 where ℓ'_{Λ} in (4.11) satisfies (4.31);
- the number of eigenvalues of $H_{\omega}(\Lambda)$ that are not described above is bounded

$$CN(I_{\Lambda})|\Lambda|\, \left\lceil \log^{1/\rho'-1/\rho}|\Lambda| + \log^{1/(d\rho'')-1/(d\rho')}|\Lambda| \right\rceil.$$

In Theorem 4.4, our choice of parameters is made so as to allow as small as possible density of states (see the second condition in (4.30)). The price to pay for this is that the width of the interval I_{Λ} may not be optimal in all regimes (compare the first condition in (4.30) with the width of the intervals treated in [GKl10] when $N(I_{\Lambda}) \gtrsim |I_{\Lambda}|^{1+\rho}$. It is nevertheless essentially optimal when $N(I_{\Lambda}) \approx e^{-|I_{\Lambda}|^{-\rho}}$.

We also note that, in the proof of Theorem 4.4, the choice of $\ell = \ell_{\Lambda}$ guarantees that $|I_{\Lambda}|\ell^d \ll 1$ (see (4.32)); thus, Lemma 3.1 gives a precise description of:

- the probability distribution of the γ 's for which $H_{\omega}(\Lambda_{\ell}(\gamma))$ has exactly one eigenvalue in I_{Λ} ,
- the distribution of this eigenvalue when this is the case

Proof of Theorem 4.4. We follow the proof of Theorem 4.3. First, note that, as in the proof of Theorem 4.2, assumption (4.30) implies that

$$|I_{\Lambda}| \lesssim \log^{-1/\rho} |\Lambda|, \quad \log^{1/(d\rho')} |\Lambda| \lesssim \ell_{\Lambda}, \quad \log^{1/(d\rho'')} |\Lambda| \lesssim \ell_{\Lambda}'$$
 (4.32)

With our choice of ℓ_{Λ} and ℓ'_{Λ} , one estimates K defined in (4.18) and K' defined in (4.20) by

$$\log^{\alpha+1/\rho'-1/\rho} |\Lambda| \lesssim K \lesssim \log^{\alpha'+1/\rho'-1/\rho} |\Lambda|$$
 and
$$\log^{\alpha+1/(d\rho')-1/(d\rho)} |\Lambda| \lesssim K' \lesssim \log^{\alpha'+1/(d\rho')-1/(d\rho)} |\Lambda|.$$
 (4.33)

In the present case, the computations done in (4.22) and (4.23) give a too gross estimate of the number of eigenvalues, or, equivalently, of the number of localization centers, on which one cannot get a precise control if one wants to keep a good probability estimate; this comes from the fact that the quantities $N(I_{\Lambda})|\Lambda||I_{\Lambda}|$, ℓ , ℓ' may be powers of $\log |\Lambda|$. We need to study more carefully the number of eigenvalues missed by the description constructed in the proof of Theorem 4.3. Therefore, we follow the ideas used in the proof of [Kl11, Theorem 4.1].

Let $\Gamma_{\ell,L}$ be the set of cubes $\{\Lambda_{\ell}(\gamma_j); j\}$ of the decomposition introduced in the proof of Theorem 4.3. We partition $\Gamma_{\ell,L}$ into 2^d sets such that, any two cubes $\Lambda_{\ell}(\gamma)$ and $\Lambda_{\ell}(\gamma')$ in each set, the Hamiltonians $H_{\omega}(\Lambda_{\ell}(\gamma))$ and $H_{\omega}(\Lambda_{\ell}(\gamma'))$ are independent. Let these sets be $(\Gamma_{\ell,L,j})_{1\leq j\leq 2^d}$ and their cardinality be $\tilde{N}_j:=\#\Gamma_{\ell,L,j}$. One has $\tilde{N}_j \approx |\Lambda|\ell^{-d}$.

For $\Lambda_{\ell}(\gamma_k) \in \Gamma_{\ell,L,j}$, set $X_{j,k} = \operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda_{\ell}(\gamma_k)))$. These variables are i.i.d. and their common distribution is described by 2.1.

We now want to estimate the maximal number of localization centers of $H_{\omega}(\Lambda)$ contained in boxes of $(\Gamma_{\ell,L})_{1 \leq j \leq 2^d}$ that each contain at least two centers (these are the boxes of $\mathcal{S}_{\ell,L}$ in the notations of the proof of Theorem 4.3). We want to show that this number is, with a probability close to 1, bounded by CK where K is defined in (4.18) and C > 0 is a constant to be chosen.

Let \mathbb{P}_r be the probability to have $2^{d+1}r$ localization centers of $H_{\omega}(\Lambda)$ in cubes containing at least two centers. We compute

$$\begin{split} & \mathbb{P}_r \leq \sum_{j=1}^{2^d} \sum_{n_j=1}^r \binom{\tilde{N}_j}{n_j} \mathbb{P} \left(\min_{1 \leq k \leq n_j} X_{j,k} \geq 2 \text{ and } \sum_{k=1}^{n_j} X_{j,k} \geq 2r \right) \\ & \leq \sum_{j=1}^{2^d} \sum_{n_j=1}^r \binom{\tilde{N}_j}{n_j} \sum_{\substack{l_1+\dots+l_{n_j} \geq 2r \\ \forall 1 \leq k \leq n_j, \ l_k \geq 2}} \prod_{k=1}^{n_j} \mathbb{P} \left(X_{j,k} = l_k \right) \\ & \leq \sum_{j=1}^{2^d} \sum_{n_j=1}^r \binom{\tilde{N}_j}{n_j} \sum_{\substack{l_1+\dots+l_{n_j} \geq 2(r-n_j) \\ \forall 1 \leq k \leq n_j, \ l_k \geq 0}} \prod_{k=1}^{n_j} \mathbb{P} \left(X_{j,k} = l_k + 2 \right). \end{split}$$

Then, using (2.9) and the independence of the local Hamiltonians associated to boxes in $\Gamma_{\ell,L,j}$, we obtain

$$\mathbb{P}_{r} \lesssim \sum_{j=1}^{2^{d}} \sum_{n_{j}=1}^{r} {\tilde{N}_{j} \choose n_{j}} \sum_{\substack{l_{1}+\dots+l_{n_{j}} \geq 2(r-n) \\ \forall 1 \leq k \leq n_{j}, \ l_{k} \geq 0}} \frac{(CN(I_{\Lambda})\ell^{d})^{n_{j}} (|I_{\Lambda}|\ell^{d})^{2r-n_{j}}}{(l_{1}+1)! \cdots (l_{n_{j}}+1)!}$$

$$\lesssim \sum_{j=1}^{2^{d}} \sum_{n_{j}=1}^{r} \frac{1}{n_{j}!} (\tilde{N}_{j}N(I_{\Lambda})\ell^{d})^{n_{j}} (|I_{\Lambda}|\ell^{d})^{2r-n_{j}}$$

$$\lesssim \sum_{n=1}^{r} \frac{1}{n!} (|\Lambda|N(I_{\Lambda}))^{n} (|I_{\Lambda}|\ell^{d})^{2r-n}$$

$$\lesssim (K^{\eta}|I_{\Lambda}|\ell^{d})^{r} + \left(\frac{CK}{nr}\right)^{r}.$$

In the last estimate, we have cut the previous sum into two parts, the first when n run from 0 to ηr and the second from ηr to r. We now choose $\eta > 0$ so that $\eta \alpha' < 1/\rho - 1/\rho'$ (for α' in (4.30), see also (4.33)). Recall that $|I_{\Lambda}|\ell^d$ is small. Thus, setting $r = \eta^{-1}CK$ for some large C > 0 and using (4.33), we obtain

$$\mathbb{P}_r \le e^{-K/C} \le e^{-\log^{\alpha - 1}|\Lambda|/C}.$$
(4.34)

Now, as in the proof of Theorem 4.3, cover $\Lambda \setminus \bigcup_j \Lambda_\ell(\gamma_j)$ with a partition of boxes $\Lambda_{\ell'}(\gamma_j')$ (see the proof of [GKl10, Theorem 1.16] for more details). In the same way as above, one estimates the maximal number of centers of localization contained in the union of the boxes $\Lambda_{\ell'}(\gamma_j) \subset \Lambda$. Let \mathbb{P}'_r be the probability that this number exceeds r. Then, for r = CK' (for some constant C > 0) where K' is defined in (4.20), as above, we prove

$$\mathbb{P}'_r \le e^{-K'/C} \le e^{-\log^{\alpha-1}|\Lambda|/C}.$$
 (4.35)

Summing (4.34) and (4.35), taking into account (4.33) and (4.32), we obtain that, for α sufficiently large and properly chosen $(\rho', \rho'') \in (d\rho, 1)^2$, with probability at least $1 - e^{-\log^2 |\Lambda|}$, there are at most

$$C(K+K') \lesssim N(I_{\Lambda})|\Lambda| \left\lceil \log^{1/\rho'-1/\rho} |\Lambda| + \log^{1/(d\rho'')-1/(d\rho')} |\Lambda| \right\rceil.$$

eigenvalues that are not accounted for by the description given in Theorem 4.4.

5. Applications to eigenvalue statistics: proofs

5.1. **The proof of Theorem 2.7.** First note that under the assumptions of Theorem 2.7, the assumptions of Theorem 4.3 are fulfilled. We will use this decomposition.

Let $X = X(\Lambda_{\ell}, I_{\Lambda})$ the Bernoulli random variable equal to 1 if $H_{\omega, \Lambda_{\ell}}$ has an eigenvalue in I_{Λ} and zero otherwise. Recall that the distribution of this random variable is described by (3.4) in Lemma 3.1.

To prove Theorem 2.7, we consider the collection of Bernoulli random variables $X_j := X(\Lambda_{\ell}(\gamma_j), I_{\Lambda}), j = 1, \dots, \tilde{N}$ defined by

- $X(\Lambda_{\ell}(\gamma), I_{\Lambda})$ is defined in section 3.2
- the boxes $(\Lambda_{\ell}(\gamma_j))_{1 \le j \le \tilde{N}}$ are given by Theorem 4.3 and $\tilde{N} \approx |\Lambda|/\ell^d$.

Thus, the random variables $(X_j)_j$ are i.i.d. We have

$$|\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda)) - N(I_{\Lambda})|\Lambda|| \leq \left|\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda)) - \sum_{j=1}^{\tilde{N}} X_{j}\right| + \left|\sum_{j=1}^{\tilde{N}} X_{j} - N(I_{\Lambda})|\Lambda|\right|$$
(5.1)

By Theorem 4.3, with a probability $\geq 1 - \exp\left(-c(N(I_{\Lambda})|\Lambda|)^{\delta_{\kappa,\nu}}\right)$ we have

$$\left| \operatorname{tr} \mathbf{1}_{I_{\Lambda}} (H_{\omega}(\Lambda)) - \sum_{j=1}^{\tilde{N}} X_{j} \right| \lesssim (N(I_{\Lambda})|\Lambda|)^{\gamma_{\kappa,\nu}}.$$
 (5.2)

Next, the large deviation principle for i.i.d. (0,1)-Bernoulli variables with expectation p gives, for $\delta \in]\frac{1}{2}, 1[$, yields (see e.g. [Dur96]),

$$\mathbb{P}\left(\left|\sum_{j=1}^{\tilde{N}} X_j - p\tilde{N}\right| \ge (p\tilde{N})^{\delta}\right) \le C \exp\left(-c_p(p\tilde{N})^{2\delta - 1}\right),\tag{5.3}$$

where the constant c_p is uniformly bounded as $p \downarrow 0$. We apply the latter with $p = \mathbb{P}(X = 1)$. On the account of Lemma 3.1, (4.26) and (4.29), we have

$$|p\tilde{N} - N(I_{\Lambda})|\Lambda|| \lesssim (N(I_{\Lambda})|\Lambda|)^{1-\nu}.$$
(5.4)

Combining (5.1), (5.2), (5.3) and (5.4) we obtain, for any $\delta' \in]0,1[$,

$$\mathbb{P}\left\{|\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda)) - N(I_{\Lambda})|\Lambda|| \leq (N(I_{\Lambda})|\Lambda|)^{\gamma_{\kappa,\nu}} + (N(I_{\Lambda})|\Lambda|)^{1-\nu} + (p\tilde{N})^{\frac{1}{2} + \frac{1}{2}\delta'}\right\} \\
\geq 1 - \exp\left(-(N(I_{\Lambda})|\Lambda|)^{\delta_{\kappa,\nu}}\right) - C \exp\left(-c_{p}(p\tilde{N})^{\delta'}\right). \quad (5.5)$$

Since $\gamma_{\kappa,\nu} > 1 - \nu$, and choosing $\delta' = \delta_{\kappa,\nu}$, we get

$$\mathbb{P}\left\{|\operatorname{tr} \mathbf{1}_{I_{\Lambda}}(H_{\omega}(\Lambda)) - N(I_{\Lambda})|\Lambda|| \leq 3(N(I_{\Lambda})|\Lambda|)^{\max(\gamma_{\kappa,\nu},\frac{1}{2} + \frac{1}{2}\delta_{\kappa,\nu})}\right\} \\
\geq 1 - 2\exp\left(-(N(I_{\Lambda})|\Lambda|)^{\delta_{\kappa,\nu}}\right). \quad (5.6)$$

Taking κ sufficiently small, we get $\delta_{\kappa,\nu} = \kappa \nu$. The result follows with $\varepsilon = \kappa \nu$.

We turn to the proof of point (2) which follows from the previous analysis and the central limit theorem for Bernoulli random variables, provided $\nu > \frac{1}{2}$. This completes the proof of Theorem 2.7.

- 5.2. The proofs of Theorems 2.2, 2.5 and 2.6. As already stated above, one can follow verbatim the proofs of the corresponding results in [GKl10, Kl10]. Let us just make a few comments on those proofs.
- 5.2.1. The proof of Theorem 2.2. The corresponding result is [GKl10, Theorem 1.2]. In [GKl10], we also have the stronger Theorems 1.3 and 1.6 that also have their analogues in the present setting. Comparing (2.13) with the condition [GKl10, (1.12)], we see that we have now only a local condition at E_0 only. This gain is obtained thanks to Lemma 3.1 and Theorem 4.2.

5.2.2. The proofs of Theorem 2.5 and 2.6. The result corresponding to Theorem 2.5 is [Kl10, Theorem 1.4]. Theorem 2.6 is a then a consequence of Theorem 2.5, see e.g. [Min11, Kl10]. Under uniform assuptions of the type $N(J)e^{|J|^{-\rho}} \geq 1$ for some $\rho \in (0,1)$ and for all $J \subset E_0 + I_{\Lambda}$, one may as well follow the method developed in [GKl10].

As we shall see, to prove Theorem 2.5 in the present case is easier than in [Kl10, Theorem 1.4]. The basic idea of the proof of asymptotic ergodicity in [Kl10, Theorem 1.4] is, for a given interval $E_0 + I_{\Lambda}$, to split it into smaller intervals such that, on most of these intervals, the assumptions of a reduction of the same type as Theorem 4.4 is valid plus a remaining set of energies that only contains a negligible fraction of the eigenvalues in $E_0 + I_{\Lambda}$. Then, one proves asymptotic ergodicity for each of the small intervals. Therefore, one needs to use an analogue of Lemma 3.1 to control the eigenvalues. This imposes further restrictions on how one has to choose the small intervals. In the present case, thanks to the improvement obtained in Lemma 3.1 over its analogues in [GKl10, Lemma 2.2] and [Kl10, Lemma 2.2], the way to split the interval $E_0 + I_{\Lambda}$ will be much simpler (as a comparison of what follows with the discussions following [Kl10, Theorem 2.1 and Lemma 2.2] and in [Kl10, Section 3.2.1] will immediately show).

We will not give a complete proof of Theorem 2.5 only indicate the changes to be made in the proof of [Kl10, Theorem 1.4].

Pick $\alpha_0 < \alpha < \alpha'' < \alpha'$ (where α_0 is given by Theorem 4.4). Pick $\mu > 0$. Now, partition I_{Λ} into intervals $(I_j)_{j \in J}$ such that $N(I_j) \approx |\Lambda|^{-1} \log^{\alpha''} |\Lambda|$. Define

$$B = \{ j \in J; \ N(I_j) \le |I_j|^{\mu} \}. \tag{5.7}$$

Then, one clearly has

$$|I_{\Lambda}| \ge \sum_{j \in B} |I_j| \ge \sum_{j \in B} N(I_j)^{1/\mu} \approx \#B|\Lambda|^{-1/\mu} \log^{\alpha''/\mu} |\Lambda|$$

thus, $\#B \lesssim |\Lambda|^{1/\mu}$ and

$$N\left(\bigcup_{j\in B}I_j\right)\lesssim |\Lambda|^{(1-\mu)/\mu}\log^{\alpha''}|\Lambda|.$$

The number of eigenvalues expected in $E_0 + I_{\Lambda}$ is of order $N(E_0 + I_{\Lambda})|\Lambda|$, thus, by (2.16), larger than $|\Lambda|^{1-\delta}$. Pick $\nu > 0$. By the enhanced Wegner's estimate (2.8) and Markov's inequality, we know that, with probability at least $1 - |\Lambda|^{-\nu}$, the number of eigenvalues in $\bigcup_{j \in B} I_j$ is bounded by $|\Lambda|^{\nu+1/\mu} \log^{\alpha''} |\Lambda|$. We now pick ν and μ^{-1} small so that $\nu + 1/\mu < 1 - \delta$.

For $j \notin B$, one has $N(I_j) \geq |I_j|^{\mu}$ and, thus, one can then apply Theorem 4.4 to I_j for $j \notin B$. So, in each I_j , we control $N(I_j)|\Lambda|(1+o(1))$ eigenvalues (the error is uniform in j by Theorem 4.4); thus, the total number of eigenvalues we control exceeds $\sum_{j\notin B} N(I_j)|\Lambda|(1+o(1))$ that is, exceeds $N(E_0+I_{\Lambda})|\Lambda|(1+o(1)) \geq |\Lambda|^{1-\delta}$ as announced above.

For $j \notin B$, we moreover want to be able to apply Lemma 3.1 to control the eigenvalues "in" the cubes $\Lambda_{\ell_{\Lambda}}(\gamma)$ constructed in Theorem 4.4 and the interval I_j . Therefore, we need to check that $|I_j||\Lambda_{\ell_{\Lambda}}(\gamma)| \ll 1$ (see (3.4) and (3.5)). This is guaranteed by (4.31) in Theorem 4.4.

Now thanks to Theorem 4.4 and Lemma 3.1, in each I_j for $j \notin B$, we reason as in

the proof of [Kl10, Theorem 1.4], or more precisely, as in the proof of [Kl10, Lemma 3.2] to obtain the asymptotic ergodicity.

Remark 5.1. One can actually prove Theorem 2.5 on intervals to which the IDS gives a smaller weight, that is, relax assumption (2.16) into $|\Lambda| \cdot \log^{-\beta} |\Lambda| \cdot N(E_0 + I_{\Lambda}) \to +\infty$ for not too small β (e.g. for not too negative β). Then, the condition $N(I_j) \leq |I_j|^{\mu}$ defining B will have to be replaced with conditions of the type $N(I_j) \leq e^{-|I_j|^{-\rho}}$ (ρ will now be in (0,1)).

Moreover, if β is not sufficiently large, a restriction analogous to [Kl10, (1.10) in Theorem 1.4] will come up again.

References

- [ASFH01] Michael Aizenman, Jeffrey H. Schenker, Roland M. Friedrich, and Dirk Hundertmark. Finite-volume fractional-moment criteria for Anderson localization. Comm. Math. Phys., 224(1):219–253, 2001. Dedicated to Joel L. Lebowitz.
- [BHS07] Jean V. Bellissard, Peter D. Hislop, and Günter Stolz. Correlation estimates in the Anderson model. J. Stat. Phys., 129(4):649–662, 2007.
- [CGK09] Jean-Michel Combes, François Germinet, and Abel Klein. Generalized eigenvaluecounting estimates for the Anderson model. J. Stat. Phys., 135(2):201–216, 2009.
- [CGK10] Jean-Michel Combes, François Germinet, and Abel Klein. Poisson statistics for eigenvalues of continuum random Schrödinger operators. Anal. PDE, 3(1):49–80, 2010.
- [CGK11] Jean-Michel Combes, François Germinet, and Abel Klein. Local Wegner estimates for random Schrödinger operators, Minami estimate and Lifshitz behavior of the density of states preprint
- [CL95] Ovidiu Costin and Joel L. Lebowitz. Gaussian fluctuation in random matrices. Phys. Rev. Lett., 75(1):69–72, Jul 1995.
- [Dur96] Richard Durrett. Probability: theory and examples. Duxbury Press, Belmont, CA, second edition, 1996.
- [GK01] François Germinet and Abel Klein. Bootstrap multiscale analysis and localization in random media. Comm. Math. Phys., 222(2):415–448, 2001.
- [GK04] François Germinet and Abel Klein. A characterization of the Anderson metal-insulator transport transition. Duke Math. J., 124(2):309–350, 2004.
- [GK06] Francois Germinet and Abel Klein. New characterizations of the region of complete localization for random Schrödinger operators. J. Stat. Phys., 122(1):73–94, 2006.
- [GK110] François Germinet and Frédéric Klopp. Spectral statistics for random Schrödinger operators in the localized regime. ArXiv http://arxiv.org/abs/1011.1832, 2010.
- [GV07] Gian Michele Graf and Alessio Vaghi. A remark on the estimate of a determinant by Minami. Lett. Math. Phys., 79(1):17–22, 2007.
- [GrMS90] L. N. Grenkova, S. A. Molchanov, and Yu. N. Sudarev. The structure of the edge of the multidimensional Anderson model spectrum. Teoret. Mat. Fiz., 85(1):32–40, 1990.
- [Gu05] Jonas Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Statist., 41(2):151–178, 2005.
- [Kir08] Werner Kirsch. An invitation to random Schrödinger operators. In Random Schrödinger operators, volume 25 of Panor. Synthèses, pages 1–119. Soc. Math. France, Paris, 2008. With an appendix by Frédéric Klopp.
- [KM06] Abel Klein, Stanislas Molchanov. Simplicity of eigenvalues in the Anderson model J. Statist. Phys., 122(1):95–99, 2006.
- [KirM07] Werner Kirsch and Bernd Metzger. The integrated density of states for random Schrödinger operators. In Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon's 60th birthday, volume 76 of Proc. Sympos. Pure Math., pages 649–696. Amer. Math. Soc., Providence, RI, 2007.
- [Kl98] Frédéric Klopp. Band edge behavior of the integrated density of states of random Jacobi matrices in dimension 1. J. Statist. Phys., 90(3-4):927–947, 1998.
- [Kl99] Frédéric Klopp. Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Math. J., 98(2):335–396, 1999.

- [Kl01] Frédéric Klopp. Correction to: "Internal Lifshits tails for random perturbations of periodic Schrödinger operators" [Duke Math J. 98 (1999), no. 2, 335–396; MR1695202 (2000m:82029)]. Duke Math. J., 109(2):411–412, 2001.
- [Kl02a] Frédéric Klopp. Internal Lifshitz tails for Schrödinger operators with random potentials. $J.\ Math.\ Phys.,\ 43(6):2948-2958,\ 2002.$
- [Kl02b] Frédéric Klopp. Weak disorder localization and Lifshitz tails. Comm. Math. Phys., 232(1):125–155, 2002.
- [Kl09] Frédéric Klopp. Lifshitz tails for alloy type random models in constant magnetic fields: a short review. In Spectral and scattering theory for quantum magnetic systems, volume 500 of Contemp. Math., pages 153–157. Amer. Math. Soc., Providence, RI, 2009.
- [Kl10] Frédéric Klopp. Asymptotic ergodicity of the eigenvalues of random operators in the localized phase. ArXiv: http://fr.arxiv.org/abs/1012.0831, 2010.
- [Kl11] Frédéric Klopp. Universal joint asymptotic ergodicity of the eigenvalues and localization centers of random operators in the localized phase. In preparation, 2011.
- [KlR06] Frédéric Klopp and Georgi Raikov. Lifshitz tails in constant magnetic fields. Comm. Math. Phys., 267(3):669–701, 2006.
- [KlW02] Frédéric Klopp and Thomas Wolff. Lifshitz tails for 2-dimensional random Schrödinger operators. J. Anal. Math., 88:63–147, 2002. Dedicated to the memory of Tom Wolff.
- [Mez93] G. A. Mezincescu. Internal Lifschitz singularities for one-dimensional Schrödinger operators. Comm. Math. Phys., 158(2):315–325, 1993.
- [Min96] Nariyuki Minami. Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Comm. Math. Phys., 177(3):709–725, 1996.
- [Min07] Nariyuki Minami. Theory of point processes and some basic notions in energy level statistics. In Probability and mathematical physics, volume 42 of CRM Proc. Lecture Notes, pages 353–398. Amer. Math. Soc., Providence, RI, 2007.
- [Min11] Nariyuki Minami. Energy level statistics: a formulation and some examples. In N. Minami, editor, Spectra of random operators and related topics, 2011. To appear.
- [Mol82] Stanislav A. Molchanov. The local structure of the spectrum of a random onedimensional Schrödinger operator. Trudy Sem. Petrovsk., (8):195–210, 1982.
- [PF92] Leonid Pastur and Alexander Figotin. Spectra of random and almost-periodic operators, volume 297 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992.
- [T00] Christophe Texier. Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder. J. Phys. A, 33(35):6095–6128, 2000.

Université de Cergy-Pontoise, CNRS UMR 8088, IUF, Département de mathématiques, F-95000 Cergy-Pontoise, France

E-mail address: francois.germinet@u-cergy.fr

Institut de Mathmatiques de Jussieu, Université Pierre et Marie Curie, Case 186, 4 place Jussieu F-75252 Paris cedex 05, FRANCE

 $E\text{-}mail\ address: \verb+klopp@math.jussieu.fr+$