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Requena, et al.. Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-
scale storm. Nature, Nature Publishing Group, 2011, 475 (7354), pp.71-74. <10.1038/NA-
TURE10203>. <hal-00639431>

HAL Id: hal-00639431

http://hal.upmc.fr/hal-00639431

Submitted on 6 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Convective storms occur regularly in Saturn�s atmosphere1-4.  Huge storms known 

as Great White Spots (GWS), which are ten times larger, are more rare and occur 

~once per Saturn year (29.5 Earth years)5-8. Current models propose that the GWS 

outbreak is due to water moist convection9,10 but the generation of the global 

disturbance and its effect on Saturn�s permanent winds 1,11 has hitherto remained 

unconstrained12 by data, because there was insufficient spatial resolution and 

temporal sampling6-8 to infer the dynamics of Saturn�s weather layer. 

Theoretically, it had been suggested that this phenomenon is seasonally controlled6-

7,9. Here we report observations of a storm at northern latitudes in the peak of a 

weak westward jet during early northern springtime, as expected. The storm head 

moved faster than the jet, was active during the two months reported observation 

period and triggered a planetary scale disturbance that circled Saturn and did not 

significantly alter the ambient zonal winds. Numerical simulations of the 

phenomenon show that, like in Jupiter13, Saturn�s winds extend without decay 

deep down into the weather layer, at least to the water cloud base at 10 � 12 bar, 

much deeper than solar radiation penetrates.   
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Ground-based telescopes detected the first signs of the storm in December 5th 2010 at 

Universal Time (UT) 21 hr 05 min 22 s when a barely visible bright point emerged at 

planetographic latitude 37.7 ± 0.8º North (Figure 1). This is nearly simultaneous with 

detection of electric activity linked to the storm at 19 hr 18 min UT from the Radio 

Plasma Wave Science (RPWS) instrument onboard the Cassini spacecraft14 when 

considering the 80 minutes light travel time from Saturn to Earth at this epoch. As in 

previous GWS eruptions5-6,9,15 the spot grew rapidly both in size and brightness, 

expanding from a length of ~ 3,000 km to 8,000 km in just one week. The head of the 

storm centered at latitude 41.1 ± 1.1º N had a rotation period about Saturn of 10 hr 41 

min 43.6 s, implying a westward zonal wind speed of -28.7 ± 0.2 ms-1 in System III 

reference frame16. Two weeks after the outbreak, the GWS consisted of a bright 

compact spot (�the storm head�) followed eastward by a zonally expanding tail of bright 

clouds between latitudes 30ºN and 45ºN (Figure 2). This tail formed a planetary-scale 

disturbance that encircled the planet in 55 days. The shape of the head of the storm and 

its drift rate remained unperturbed following the encounter, a behavior consistent with 

the drag of the disturbance clouds by ambient zonal winds, in a similar way as observed 

in the last GWS event in the Equator in 19906-8,15. 

 

Tracking of individual cloud elements (sizes ~1000-3000 km) during the observing 

period (December 5th 2010 � February 19th 2011) allowed us to derive their motions 

(Figure 3, see also S.I.). The drift rate of the head of the storm did not change in this 

period, with the storm head moving westwards 10 ms-1 faster than the westward-jet 

peak velocity. On the other hand, disturbance features moved in the zonal direction with 

speeds very close to the ambient winds. Therefore winds at the upper cloud level, which 
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have remained essentially unchanged throughout a whole Saturn year1,11, were not 

altered by the disturbance at this early stage.  

 

Observations obtained with a variety of filters from the ultraviolet (375 nm) to the near 

infrared (954 nm) including the deep methane absorption band at 883 nm, showed that 

the GWS is brighter relative to the adjacent undisturbed area at the same latitude by ~ 

10% (375 nm), 19 % (450 nm), 25 % (537 nm), 16 % (580 nm) and 11% (630 nm). At 

375 nm Rayleigh scattering contributes to the brightness but at the other wavelengths 

free of the gaseous methane absorption, brightness is essentially controlled by the storm 

particles17, suggesting that the storm injects fresh ice particles into the tropopause, 

where they mix with the pre-existing haze. In order to retrieve the vertical cloud 

structure of the storm we used a standard three-layer radiative transfer model for 

Saturn18-20. The model atmosphere consisted of a stratospheric haze of thin Mie particles 

of size ~ 0.1 µm located between 2 and 60 mbar, and a dense tropospheric haze 

extending from 0.1 bar down to the ammonia cloud deck at 1.4 bar. We found that the 

GWS was embedded within the tropospheric haze, with its cloud tops located at ∼ 150 

mbar, that is, 3 km below the top of the haze, and 20 km below the tropopause, located 

near 100 mbar according to thermal infrared measurements21.  

 

The rapid growth and high brightness of the GWS core, together with the abundant 

electric activity detected by Cassini RWPS instrument14, are consistent with previous 

proposals that these events are moist convective storms driven by ammonia and water 

condensation (at the 1-2 bar and 10-12 bar level respectively) 9,10. Flow divergence at 

the top of the ascending motions can be related to the growing area A of the storm 

(Figure 1) through mass continuity by div (1/ )( / )V A dA dt= = 1-5x10-6 s-1 (where V is 
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the horizontal velocity). This implies a vertical velocity at the cloud top of the storm 

1div 2.5msw h V −≤ ⋅ ≅ , where h = 260 km is the vertical length of the path followed by 

the ascending convective parcels from altitude levels Pbottom ∼ 10 bar (water clouds) to 

Ptop ∼ 0.1 bar (the tropopause). However, deep moist convection in Saturn is vigorous in 

the core of the ascending convective towers9,10 and to first order the maximum vertical 

velocity 
max

w  can be related to the Convective Available Potential Energy (CAPE) by 

2

1

z 2

max

z

CAPE=
( ) 2

wT
g dz

T z

∆ =∫ , where g is the acceleration of gravity and T∆  is the 

temperature difference between the ascending parcel and the ambient with vertical 

temperature profile T(z). Assuming a constant T∆  of just 1 K, this results in 

1/2

1

max 2CAPE 2 150  ms
T

w g h
T

−∆ =  < > 
: :  for g = 10 ms-1 and mean temeprature 

<T> = 250 K. Given the high vertical velocities, large vertical extent of the GWS core, 

and its enormous horizontal size, of the order of the width of the mid-latitude jets, this 

huge disturbance serves as a tool to diagnose the dynamics of Saturn�s weather layer 

from the 10 bar deep troposphere to 0.01 bar or higher in the stratosphere.  

 

In order to explain the disturbance structure at cloud level, we ran nonlinear simulations 

of the response of Saturn�s upper troposphere and stratosphere to a steady vertical heat 

source that tries to mimic the GWS convective storm head using the EPIC code22, 22. We 

tested the structure of the atmosphere varying the zonal wind vertical profile and 

thermal structure in a forward modeling of the potential vorticity (PV) field23.  Since 

both PV and cloud field are considered to act as passive tracers of the flow, we sought 

the PV field evolution that best reproduced the observed cloud morphology. Figure 4 

shows results from a simulation of the first 12 days of the PV-field that highly 
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resembles the cloud disturbance evolution (compare to Figures 2a-c and Figure 3 in ref. 

14). These successful simulations require a weather layer with a very low static stability 

N = 0.0017 s-1, close to a neutral profile, and winds that increase slightly with depth 

across it (from 0.5 to 10 bar). In addition the wind structure changes very little as the 

disturbance progressed in agreement with what we observe at cloud level. 

 

GWSs have been observed to occur one per Saturn year in the northern hemisphere 

summertime season6-7,9. The 2010 event occurred at a much earlier springtime season 

within the same westward jet as the 1903 event5-9, ponting towards seasonal insolation 

as their triggering mechanism. This is puzzling since the solar radiation penetration in 

Saturn�s atmosphere24 and thermal infrared measurements21,25, indicate that seasonal 

temperature changes occur only above ∼ 500 mbar altitude, much higher than the 10-12 

bar level for the storm source9-10. The zonal wind profile at 0.5 � 1 bar level does not 

change over one Saturn year1,11 (Figure 3) ruling out a related seasonal dynamical 

instability,. The deep trigger could then be induced by seasonal changes in the upper 

troposphere temperature gradients affecting directly the deep vertical motions or 

indirectly modifying the pattern of meridional cell circulations between opposed jets 

proposed to exist at different altitudes in the weather layer1,26.  

 

The observed GWS properties and its modeling suggests that a reservoir of water vapor 

must exists at the 10-12 bar level in the westward jet with sustained strong convergence 

to fuel the storm9,10. The GWS extend vertically ~ 260 km below cloud tops across the 

weather layer (0.5 � 10 bar) where zonal winds keep constant or slightly increasing with 

depth in agreement with both previous observations and models of mid-latitude Saturn 

vortices27-28 and wind speed measurements at 2-3 bar level29. The huge planetary scale 
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disturbance triggered by the GWS did not modify substantially the westward zonal jet 

structure indicating that Saturn tropospheric winds are robust and extend well below the 

sunlight penetration level, altogether favoring the hypothesis for their deep origin1 as 

also found for Jupiter�s winds13.  
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Figure Legends 

 

Figure 1. Initial growth of the Saturn�s Great White Spot. Map projected images of 

the storm clouds obtained in December 5 (a, T. Ikemura), 8 (b, S. Ghomizadeh), 9 (c, T. 

Kumamori) and 13 (d, C. Go). Measurement of the area occupied by the bright core 

(without considering the southern tail in the later images) is shown on (e). During the 

first 13 days after onset the growth rate was dA/dt = 20 km2s-1 and then it suffered a 

second fast expansion during the next two days at a rate of dA/dt = 212 km2s-1. The 

images used in this study were obtained in the visible range (wavelengths 350 nm � 954 

nm) by a large number of observers contributing to the IOPW-PVOL database30 and the 

ALPO-Japan database (details are given in the Supplementary Information). Multi-

spectral photometric images were obtained at the 1-m telescope at Pic-du-Midi 

Observatory (France), the 2.2 m telescope at Calar Alto Observatory (Spain), and a 0.41 

m telescope (D. Parker). Error bars are r.m.s from several measurements of the storm 

area over the same image.  

 

Figure 2. Expansion of the storm clouds and planetary-scale disturbance. Maps 

were made by assembling images from different observers (see Supplementary 

Information). The storm head moved westward (left in the maps) and showed a bow 

shape consistent with the meridional zonal wind profile. The bright clouds forming the 

southern branch of the disturbance (between latitudes 38º and 30º N, in a region of 

cyclonic vorticity) progressed eastward (2a-c). Later on 22 December, a northern branch 

developed (latitudes 40º to 45º N, anticyclonic vorticity) also progressing eastward (2d-

e). In about two months the disturbance encircled the planet, and the southern branch 

elements, moving in the opposite direction, encountered the head of the storm on the 
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29th of January, 4º southward in latitude (2f). The eastward expansion in longitude of 

the disturbance central branch (between latitudes 40º-42º) formed dark spots, one of 

which was persistent, probably an anticyclonic vortex at latitude 41.9º ± 1.3º (s.d.) with 

a size ~ 4,000 km (System III Longitude = 308º in 2e). Small bright spots in the 

southern part of the disturbance at latitudes +35º to +38º showed a periodic distribution 

with a dominant zonal wavelength of 15.7º ± 3º (2b-2f) and survived a maximum of 

approximately two weeks. 

 

Figure 3. Zonal winds from motions of the disturbance clouds. Points correspond to 

wind speed measured for single tracers pertaining to the disturbance (see SI). The storm 

head corresponds to the point with the highest westward velocity (-28.7 ms-1). The lines 

represent wind profiles obtained during the Voyagers encounters in 1980-81 (long 

dashed, ref. 11) and in 2004-2009 using Cassini images at two altitude levels within the 

tropospheric haze (solid line) and upper cloud (dashed line). The latitude uncertainty for 

the points is ± 1.3º (s.d.) and the wind speed uncertainty is ± 0.2 ms-1 (s.d.) for the storm 

head, and ranges from ± 0.5 to ±2 ms-1 (s.d.) for other features.  

 

Figure 4. Models of the GWS planetary-scale disturbance. Nonlinear EPIC 

simulations22 of the onset and initial evolution of the potential vorticity field associated 

to the storm (days 1 to 12) at pressure level 850 mbar. To simulate the GWS, we 

introduced on Saturn�s wind flow a vertically extended continuous heat source column 

with a power of 500 Wm-2 and a Gaussian shape with a size of 0.6º. The constant 

injection of heat from altitude levels 0.5 to 10 bar mimics the continuous latent heat 

release upward by the convective storm. The model atmosphere depends on the vertical 

and meridional structure of the zonal wind velocity U(y,z) and the vertical thermal 
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structure represented here by the static stability or Brunt-Väisälä frequency N(P), where 

we use z or pressure P as vertical coordinates and y as meridional coordinate. The wind 

field structure is modeled as a product of two functions ( , ) ( ) ( )h vU y p u y u P=  where 

uh(y) is the wind profile at the cloud tops (P0 = 500 mbar, ref. 1, 13) and 

0
( )  1 +  ln  ( / ) 

v
u P m P P=  is a non-dimensional vertical amplitude factor. We tested 

different values for slope m above and below P0 = 500 mbar27-28. Similarly, for the 

thermal structure we adopted N(P) increasing with altitude for P<500 mbar26 and 

N(P)=constant for P>500 mbar. The horizontal domain for the simulations was a 

60ºx15ºdegree channel with a 0.23º pix-1 resolution and the vertical domain consisted of 

8 layers from 10 mbar to 10 bar. The simulation that best resembles the evolution of the 

observed cloud field was obtained for a low static stability N2=0.03x10-4 s-2 (P> 500 

mbar) and for zonal winds that have slightly positive vertical shear (m = 0.1), i. e. winds 

increasing below cloud tops across the altitude range from P = 0.5 to10 bar. 
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