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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Stochastic dominance with respect to a capacity and risk

measures

Miryana Grigorova

LPMA, Université Paris 7

November 9, 2011

Abstract

Pursuing our previous work in which the classical notion of increasing convex

stochastic dominance relation with respect to a probability has been extended to

the case of a normalised monotone (but not necessarily additive) set function also

called a capacity, the present paper gives a generalization to the case of a capacity

of the classical notion of increasing stochastic dominance relation. This relation

is characterized by using the notions of distribution function and quantile function

with respect to the given capacity. Characterizations, involving Choquet integrals

with respect to a distorted capacity, are established for the classes of monetary risk

measures (de�ned on the space of bounded real-valued measurable functions) satisfy-

ing the properties of comonotonic additivity and consistency with respect to a given

generalized stochastic dominance relation. Moreover, under suitable assumptions, a

"Kusuoka-type" characterization is proved for the class of monetary risk measures

having the properties of comonotonic additivity and consistency with respect to the

generalized increasing convex stochastic dominance relation. Generalizations to the

case of a capacity of some well-known risk measures (such as the Value at Risk or

the Tail Value at Risk) are provided as examples. It is also established that some
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1 INTRODUCTION 2

well-known results about Choquet integrals with respect to a distorted probability

do not necessarily hold true in the more general case of a distorted capacity.

Keywords: Choquet integral, stochastic orderings with respect to a capacity, dis-

tortion risk measure, quantile function with respect to a capacity, distorted capacity,

Choquet expected utility, ambiguity, non-additive probability, Value at Risk, Rank-

dependent expected utility, behavioural �nance, maximal correlation risk measure,

quantile-based risk measure, Kusuoka's characterization theorem

1 Introduction

Capacities (which are normalised monotone set functions) and integration with respect to

capacities were introduced by Choquet and were afterwards applied in di�erent areas such

as economics and �nance among many others (cf. for instance Wang and Yan 2007 for

an overview of applications). In economics and �nance, capacities and Choquet integrals

have been used, in particular, to build alternative theories to the "classical" setting of

expected utility of Von Neumann and Morgenstern. Indeed, the classical expected utility

paradigm has been challenged by various empirical experiments and "paradoxes" (such

as Allais's and Ellsberg's) thus leading to the development of new theories. One of the

proposed alternative theories is the Choquet expected utility, abridged as CEU, where

agent's preferences are represented by a capacity µ and a non-decreasing real-valued

function u. The agent's "satisfaction" with a claim X is then assessed by the Choquet

integral of u(X) with respect to the capacity µ. Choquet expected utility intervenes

in situations where an objective probability measure is not given and where the agents

are not able to derive a subjective probability over the set of di�erent scenarios. Other

alternative theories, such as the rank-dependent expected utility theory (Quiggin 1982)

and Yarii's dual theory (Yarii 1997), can be seen as particular cases of the CEU-theory.

On the other hand, stochastic orders have also been extensively used in the decision

theory. They represent partial order relations on the space of random variables on some
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probability space (Ω,F , P ) (more precisely, stochastic orders are partial order relations

on the set of the corresponding distribution functions). Di�erent kinds of stochastic

orders, such as the increasing stochastic dominance (also known as �rst-order stochas-

tic dominance) and the increasing convex stochastic dominance, have been studied and

applied and links to the expected utility theory have been explored. The reader is re-

ferred to Müller and Stoyan (2002) and Shaked and Shanthikumar (2006) for a general

presentation of the subject. Hereafter, the term "classical" will be used to designate

the results in the case where the initial space (Ω,F , P ) is a probability space. We

recall that a random variable X is said to be dominated by a random variable Y in the

"classical" increasing (resp. inceasing convex ) stochastic dominance with respect to

a given probability P if EP (u(X)) ≤ EP (u(Y )) for all u : R → R non-decreasing (resp.

non-decreasing and convex ) provided the expectations (taken in the Lebesgue sense)

exist in R. The de�nition of the "classical" stop-loss order, well-known in the insurance

literature (cf., for instance, Denuit et al. 2006), is also recalled: X is said to be dom-

inated by Y in the "classical" stop-loss order with respect to a given probability P if

EP ((X − b)+) ≤ EP ((Y − b)+) for all b ∈ R provided the expectations (taken in the

Lebesgue sense) exist in R. We also recall that in the "classical" case of a probability

the notions of increasing convex stochastic dominance and stop-loss order coincide.

In Grigorova (2010), motivated by the CEU-theory, we have generalized the "classical"

notion of inceasing convex stochastic dominance to the case where the measurable space

(Ω,F) is endowed with a given capacity µ which is not necessarily a probability measure.

It has been established in particular (cf. prop. 3.2 in Grigorova 2010) that the "classi-

cal" equivalence between the notions of increasing convex ordering and stop-loss ordering

extends to the case where the capacity µ is assumed to be continuous from below and

from above (see section 2 below for more details).

A closely related notion to the concepts mentioned above is the notion of risk measures

having the properties of comonotonic additivity and consistency with respect to a given
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stochastic dominance relation. Risk measures having the property of consistency with

respect to a given "classical" stochastic dominance relation have been extensively studied

in the literature - cf. Dana (2005), Denuit et al. (2006), Song and Yan (2009) and the

references given by these authors. It is argued in Denuit et al. (2006) that "it seems

reasonable to require that risk measures agree with some appropriate stochastic orders".

On the other hand, risk measures having the property of comonotonic additivity have

been introduced and links to the Choquet integrals have been explored (see, for instance,

Schmeidler's representation theorem recalled in section 2 below). For the economic in-

terpretation of the property of comonotonic additivity and further references the reader

is referred to Föllmer and Schied (2004). Monetary risk measures having the properties

of comonotonic additivity and consistency with respect to a given "classical" stochastic

dominance relation have been linked to the so-called distortion risk measures, introduced

in the insurance literature by Wang (1996) (cf. also Wang et al. 1997, as well as Dhaene

et al. 2006 and references therein). Let us denote by χ the space of bounded real-valued

measurable functions on (Ω,F) where (Ω,F) is a given measurable space. It is well-

known (cf. the overview by Song and Yan 2009) that the set of monetary risk measures

de�ned on χ having the properties of comonotonic additivity and consistency with respect

to the "classical" increasing stochastic dominance with respect to a given probability P

can be characterized by means of Choquet integrals with respect to a capacity of the

form ψ ◦ P where ψ is a distortion function (i.e. ψ is a non-decreasing function on [0, 1]

such that ψ(0) = 0 and ψ(1) = 1). We recall that a capacity of the form ψ ◦ P where

P is a probability and ψ is a distortion function is called a distorted probability (see

the end of subsection 2.1 below for more details). Under a non-atomicity assumption

on the initial probability space (Ω,F , P ), the set of monetary risk measures de�ned on

χ having the properties of comonotonic additivity and consistency with respect to the

"classical" stop-loss stochastic dominance with respect to the probability P is known to

be characterized by means of Choquet integrals with respect to a capacity of the form
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ψ ◦ P where ψ is a concave distortion function.

Moreover, some frequently used risk measures, such as the Value at Risk or the Tail Value

at Risk among others, can be represented by means of Choquet integrals with respect to

a distorted probability (cf., for instance, Dhaene et al. 2006).

The notion of risk measures which are consistent with respect to a given "classical"

stochastic dominance relation is also linked to the notion of law-invariance of risk mea-

sures introduced by Kusuoka (2001). Kusuoka (2001) has provided a characterization

of the class of convex law-invariant comonotonic additive monetary risk measures on

the space L∞(Ω,F , P ) in the case where the probability space (Ω,F , P ) is atomless (cf.

theorem 7 in Kusuoka 2001, as well as theorem 1.4 in Ekeland and Schachermayer 2011).

In the present paper we pursue our previous work from Grigorova (2010) by gen-

eralizing the "classical" notion of increasing stochastic dominance to the case where

the measurable space (Ω,F) is endowed with a capacity µ which is not necessarily a

probability measure. We characterize this "generalized" relation by using the notions of

distribution function with respect to the capacity µ and quantile function with respect

to the capacity µ. Next, we study the set of monetary risk measures de�ned on χ having

the properties of comonotonic additivity and consistency with respect to the "general-

ized" increasing stochastic dominance with respect to the capacity µ, as well as the set

of monetary risk measures de�ned on χ having the properties of comonotonic additivity

and consistency with respect to the "generalized" stop-loss stochastic dominance with

respect to the capacity µ. Under suitable assumptions on the space (Ω,F , µ) we provide

characterizations analogous to the classical ones. More precisely, in the case where the

initial capacity µ is assumed to be continuous from below and from above, the former

class of risk measures is characterized in terms of Choquet integrals with respect to a

capacity of the form ψ ◦ µ (which we call a distorted capacity) where ψ is a distortion

function. Under suitable assumptions on the space (Ω,F , µ) the latter class of risk mea-



1 INTRODUCTION 6

sures is characterized by means of Choquet integrals with respect to a distorted capacity

of the form ψ ◦ µ whose distortion function ψ is concave. We also establish that some

well-known results concerning Choquet integrals with respect to a distorted probability

do not necessarily hold true in the more general case of a distorted capacity (cf. subsec-

tion 3.4, as well as remarks 4.1 and 4.2). After reformulating Kusuoka's theorem in a

form which is suitable for the needs of the present paper, we establish a "Kusuoka-type"

characterization of the class of monetary risk measures de�ned on χ having the proper-

ties of comonotonic additivity and consistency with respect to the "generalized" stop-loss

stochastic dominance with respect to the capacity µ. According to this characterization

(cf. theorem 4.3 below) the risk measures ρ∞ and ρY de�ned by ρ∞(X) := supt<1 r
+
X,µ(t)

for all X ∈ χ and ρY (X) :=
∫ 1

0 r
+
Y,µ(t)r+

X,µ(t)dt for all X ∈ χ, where Y is a non-negative

measurable function on (Ω,F) such that
∫ 1

0 r
+
Y,µ(t)dt = 1, can be viewed as the "building

blocks" of the latter class of risk measures 1. Under additional assumptions on the initial

capacity µ (namely continuity from below and from above, and concavity) a characteriza-

tion involving the value function of an optimization problem studied in Grigorova (2010)

is given in theorem 4.4. We end this paper by giving some examples generalizing the

"classical" Value at Risk and the "classical" Tail Value at Risk to the case of a capacity

which is not necessarily a probability measure. In the case of the "generalized" Value at

Risk some particular subcases are studied and an economic interpretation is provided.

The remainder of the paper is organised in the following manner. Section 2 is divided

in three subsections. In subsection 2.1 some de�nitions and results about capacities

and Choquet integrals, which are used in the sequel, are recalled - all the results in

this subsection but three (namely lemmas 2.3 and 2.4, and proposition 2.5) are not new.

Subsection 2.2 recalls the de�nitions and characterizations of the "generalized" increasing

1The symbol r+X,µ (resp. r+Y,µ) denotes the upper quantile function of X (resp. of Y ) with respect to

the capacity µ; the reader is referred to section 2 for more details.
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convex ordering and the "generalized" stop-loss ordering with respect to a capacity in

a form which is suitable for the needs of the present paper; the proofs of the results of

this subsection can be found in Grigorova (2010). The terminology about risk measures

is recalled in subsection 2.3.

Section 3 is divided in four subsections. In subsection 3.1 we de�ne the "generalized"

increasing stochastic ordering with respect to a capacity and provide characterizations

analogous to those in the classical case of a probability measure. In subsection 3.2

we characterize the set of monetary risk measures having the properties of comonotonic

additivity and consistency with respect to the "generalized" increasing stochastic ordering

(with respect to a given capacity µ). Subsection 3.3 is devoted to the characterization

of the set of monetary risk measures which are comonotonic additive and consistent

with respect to the "generalized" stop-loss stochastic ordering (with respect to a given

capacity µ). Subsection 3.4 deals with the property of convexity of a Choquet integral

with respect to a distorted capacity of the form ψ ◦ µ.

In section 4 (theorem 4.3 and theorem 4.4) we provide "Kusuoka-type" characterizations

of the set of monetary risk measures having the properties of comonotonic additivity and

consistency with respect to the "generalized" stop-loss stochastic ordering (with respect

to a given capacity µ).

Section 5 is devoted to the examples.

2 Some basic de�nitions and results

2.1 Capacities and Choquet integrals

Most of the de�nitions and results of this subsection can be found in the book by Föllmer

and Schied (2004) (cf. section 4.7 of this reference) and/or in the one by Denneberg

(1994).

Let (Ω,F) be a measurable space. We denote by χ the space of measurable, real-valued
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and bounded functions on (Ω,F).

De�nition 2.1 Let (Ω,F) be a measurable space. A set function µ : F −→ [0, 1] is

called a capacity if it satis�es µ(∅) = 0, µ(Ω) = 1 (normalisation) and the following

monotonicity property: A,B ∈ F , A ⊂ B ⇒ µ(A) ≤ µ(B).

We recall the de�nition of the Choquet integral with respect to a capacity µ (cf. Den-

neberg 1994).

De�nition 2.2 For a measurable real-valued function X on (Ω,F), the Choquet integral

with respect to a capacity µ is de�ned as follows

Eµ(X) :=
∫ +∞

0
µ(X > x)dx+

∫ 0

−∞
(µ(X > x)− 1)dx.

Note that the Choquet integral in the preceding de�nition may not exist (namely if one

of the two (Riemann) integrals on the right side is equal to +∞ and the other to −∞),

may be in R or may be equal to +∞ or −∞. The Choquet integral always exists if the

function X is bounded from below or from above. The Choquet integral exists and is

�nite if X is in χ.

Thus we come to the notion of the (non-decreasing) distribution function of X with

respect to a capacity µ.

De�nition 2.3 Let X be a measurable function de�ned on (Ω,F). We call a distribution

function of X with respect to µ the non-decreasing function GX de�ned by

GX(x) := 1− µ(X > x), ∀x ∈ R.

Remark 2.1 The non-decreasingness of GX is due to the monotonicity of µ.

In the case where µ is a probability measure, the distribution function GX coincides with

the usual distribution function FX of X de�ned by FX(x) := µ(X ≤ x), ∀x ∈ R.

For some results (such as lemma 2.3 for instance) we will need to extend the de�nition

of GX to the extended real line R̄ which will be done by setting GX(+∞) := 1− µ(X >
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+∞) and GX(−∞) := 1− µ(X > −∞).

Let us now de�ne the generalized inverse of the function GX .

De�nition 2.4 For a measurable real-valued function X de�ned on (Ω,F) and for a

capacity µ, let GX denote the distribution function of X with respect to µ. We call a

quantile function of X with respect to µ every function rX : (0, 1) −→ R̄ verifying

sup{x ∈ R | GX(x) < t} ≤ rX(t) ≤ sup{x ∈ R | GX(x) ≤ t}, ∀t ∈ (0, 1),

where the convention sup{∅} = −∞ is used.

The functions r−X and r+
X de�ned by

r−X(t) := sup{x ∈ R | GX(x) < t},∀t ∈ (0, 1) and r+
X(t) := sup{x ∈ R | GX(x) ≤ t}, ∀t ∈ (0, 1)

are called the lower and upper quantile functions of X with respect to µ.

For notational convenience, we omit the dependence on µ in the notation GX and rX

when there is no ambiguity. The following observation can be found in Föllmer and

Schied (2004).

Remark 2.2 The lower and upper quantile functions of X with respect to µ can be

expressed in the following manner as well:

r−X(t) := inf{x ∈ R | GX(x) ≥ t},∀t ∈ (0, 1) and r+
X(t) := inf{x ∈ R | GX(x) > t},∀t ∈ (0, 1)

Remark 2.3 Let µ be a capacity and let X be a measurable real-valued function such

that

(2.1) lim
x→−∞

GX(x) = 0 and lim
x→+∞

GX(x) = 1.

We denote by GX(x−) and GX(x+) the left-hand and right-hand limits of GX at x. A

function rX is a quantile function of X (with respect to µ) if and only if

(GX(rX(t)−) ≤ t ≤ GX(rX(t)+), ∀t ∈ (0, 1).
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In this case rX is real-valued. Note that the condition (2.1) is satis�ed if X ∈ χ and µ

is arbitrary. The condition (2.1) is satis�ed for an arbitrary X if µ is continuous from

below and from above (see de�nition 2.5).

We have the following well-known result (cf. for instance Föllmer and Schied 2004

for the bounded case, or Denneberg 1994 - pages 61-62 in chapter 5) where we make the

convention that the assertion is valid provided the expressions make sense.

Proposition 2.1 Let X be a real-valued measurable function and let rX be a quantile

function of X with respect to a capacity µ, then

Eµ(X) =
∫ 1

0
rX(t)dt.

The following lemma is the analogue of lemma A.23. in Föllmer and Schied (2004)

and can be found in Denneberg (1994) (cf. also proposition 3.2 in Yan 2009).

Lemma 2.1 Let X = f(Y ) where f is a non-decreasing function and let rY be a quantile

function of Y with respect to a capacity µ. Suppose that f and GY have no common

discontinuities, then f ◦ rY is a quantile function of X with respect to µ. In particular,

rX(t) = rf(Y )(t) = f(rY (t)) for almost every t ∈ (0, 1),

where rX denotes a quantile function of X with respect to µ.

Remark 2.4 If the capacity µ satis�es the additional properties of continuity from below

and from above, the assumption of no common discontinuities of the functions f and GY

can be dropped in the previous lemma. The proof is then analogous to the proof in the

classical case of a probability measure (cf. lemma A.23. in Föllmer and Schied 2004 for

a proof in the classical case) and is left to the reader.

We recall some well-known de�nitions about capacities which will be needed later on.



2 SOME BASIC DEFINITIONS AND RESULTS 11

De�nition 2.5 A capacity µ is called convex (or equivalently, supermodular) if

A,B ∈ F ⇒ µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B).

A capacity µ is called concave (or submodular, or 2-alternating) if

A,B ∈ F ⇒ µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B).

A capacity µ is called continuous from below if

(An) ⊂ F such that An ⊂ An+1,∀n ∈ N⇒ lim
n→∞

µ(An) = µ(∪∞n=1An).

A capacity µ is called continuous from above if

(An) ⊂ F such that An ⊃ An+1,∀n ∈ N⇒ lim
n→∞

µ(An) = µ(∩∞n=1An).

We recall the notion of comonotonic functions (cf. Föllmer and Schied 2004).

De�nition 2.6 Two measurable functions X and Y on (Ω,F) are called comonotonic if

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0, ∀(ω, ω′) ∈ Ω× Ω.

We have the following characterization of comonotonic functions which corresponds to

proposition 4.5 in Denneberg (1994) (see also Föllmer and Schied 2004)

Proposition 2.2 For two real-valued measurable functions X, Y on (Ω,F) the following

conditions are equivalent:

(i) X and Y are comonotonic.

(ii) There exists a measurable function Z on (Ω,F) and two non-decreasing functions f

and g on R such that X = f(Z) and Y = g(Z).

(iii) There exist two continuous, non-decreasing functions u and v on R such that u(z)+

v(z) = z, z ∈ R, and X = u(X + Y ) , Y = v(X + Y ).
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The notion of comonotonic functions proves to be very useful while dealing with

Choquet integrals thanks to the following result (cf. lemma 4.84 in Föllmer and Schied

2004, as well as corollary 4.6 in Denneberg 1994).

Lemma 2.2 If X,Y : Ω → R is a pair of comonotonic measurable functions and if

rX , rY , rX+Y are quantile functions (with respect to a capacity µ) of X,Y,X + Y respec-

tively, then

rX+Y (t) = rX(t) + rY (t), for almost every t.

In the following propositions we summarize some of the main properties of Choquet

integrals for reader's convenience (cf. proposition 5.1 in Denneberg 1994) and we make

the convention that the properties are valid provided the expressions make sense (which

is always the case when we restrain ourselves to elements in χ).

Proposition 2.3 Let µ be a capacity on (Ω,F) and X and Y be measurable real-valued

functions on (Ω,F) , then we have the properties:

• (positive homogeneity) Eµ(λX) = λEµ(X), ∀λ ∈ R+

• (monotonicity) X ≤ Y ⇒ Eµ(X) ≤ Eµ(Y )

• (translation invariance) Eµ(X + b) = Eµ(X) + b,∀b ∈ R

• (asymmetry) Eµ(−X) = −Eµ̄(X), where µ̄ is the dual capacity of µ

(µ̄(A) is de�ned by µ̄(A) = 1− µ(Ac),∀A ∈ F)

• (comonotonic additivity) If X and Y are comonotonic, then

Eµ(X + Y ) = Eµ(X) + Eµ(Y ).

Finally, we recall the subadditivity property of the Choquet integral with respect to a

concave capacity.
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Proposition 2.4 Let µ be a concave capacity on (Ω,F) and X and Y be measurable

real-valued functions on (Ω,F) such that Eµ(X) > −∞ and Eµ(Y ) > −∞, then we have

the following property

(subadditivity) Eµ(X + Y ) ≤ Eµ(X) + Eµ(Y ).

Remark 2.5 The reader is referred to Denneberg (1994) for a slightly weaker assumption

than the one given in the previous proposition.

The next theorem is known as Schmeidler's representation theorem (cf. theorem 11.2

in Denneberg 1994; cf. also theorem 4.82 in Föllmer and Schied 2004).

Theorem 2.1 (Schmeidler's representation theorem) Let ρ : χ −→ R be a given

functional satisfying the properties of:

(i) (monotonicity) X ≤ Y ⇒ ρ(X) ≤ ρ(Y )

(ii) (comonotonic additivity) X,Y comonotonic ⇒ ρ(X + Y ) = ρ(X) + ρ(Y )

(iii) (normalisation) ρ(I) = 1.

Then, there exists a capacity ν on (Ω,F) such that

ρ(X) = Eν(X), ∀X ∈ χ.

Remark 2.6 We note that the normalisation property (iii) of the previous theorem

is satis�ed by any functional ρ : χ −→ R which is assumed to have the properties of

comonotonic additivity (property (ii)) and translation invariance. Indeed, the comono-

tonic additivity of ρ implies that ρ(0 + 0) = 2ρ(0) which gives ρ(0) = 0. This property

combined with the translation invariance of ρ implies the normalisation property (iii).

In particular, the normalisation property (iii) is satis�ed by any monetary risk measure

ρ : χ −→ R (in the sense of de�nition 2.9) having the property of comonotonic additivity.
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Finally, we state a useful result about monotonic transformations of measurable func-

tions and the corresponding upper quantile functions.

Lemma 2.3 Let Z be a real-valued measurable function on (Ω,F), let µ be a capacity

on (Ω,F) and let f be a non-decreasing right-continuous function. Denote by r+
Z and by

r+
f(Z) the upper quantile functions of Z and f(Z) (with respect to µ). Suppose that f and

GZ have no common discontinuities, then

r+
f(Z)(t) = f(r+

Z (t)), ∀t ∈ (0, 1).

Proof: The proof of the lemma uses arguments similar to those used in the proof of

proposition 3.2 in Yan (2009) and is given in the appendix.

�

An analogous result to that of lemma 2.3 holds true in the case of lower quantile functions

with respect to a capacity. The result can be shown by using similar arguments to the

ones used in the proof of the previous lemma 2.3 - its proof is therefore omitted.

Lemma 2.4 Let Z be a real-valued measurable function on (Ω,F), let µ be a capacity

on (Ω,F) and let f be a non-decreasing left-continuous function. Denote by r−Z and by

r−f(Z) the lower quantile functions of Z and f(Z) (with respect to µ). Suppose that f and

GZ have no common discontinuities, then

r−f(Z)(t) = f(r−Z (t)), ∀t ∈ (0, 1).

Using the previous two lemmas 2.3 and 2.4, we state a proposition representing a gen-

eralization to the case of a capacity of a well-known "classical" result about the upper

and lower quantile functions of comonotonic random variables - cf. for instance theorem

4.2.1 in Dhaene et al. (2006) for the classical case.
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Proposition 2.5 If X and Y are two comonotonic real-valued measurable functions,

then

(2.2) r+
X+Y (t) = r+

X(t) + r+
Y (t), ∀t ∈ (0, 1) and

(2.3) r−X+Y (t) = r−X(t) + r−Y (t), ∀t ∈ (0, 1).

Proof: The arguments of the proof of proposition 2.5 are similar to those used in the

proof of corollary 4.6 in Denneberg (1994). The proof is placed in the appendix.

�

Remark 2.7 The previous proposition 2.5 is to be compared with lemma 2.2. In fact,

lemma 2.2 can be viewed as a consequence of proposition 2.5 after recalling that a quan-

tile function (with respect to a given capacity) of a given real-valued measurable function

is unique except on an at most countable set.

We end this subsection by two examples of a capacity. The �rst example is well-

known in the decision theory (think for instance of the rank-dependent expected utility

theory - Quiggin 1982 or of Yarii's distorted utility theory in Yarii 1997); the second is

a slight generalization of the �rst - it can be found in Denneberg (1994).

1. Let µ be a probability measure on (Ω,F) and let ψ : [0, 1] → [0, 1] be a non-

decreasing function on [0, 1] such that ψ(0) = 0 and ψ(1) = 1. Then the set

function ψ ◦ µ de�ned by ψ ◦ µ(A) := ψ(µ(A)),∀A ∈ F is a capacity in the sense

of de�nition 2.1. The function ψ is called a distortion function and the capacity

ψ ◦ µ is called a distorted probability. If the distortion function ψ is concave, the

capacity ψ ◦ µ is a concave capacity in the sense of de�nition 2.5.

2. Let µ be a capacity on (Ω,F) and let ψ be a distortion function. Then the set

function ψ ◦ µ is a capacity which, by analogy with the previous example, will be
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called a distorted capacity. Moreover, we have the following property : if µ is a

concave capacity and ψ is concave, then ψ ◦ µ is concave. The proof uses the same

arguments as the proof of proposition 4.69 in Föllmer and Schied (2004) and is left

to the reader (see also exercice 2.10 in Denneberg 1994).

2.2 Stochastic orderings with respect to a capacity

Most of the de�nitions and results in this subsection can be found in Grigorova (2010).

De�nition 2.7 Let X and Y be two measurable functions on (Ω,F) and let µ be a

capacity on (Ω,F). We say that X is smaller than Y in the increasing convex ordering

(with respect to the capacity µ) denoted by X ≤icx Y if

Eµ(u(X)) ≤ Eµ(u(Y ))

for all functions u : R→ R which are non-decreasing and convex,

provided the Choquet integrals exist in R.

The previous de�nition coincides with the usual de�nition of the increasing convex

order when the capacity µ is a probability measure on (Ω,F) (cf. Shaked and Shanthiku-

mar 2006 for details in the classical case).

As in the previous section, the dependence on the capacity µ in the notation for the

stochastic dominance relation ≤icx is intentionally omitted. Nevertheless, we shall note

≤icx,µ when an explicit mention of the capacity to which we refer is needed.

Remark 2.8 The economic interpretation of the increasing convex ordering with respect

to a capacity µ is the following: X ≤icx,µ Y if all the CEU-maximizers whose preferences

are described by the (common) capacity µ and a non-decreasing convex utility function

prefer the claim Y to the claim X.

If the measurable functions X and Y are interpreted as losses (which will be the case

in the sequel of the paper), the increasing convex stochastic ordering with respect to a



2 SOME BASIC DEFINITIONS AND RESULTS 17

capacity µ can be interpreted as follows: X ≤icx,µ Y if all the CEU-minimizers whose

preferences are described by the (common) capacity µ and a non-decreasing convex "pain"

function (see Denuit et al. 1999 for the terminology) prefer losing X to losing Y .

We de�ne the notion of stop-loss ordering (or stop-loss dominance relation) below.

De�nition 2.8 Let X and Y be two measurable functions on (Ω,F) and let µ be a

capacity on (Ω,F). We say that X is smaller than Y in the stop-loss ordering with

respect to the capacity µ denoted by X ≤sl Y if

Eµ((X − b)+) ≤ Eµ((Y − b)+), ∀b ∈ R,

provided the Choquet integrals exist in R.

In the classical case where the capacity µ is a probability measure the previous def-

inition is reduced to the usual de�nition of stop-loss order well-known in the insurance

literature (see for instance Dhaene et al. 2006). The interpretation of the stop-loss dom-

inance relation in the classical case is the following: X ≤sl Y if and only if X has lower

stop-loss premia than Y . A similar interpretation could be given in our more general

setting if we see the number Eµ((X − b)+) for a given b ∈ R as a "generalized" stop-loss

premium of X.

We have the following characterization of the stop-loss ordering relation with respect

to a capacity which is due to propositions 3.3 and 3.4 in Grigorova (2010).

Proposition 2.6 Let µ be a capacity and let X and Y be two real-valued measurable

functions such that
∫ 1

0 |rX(t)|dt < +∞ and
∫ 1

0 |rY (t)|dt < +∞ where rX and rY denote

(the) quantile functions of X and Y with respect to µ. The following three statements

are equivalent:

(i) X ≤sl,µ Y .
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(ii)
∫ +∞
x µ(X > u)du ≤

∫ +∞
x µ(Y > u)du, ∀x ∈ R.

(iii)
∫ 1
y rX(t)dt ≤

∫ 1
y rY (t)dt,∀y ∈ (0, 1).

Another useful characterization of the relation ≤sl,µ is given in the following propo-

sition. Its analogue in the classical case of a probability measure is due to Dana (2005)

(see also thm. 5.2.1 in Dhaene et al. 2006 for a related result). The version presented

here can be found in Grigorova (2010).

Proposition 2.7 Let X ∈ χ and Y ∈ χ be given. Then the following statements are

equivalent:

(i) X ≤sl,µ Y

(ii)
∫ 1

0 g(t)rX(t)dt ≤
∫ 1

0 g(t)rY (t)dt, ∀g : [0, 1]→ R̄+, integrable, non-decreasing.

We have the following proposition establishing the equivalence between the increasing

convex stochastic dominance and the stop-loss stochastic dominance in the case of a

capacity which is continuous from below and from above (cf. proposition 3.2 in Grigorova

2010).

Proposition 2.8 Let µ be a capacity which is continuous from below and from above and

let X and Y be two real-valued measurable functions. Then the following two statements

are equivalent:

(i) X ≤sl,µ Y .

(ii) X ≤icx,µ Y .

Remark 2.9 As observed in Grigorova (2010), it can be easily seen from the de�nition

of the increasing convex ordering that the assumption on the continuity of the capacity

µ is not needed in the proof of the implication (ii)⇒ (i) in proposition 2.8.
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2.3 Monetary risk measures

We will use the following de�nitions:

De�nition 2.9 1. A mapping ρ : χ → R is called a monetary measure of risk if it

satis�es the following properties for all X,Y ∈ χ:

(i) (monotonicity) X ≤ Y ⇒ ρ(X) ≤ ρ(Y )

(ii) (translation invariance) ρ(X + b) = ρ(X) + b,∀b ∈ R

2. A monetary measure of risk ρ is called convex if it satis�es the additional property

of

(iii) (convexity) ρ(λX+ (1−λ)Y ) ≤ λρ(X) + (1−λ)ρ(Y ), ∀λ ∈ [0, 1], ∀X,Y ∈ χ.

3. A convex monetary measure of risk ρ is called coherent if it satis�es the additional

property of

(iv) (positive homogeneity) ρ(λX) = λρ(X),∀λ ∈ R+.

Let us remark that the above de�niton of a coherent monetary risk measure coincides,

up to a minus sign, with the de�niton given by Artzner et al. (1999). The "sign conven-

tion" used in the present paper is frequently adopted in the insurance literature when

the measurable functions are interpreted as potential losses or payments that have to be

made (see, for instance, Dhaene et al. 2006 for explanations in the context of insurance;

for the same "sign convention" as the one used in the present paper, the reader is also

referred to Wang and Yan 2007, or Ekeland et al. 2009).
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3 Stochastic orderings with respect to a capacity and gen-

eralized distortion risk measures

3.1 The increasing stochastic dominance with respect to a capacity

In this subsection we de�ne the notion of increasing stochastic dominance with respect

to a capacity and provide characterizations analogous to those existing in the "classical"

case of a probability measure. The reader is referred to Shaked and Shanthikumar (2006)

for details in the classical case.

De�nition 3.1 Let X and Y be two measurable functions on (Ω,F) and let µ be a capac-

ity on (Ω,F). We say that X is dominated by Y in the increasing stochastic dominance

(with respect to the capacity µ) denoted by X ≤mon,µ Y if

Eµ(u(X)) ≤ Eµ(u(Y ))

for all non-decreasing functions u : R→ R provided the Choquet integrals exist in R.

In the case where µ is a probability measure the preceding de�nition is reduced to the

usual de�nition of increasing stochastic dominance (also known as �rst-order stochastic

dominance).

Remark 3.1 The economic interpretation of the increasing stochastic dominance with

respect to a capacity µ is the following: X ≤mon,µ Y if all CEU-maximizers whose pref-

erences are described by the (common) capacity µ and a non-decreasing utility function

prefer the claim Y to the claim X.

We have the following characterization of the increasing stochastic dominance with re-

spect to µ.

Proposition 3.1 Let µ be a capacity which is continuous from below and from above.

Let X and Y be two real-valued measurable functions. The following three statements are

equivalent:
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(i) X ≤mon,µ Y .

(ii) GX(x) ≥ GY (x), ∀x ∈ R.

(iii) r+
X(t) ≤ r+

Y (t),∀t ∈ (0, 1).

Proof: Let us �rst prove the implication (i)⇒ (ii). We �x x ∈ R and we remark that

GX(x) = 1−Eµ(u(X)) where u(y) := I(x,+∞)(y) which proves the desired implication as

the function u is non-decreasing.

The implication (ii) ⇒ (iii) is a consequence of the de�nition of the upper quantile

functions r+
X and r+

Y .

To conclude, we prove the implication (iii)⇒ (i). Suppose that r+
X(t) ≤ r+

Y (t),∀t ∈ (0, 1)

and let u : R→ R be a non-decreasing function. Thanks to proposition 2.1 and to remark

2.4 (where the assumption of continuity from below and from above of µ is used) we have

Eµ(u(X)) =
∫ 1

0 u(r+
X(t))dt; the same type of representation holds for Eµ(u(Y )). Thus

we obtain Eµ(u(X)) =
∫ 1

0 u(r+
X(t))dt ≤

∫ 1
0 u(r+

Y (t))dt = Eµ(u(Y )) which concludes the

proof.

�

Remark 3.2 We note that the implications (i)⇒ (ii)⇒ (iii) in the proof of proposition

3.1 have been established without using the assumption of continuity from below and

from above of µ.

We end this subsection by giving some vocabulary which will be useful in the sequel

while dealing with risk measures.

De�nition 3.2 Let ρ : χ→ R be a given functional and let µ be a capacity. We say that

ρ satis�es the property of:

1. ( consistency with respect to ≤mon,µ) if X ≤mon,µ Y implies ρ(X) ≤ ρ(Y ).

2. ( consistency with respect to ≤sl,µ) if X ≤sl,µ Y implies ρ(X) ≤ ρ(Y ).
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3. ( consistency with respect to ≤icx,µ) if X ≤icx,µ Y implies ρ(X) ≤ ρ(Y ).

The following result which is easy to establish provides a link between the notions

introduced in de�nition 3.2.

Proposition 3.2 Let ρ : χ → R be a given functional and let µ be a capacity. The

following statements hold:

1. ρ is consistent with respect to ≤sl,µ⇒ ρ is consistent with respect to ≤icx,µ⇒ ρ is

consistent with respect to ≤mon,µ.

2. If the capacity µ is continuous from below and from above, the consistency with

respect to the relation ≤icx,µ is equivalent to the consistency with respect to the

relation ≤sl,µ.

Proof: The �rst statement is due to the de�nitions of the relations ≤icx,µ, ≤sl,µ and

≤mon,µ. The second statement is a consequence of proposition 2.8.

�

3.2 Generalized distortion risk measures

In this subsection we are interested in risk measures which can be represented as Cho-

quet integrals with respect to a distorted capacity. Such risk measures will be called

generalized distortion risk measures.

De�nition 3.3 Let µ be a capacity and let ψ be a distortion function. A monetary risk

measure ρ : χ −→ R of the form

ρ(X) = Eψ◦µ(X), ∀X ∈ χ

is called a generalized distortion risk measure.
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In the case where µ is a probability measure the previous de�nition is reduced to the

de�nition of a distortion risk measure (or a distortion premium principle) well-known in

�nance and insurance - see, for instance, Dhaene et al. (2006) for a survey and exam-

ples. The generalization considered in de�nition 3.3 is suggested at the end of an article

by Denneberg (1990). In Grigorova (2010) an example of a generalized distortion risk

measure is obtained as the value function of the following �nancial optimization problem:

(D)
Maximize Eµ(ZC)

under the constraints C ∈ χ+ s.t. C ≤icx,µ X

where χ+ denotes the set of non-negative bounded measurable functions, µ is a given

(concave and continuous from below) capacity, Z is a given non-negative measurable

function such that
∫ 1

0 rZ(t)dt <∞ and X is a given function in χ+.

Remark 3.3 Any generalized distortion risk measure in the sense of de�nition 3.3 is a

monetary risk measure satisfying the properties of positive homogeneity and comonotonic

additivity. A generalized distortion risk measure is convex if and only if the distorted

capacity ψ ◦ µ appearing in de�nition 3.3 is a concave capacity. The "if part" in the

previous statement has already been recalled in proposition 2.4; the "only if part" is easy

to establish by using, for instance, exercise 5.1 in Denneberg (1994).

A well-known representation result in the classical case of a probability measure is

generalized to the case of a capacity in the following lemma. For the statement and the

proof of this result in the "classical" case we refer to Song and Yan (2009) as well as to

exercise 11.3 in Denneberg (1994); the "classical" result is related to the work of Wang

et al. (1997) and to the work of Kusuoka (2001) as well.

Lemma 3.1 Let µ be a capacity on (Ω,F) and let ρ : χ → R be a functional satisfying

the following properties

(i) GX,µ(x) ≥ GY,µ(x), ∀x ∈ R⇒ ρ(X) ≤ ρ(Y )
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(ii) (comonotonic additivity) X,Y comonotonic ⇒ ρ(X + Y ) = ρ(X) + ρ(Y )

(iii) (normalisation) ρ(I) = 1.

Then, there exists a distortion function ψ : [0, 1] −→ [0, 1] such that

ρ(X) = Eψ◦µ(X), ∀X ∈ χ.

This lemma is based on Schmeidler's representation theorem (theorem 2.1). Before we

prove the lemma, let us make a remark which will be used in the proof.

Remark 3.4 The property (i) in the previous lemma implies the property of monotonic-

ity of ρ (i.e. X ≤ Y ⇒ ρ(X) ≤ ρ(Y )), as well as the following property which, for the

easing of the presentation, will be called ditrsibution invariance of ρ with respect to µ:

GX,µ(x) = GY,µ(x), ∀x ∈ R⇒ ρ(X) = ρ(Y ).

Proof of lemma 3.1: The functional ρ being monotonic, comonotonic additive and

normalised, Schmeidler's representation theorem (theorem 2.1) can be applied in order

to obtain the existence of a capacity ν on (Ω,F) such that

(3.1) ρ(X) = Eν(X), ∀X ∈ χ.

We will now prove that there exists a distortion function ψ such that ν(A) = ψ ◦

µ(A), ∀A ∈ F . The arguments are similar to those in the "classical" case and follow

the proof of proposition 2.1 in Song and Yan (2009).

Let us �rst note that for A,B ∈ F , the distribution functions (with respect to µ) GIA,µ

and GIB ,µ of the measurable functions IA and IB coincide if and only if µ(A) = µ(B).

Thus, the functional ρ being distribution invariant with respect to µ, we have that

µ(A) = µ(B) implies ρ(IA) = ρ(IB) which in turn implies that ν(A) = ν(B). Therefore,

we can de�ne a function ψ on the set S := {µ(A), A ∈ F} as follows:

ψ : {µ(A), A ∈ F} −→ [0, 1]

ψ(x) := ν(A) if x = µ(A).
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The function ψ is such that ν(A) = ψ ◦µ(A), ∀A ∈ F . Moreover, ψ(0) = 0 and ψ(1) = 1

and ψ is a non-decreasing function on S. The non-decreasingness of ψ is a consequence

of property (i). Indeed, let A,B ∈ F be such that µ(A) ≤ µ(B). Then, for all x ∈ R,

GIA,µ(x) = 1 − µ(IA > x) ≥ 1 − µ(IB > x) = GIB ,µ(x). The inequality ν(A) ≤ ν(B)

follows thanks to property (i) and to the representation (3.1). We conclude the proof

as in Song and Yan (2009) by arguing that the function ψ can be extended to a non-

decreasing function on the closure of the set S and then to a non-decreasing function on

[0, 1].

�

Remark 3.5 The converse statement in lemma 3.1 also holds true. More precisely,

let µ be a capacity and let ρ : χ → R be a functional of the form ρ(.) = Eψ◦µ(.)

where ψ is a distortion function. As a Choquet integral with respect to a capacity, the

functional ρ obviously satis�es properties (ii) and (iii) in lemma 3.1. Property (i) in

lemma 3.1 is also satis�ed as the functional ρ can be written in the following manner:

ρ(X) = Eψ◦µ(X) =
∫ +∞

0 ψ(1−GX,µ(x))dx+
∫ 0
−∞ ψ(1−GX,µ(x))− 1dx, ∀X ∈ χ.

The following theorem is a "generalization" to the case of a capacity of a well-known

representation result for monetary risk measures satisfying the properties of comonotonic

additivity and consistency with respect to the "classical" increasing stochastic dominance

(see for instance Song and Yan (2009) for the classical case).

Theorem 3.1 Let µ be a capacity on (Ω,F) which is continuous from below and from

above and let ρ : χ→ R be a monetary risk measure satisfying the properties of

(i) (consistency with respect to ≤mon,µ) X ≤mon,µ Y ⇒ ρ(X) ≤ ρ(Y )

(ii) (comonotonic additivity) X,Y comonotonic ⇒ ρ(X + Y ) = ρ(X) + ρ(Y ).

Then, there exists a distortion function ψ such that

ρ(X) = Eψ◦µ(X), ∀X ∈ χ.
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Proof: The result follows directly from lemma 3.1 and proposition 3.1.

�

Remark 3.6 Note that properties (i) and (ii) in the previous theorem are satis�ed by

any monetary risk measure on χ of the form Eψ◦µ(.) where ψ is a given distortion function

and where µ is a given capacity. The statement is due to remark 3.5, to proposition 3.1

and to remark 3.2.

Remark 3.7 We also note that the distortion function ψ in the representation formula

of the previous theorem is unique on the set S := {µ(A), A ∈ F}.

We conclude from the previous theorem 3.1 combined with remark 3.6 that in the

case where the initial capacity µ is continuous from below and from above the class of

generalized distortion risk measures with respect to µ (in the sense of de�nition 3.3)

coincides with the class of monetary risk measures having the properties of comonotonic

additivity and consistency with respect to the ≤mon,µ −relation.

As already mentioned, risk measures satisfying the property of comonotonic additivity

(property (ii) in the previous theorem) have been extensively studied in the literature

and the �nancial interpretation of this property has been aknowledged (see for instance

Föllmer and Schied 2004).

Nevertheless, the notion of consistency with respect to the ≤mon,µ −relation for a risk

measure (as well as the notion of consistency with respect to the ≤sl,µ −relation, or with

respect to the ≤icx,µ −relation) being introduced in the present paper, an interpretation

is given hereafter. The interpretation provided in this paper is from the point of view

of an insurance company. Consider an insurance company which is willing to compare

measurable functions (interpreted in this context as random losses) according to the

CEU-theory. The use of a stochastic dominance relation deriving from the CEU-theory
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(such as the ≤mon,µ - stochastic dominance relation, the ≤sl,µ −relation or the ≤icx,µ

−relation) is suitable as it gives a way of comparing random losses according to the

desired economic theory. The CEU-theory and the stochastic dominance relations to

which it gives rise may intervene, for instance, in situations where the insurance company

is facing ambiguity. However, as it is the case of the "classical" stochastic dominance

relations with respect to a probability, the stochastic dominance relations with respect

to a capacity have the following "drawback": the relations are not "total" which means

that for some measurable functions X and Y it is possible to have neither X ≤mon,µ Y

nor Y ≤mon,µ X (if the ≤mon,µ −relation is taken as an example).

In the present paper, risk measures having the property of consistency with respect to

the given stochastic dominance relation with respect to a capacity are used as a way of

circumventing the previous "drawback". This approach is analogous to the one used in

the "classical" case of a probability where risk measures consistent with respect to the

"classical" stochastic dominance relations are studied.

Remark 3.8 The ≤mon,µ −relation and the property of consistency with respect to the

≤mon,µ −relation could be interpreted in terms of ambiguity. The interpretation is based

on the characterization of the ≤mon,µ −relation established in proposition 3.1 in the case

of a capacity µ which is continuous from below and from above. Let us recall that the

measurable functions on (Ω,F) are interpreted as losses in the present paper and let X

and Y be two measurable functions in χ such that

(3.2) GX,µ(t) ≤ GY,µ(t) for all t ∈ R

which is equivalent to µ(X > t) ≥ µ(Y > t) for all t ∈ R.

Let us �rst consider the inequality µ(X > t) ≥ µ(Y > t) where t ∈ R is �xed. Bearing

in mind that the capacity µ models the agent's perception of "uncertain" (or "ambigu-

ous") events, the reader may interpret the previous inequality as having the following

meaning: the event {X > t} is perceived by the agent as being less uncertain than (or
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equally uncertain to) the event {Y > t}.

Thus, the relation (3.2) (which, thanks to proposition 3.1, is equivalent to Y ≤mon,µ X

in the case of a capacity µ assumed to be continuous from below and from above) can

be loosely read as follows: the agent "feels less (or equally) uncertain about the loss X's

taking great values than about the loss Y 's ".

Thus, if a loss X ∈ χ is perceived (through a capacity µ which is continuous from below

and from above) as being more or equally certain to take great values (in the previous

sense) than a loss Y ∈ χ, the "risk" 2 ρ(X) associated to the loss X by a risk measure

ρ : χ −→ R having the property of consistency with respect to the ≤mon,µ −relation is

greater than or equal to the "risk" ρ(Y ) associated to the loss Y .

Thanks to proposition 2.6, an analogous interpretation could be given of the ≤sl,µ

−relation and of the property of consistency with respect to the ≤sl,µ −relation.

3.3 Characterizing risk measures having the properties of comonotonic

additivity and consistency with respect to the ≤sl,µ −relation

We have seen that, for a given capacity µ, the set of monetary risk measures having the

properties of comonotonic additivity and consistency with respect to the ≤sl,µ −relation

is included in the set of monetary risk measures having the properties of comonotonic

additivity and consistency with respect to the ≤mon,µ −relation. Besides, in the case

where the initial capacity µ is continuous from below and from above, a characterization

of the latter set in terms of Choquet integrals with respect to a distorted capacity has

been established in theorem 3.1 combined with remark 3.6. This subsection is devoted to

a characterization of the former set of risk measures in terms of Choquet integrals with

respect to a distorted capacity where the distortion function is concave. Two separate

theorems, corresponding to the two implications of which the characterization consists,

2The expression "the risk" of a loss X ∈ χ designates here the number ρ(X) associated to X by a

risk measure ρ.
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are presented.

The following theorem is a representation result for monetary risk measures satisfying the

properties of comonotonic additivity and consistency with respect to the ≤sl,µ −relation.

Theorem 3.2 Let µ be a capacity. Assume that there exists a real-valued measurable

function Z such that the distribution function GZ of Z is continuous and satis�es the

following property: limx→−∞GZ(x) = 0 and limx→+∞GZ(x) = 1.

If ρ : χ→ R is a monetary risk measure satisfying the properties of comonotonic additivity

and consistency with respect to the ≤sl,µ −relation, then there exists a concave distortion

function ψ such that

ρ(X) = Eψ◦µ(X), ∀X ∈ χ.

The proof of this theorem is based on the representation result of lemma 3.1, on propo-

sition 2.6, and on lemma 3.2 below. The lemma 3.2 is well-known in the classical case

of a probability measure as a way of constructing a random variable with a uniform

distribution on [0, 1].

Lemma 3.2 Let µ be a capacity. Assume that there exists a real-valued measurable

function Z such that the distribution function GZ of Z is continuous and satis�es

(3.3) lim
x→−∞

GZ(x) = 0 and lim
x→+∞

GZ(x) = 1.

Set U := GZ(Z). The distribution function GU of U is given by: GU (x) =


0, if x < 0

x, if x ∈ [0, 1]

1, if x > 1.

Proof of lemma 3.2: The measurable function U can be written in the following

manner: U = f(Z), where, for the easing of the presentation, we have set f := GZ .

As in the proof of lemma 2.3, we de�ne the upper generalized inverse f̌ of the non-

decreasing function f by f̌(x) := inf{y ∈ R : f(y) > x}, ∀x ∈ R. The function f being
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non-decreasing and continuous, we know from the proof of proposition 3.2 in Yan (2009)

that for all x ∈ R, GU (x) = Gf(Z)(x) = GZ ◦ f̌(x).

Therefore, for all x ∈ R, GU (x) = GZ ◦ ǦZ(x).

Now, according to the de�nitions of ǦZ and of the upper quantile function r+
Z , we have

ǦZ(x) = r+
Z (x), ∀x ∈ (0, 1). Moreover, thanks to the assumption (3.3), r+

Z (x) belongs to

R, ∀x ∈ (0, 1).

Thus, if x ∈ (0, 1), then GZ ◦ ǦZ(x) = GZ ◦ r+
Z (x) = x. The last equality in the previous

computation is due to the continuity of GZ on R.

If x ≥ 1, then ǦZ(x) = +∞ and GZ ◦ ǦZ(x) = 1.

If x < 0, then ǦZ(x) = −∞ and GZ ◦ ǦZ(x) = GZ(−∞) = 1− µ(Z > −∞) = 0.

Finally, if x = 0, then either ǦZ(0) = −∞ or ǦZ(0) ∈ R. In both of the situations,

GZ ◦ ǦZ(0) = 0.

The expression for GU is thus proved.

�

The following two remarks concern the assumptions of the previous lemma.

Remark 3.9 The existence of a measurable function Z on (Ω,F) with a continuous

distribution function with respect to the capacity µ has been assumed in the previous

lemma 3.2. In the "classical" case where µ is a probability measure this assumption is

equivalent to the usual assumption of non-atomicity of the measure space (Ω,F , µ) (cf.

Föllmer and Schied 2004).

Remark 3.10 We note that assumption (3.3) of the previous lemma is not redundant

in the case of a capacity µ which is not a probability measure. We also note that if µ and

Z do not satisfy the assumption (3.3), the result on the distribution function GU of U

of the lemma may not hold true. Indeed, let us consider the following counter-example.

Let (Ω,F , P ) be a probability space such that there exists a random variable Z whose

distribution function FZ (with respect to P ) is continuous and satis�es 0 < FZ(x) <
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1,∀x ∈ R. Let µ be a capacity of the form µ := ψ ◦ P where ψ is a distortion function

which is continuous on (0, 1) and such that b := supx<1 ψ(x) < 1. Then, the distribution

function GZ,µ of Z (with respect to µ) is continuous but fails to satisfy the assumption

(3.3) in lemma 3.2 as

lim
x→−∞

GZ,µ(x) = lim
x→−∞

(
1− ψ(1− FZ(x))

)
= 1− sup

x∈R
ψ(1− FZ(x))

= 1− sup
y<1

ψ(y) = 1− b > 0.

Let us compute GU,µ(x) for x ∈ (0, 1− b). For x ∈ (0, 1− b), ǦZ,µ(x) = r+
Z,µ(x) = −∞.

Therefore, for x ∈ (0, 1 − b), GU,µ(x) = GZ,µ ◦ ǦZ,µ(x) = GZ,µ(−∞) = 0 6= x which

provides the desired counter-example.

Let us now prove theorem 3.2.

Proof of theorem 3.2: It is easy to check that the monetary risk measure ρ satis�es

the properties (i), (ii) and (iii) in lemma 3.1. Therefore, there exists a distortion function

ψ such that ρ(X) = Eψ◦µ(X), ∀X ∈ χ. It remains to show that the distortion function

ψ is concave.

Let x ∈ [0, 1] and y ∈ [0, 1] be such that x < y. There exist measurable sets A and B

satisfying the following properties: A ⊂ B, µ(A) = x and µ(B) = y. Indeed, if we set

A := {U > 1 − x} and B := {U > 1 − y} where U := GZ(Z), we have that A ⊂ B.

Moreover, according to lemma 3.2, µ(A) = µ(U > 1−x) = 1−GU (1−x) = 1−(1−x) = x.

Similarly, we compute µ(B) = y. Therefore, the sets A and B are as desired.

Furthermore, there exists a measurable set C such that µ(C) = x+y
2 (the set C can be

constructed by setting C := {U > 1− x+y
2 }).

We now set X := 1
2IA + 1

2IB and Y := IC and we note that the measurable functions

1
2IA and 1

2IB are comonotonic as A ⊂ B.

Let us show that X ≤sl,µ Y . According to proposition 2.6, it su�ces to prove that

∀t ∈ (0, 1),

(3.4)

∫ 1

t
r+
X(s)ds ≤

∫ 1

t
r+
Y (s)ds.
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Now, r+
Y (t) = I[1−µ(C),1)(t) and r

+
X(t) = 1

2I[1−µ(A),1)(t) + 1
2I[1−µ(B),1)(t) for almost every

t where lemma 2.2 and lemma 2.3 have been used to compute r+
X(t). Therefore, equation

(3.4) is equivalent to 1
2

(
1−max{t, 1−µ(A)}

)
+ 1

2

(
1−max{t, 1−µ(B)}

)
≤ 1−max{t, 1−

µ(C)} which is equivalent to 1
2 min{1− t, µ(A)}+ 1

2 min{1− t, µ(B)} ≤ min{1− t, µ(C)}.

The observation that, for a �xed t ∈ (0, 1), the mapping z −→ min{1 − t, z} is concave

allows us to conclude that equation (3.4) holds true.

The consistency of ρ with respect to the ≤sl,µ −relation implies that ρ(X) ≤ ρ(Y )

which is equivalent to Eψ◦µ(1
2IA + 1

2IB) ≤ Eψ◦µ(IC). The positive homogeneity and the

comonotonic additivity of the Choquet integral then give 1
2ψ◦µ(A)+ 1

2ψ◦µ(B) ≤ ψ◦µ(C).

The concavity of ψ follows as µ(A) = x, µ(B) = y, µ(C) = x+y
2 and as x and y are

arbitrary.

�

Remark 3.11 The distortion function in the representation result of the previous the-

orem (theorem 3.2) is unique. Indeed, suppose that there exists a distortion function ψ̃

such that ρ(X) = Eψ̃◦µ(X),∀X ∈ χ. Let x ∈ [0, 1]. Under the assumptions of theorem

3.2 there exists a measurable set A such that µ(A) = x (see the proof of theorem 3.2 for

the construction of the set A). On the other hand, ρ(IA) = ψ ◦ µ(A) = ψ̃ ◦ µ(A), which

implies the desired equality, namely ψ(x) = ψ̃(x).

Remark 3.12 One may wonder if the Choquet integral with respect to a distorted ca-

pacity of the form ψ ◦ µ (as the one which appears in the representation formula of

theorem 3.2) can be compared with the Choquet integral with respect to the initial ca-

pacity µ. In the case where the distortion function ψ is concave (which is the case in

the representation formula of theorem 3.2), the following inequality holds: ψ ◦ µ(A) ≥

µ(A),∀A ∈ F . Therefore, Eψ◦µ(X) ≥ Eµ(X), ∀X ∈ χ. We conclude that, under the

assumptions of theorem 3.2, a monetary risk measure ρ having the properties of comono-

tonic additivity and consistency with respect to the ≤sl,µ −relation satis�es the property:



3 STOCHASTIC ORDERINGS AND DISTORTION RISK MEASURES 33

ρ(X) ≥ Eµ(X),∀X ∈ χ.

In the particular case where, along with the assumptions made in theorem 3.2, the

additional assumption of concavity of the capacity µ is made, a monetary risk measure ρ

satisfying the properties of theorem 3.2, namely comonotonic additivity and consistency

with respect to the ≤sl,µ −relation, is necessarily a convex monetary risk measure. The

result is formulated in the following corollary. The convexity of ρ in this case is due

to the concavity of the distorted capacity ψ ◦ µ in the representation of ρ and to the

sub-additivity of the Choquet integral with respect to a concave capacity. For the corre-

sponding result in the "classical" case of a probability the reader is referred to Song and

Yan (2009), as well as to Föllmer and Schied (2004).

Corollary 3.1 Let µ be a concave capacity and assume that there exists a real-valued

measurable function Z such that the distribution function GZ of Z is continuous and

satis�es the following property: limx→−∞GZ(x) = 0 and limx→+∞GZ(x) = 1.

Let ρ : χ→ R be a monetary risk measure satisfying the properties of comonotonic addi-

tivity and consistency with respect to the ≤sl,µ −relation. Then ρ is a convex monetary

risk measure on χ.

Remark 3.13 We note that if, along with the assumptions on the space (Ω,F , µ) in

the previous theorem 3.2 (respectively in corollary 3.1), the additional assumption of

continuity from below and from above on the capacity µ is made, then the property of

consistency with respect to the ≤sl,µ −relation in theorem 3.2 (resp. corollary 3.1) can

be replaced by the property of consistency with respect to the ≤icx,µ −relation. The

statement is due to the second assertion in proposition 3.2. We note, furthermore, that

the assumption on the limits of the distribution function GZ of Z in theorem 3.2 (resp.

corollary 3.1) is made redundant by this additional continuity assumption on the capacity

µ (cf. remark 2.3).
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It has been established in the previous theorem 3.2 that, under suitable assumptions

on the initial space (Ω,F , µ), a monetary risk measure having the properties of comono-

tonic additivity and consistency with respect to the ≤sl,µ −relation can be represented

as a Choquet integral with respect to a distorted capacity of the form ψ ◦ µ where the

distortion function ψ is concave. In order to complete the desired characterization it

remains to show that the converse statement holds true which is the purpose of the

following theorem.

Theorem 3.3 Let µ be a capacity and let ψ be a concave distortion function. The func-

tional ρ de�ned by ρ(X) := Eψ◦µ(X), ∀X ∈ χ is a monetary risk measure satisfying the

properties of comonotonic additivity and consistency with respect to the ≤sl,µ −relation.

The following lemma will be used in the proof of theorem 3.3. The lemma is a gener-

alization of a well-known "classical" expression for Choquet integrals with respect to a

distorted probability whose distortion function is concave (see, for instance, Föllmer and

Schied 2004 or Carlier and Dana 2006 for the classical case). Our proof follows the proof

given by Föllmer and Schied (2004) and is included for reader's convenience.

Lemma 3.3 Let µ be a capacity and let ψ be a concave distortion function. For all

X ∈ χ,

(3.5) Eψ◦µ(X) = ψ(0+) sup
t<1

r+
X(t) +

∫ 1

0
ψ′(1− t)r+

X(t)dt

Proof of the lemma: It su�ces to prove equation (3.5) for non-negative elements of

χ, the terms on both sides of the equality being translation invariant. Let X be in

χ+. The following expression is similar to the "classical" one; the proof is due to the

non-decreasingness of GX and to the de�nition of r+
X and is left to the reader:

(3.6) r+
X(t) =

∫ +∞

0
I{GX(s)≤t}ds, ∀t ∈ (0, 1).
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Thanks to (3.6) we compute∫ 1

0
ψ′(1− t)r+

X(t)dt =
∫ 1

0
ψ′(1− t)

∫ +∞

0
I{GX(s)≤t}ds dt

=
∫ +∞

0

∫ 1−GX(s)

0
ψ′(y)dy ds

=
∫ +∞

0

(
ψ(1−GX(s))− ψ(0+)

)
I{GX(s)<1}ds

where the equation
∫ y

0 ψ
′(s)ds =

(
ψ(y) − ψ(0+)

)
Iy>0 has been used to obtain the last

line.

Using the de�nition of the Choquet integral and the fact that

sup
t<1

r+
X(t) =

∫ +∞

0
I{GX(s)<1}ds

whose proof is left to the reader, we obtain∫ 1

0
ψ′(1− t)r+

X(t)dt =
∫ +∞

0
ψ(1−GX(s))ds− ψ(0+)

∫ +∞

0
I{GX(s)<1}ds

= Eψ◦µ(X)− ψ(0+) sup
t<1

r+
X(t).

The lemma is thus proved.

�

Proof of theorem 3.3: As recalled in proposition 2.3, the Choquet integral satis�es the

properties of monotonicity, translation invariance and comonotonic additivity. Therefore,

the only property of the functional ρ which has to be proved is the property of consistency

with respect to the ≤sl,µ −relation.

Let X,Y ∈ χ be such that X ≤sl,µ Y . Let us prove that Eψ◦µ(X) ≤ Eψ◦µ(Y ) which,

thanks to lemma 3.3, is equivalent to

ψ(0+) sup
t<1

r+
X(t) +

∫ 1

0
ψ′(1− t)r+

X(t)dt ≤ ψ(0+) sup
t<1

r+
Y (t) +

∫ 1

0
ψ′(1− t)r+

Y (t)dt.

Proposition 2.7 implies that
∫ 1

0 ψ
′(1−t)r+

X(t)dt ≤
∫ 1

0 ψ
′(1−t)r+

Y (t)dt. The number ψ(0+)

being non-negative, it remains to show that supt<1 r
+
X(t) ≤ supt<1 r

+
Y (t).
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Suppose, by way of contradiction, that supt<1 r
+
X(t) > supt<1 r

+
Y (t). Then, there exists

t0 ∈ [0, 1) such that r+
X(s) ≥ r+

X(t0) > supt<1 r
+
Y (t), ∀s ≥ t0. This implies that r+

X(s) >

r+
Y (s), ∀s ≥ t0 leading to

∫ 1
t0

(
r+
X(s) − r+

Y (s)
)
ds > 0. The last inequality contradicts

the relation X ≤sl,µ Y (cf. the characterization of the ≤sl,µ −relation in proposition

2.6). The previous reasoning leads to the desired implication, namely X ≤sl,µ Y ⇒

supt<1 r
+
X(t) ≤ supt<1 r

+
Y (t), and concludes the proof.

�

3.4 Convex generalized distortion risk measures: a counter-example

As recalled in remark 3.3, a generalized distortion risk measure of the form Eψ◦µ(.) is

convex if and only if the distorted capacity ψ ◦ µ is concave in the sense of de�nition

2.5. The purpose of this section is to investigate the question whether the concavity of

a distorted capacity ψ ◦ µ (and therefore, the convexity of Eψ◦µ(.)) can be characterized

by means of the concavity of the distortion function ψ.

It has been seen in example 2. of subsection 2.1 that, in the case where µ is a concave

capacity, a distorted capacity of the form ψ ◦ µ is concave if the distortion function ψ is

concave. On the other hand, it is well-known that in the "classical" case where µ is a

probability measure, under a non-atomicity assumption on the measure space (Ω,F , µ),

the converse statement also holds true, namely the concavity of a distorted probability

of the form ψ ◦ µ implies the concavity of the distortion function ψ (cf. proposition 4.69

in Föllmer and Schied 2004).

Nevertheless, in the more general case where µ is a concave capacity which is not neces-

sarily a probability measure, this converse statement may not be true even if the existence

of a measurable function Z with a continuous distribution function GZ := GZ,µ is as-

sumed. Let us consider the following counter-example.

Let (Ω,F ,P) be an atomless probability space. Let φ be a distortion function which is

concave and continuous and set µ := φ◦P. Then, the capacity µ is a concave capacity, the
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distortion function φ being concave. Furthermore, µ is continuous from below and from

above, the function φ being continuous. Moreover, there exists a measurable function

Z on (Ω,F) such that the distribution function (with respect to µ) GZ := GZ,µ of Z is

continuous (in fact, one can easily verify that any random variable Z whose distribution

function with respect to P is continuous satis�es this property; the existence of such a

random variable is guaranteed by the non-atomicity assumption on (Ω,F ,P)).

To be more concrete, let us specify the de�nition of φ: φ(x) := xβ, ∀x ∈ [0, 1] where

β ∈ (0, 1). Let us further de�ne a distortion function ψ : [0, 1] → [0, 1] by ψ(x) :=

x
α
β , ∀x ∈ [0, 1] where α ∈ (0, 1) is such that α > β. Let us consider the distorted capac-

ity ψ ◦ µ where µ := φ ◦ P as above.

The distortion function ψ is not concave; in fact, ψ is a strictly convex function. Never-

theless, the distorted capacity ψ ◦ µ is a concave capacity. The latter property is easily

obtained by observing that ψ ◦ µ = (ψ ◦ φ) ◦ P and that ψ ◦ φ is a concave distortion

function as ψ ◦ φ(x) = xα,∀x ∈ [0, 1]. Thus, the capacity ψ ◦ µ is concave as it can be

represented as a distorted probability with respect to a concave distortion function.

To summarize, we have given an example of a measurable space (Ω,F) endowed with a

capacity µ which is concave, continuous from below and from above (but not necessarily

additive) and such that there exists a measurable function whose distribution function

with respect to µ is continuous. We have then shown that it is possible to contruct a

distorted capacity of the form ψ ◦ µ which is concave (in the sense of de�nition 2.5) but

whose distortion function ψ is not concave thus providing the desired counter-example.
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4 "Kusuoka-type" characterization of monetary risk mea-

sures having the properties of comonotonic additivity and

consistency with respect to the ≤sl,µ-relation

The purpose of this section is to provide a "Kusuoka-type" characterization of the class of

monetary risk measures having the properties of comonotonic additivity and consistency

with respect to the ≤sl,µ-relation under suitable assumptions on the space (Ω,F , µ) where

µ is a capacity. We recall, for reader's convenience, the classical Kusuoka's result (cf.

theorem 7 in Kusuoka 2001) in a form which is given in Ekeland and Schachermayer

(2011) (theorem 1.4):

Theorem 4.1 (Kusuoka's theorem) Let (Ω,F , P ) be an atomless probability space.

Let ρ : L∞(Ω,F , P ) −→ R be a given functional. Then, the following two statements are

equivalent:

(i) The functional ρ is a convex monetary risk measure having the properties of comono-

tonic additivity and law-invariance.

(ii) There exists α ∈ [0, 1] and a random variable Y ∈ L1
+(Ω,F , P ) satisfying EP (Y ) = 1

such that

ρ(X) = α ess sup(X) + (1− α) ρY (X), ∀X ∈ L∞(Ω,F , P ),

where ρY (X) := supX̃∈L∞(Ω,F ,P ):X̃∼X EP (Y X̃) and the notation X̃ ∼ X means

that X̃ and X have the same law (with respect to P ).

Let us further remark that the law-invariance property in statement (i) of the previous

theorem can be replaced by the property of consistency with respect to the "classical"

stop-loss order relation ≤sl, P (with respect to the probability P ). More precisely, in the

case where the probability space (Ω,F , P ) is atomless, the following well-known result

holds true; the result is recalled for reader's convenience.
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Proposition 4.1 Let (Ω,F , P ) be an atomless probability space. Let ρ : L∞(Ω,F , P ) −→

R be a given functional. Then, the following statements are equivalent:

(i) The functional ρ is a convex monetary risk measure having the properties of comono-

tonic additivity and law-invariance.

(ii) The functional ρ is a convex monetary risk measure having the properties of comono-

tonic additivity and consistency with respect to the ≤mon, P-relation.

(iii) The functional ρ is a convex monetary risk measure having the properties of comono-

tonic additivity and consistency with respect to the ≤sl, P-relation.

(iv) The functional ρ is a monetary risk measure having the properties of comonotonic

additivity and consistency with respect to the ≤sl, P-relation.

Proof: The equivalence between assertions (iii) and (iv) is a consequence of corollary

3.1 applied to the particular case of an atomless probability space. The implications

(iii) ⇒ (ii) ⇒ (i) are obvious. The implication (i) ⇒ (iii) can be found in Cherny and

Grigoriev (2007) (page 294).

�

Thus, theorem 4.1 can be viewed as a way of characterizing (convex) monetary risk

measures having the properties of comonotonic additivity and consistency with respect

to the "classical" ≤sl, P − relation in the case where the probability space (Ω,F , P ) is

atomless.

We note as well that, thanks to lemma 4.5.5. in Föllmer and Schied (2004), statement

(ii) in theorem 4.1 can be reformulated in the following manner:

(ii bis) There exists α ∈ [0, 1] and a random variable Y ∈ L1
+(Ω,F , P ) satisfying

EP (Y ) = 1 such that

ρ(X) = α ess sup(X) + (1− α)
∫ 1

0
qY (t)qX(t)dt, ∀X ∈ L∞(Ω,F , P ),
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where qX (resp. qY ) denotes (the) quantile function of X (resp. Y ) with respect

to the probability P .

Thanks to the previous considerations, theorem 4.1 can be reformulated as follows:

Theorem 4.2 (Kusuoka's theorem - equivalent formulation) Let (Ω,F , P ) be an

atomless probability space. Let ρ : L∞(Ω,F , P ) −→ R be a given functional. Then the

following two statements are equivalent:

(i) The functional ρ is a monetary risk measure having the properties of comonotonic

additivity and consistency with respect to the ≤sl, P-relation.

(ii) There exists α ∈ [0, 1] and a random variable Y ∈ L1
+(Ω,F , P ) satisfying EP (Y ) = 1

such that

ρ(X) = α ess sup(X) + (1− α)
∫ 1

0
qY (t)qX(t)dt, ∀X ∈ L∞(Ω,F , P ),

where qX (resp. qY ) denotes (the) quantile function of X (resp. Y ) with respect to

P .

A "generalization" of theorem 4.2 to the setting of a capacity (which is not necessarily a

probability measure) is established in the following theorem.

Theorem 4.3 (Kusuoka-type characterization in the case of a capacity) Let µ

be a capacity. Assume that there exists a real-valued measurable function Z such that

the distribution function GZ of Z is continuous and satis�es the following property:

limx→−∞GZ(x) = 0 and limx→+∞GZ(x) = 1.

Let ρ : χ −→ R be a given functional. Then the following two statements are equivalent:

(i) The functional ρ is a monetary risk measure having the properties of comonotonic

additivity and consistency with respect to the ≤sl,µ-relation.
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(ii) There exists α ∈ [0, 1] and a non-negative measurable function Y satisfying
∫ 1

0 rY,µ(t)dt =

1 such that

ρ(X) = α sup
t<1

r+
X,µ(t) + (1− α)

∫ 1

0
rY,µ(t)rX,µ(t)dt, ∀X ∈ χ.

The following lemma summarizes some of the main properties of the functional X 7→

supt<1 r
+
X,µ(t) and will be used in the proof of theorem 4.3.

Lemma 4.1 Let µ be a capacity. The functional ρ∞ : χ −→ R de�ned by ρ∞(X) :=

supt<1 r
+
X(t), ∀X ∈ χ is a monetary risk measure having the properties of comonotonic

additivity and consistency with respect to the ≤sl,µ −relation.

Moreover, the functional ρ∞ can be represented in the following manner:

ρ∞(X) = Eψ◦µ(X),∀X ∈ χ

where ψ is a concave distortion function given by ψ(x) =


1, if x > 0

0, if x = 0.

Proof of the lemma: The translation invariance of the functional ρ∞ follows from

lemma 2.3. The monotonicity of ρ∞ is due to the de�nition of the upper quantile function

and to the monotonicity of the capacity µ.

Let us prove the comonotonic additivity of ρ∞. Let X and Y be two comonotonic

functions in χ. According to proposition 2.2, there exists Z ∈ χ and two non-decreasing

continuous functions f and g on R such that X = f(Z) and Y = g(Z). Therefore,

ρ∞(X + Y ) = sup
t<1

r+
X+Y (t) = sup

t<1
r+

(f+g)(Z)(t) = sup
t<1

(f + g)(r+
Z (t))

where lemma 2.3 has been used to obtain the last equality.

As the function f +g is non-decreasing and continuous on R and as supt<1 r
+
Z (t) ∈ R, we

have supt<1(f + g)(r+
Z (t)) = (f + g)(supt<1 r

+
Z (t)). The same argument is used to show
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that f
(

supt<1 r
+
Z (t)

)
= supt<1 f

(
r+
Z (t)

)
and g

(
supt<1 r

+
Z (t)

)
= supt<1 g

(
r+
Z (t)

)
. Thus,

sup
t<1

(f + g)(r+
Z (t)) = (f + g)

(
sup
t<1

r+
Z (t)

)
= sup

t<1
f
(
r+
Z (t)

)
+ sup

t<1
g
(
r+
Z (t)

)
=

= sup
t<1

r+
f(Z)(t) + sup

t<1
r+
g(Z)(t) = sup

t<1
r+
X(t) + sup

t<1
r+
Y (t)

where lemma 2.3 has been used again to obtain the last but one equality. The comono-

tonic additivity of ρ∞ is thus proved.

The property of consistency with respect to the ≤sl,µ − relation has already been shown

at the end of the proof of theorem 3.3.

Finally, an application of Schmeidler's representation theorem (theorem 2.1) gives the

existence of a capacity ν such that ρ∞(X) = Eν(X), ∀X ∈ χ. The capacity ν is given

by

ν(A) = ρ∞(IA) = sup
t<1

r+
IA(t) = sup

t<1
I[1−µ(A),1)(t) =


1, if µ(A) > 0

0, if µ(A) = 0.

Thus, ν(A) = ψ(µ(A)) which concludes the proof.

�

Some of the main properties of the functional X 7−→
∫ 1

0 rY (t)rX(t)dt (for a given

Y ≥ 0 such that
∫ 1

0 rY (t)dt = 1) have already been studied in section 5.1 of Grigorova

(2010) and are summarized in the following lemma for reader's convenience.

Lemma 4.2 Let µ be a capacity. Let Y be a non-negative measurable function such that∫ 1
0 rY (t)dt = 1. The functional ρY : χ −→ R de�ned by ρY (X) :=

∫ 1
0 rY (t)rX(t)dt,∀X ∈

χ is a monetary risk measure having the properties of comonotonic additivity and con-

sistency with respect to the ≤sl,µ −relation.

Moreover, the functional ρY can be represented in the following manner:

ρY (X) = EψY ◦µ(X), ∀X ∈ χ

where ψY is a concave distortion function given by ψY (x) =
∫ 1

1−x rY (t)dt,∀x ∈ [0, 1].
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Let us now prove theorem 4.3.

Proof of theorem 4.3: The implication (ii) ⇒ (i) is a consequence of lemma 4.1 and

lemma 4.2.

To prove the converse implication, let ρ be a monetary risk measure having the properties

of comonotonic additivity and consistency with respect to the ≤sl,µ −relation. Thanks

to theorem 3.2 and to lemma 3.3, there exists a concave distortion function ψ such that

∀X ∈ χ,

ρ(X) = ψ(0+) sup
t<1

r+
X(t) +

∫ 1

0
ψ′(1− t)r+

X(t)dt.

• If ψ(0+) = 1, then ρ(X) = supt<1 r
+
X(t), ∀X ∈ χ which proves the desired result

with α = 1.

• Otherwise, by setting α := ψ(0+), we have

ρ(X) = α sup
t<1

r+
X(t) + (1− α)

∫ 1

0

ψ′(1− t)
1− ψ(0+)

r+
X(t)dt, ∀X ∈ χ.

Let us remark that
∫ 1

0
ψ′(1−t)

1−ψ(0+)dt = 1. Therefore, in order to prove statement (ii),

it su�ces to prove that there exists a non-negative measurable function Y such

that rY (t) = ψ′(1−t)
1−ψ(0+) for almost every t ∈ (0, 1).

Set U := GZ(Z) and de�ne a function g by setting g(t) :=
ψ′+(1−t)
1−ψ(0+) , ∀t ∈ (0, 1)

where ψ′+ denotes the right-hand derivative of the concave function ψ. Let Y be

de�ned by Y := g(U) (where, in order to assure that Y is well-de�ned on Ω, the

de�nition of g has been extended to [0, 1] by setting g(0) := limt↓0
ψ′+(1−t)
1−ψ(0+) and

g(1) := limt↑1
ψ′+(1−t)
1−ψ(0+)).

Then, the measurable function Y is as wanted. Indeed, Y ≥ 0. Moreover, the

distribution function GU of U being continuous (according to lemma 3.2) and the

function g being non-decreasing, we can apply lemma 2.1 to obtain:

(4.1) rY (t) = rg(U)(t) = g(rU (t)) for almost every t ∈ (0, 1).

Now, it can be deduced from lemma 3.2 that rU (t) = t for all t ∈ (0, 1). This
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observation combined with equality (4.1) allows to conclude that rY (t) = g(t) for

almost every t ∈ (0, 1).

�

Remark 4.1 Let us remark that, unlike the classical case of proposition 4.1, under

the more general assumptions on (Ω,F , µ) of theorem 4.3 a monetary risk measure ρ

satisfying the properties of comonotonic additivity and consistency with respect to the

≤sl,µ −relation (as the one of statement (i) in theorem 4.3) is not necessarily convex.

A counter-example similar to the one constructed in subsection 3.4 is given in the ap-

pendix.

Let us recall, nevertheless, that if, along with the assumptions made in theorem 4.3,

the assumption of concavity of the capacity µ is made, a monetary risk measure ρ sat-

isfying the properties of comonotonic additivity and consistency with respect to the

≤sl,µ −relation is convex (cf. corollary 3.1).

Remark 4.2 Let us remark also that, unlike the classical case of proposition 4.1, under

the more general assumptions on (Ω,F , µ) of theorem 4.3 a convex monetary risk measure

satisfying the properties of comonotonic additivity and consistency with respect to the

≤mon,µ −relation is not necessarily consistent with respect to the ≤sl,µ −relation even if

the additional assumption of concavity of the capacity µ is made. A counter-example,

based on the one of subsection 3.4, is given in the appendix.

One may wonder if, in our setting of a capacity (which is not necessarily a probability

measure), statement (ii) in theorem 4.3 could be linked to the value function of an

optimization problem analogous to the one appearing in statement (ii) of the "classical"

Kusuoka's theorem (theorem 4.1). The following result has been established in Grigorova

(2010) - the formulation given hereafter is suitable for the needs of the present paper and

is due to theorem 5.1 combined with remark 5.1, remark 5.3 and proposition 3.2 of the

above-mentioned work.
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Proposition 4.2 Let µ be a capacity which is assumed to be concave and continuous

from below and from above. Let Y be a given non-negative measurable function such that∫ 1
0 rY,µ(t)dt = 1. Then the funcional ρY : χ+ −→ R de�ned by

ρY (X) := sup
X̃∈χ+:X̃≤sl,µX

Eµ(Y X̃), ∀X ∈ χ+

can be expressed in the following manner: ρY (X) =
∫ 1

0 rY,µ(t)rX,µ(t)dt.

The previous proposition 4.2 combined with theorem 4.3 and remark 2.3 leads to the

following

Theorem 4.4 Let µ be a capacity which is assumed to be concave and continuous from

below and from above and assume that there exists a real-valued measurable function Z

on (Ω,F) such that the distribution function GZ of Z (with respect to µ) is continuous.

Let ρ : χ+ −→ R be a given functional. Then the following two statements are equivalent:

(i) The functional ρ is a (convex) monetary risk measure on χ+ having the properties of

comonotonic additivity and consistency with respect to the ≤sl,µ-relation.

(ii) There exists α ∈ [0, 1] and a non-negative measurable function Y satisfying
∫ 1

0 rY,µ(t)dt =

1 such that

ρ(X) = α sup
t<1

r+
X,µ(t) + (1− α) ρY (X), ∀X ∈ χ+,

where ρY (X) := supX̃∈χ+:X̃≤sl,µX
Eµ(Y X̃), ∀X ∈ χ+.

The previous theorem may be seen as an analogue of theorem 4.1 in the setting of a

capacity which is assumed to be concave and continuous from below and from above.

5 Some examples of generalized distortion risk measures

In this section some generalizations to the case of a capacity of some well-known "clas-

sical" risk measures are given.
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5.1 A "generalized" Value at Risk

Let us recall, for reader's convenience, the well-known "classical" de�nition of the Value

at Risk at level λ ∈ (0, 1) with respect to a given probability P of a given "potential

loss" X ∈ χ (denoted by V aRλ(X) or V aRPλ (X)):

V aRλ(X) := q−X(λ),

where, as before, the symbol q−X stands for the lower quantile function of X with respect

to the probability P . The same sign convention in the de�nition of the V aRλ(X) as the

one used in the present paper is used, for instance, by Dhaene et al. (2006) or Song and

Yan (2009).

We now consider a generalization of the previous de�nition to the case of a capacity

which is not necessarily a probability measure. The de�nition and some properties of the

"gerneralized" Value at Risk are given in the following

De�nition/Proposition 5.1 Let µ be a capacity on (Ω,F) and λ be in (0, 1). The

functional GV aRµλ : χ→ R de�ned by

GV aRµλ(X) := r−X,µ(λ), ∀X ∈ χ

is a monetary risk measure having the properties of comonotonic additivity and consis-

tency with respect to the ≤mon,µ −relation. Moreover, the functional GV aRµλ has the

following representation

(5.1) GV aRµλ(X) = Eψ◦µ(X), ∀X ∈ χ

where ψ(x) := ψλ(x) := I(1−λ,1](x), ∀x ∈ [0, 1].

Proof: The monotonicity and the translation invariance of GV aRµλ(.) are a consequence

of the de�nition of the lower quantile r−.,µ(λ). The comonotonic additivity is due to

proposition 2.5.
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Let us now prove the representation formula (5.1). Schmeidler's representation theorem

(theorem 2.1) and remark 2.6 give the existence of a capacity ν on (Ω,F) such that

GV aRµλ(X) = Eν(X), ∀X ∈ χ. For all A ∈ F , we have

ν(A) = GV aRµλ(IA) = r−IA,µ(λ) = I(1−µ(A),1)(λ).

Therefore, the capacity ν is of the form ν(A) = ψ(µ(A)),∀A ∈ F . The representation

formula (5.1) is thus proved.

The representation result (5.1) being established, the property of consistency with respect

to the ≤mon,µ −relation follows from remark 3.6.

�

In general, the risk measureGV aRµλ(.) is not consistent with respect to the≤sl,µ −relation,

the distortion function ψ in the representation formula (5.1) not being concave (cf. the-

orem 3.2 and remark 3.11).

Remark 5.1 In the previous de�nition/proposition the lower quantile r−.,µ(λ) with re-

spect to a given capacity µ at a given point λ is perceived as a "generalized" distortion

risk measure (with respect to the capacity µ). An analogous result holds true for the

upper quantile r+
.,µ(λ) thus providing another example of a "generalized" distortion risk

measure. In the latter case, the distortion function ψ in the representation (5.1) has to

be replaced by the function x 7−→ I[1−λ,1](x).

We note that the risk measure r+
.,µ(λ) can be viewed as a generalization (to the case of a

capacity) of the risk measure Q+
λ (.) introduced in Dhaene et al. (2006).

Two particular cases are considered below - the case where the capacity µ is a distorted

probability and the case where the capacity µ is an "upper envelope" of a given set of

prior probability measures.
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5.1.1 The case of a distorted probability

Let P be a given probability measure and φ be a given continuous distortion function.

The �rst particular case to be considered is the case where the initial capacity µ is of the

form µ = φ ◦ P. The following result establishes a link, in this case, between the lower

quantile function r−X,µ with respect to the capacity µ of a given measurable function X

and the corresponding lower quantile function q−X with respect to the probability P.

Proposition 5.1 Let P be a probability measure and φ be a given continuous distortion

function. Let µ be a capacity of the form µ = φ ◦ P. Let X be a given real-valued

measurable function. Then, the following equality holds true for all t ∈ (0, 1):

r−X,µ(t) = q−X
(
1− φ̌(1− t)

)
,

where φ̌ denotes the upper generalized inverse of the non-decreasing function φ de�ned

by φ̌(y) := sup{z : φ(z) ≤ y}, ∀y ∈ [0, 1].

Proof: The proof of the previous proposition is placed in the appendix.

�

Remark 5.2 Under the assumptions of proposition 5.1, the following link between the

upper quantile functions r+
X,µ and q+

X can be established:

(5.2) r+
X,µ(t) = q+

X(1− φ̌−(1− t)), ∀t ∈ (0, 1),

where φ̌− denotes the lower generalized inverse of the distortion function φ. The proof

is based on arguments similar to those used in the proof of proposition 5.1 and is omit-

ted. Let us note, however, that in the proof of the equality (5.2) we use the following

equivalence, which is due to the assumption of continuity of the distortion function φ:

φ(a) ≥ t if and only if a ≥ φ̌−(t).
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According to proposition 5.1, in the case where µ = φ ◦ P (and where the distortion

function φ is continuous), the "generalized" Value at Risk with respect to µ at level

λ ∈ (0, 1) is equal to the "classical" Value at Risk with respect to P at level λ̃ where

λ̃ := 1− φ̌(1− λ).

One may wonder if the above relation between the risk measure GV aRµλ and the risk

measure V aRλ̃ has an economic interpretation. Can the CEU-theory (upon which the

motivation of the present paper is based) explain the behaviour of an economic agent

who, instead of assessing the risk of a given loss X by the Value at Risk of X at a level

λ, assesses the risk of X by the Value at Risk of X at the (possibly di�erent) level λ̃ ?

The measurable functions on (Ω,F) in the present paper being interpreted as losses, we

will consider an economic agent (an insurer, for instance) who is a CEU-minimizer. The

agent's preferences are described by a "pain" function u and a capacity µ which, in the

particular case that we consider, is of the form µ = φ ◦ P.3 The agent's "dissatisfaction"

of a loss X is then assessed by the Choquet integral of u(X) with respect to the capacity

µ.

When interpreting proposition 5.1 we will focus on three particular sub-cases: the case

where there is "no distortion", the case of a concave (continuous) distortion φ, and the

case of a convex (continuous) distortion φ. Let us remark that when an agent who is

a CEU-minimizer is considered, the concavity (resp. the convexity) of the distortion

function φ is interpreted in terms of the agent's being a pessimist (resp. an optimist)4.

1. The sub-case of a distortion function φ of the form φ(x) := x, ∀x ∈ [0, 1]

In this sub-case we have λ̃ := 1− φ̌(1−λ) = λ where λ ∈ (0, 1) is a given level. This
3In the case where the capacity µ is a distorted probability, the CEU-theory coincides with the so-

called Rank-Dependent Expected Utility theory - see, for instance, Wang and Yan (2007) for a review.
4The situation considered more frequently in the literature (cf. Wang and Yan 2007, or Carlier and

Dana 2003) is that of CEU-maximizers (the measurable functions on (Ω,F) being often interpreted

as gains, instead of losses), in which case the interpretation of the concavity (resp. convexity) of the

distortion function φ in terms of pessimism (resp. optimism) is reversed.
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equality and proposition 5.1 lead to GV aRµλ(X) = V aRλ̃(X) = V aRλ(X),∀X ∈ χ.

Hence, in the sub-case where the probability of events is perceived objectively (i.e.

φ = id), the risk measure GV aRµλ at level λ ∈ (0, 1) is equal to the "usual" V aRλ

at the same level λ. We thus recover, by means of proposition 5.1, an observation

which can be derived from the de�nitions of the two risk measures.

2. The sub-case of a concave (continuous) distortion function φ

Let λ ∈ (0, 1) be a given level. The concavity of φ implies that λ̃ := 1−φ̌(1−λ) ≥ λ.

Therefore, V aRλ̃(X) ≥ V aRλ(X),∀X ∈ χ. By combining this inequality with

proposition 5.1 we obtain that GV aRµλ(X) = V aRλ̃(X) ≥ V aRλ(X),∀X ∈ χ.

Thus, in the case where the agent is pessimistic (the distortion function φ being

concave), the risk attributed to a loss X by means of the GV aRµλ(X) is higher than

(or equal to) the risk, equal to V aRλ(X), the agent would have attributed if he/

she had perceived events objectively without distorting them.

3. The sub-case of a convex (continuous) distortion function φ

The convexity of φ implies that λ̃ := 1− φ̌(1− λ) ≤ λ. Therefore, in this sub-case,

the inequality GV aRµλ(X) ≤ V aRλ(X) holds for all X ∈ χ.

The risk GV aRµλ(X) attributed by an optimistic agent (the distortion function φ

in this sub-case being convex) to a given loss X is lower than (or equal to) the risk

V aRλ(X) attributed to X by an agent who is objective.

An analogous reasoning applies to the risk measure r+
.,µ(λ); remark 5.2 is in this case

used in place of proposition 5.1.

5.1.2 The case where µ is the upper envelope of a given set P of probability

measures

We place oureselves in the context of model-uncertainty, expressed by a given non-empty

set P of prior probability measures. The following result holds true.
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Proposition 5.2 Let P be a given non-empty set of probability measures on (Ω,F). Let

us de�ne a capacity µ on (Ω,F) by µ(A) := supP∈P P (A) and let X be a given real-valued

measurable function on (Ω,F). Then, for all t ∈ (0, 1),

(5.3) r−X,µ(t) = sup
P∈P

q−X,P (t),

where q−X,P denotes the lower quantile function of X with respect to the probability P .

Proof: The proof of proposition 5.2 is given in the appendix.

�

If the capacity µ of the form µ(.) := supP∈P P (.) is interpreted as expressing a pes-

simistic attitude towards model-uncertainty 5, the relation (5.3) of the previous proposi-

tion can be loosely interpreted as follows:

the risk, equal to GV aRµλ(X), attributed to a given loss X by a pessimistic agent facing

model-uncertainty, is equal to the supremum of the risks V aRPλ (X) attributed to the loss

X in each of the prior models P ∈ P.

Remark 5.3 In the case where the capacity µ is the "lower envelope" of the set P of

prior probability measures (i.e. µ(.) := infP∈P P (.)) the following result about upper

quantile functions can be shown:

r+
X,µ(t) = inf

P∈P
q+
X,P (t), ∀t ∈ (0, 1).

An interpretation in terms of the agent's optimism could be given in this case.

5Our interpretation of the capacity µ of the form µ(.) := supP∈P P (.) as expressing a pessimistic atti-

tude towards model-uncertainty is motivated by the following observation: Eµ(u(X)) ≥ EP (u(X)), ∀X ∈

χ, ∀P ∈ P, where u : R → R is a given function. The inequality is due to proposition 5.2 (iii) in Den-

neberg (1994). A CEU-minimizer with a "pain" function u and a capacity µ(.) := supP∈P P (.) assesses

his/her "dissatisfaction" with a loss X ∈ χ by the number Eµ(u(X)) which, according to the previous

observation, is greater than (or equal to) the "dissatisfaction" EP (u(X)) associated to the loss X in any

of the prior models P ∈ P. Thus, in the context of model-uncertainty, a CEU-minimizer whose capacity

µ is of the form µ(.) = supP∈P P (.) will be considered as being pessimistic.
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Remark 5.4 In the case where µ(.) := supP∈P P (.) the "generalized" Value at Risk

de�ned in de�nition/proposition 5.1 of the present article can be linked to a risk measure

introduced in de�nition III.15 of Kervarec (2008). More precisely, the "generalized"

Value at Risk GV aRµλ(X) at level λ ∈ (0, 1) of a given measurable function X ∈ χ is

equal to Kervarec's "Value at Risk" at level (1 − λ) of the measurable function (−X).

Indeed, thanks to the above proposition 5.2 and to lemma 2.1 in Dhaene et al. (2006),

we obtain GV aRµλ(X) = supP∈P −q+
−X,P (1 − λ). The term on the right-hand side of

the previous equality is equal to Kervarec's "Value at Risk" at level (1− λ) of (−X) by

proposition III.17 in Kervarec (2008); the desired link between the two risk measures is

thus established.

We note as well that the minus sign preceding X in this relation is not surprising as

the measurable functions on (Ω,F) in the present paper are viewed as losses, unlike the

interpretation given in the work of Kervarec (2008) where they are perceived as gains.

5.2 A "generalized" Tail Value at Risk

The "classical" de�nition of the risk measure Tail Value at Risk is recalled hereafter for

reader's convenience (cf., for instance, Dhaene et al. 2006). The "classical" Tail Value at

Risk at level λ ∈ (0, 1) with respect to a given probability P of a given "potential loss"

X ∈ χ (denoted by TV aRλ(X) or by TV aRPλ (X)) is de�ned by:

TV aRλ(X) :=
1

1− λ

∫ 1

λ
qX(t)dt

where the symbol qX denotes a (version of the) quantile function of X with respect to

the probability P . We note that the Tail Value at Risk of X ∈ χ at level λ ∈ (0, 1) (as

de�ned above) is equal to the Average Value at Risk of (−X) at level (1− λ) appearing,

for instance, in de�nition 4.43 of Föllmer and Schied (2004).

We consider hereafter a generalization of the previous de�nition to the case of a capacity

which is not necessarily a probability measure. The de�nition and some properties of the

"gerneralized" Tail Value at Risk are given in the following
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De�nition/Proposition 5.2 Let µ be a capacity and let λ ∈ (0, 1).

The functional GTV aRµλ : χ → R de�ned by GTV aRµλ(X) := 1
1−λ

∫ 1
λ r

+
X(t)dt, ∀X ∈ χ

can be represented in the form:

(5.4) GTV aRµλ(X) = Eψ◦µ(X), ∀X ∈ χ

where ψ is a concave distortion function given by ψ(x) := ψλ(x) := 1
1−λ min{1 −

λ;x}, ∀x ∈ [0, 1].

In particular, if µ is a concave capacity, GTV aRµλ is a sub-additive functional on χ i.e.

GTV aRµλ(X + Y ) ≤ GTV aRµλ(X) +GTV aRµλ(Y ),∀X,Y ∈ χ.

Remark 5.5 The last statement in the previous de�nition/proposition 5.2 corresponds

to exercise 6.7 in Denneberg (1994). The formulation given above is suitable for the

needs of the present paper.

Remark 5.6 The factor 1
1−λ in the de�nition of the functional GTV aRµλ is necessary

to obtain a normalised set function ψ ◦µ in the representation formula (5.4) in the sense

that ψ(µ(Ω)) = 1.

Let us now prove the result; the proof is based on lemma 3.1.

Proof: It is easy to check that the functional GTV aRµλ satis�es properties (i), (ii) and

(iii) of lemma 3.1; it follows, in particular, that there exists a non-decreasing function ψ

de�ned on the set S := {µ(A), A ∈ F} such that the representation (5.4) holds, namely

GTV aRµλ(X) = Eψ◦µ(X), ∀X ∈ χ. The expression of the function ψ on the set S can

be computed from (5.4) as follows: for all A ∈ F

ψ ◦ µ(A) = GTV aRµλ(IA) =
1

1− λ

∫ 1

λ
I[1−µ(A),1)(t)dt

=
1

1− λ

(
1−max{λ; 1− µ(A)}

)
=

1
1− λ

min{1− λ;µ(A)}.

Then, ψ is extended to the whole interval [0, 1] by setting ψ(x) := 1
1−λ min{1−λ;x}, ∀x ∈

[0, 1]. The function ψ is obviously a concave distortion function.
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In the case where µ is a concave capacity, the distorted capacity ψ ◦ µ in the represen-

tation (5.4) is concave as the distortion function ψ is concave (see example 2. at the

end of subsection 2.1). The representation (5.4) and the property of sub-additivity of

the Choquet integral with respect to a concave capacity allow us to conclude that the

functional GTV aRµλ is sub-additive in this case.

�

Thanks to the representation formula (5.4) of the previous de�nition/proposition and

to theorem 3.3 we conclude that the functional GTV aRµλ is a monetary risk measure on

χ having the properties of comonotonic additivity and consistency with respect to the

≤sl,µ −relation.

Remark 5.7 We note that the monetary risk measure GTV aRµλ can be used to char-

acterize the ≤sl,µ −stochastic dominance relation with respect to a capacity µ. More

precisely, it follows from proposition 2.6 that:

X ≤sl,µ Y if and only if GTV aRµλ(X) ≤ GTV aRµλ(Y ), ∀λ ∈ (0, 1),

where X and Y are real-valued measurable functions such that
∫ 1

0 |rX,µ(t)|dt < +∞ and∫ 1
0 |rY,µ(t)|dt < +∞. The previous equivalence can be seen as a generalization to the

case of a capacity of remark 4.44 in Föllmer and Schied (2004).

A Appendix

Proof of lemma 2.3: The function f being non-decreasing, we de�ne the following

(upper) inverse f̌ of f by f̌(y) := sup{z : f(z) ≤ y}, ∀y ∈ R. Note that according

to remark 2.2 the function f̌ can be expressed in the following manner f̌(y) := inf{z :

f(z) > y}, ∀y ∈ R. As the function f is non-decreasing and as the functions f and GZ

have no common discontinuities, we know from Yan (2009) that

(A.1) Gf(Z)(x) = GZ ◦ f̌(x), ∀x ∈ R.
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Thanks to (A.1) and to remark 2.2, the upper quantile function r+
f(Z) of f(Z) can be

expressed as follows

(A.2) r+
f(Z)(t) = sup{x : GZ ◦ f̌(x) ≤ t} = inf{x : GZ ◦ f̌(x) > t}.

For a �xed t ∈ (0, 1), let us �rst prove that r+
f(Z)(t) ≥ f(r+

Z (t)) which, thanks to the

previous considerations, amounts to showing that inf{x : GZ ◦ f̌(x) > t} ≥ f(r+
Z (t)).

The case where the set {x : GZ ◦ f̌(x) > t} is empty being trivial, let x ∈ R be such that

(A.3) GZ ◦ f̌(x) > t.

Now, the inequality (A.3) and the fact that r+
Z (t) = inf{y : GZ(y) > t} imply that

f̌(x) ≥ r+
Z (t). We consider two cases

• 1st case: If x is such that f̌(x) > r+
Z (t), then f(r+

Z (t)) ≤ x. This implication is due

to the de�nition of f̌(x).

• 2nd case: In the case where x is such that f̌(x) = r+
Z (t), the inequality (A.3) gives

GZ(r+
Z (t)) > t.

In the sub-case where f̌(x) and r+
Z (t) belong to R, we conclude from the latter

inequality that r+
Z (t) is a point of discontinuity of GZ which implies that f is

continuous at r+
Z (t). Thus we obtain that f(r+

Z (t)) = f(f̌(x)) = x.

In the sub-case where f̌(x) = r+
Z (t) = +∞, we have, thanks to the de�nition of

f̌(x), that supy∈R f(y) ≤ x. Therefore, f(r+
Z (t)) = f(+∞) ≤ x.

The measurable function Z being real-valued, the inequality (A.3) implies that

f̌(x) 6= −∞. Thus, only the two above-mentioned sub-cases are to be considered.

In both of the cases the inequality x ≥ f(r+
Z (t)) holds; the desired inequality r+

f(Z)(t) ≥

f(r+
Z (t)) follows.

Let us prove the converse inequality namely r+
f(Z)(t) ≤ f(r+

Z (t)) which is equivalent to

sup{x : GZ ◦ f̌(x) ≤ t} ≤ f(r+
Z (t)). Let x be such that GZ ◦ f̌(x) ≤ t. This inequality

implies that f̌(x) 6= +∞ and that f̌(x) ≤ r+
Z (t).
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• If f̌(x) ∈ R, then applying the non-decreasing function f at both sides of the latter

inequality gives f(f̌(x)) ≤ f(r+
Z (t)). Now, the function f being right-continuous

and the function f̌ being a generalized inverse of f we have f(f̌(x)) = f(f̌(x)+) ≥

x. Thus we obtain x ≤ f(r+
Z (t)).

• If f̌(x) = −∞, then x ≤ infy∈R f(y) (due to the de�nition of f̌(x)). Therefore,

x ≤ f(r+
Z (t)) which concludes the proof.

�

Proof of proposition 2.5: Let us prove the result concerning the upper quantile func-

tions (equation (2.2)). The proof is based on lemma 2.3. The assertion concerning the

lower quantile functions follows from lemma 2.4 by means of similar arguments.

According to proposition 2.2, there exist two non-decreasing continuous functions u :

R→ R and v : R→ R and a real-valued measurable function Z such that X = u(Z) and

Y = v(Z). Let t ∈ (0, 1). As the function u + v is non-decreasing and continuous, we

can apply lemma 2.3 to obtain

r+
X+Y (t) = r+

(u+v)(Z)(t) = (u+ v)r+
Z (t) = u

(
r+
Z (t)

)
+ v

(
r+
Z (t)

)
.

It follows from lemma 2.3 (applied with f = u and with f = v) that u
(
r+
Z (t)

)
= r+

u(Z)(t)

and v
(
r+
Z (t)

)
= r+

v(Z)(t) which concludes the proof.

�

The counter-example of remark 4.1:

Indeed, let (Ω,F , P ) be an atomless probability space. Let ψ(x) := xα,∀x ∈ [0, 1] and

φ(x) := xβ,∀x ∈ [0, 1] where α ∈ (0, 1) and β > 1
α . Let us de�ne a capacity µ by

µ := φ ◦ P and a functional ρ by ρ(X) := Eψ◦µ(X), ∀X ∈ χ. The space (Ω,F , µ) satis-

�es the assumptions of theorem 4.3. Moreover, by applying theorem 3.3 (the distortion

function ψ being concave), we obtain that the functional ρ is a monetary risk measure
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satisfying the properties of comonotonic additivity and consistency with respect to the

≤sl,µ −relation. However, the functional ρ is not convex. The lack of convexity of ρ can

be deduced from the fact that ρ can be represented as a Choquet integral with respect

to the distorted probability (ψ ◦ φ) ◦ P where ψ ◦ φ is a distortion function which is not

concave (cf. proposition 4.69 and theorem 4.88 in Föllmer and Schied 2004).

The counter-example of remark 4.2:

In the framework of the counter-example of subsection 3.4, let us de�ne a functional

ρ : χ→ R by ρ(X) = Eψ◦µ(X), ∀X ∈ χ where the distortion function ψ and the capacity

µ are the same as in the counter-example of subsection 3.4. We note that the space

(Ω,F , µ) of the counter-example of subsection 3.4 satis�es the assumptions of theorem

4.3. Being a generalized distortion risk measure, the functional ρ satis�es the proper-

ties of comonotonic additivity and consistency with respect to the ≤mon,µ −relation (cf.

remark 3.6). Moreover, the capacity ψ◦µ being concave, the functional ρ is convex. How-

ever, ρ is not consistent with respect to the ≤sl,µ −relation as the distortion function ψ is

not concave. The last statement can be easily deduced from theorem 3.2 and remark 3.11.

Proof of proposition 5.1: Using the de�nition of the lower quantile function r−X,µ and

the de�nition of the distribution function GX,µ, as well as the particular form of the

capacity µ, we compute

r−X,µ(t) = sup{x ∈ R : GX,µ(x) < t} =

= sup{x ∈ R : µ(X > x) > 1− t} =

= sup{x ∈ R : φ(P (X > x)) > 1− t}.

Now, the function φ being continuous by assumption, the following equivalence holds

true

(A.4) φ(a) ≤ t if and only if a ≤ φ̌(t).
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This observation implies that

sup{x ∈ R : φ(P (X > x)) > 1− t} = sup{x ∈ R : P (X > x) > φ̌(1− t)}.

Finally, it follows from the de�nition of the distribution function (with respect to P ) FX

and the de�nition of the lower quantile function (with respect to P ) q−X that

sup{x ∈ R : P (X > x) > φ̌(1− t)} = sup{x ∈ R : FX(x) < 1− φ̌(1− t)} =

= q−X(1− φ̌(1− t))

which concludes the proof.

�

Proof of proposition 5.2: Let t ∈ (0, 1). The de�nitions of the lower quantile function

r−X,µ and of the distribution function GX,µ, as well as the particular form of the capacity

µ lead to the following equalities:

r−X,µ(t) = sup{x ∈ R : GX,µ(x) < t} =

= sup{x ∈ R : 1− sup
P∈P

P (X > x) < t} =

= sup{x ∈ R : inf
P∈P

(
1− P (X > x)

)
< t}.

Therefore,

r−X,µ(t) = sup{x ∈ R : inf
P∈P

FX,P (x) < t},

where FX,P denotes the distribution function of X with respect to the probability P . In

order to establish the desired result, it su�ces to prove that

(A.5) sup{x ∈ R : inf
P∈P

FX,P (x) < t} = sup
P∈P

q−X,P (t).

Let us �rst prove the inequality sup{x ∈ R : infP∈P FX,P (x) < t} ≤ supP∈P q
−
X,P (t).

Let x ∈ R be such that infP∈P FX,P (x) < t. Then, there exists Px ∈ P such that

FX,Px(x) < t. This inequality and the de�nition of the lower quantile function q−X,Px lead
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to x ≤ q−X,Px(t). Thus, x ≤ supP∈P q
−
X,P (t).

Let us prove the converse inequality, namely sup{x ∈ R : infP∈P FX,P (x) < t} ≥

supP∈P q
−
X,P (t). Let P ∈ P and let xP ∈ R be such that FX,P (xP ) < t. Then, xP

satis�es infQ∈P FX,Q(xP ) < t. Therefore, xP ≤ sup{y ∈ R : infQ∈P FX,Q(y) < t}. This

inequality and the de�nition of the lower quantile function q−X,P imply q−X,P (t) ≤ sup{y ∈

R : infQ∈P FX,Q(y) < t}. The probability P ∈ P being arbitrary, the proof is thus con-

luded.

�
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