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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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A general Hamilton-Jacobi framework for non-linear

state-constrained control problems

Albert Altarovici∗ Olivier Bokanowski† Hasnaa Zidani‡

Abstract

The paper deals with deterministic optimal control problem with state constraints and non-linear

dynamics. It is known for such a problem that the value function is in general discontinuous and its

characterization by means of an HJ equation requires some controllability assumptions involving the

dynamics and the set of state constraints. Here, we �rst adopt the viability point of view and look at

the value function as its epigraph. Then, we prove that this epigraph can always be described by an

auxiliary optimal control problem free of state constraints, and for which the value function is Lipschitz

continuous and can be characterized, without any additional assumption, as the unique viscosity solution

of a Hamilton-Jacobi equation. The idea introduced in this paper bypass the regularity issues on the

value function of the constrained control problem and leads to a constructive way to compute its epigraph

by a large panel of numerical schemes. Our approach can be extended to more general control problems.

We study in this paper the extension to the in�nite horizon problem as well as for the two-player game

setting. Finally, an illustrative numerical example is given to show the relevance of the approach.

Keywords: State constraints, optimal control problems, nonlinear controlled systems, Hamilton-
Jacobi equations, viscosity solutions.
Mathematics Subject Classi�cation. 35B37, 49J15, 49Lxx, 49J45, 90C39

1 Introduction

This paper deals with the characterization of the value function of a deterministic optimal control problem
with state constraints. For a given �nite horizon T > 0, consider the dynamical system

ẏ(s) = f(s, y(s), α(s)), a.e. s ∈ (t, T ), (1.1a)

y(t) = x. (1.1b)

where α : [0, T ]→ A is a measurable function and A is a compact set of Rp (p ≥ 1), and f : [0, T ]×Rd×A →
Rd is a continuous function (see Section 2 for precise assumptions). The corresponding absolutely continuous
solution will be denoted by y = yαt,x.

For a given non empty and closed subset K of Rd, we consider a control problem and its value function
given by

ϑ(t, x) := min
α∈L∞((t,T ),A)

{∫ T

t

`(s, yαt,x(s), α(s))ds+ ϕ(yt,x(T ))
∣∣∣∣ yαt,x(θ) ∈ K ∀θ ∈ [t, T ]

}
, (1.2)

with the usual convention that inf ∅ = +∞, and where ` : [0, T ] × Rd × A → R and ϕ : Rd → R are
continuous functions (see Section 2 for precise assumptions). Without assuming any additional assumption,
it may happen that the value function is discontinuous.
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In the case when K = Rd and ϕ is Lipschitz continuous, under classical assumptions on f and `, it is
known that the value function ϑ is the unique continuous viscosity solution of a Hamilton-Jacobi equation
[22, 8, 6]. This result is extended also to the lower semicontinuous (l.s.c.) setting in [12, 25].

When the control problem is in presence of state constraints (K 6= Rd) a state-space constrained HJB
equation has been associated to the value function (1.2) in [37, 38]. In our setting, this HJB equation is in
the form:

−ut +H(t, x,∇xu) = 0 in (0, T )×K, (1.3a)

u(T, x) = ϕ(x) in K, (1.3b)

where H(t, x, p) := maxa∈A(−f(t, x, a) · p − `(t, x, a)). In Soner's formulation, a function u is a viscosity

solution of (1.3) if it is sub-solution in (0, T )×
◦
K and a super-solution on (0, T )×K.

Even though it is easy to establish that the value function ϑ satis�es (1.3) in the constrained viscosity
sense, it is more complicate to prove the uniqueness of the solution of (1.3). Actually, the uniqueness requires
restrictive controllability assumptions on K and on the dynamics. The main di�culty comes from the fact
that the state-space HJB equation may admit several solutions (in the constrained viscosity sense) if the
behavior of the solution on the boundary is not taken into account, see [15, 30].

The most classical controllability assumption is called �inward pointing quali�cation condition (IPQ)�. It
was �rst introduced by Soner in [37, 38]. It asks that at each point of the boundary of K there exists a �eld
of the system pointing inward K. Under this assumption the value function is Lipschitz continuous in K, and
uniqueness can be established even though the constrained viscosity notion does not take into account the
behavior of the solution at the boundary. From the viewpoint of the dynamical system, the inward condition
ensures that all the trajectory hitting the boundary can be approximated by a sequence of trajectories that
stay inside the interior of K [28]. We refer to [17] and [33, 34] for weaker inward pointing assumptions, and
to [31, 32] for more properties and numerical approximation of continuous constrained viscosity solutions.

An other controllability assumption, called �outward pointing condition� (OPQ), has been considered in
[26, 28]. This assumption states that each point on the boundary of K can be reached by a trajectory coming
from the interior of K. Under this assumption it is still possible to characterize the value function as the
unique lower semi-continuous solution of an HJB equation.

However there are many control problems where the controllability assumptions are never satis�ed.

On the other hand, using the viability tools [1, 4] and non-smooth analysis it is always possible to
characterize the value function and more precisely its epigraph, see [5, 18, 19, 2] and the references therein.

In the present work we show that the epigraph of the value function can be described by means of a
Lipschitz continuous function, which turns out to be the value function of an auxiliary control problem free
of state constraints. Then standard viscosity theory can be applied to characterize the new value function
as the unique continuous viscosity solution of a variational HJ inequation. Our approach is quite general
and simple, and we believe that it can be easily extended to a large class of control problems with di�erent
type of state constraints. In the present paper, we will investigate also the case of in�nite horizon control
problem as well as the two-player game problem and we will show in each case how the auxiliary control
problem should be de�ned.

The paper is organised as follows. The setting of the problem and the assumptions are made precise in
section 2. Main results and proofs are presented in section 3. The extension of the results to an in�nite
horizon control problem as well as two-player games is done in sections 4&5. Finally, a numerical example
is given in section 6.

Acknowledgments. This work was partially supported by the EU under the 7th Framework Programme
Marie Curie Initial Training Network �FP7-PEOPLE-2010-ITN�, SADCO project, GA number 264735-
SADCO.
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2 Problem formulation

2.1 Statement of the state-constrained control problem

For a given non-empty compact subset A of Rp (p ≥ 1) and a given T ∈ R (T > 0), we consider the set of
admissible controls de�ned by:

A :=
{
α : (0, T )→ Rp measurable, α(t) ∈ A a.e.

}
.

Consider the controlled system:

ẏ(s) = f(s, y(s), α(s)), a.e. s ∈ (t, T ), (2.1a)

y(t) = x, (2.1b)

where α ∈ A, and f : (0, T )× Rd ×A → Rd is continuous and is assumed to satisfy the following regularity
and growth properties:

(A1)


(i) f : [0, T ]× Rd ×A → Rd is continuous
(ii) There exists L ≥ 0, for any x, y ∈ Rd, for all a ∈ A, and for all t, s ∈ [0, T ]:

|f(t, x, a)− f(s, y, a)| ≤ L(|x− y|+ |t− s|),

where | · | is a norm on Rd. It is known that under assumption (A1), for any α ∈ A and for any (t, x) ∈
(0, T ) × Rd, there exists a unique absolutely continuous trajectory y = yαt,x satisfying (2.1). The set of all
feasible trajectories starting in x at time t will be denoted as:

S[t,T ](x) :=
{
y = yαt,x, y satis�es (2.1) for some measurable α ∈ A

}
.

Under the assumption (A1), for any t ∈ [0, T ] and x ∈ Rd, S[t,T ](x) is a compact set in W 1,1(t, T ) for the
topology of C([0, T ]; Rd). Moreover, the set-valued application x  S[t,T ](x) is Lipschitz continuous from

Rd in C([0, T ]; Rd).
Let K be a non-empty closed set of Rd (no additional assumptions on K will be made). A trajectory

y ∈ S[t,T ](x) will be said admissible (on the time interval (t, T )) if

y(s) ∈ K, for all s ∈ (t, T ). (2.2)

Now, consider a distributed cost function ` : [0, T ]× Rd ×A → R, satisfying:

(A2)


(i) ` : [0, T ]× Rd ×A → R is continuous
(ii) There exists L ≥ 0, for any x, y ∈ Rd, for any a ∈ A and for any ∀t, s ∈ [0, T ],

|`(t, x, a)− `(s, y, a)| ≤ L(|x− y|+ |t− s|),

and a given �nal cost function ϕ satisfying:

(A3) ϕ : Rd → R is Lipschitz continuous.

The state-constrained Bolza problem is formulated as follows:

ϑ(t, x) := inf
{∫ T

t

`(s, yαt,x(s), α(s)) ds+ ϕ(yαt,x(T ))
∣∣∣∣ α ∈ A, and yαt,x(s) ∈ K, ∀s ∈ [t, T ]

}
, (2.3)

with the convention that inf ∅ = +∞.
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First, let us recall that the Bolza problem (2.3) can be set back to a Mayer problem. For this, we

introduce the following "augmented" dynamics f̂ de�ned by

f̂(t, (x, z), a) :=
(

f(t, x, a)
−`(t, x, a)

)
∀(x, z) ∈ Rd × R, ∀a ∈ A, ∀t ∈ (0, T )

(the choice of −` instead of ` is just for notational convenience). Introduce also, for α ∈ A, the augmented
trajectory ŷ = ŷαt,(x,z) solution of

˙̂y(s) = f̂(s, ŷ(s), α(s)), s ∈ (t, T ), (2.4a)

ŷ(t) = (x, z)T. (2.4b)

In particular, for any x̂ = (x, z) ∈ Rd × R, the solution of (2.4) is given by: ŷαt,x̂(s) = (yαt,x(s), ζαt,x̂(s)),

where ζαt,x̂(s) := z−
∫ s

t

`(θ, yαt,x(θ), α(θ)) dθ and yαt,x is the solution of (2.1). De�ne the set of corresponding

trajectories:
Ŝ[t,T ](x̂) :=

{
ŷ = (yαt,x, ζ

α
t,x̂), ŷ satis�es (2.4) for some α ∈ A

}
,

for x̂ = (x, z) ∈ Rd × R. The new control problem is then de�ned as follows:

ϑ̂(t, x̂) := inf
ŷ=(y,ζ)∈Ŝ[t,T ](x̂)

{
ϕ(y(T ))− ζ(T ), y(s) ∈ K, ∀s ∈ (t, T )

}
. (2.5)

It is clear that ϑ̂(t, x̂) = ϑ(t, x)− z for any x̂ := (x, z), and in particular ϑ(t, x) = ϑ̂(t, (x, 0)). In the sequel,
for simplicity of the presentation, the following assumption will be also assumed:

(A4) For any (t, x) ∈ [0, T ]× Rd, f̂(t, x,A) is a convex set.

Therefore, for any x̂ ∈ Rd × R, Ŝ[t,T ](x̂) is a compact set. Moreover, the value function ϑ (resp. ϑ̂) is

l.s.c. in [0, T ]× Rd (resp. in [0, T ]× Rd × R).

Remark 2.1. Notice that Ŝ[t,T ](x̂) may not be a closed set if (A4) is not satis�ed, and therefore the in�mum

value of ϑ̂ may not be achieved by an admissible trajectory. In this case, it would be natural to consider
the closure of Ŝ[t,T ](x̂) (for the topology induced by the C0([t, T ]) norm), see [13, 27]. For this, one should

introduce f̂ ] the convexi�ed set-valued dynamics

f̂ ](t, x̂) := co(f̂(t, x̂,A)), for t ∈ [0, T ], x̂ ∈ Rd × R.

Here, since A is a compact set of Rd and f̂ is continuous, by the caracthéodory theorem co(f̂(t, x̂,A)) is also
a compact set and thus f̂ ](t, x̂) ≡ co(f̂(t, x̂,A)). Under assumptions (A1)-(A2) the following di�erential
inclusion admits absolutely continuous solutions in [t, T ] (see [3]):

ẏ(s) ∈ f̂ ](s, y(s)), a.e. s ∈ (t, T ). (2.6a)

y(t) = x, (2.6b)

Let us denote by Ŝ][t,T ](x, z) the set of all the solutions of (2.6). This set is precisely the closure of Ŝ
]
[t,T ](x, z)

for the topology of C0(0, T ) (see for instance [27]):

Ŝ][t,T ](ξ) ≡ Ŝ[t,T ](x, z)
C0

. (2.7)

Moreover, by Filippov's theorem, Ŝ][t,T ](x, z) is a compact set of C0([t, T ]). Now, de�ne the relaxed control

problem, and its associated value function ϑ], as follows:

ϑ](t, x̂) := min
ŷ=(y,ζ)∈Ŝ][t,T ](x̂)

{
ϕ(y(T ))− ζ(T )

∣∣∣∣ y(s) ∈ K, ∀s ∈ (t, T )
}

(2.8)
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where ŷ(s) = (y(s), ζ(s)) denotes the two components of a given trajectory of Ŝ][t,T ](x, z). In this case, the

function ϑ] is l.s.c. and the minimum in (2.8) is achieved.

2.2 Some properties of the value function ϑ̂

In order to state the dynamic programming principle (DPP), two more notations will be used: the set of
admissible trajectories starting from x̂

ŜK[t,T ](x̂) :=
{
ŷ ∈ Ŝ[t,T ](x̂), ŷ(s) ∈ K × R for s ∈ [t, T ]

}
,

and the set of admissible backward trajectories arriving at x̂

ŜK,−[τ,t] (x̂) :=
{
ŷ ∈W 1,1(τ, t), ŷ satis�es (2.4a) for some measurable α ∈ A on [τ, t],

ŷ(t) = x and ŷ(s) ∈ K × R for s ∈ [τ, t]} .

Lemma 2.2. Assume (A1)-(A4). For any x̂ ∈ Rd × R and any t ∈ [0, T [, the following statements hold:
(i) (Forward DPP) For any h > 0 such that t+ h ≤ T :

ϑ̂(t, x̂) = min
ŷ∈ŜK[t,t+h](x̂)

ϑ̂(t+ h, ŷ(t+ h))

with the convention ϑ̂(t, x̂) = +∞ whenever ŜK[t,t+h](x̂) = ∅.
(ii) (Backward DPP) For all s ∈ [0, t] and x̂ ∈ Rd × R, for every ŷ ∈ ŜK,−[t−h,t](x̂):

ϑ̂(t, x̂) ≥ ϑ̂(t− h, ŷ(t− h)).

Since Ŝ[t,T ](x̂) is a compact set, the forward DPP leads to the statement that ϑ̂ satis�es the increasing

principle, i.e for any (t, x̂) ∈ [0, T ]× Rd × R:

∃ŷ ∈ Ŝ[t,T ](x̂), ϑ̂(t, x̂) ≥ ϑ̂(t+ s, ŷ(t+ s)) for any s ∈ [t, T − t]. (2.9)

This amounts to saying that the epigraph of ϑ̂ is weakly invariant with respect to the set-valued application:

(t, x̂) (1, f̂(t, x̂,A), 0)T.

Under assumption (A1)-(A4), the mapping (t, x) f̂(t, x̂,A) is upper semi-continuous and has nonempty
convex compact images. Therefore, the characterization of the weak invariance principle by means of a HJB
inequality is straightforward. More precisely, one can prove that (see [25, 9, 21, 15]):

u satis�es (2.9) ⇐⇒ −∂tu(t, x̂) + sup
a∈A

(−f̂(t, x̂, a) ·Dx̂u(t, x̂)) ≤ 0 in[0, T ]×K × R.

On the other hand, the backward DPP expresses the fact that ϑ̂ satis�es also the decreasing principle of
the value function ϑ̂ along admissible backward trajectories ŷ ∈ ŜK,−[t−s,t](x̂) for every x̂ ∈ K × R and every

t ∈ [0, T ] and s ∈ [0, t].
Let TK(x̂) denote the tangent cone of K at x̂. If we assume that K is smooth enough and has a nonempty

interior, and if the vector-�eld f̂(t, x̂,A) is assumed to satisfy f̂(t, x̂,A)∩TK(x̂) 6= ∅, then from the decreasing

principle one can conclude that Epi(ϑ̂) is strongly invariant with respect to the application

(t, x̂) 

 −1
−(f̂(t, x̂,A) ∩ TK(x̂))

0

.
5



In general, although f̂ is Lipschitz continuous, the set-valued application (t, x̂)  f̂(t, x̂,A) ∩ TK(x̂)
may have empty images and may not be Lipschitz continuous. Therefore, the characterization of the strong
invariance principle by means of a HJB inequality is not clear (see [21, 15]). As mentioned in the introduc-
tion, several works have been done to investigate the characterization of strong invariance under additional
controllability assumptions.

In the next section, we will follow a completely di�erent reasoning and will prove that the epigraph of
ϑ can be described using a value function of an auxiliary control problem without state-constraints. This
description does not require any additional assumption on K neither on the regularity of ϑ.

3 Characterization of the epigraph

3.1 Auxiliary control problem. Main result

Here we shall focus on the characterization of the epigraph of ϑ(t, .)

Epi(ϑ(t, .)) :=
{

(x, z) ∈ Rd × R, ϑ(t, x) ≤ z
}
.

(This set also corresponds to {x̂ = (x, z) ∈ Rd × R, ϑ̂(t, x̂) ≤ 0}.) For this, consider a "level set" function
g : Rd → R, Lipschitz continuous, that represents the set of constraints K in the following way:

∀x ∈ Rd, g(x) ≤ 0⇔ x ∈ K. (3.1)

Since K is closed, such a function g exists. Indeed, if we denote by dK the signed distance to K (where
dK(x) := d(x,K) if x /∈ K and dK(x) = −d(x,Rd\K) otherwise), then the function g ≡ dK(·) is Lipschitz
continuous and satis�es the statement (3.1). Therefore, for any y ∈ S[t,T ](x):(

y(θ) ∈ K, ∀θ ∈ [t, T ]
)

⇔ max
θ∈[t,T ]

g
(
y(θ)

)
≤ 0.

Now, introduce the auxiliary control problem and its associated value function wg de�ned by:

wg(t, x, z) := inf
ŷ=(y,ζ)∈Ŝ[t,T ](x,z)

(
ϕ(y(T ))− ζ(T )

) ∨
max
θ∈(t,T )

g(y(θ)) (3.2)

for x ∈ Rd, z ∈ R, t ∈ [0, T ], and where we have used, for convenience, the notation a ∨ b := max(a, b).
In this auxiliary control problem, the term �`maxθ∈[t,T ] g

(
y(θ)

)
� is an exact penalization of the state

constraints. Here, we shall use the problem (3.2) to characterize the epigraph of the value function ϑ

without requiring any additional assumption on K neither on the dynamics f̂ .

Theorem 3.1. Assume that (A1)-(A4) hold and that K is closed and non-empty. Then for any t ∈ [0, T ]
and (x, z) ∈ Rd × R, the following holds:
(i)

ϑ(t, x)− z ≤ 0 ⇐⇒ ϑ̂(t, (x, z)) ≤ 0 ⇐⇒ wg(t, x, z) ≤ 0.

(ii) Moreover, the function ϑ is characterized by wg through the following relation

ϑ(t, x) = min
{
z ∈ R, wg(t, x, z) ≤ 0

}
. (3.3)

Proof. (i) Let us assume that ϑ(t, x) ≤ z. There exists a sequence yn of admissible trajectories of S[t,T ](x),
such that

lim
n→∞

∫ T

t

`(s, yn(s), α(s)) ds+ ϕ(yn(T ))− z = ϑ(t, x)− z ≤ 0.

6



Since all the trajectories yn are admissible, we have, for all n ≥ 0, maxθ∈[t,T ] g(yn(θ)) ≤ 0. Hence

wg(t, x, z) ≤ lim inf
n→∞

(∫ T

t

`(s, yn(s), α(s)) ds+ ϕ(yn(T ))− z
)∨

max
θ∈[t,T ]

g(yn(θ))

≤ 0.

Conversely, let us assume that wg(t, x, z) ≤ 0. We know that Ŝ[t,T ](ξ) is a compact set in C0([t, T ]), hence
the in�mum in wg(t, x, z) is reached and there exists a minimizer y ∈ Ŝ[t, T ]((x, z)). Moreover,

0 ≥ wg(t, x, z) =
(∫ T

t

`(s, y(s), α(s)) ds+ ϕ(y(T ))− z
)∨

max
θ∈[t,T ]

g(y(θ))

Therefore, on one hand, maxθ∈[t,T ] g(y(θ)) ≤ 0 and y satis�es the state constraints, and on the other hand,

ϑ(t, x)− z ≤
∫ T

t

`(s, y(s), α(s)) ds+ ϕ(y(T ))− z ≤ 0

which is the desired result.
The proof of (ii) is a consequence of (i).

Remark 3.2. When the convexity assumption (A4) is not satis�ed, the statements of the above theorem are

valid for the l.s.c. value function ϑ] instead of ϑ̂. Indeed, let ` ≡ 0, f(t, x, α) := (1, α)T with α ∈ A := {±1},
K := {(x1, x2) ∈ R2, |x2| ≤ |x1 − 1

2 |
2}, and T = 1. One can check that, for x̄ = (0, 0)T, there exist no

admissible trajectory starting in x̄ and staying in K on [0, T ]. Hence ϑ̂(0, (x̄, z)) = +∞ for all z ∈ R. On
the other hand, let (yn)n≥1 be the sequence of trajectories de�ned for θ ∈ (0, T ) by

yn(θ) =

{
( kn , 0)T + (θ − k

n )(1, 1)T if θ ∈ [ kn ,
k+1/2
n [,

(k+1/2
n , 1/2

n )T + (θ − k+1/2
n )(1,−1)T if θ ∈ [k+1/2

n , k+1
n [.

(3.4)

Then yn converges uniformly on [0, 1] toward the limit y(t) = (t, 0)T, and wg(0, x, z) will have a �nite negative
value whenever ϕ((T, 0)T) < z.

3.2 A particular case: backward reachable sets

Consider the problem of backward reachable sets to a closed target C of Rd. It consists in characterizing, for
every t ∈ [0, T ], the set of all initial positions from which it is possible to �nd an admissible trajectory that
reaches the target at time T while lying in the set K on [t, T ]:

R(t) :=
{
x ∈ Rd : ∃y ∈ S[t,T ](x) such that y(T ) ∈ C, and y(s) ∈ K on K

}
.

In that case we can consider ` ≡ 0 and a Lipschitz continuous function φ : Rd → R satisfying:

∀x ∈ Rd, x ∈ C ⇔ φ(x) ≤ 0.

As in [14], we consider the control problem:

vg(t, x) = inf
y∈S[t,T ](x)

φ(y(T ))
∨

max
θ∈(t,T )

g(y(θ))

Therefore, under the same assumption (A1) and with a closed set K, the backward reachable set is equivalent
to:

R(t) ≡
{
x ∈ Rd | vg(t, x) ≤ 0

}
,

in other terms, the region where the function vg(t, ·) is negative represents the backward reachable set at
time t, see [14]. In view of this result, theorem 3.1 can be seen as a generalisation to a more general setting

7



where the function ϕ is any Lipschitz continuous function. Actually, in the general case, the epigraph of
the function ϕ should be considered as the target set and the epigraph of ϑ̂(t, ·) represents the backward

reachable set under the dynamics f̂ . This claim can be proved by using viability tools, see for instance [19, 2].
Moreover, taking this claim into account, one can compute the value function by using viability algorithm
[5, 36]. Here, we use only viscosity arguments and give a description of the epigraph by means of a simple
continous solution to a HJ inequation. This opens the way to use a very large pannel of numerical schemes
(Semi-Lagrangian, ENO, WENO, Discontinuous Galerkin, ...).

3.3 Properties of the auxiliary value function wg

The main feature of the auxiliary control problem (3.2) lies in the fact that this new problem is not under
state constraints any more. Moreover, function wg enjoys more regularity properties and can be characterized
by a Hamilton-Jacobi equation without assuming any controllability assumption. Let us denote by H the
Hamiltonian de�ned on [0, T ]× Rd × R× Rd × R by:

H(t, x, z, p, q) := max
a∈A

(−f(t, x, a) · p+ `(t, x, a) · q) . (3.5)

Proposition 3.3. Assume that (A1)-(A4) hold and let g be a Lipschitz continuous function satisfying
(3.1). Then wg is a locally Lipschitz continuous function on [0, T ]×Rd×R. Furthermore, for any t ∈ [0, T ],
and h ≥ 0 such that t+ h ≤ T ,

wg(t, x, z) := min
ŷ=(y,ζ)∈Ŝ[t,t+h](x,z)

{
wg
(
t+ h, y(t+ h), ζ(t+ h)

)∨
max

θ∈(t,t+h)
g(y(θ))

}
. (3.6)

Proof. The proof of the DPP (3.6) is classical and can be obtained by the same arguments as in [11, 10].
Consider x̂ = (x, z), x̂′ = (x′, z′) ∈ Rd×R, t ∈ [0, T ], and w0(x̂) := wg(0, x̂) ≡ max(ϕ(x)− z, g(x)). By using
the de�nition of wg and the simple inequalities:

max(A,B)−max(C,D) ≤ max(A− C,B −D), and inf Aα − inf Bα ≤ sup(Aα −Bα), (3.7)

we get:

|wg(t, x̂)− wg(t, x̂′)| ≤ sup
α∈A

max
(∣∣∣w0(ŷαt,x̂(T ))− w0(ŷαt,x̂′(T ))

∣∣∣, max
θ∈(t,T )

∣∣∣g(yαt,x(θ))− g(yαt,x′(θ))
∣∣∣) ,

≤ sup
α∈A

(
L0

∣∣ŷαt,x̂(T )− ŷαt,x̂′(T )
∣∣, Lg max

θ∈(t,T )

∣∣yαt,x(θ)− yαt,x′(θ)
∣∣)

where L0 and Lg denotes respectively the Lipschitz constant of w0 and g. By assumption (A1), for θ ∈ (t, T ),∣∣ŷαt,x̂(θ)− ŷαt,x̂′(θ)
∣∣ ≤ eL̂(θ−t)|x̂− x̂′| ≤ eL̂T |x̂− x̂′| (where L̂ is the Lipschitz constant of f̂). Then we conclude

that:
|wg(t, x̂)− wg(t, x̂′)| ≤ max(L0, Lg)eL̂T |x̂− x̂′|. (3.8)

On the other hand, let x̂ = (x, z) be in Rd × R, and let t ≥ 0, h ≥ 0. Using that wg(t, x̂) ≥ g(x), we deduce
from the dynamic programming principle for wg that

|wg(t+ h, x̂)− wg(t, x̂)| =
∣∣∣∣inf
α

max
(
wg(t, ŷαt,x̂(t+ h)), max

θ∈[t,t+h]
g(yαt,x(θ))

)
−max

(
wg(t, x̂), g(x)

)∣∣∣∣
≤ sup

α
max

(∣∣wg(t, ŷαt,x̂(t+ h))− wg(t, x̂))
∣∣, max
θ∈(t,t+h)

∣∣g(yαt,x(θ))− g(x)
∣∣)

≤ max
(

max(L0, Lg)eL̂T |ŷαt,x̂(t+ h)− x̂|, Lg max
θ∈(t,t+h)

|yαt,x(θ)− x|
)

where we have used (3.8).
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Furthermore, denoting Cf := max
(s,a)∈(0,T )×A

|f(s, 0, a)| < ∞, we have |f(s, x, a)| ≤ Cf + L|x|. Hence by a

Gronwall estimate, we have |yαt,x(θ)−x| ≤ (Cf +L|x|)eLhh ≤ (Cf +L|x|)eLTh for θ ∈ (t, t+h). We obtain

in the same way the estimate: |ŷαt,x̂(θ)− x̂| ≤ (Ĉf + L̂|x̂|)eL̂Th for every θ ∈ (t, t+ h).
Therefore, we conclude that |wg(t′, x̂)−wg(t, x̂)| ≤ C(1+ |x̂|)|t′− t| for some constant C > 0. Combining

all the inequalities above, we get:

|wg(t′, x̂′)− wg(t, x̂)| ≤ C(1 + |x̂|) (|t′ − t|+ |x̂′ − x̂|),

for some constant C ≥ 0. In particular the following linear growth holds: |wg(t, x̂)| ≤ C(1 + |x̂|).

Moreover, the following proposition holds.

Proposition 3.4. Assume that (A1)-(A4) are satis�ed. Then the function u = wg is the unique continuous
viscosity solution of the following HJB equation

min
(
− ∂tu(t, x, z) +H(t, x, z,∇xu, ∂zu), u(t, x, z)− g(x)

)
= 0,

∀t ∈ [0, T ), x ∈ Rd, z ∈ R, (3.9a)

u(T, x, z) = (ϕ(x)− z) ∨ g(x), x ∈ Rd, z ∈ R. (3.9b)

Proof. The HJB equation can be derived from the DPP satis�ed by wg. For sake of completeness, we give
here the main lines of the proof. We �rst show that wg is a solution of (3.9). The fact that wg satis�es the
initial condition comes directly from the de�nition of wg.

Let us check the super-solution property of wg. From the DPP, we get that for any τ ≥ 0

wg(t, (x, z)) ≥ min
ŷ=(y,ζ)∈Ŝ[t,t+h](x,z)

wg(t+ h, y(t+ h), ζ(t+ h)).

Hence, classical arguments in viscosity theory yield to:

−∂twg +H(t, x, z,∇xwg, ∂zwg) ≥ 0

in the viscosity sense. Moreover, by de�nition of wg, for every (t, x, z) ∈ [0, T ]× Rd × R, we have

wg(t, x, z) ≥ min
ŷ=(y,ζ)∈Ŝ[t,T ](x,z)

max
θ∈[t,T ]

g(y(θ)) ≥ g(x).

Combining this two inequalities, we get

min(∂twg +H(t, x, z,∇xwg, ∂zwg), wg − g) ≥ 0

in the viscosity sense, i.e., wg is a super-solution of (3.2).
It remains to prove that wg is a sub-solution. Let (x, z) ∈ Rd × R and t ∈ [0, T ]. If wg(t, x, z) ≤ g(x),

then it is clear that wg satis�es:

min(−∂twg +H(t, x, z,∇xwg, ∂zwg), wg(t, x, z)− g(x)) ≤ 0.

Now, assume that wg(t, x, z) > g(x). By continuity of g and wg, there exists some τ > 0 such that for every
ŷ = (y, ζ) ∈ Ŝ[t,t+h](x, z), we have: wg(θ, y(θ), ζ(θ)) > g(y(θ)) for all θ ∈ [t, t + h] (since y(θ) will stay in a
neighborhood of x). Hence, by using the DPP, we get that

wg(t, x, z) = min
ŷ=(y,ζ)∈Ŝ[t,T ](x,z)

wg(t+ h, y(t+ h), ζ(t+ h)), for any 0 ≤ h ≤ T − t.

Therefore, with classical arguments [6] one can obtain that ∂tw
g(t, x, z) +H(t, x, z,∇xwg, ∂zwg) ≤ 0 in the

viscosity sense. Therefore, wg is a viscosity sub-solution of (3.2).
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The fact that wg is the unique continuous viscosity solution of (3.2) follows from the general comparison
principle in appendix A, and the fact that there exists C0 > 0 such that:

|H(t, x, z, p, q)−H(s, x′, z′, p, q)| ≤ C0(|p|+ |q|+ 1) (|t− s|+ |x− x′|+ |z − z′|), (3.10a)

|H(t, x, z, p, q)−H(t, x, z, p′, q′)| ≤ C0(|x|+ 1)(|p− p′|+ |q − q′|), (3.10b)

for every (x, z), (x′, z′) ∈ Rd × R and for every (p, q), (p′, q′) ∈ Rd × R.

Remark 3.5. Notice that when K is a bounded set, then it is possible to modify f , ` and g outside K in
order to get a bounded auxiliary value function. Indeed, if K ⊂ B(0, R) then by setting h(x) := d(x,B(0, R)),
it is possible to consider fR(t, x, α) := f(t, x, α)(1− h(x))+, `R(t, x, α) := `(t, x, α)(1− h(x))+ and gR(x) =
max(g(x), R) (the functions fR, `R and gR coincide respectively with f , ` and g on K). Moreover, fR,
`R and gR are still Lipschitz continuous in (t, x), and compactly supported in B(0, R + 1). Therefore, the
function wgR de�ned using (fR, `R, gR) satis�es wgR(t, x, z) ≤ 0 ⇔ wg(t, x, z) ≤ 0, and it can be used for
the characterization of ϑ(t, x).

Let us point out that the value function wg depends on the choice of g. However, the set

{(x, z), wg(t, x, z) ≤ 0}

is independent of the choice of g.

Lemma 3.6. If g̃ and g are Lipschitz continuous function satisfying (3.1), then for all t ≤ T ,

{(x, z), wg(t, x, z) ≤ 0} = {(x, z), wg̃(t, x, z) ≤ 0}.

Remark 3.7 (Extension to terminal state constraints). Consider the case when the state variable
is constrained to satisfy a �nal constraint y(T ) ∈ C, in addition to (2.2), where C is a closed subset of Rd
(of course C ∩ K has to be considered nonempty, otherwise the problem becomes trivial). Then the control
problem is de�ned by:

ϑ(t, x) := inf
{∫ T

t

`(s, yαt,x(s), α(s)) ds+ ϕ(yαt,x(T ))
∣∣∣∣ α ∈ A, yαt,x(T ) ∈ C and yαt,x(s) ∈ K, ∀s ∈ [t, T ]

}
.

(3.11)
In this case, one should consider a Lipschitz continuous function ψ : Rd → R such that ψ(x) ≤ 0⇐⇒ x ∈ C
(since C is closed, such a Lipschitz function ψ exists). Hence the auxiliary control problem can be considered
as:

wg(t, x, z) := inf
ŷ=(y,ζ)∈Ŝ[t,T ](x,z)

(
ϕ(y(T ))− ζ(T )

) ∨
max
θ∈(t,T )

g(y(θ))
∨
ψ(y(T )). (3.12)

Here again, the description of the value function ϑ is given by:

Epi(ϑ(t, ·)) = {(x, z) ∈ Rd × R | wg(t, x, z) ≤ 0},

and wg satis�es the same HJB equation as in proposition 3.4 excepted the fact that the �nal condition at
time t = T is now: wg(T, x, z) = (ϕ(x)− z) ∨ g(x) ∨ ψ(x).

Before concluding this section, we would like to stress on the fact that considering the auxiliary function
wg allows to bypass all the regularity issues which arise when the control problem is in presence of state
constraints. This constructive way to describe the value function ϑ involves only the classical framework
of Lipschitz continuous viscosity solution, even though ϑ is only l.s.c. This approach opens the way for
computing the epigraph of ϑ by a large panel of schemes for continuous viscosity solutions. One can criticize
the fact that the de�nition of wg involves one more state component, however it is important to keep in
mind that only the level set {wg(t, x, z) = 0} is needed. Since wg is Lipschitz continuous, one can use a
local numerical scheme (as in [35]) to track this 0−level set in Rd+1 and reduce the numerical complexity to
almost the same numerical complexity of solving an HJ equation in a d-dimensional space.
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4 In�nite horizon problem with state constraints

Here we consider the case of an in�nite horizon optimal control problem with state constraints (see [6] for
standard results) and assume throughout this section that f , ` satis�es (A1)-(A2) and (A4), and that
these functions do not depend on the time variable:

f : Rd ×A → Rd, ` : Rd ×A → R.

Let A be the set of measurable controls α : (0,∞)→ A. For any α ∈ A, consider the system obeying:

ẏ(s) = f(y(s), α(s)) a.e. s ∈ (0,∞), (4.1a)

y(0) = x, (4.1b)

and let y = yαx denotes its solution. Let also K be a nonempty closed set of Rd. Set L is assumed to be a
majorant of the Lipschitz constants for f and ` with respect to the x variable, as stated in (A1)-(A2), and
set Λ > L. The in�nite horizon control problem is:

ϑ̃(x) := min
α∈A

{∫ ∞
0

e−λs`(yαx (s), α(s))ds
∣∣∣∣ yαx (θ) ∈ K ∀θ ∈ (0,∞)

}
. (4.2)

We again focus on the characterization of the epigraph of ϑ̃:

Epi(ϑ̃) :=
{

(x, z) ∈ Rd × R, ϑ̃(x) ≤ z
}
.

Let g : Rd → R be a Lipschitz continuous satisfying (3.1). We introduce an auxiliary control problem
with value function w̃g de�ned for x ∈ Rd, z ∈ R, and λ > L, by:

w̃g(x, z) := min
α∈A

(∫ ∞
0

e−λs`(yαx (s), α(s)) ds− z
) ∨

max
θ∈(0,∞)

(
e−λθg(yαx (θ))

)
. (4.3)

Theorem 4.1. Assume that (A1)-(A2) and (A4) hold, K is closed and non-empty, and λ > L.
(i) For any (x, z) ∈ Rd × R, the following holds:

ϑ̃(x)− z ≤ 0 ⇐⇒ w̃g(x, z) ≤ 0.

Moreover, the function ϑ̃ is characterized by w̃g through the following relation

ϑ̃(x) = min
{
z ∈ R, w̃g(x, z) ≤ 0

}
.

(ii) w̃g is Lipschitz continuous on Rd × R.
(iii) The function u = w̃g is the unique Lipschitz continuous viscosity solution of

min
(
λu+ max

a∈A
(−f(x, a) · ∇xu+ `(x, a)∂zu), u(x, z)− g(x)

)
= 0,

x ∈ Rd, z ∈ R. (4.4)

The derivation of the HJ equation for w̃g is based on the following DPP principle. We de�ne ζαx,z(t) :=
eλtz −

∫ t
0
eλ(t−s)`(yαx (s), α(s)) ds. Equivalently, ζ(t) = ζαx,z(t) is the absolutely continuous solution of

ζ̇(s) = λζ(s)− `(yαx (s), α(s)) a.e. s > 0, (4.5a)

ζ(0) = z. (4.5b)
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Lemma 4.2 (Dynamic programming principle). For all h ≥ 0 and (x, z) ∈ Rd × R, we have

w̃g(x, z) = min
{(

e−λhw̃g(yαx (h), ζα(x,z)(h))
)∨

max
θ∈(0,h)

(
e−λθg(yαx (θ))

)
,

α : (0, h)→ A measurable, (yαx , ζ
α
(x,z)) solution of (4.5)

}
(4.6)

where the minimization is over all measurable controls α : (0, h)→ A.

Proof. The de�nition of w̃g involves the maximum between two terms, and the DPP here seems to be new.
Even though the proof is not di�cult we prefer to present it for sake of completeness.

For any measurable control α : (0,∞)→ A, we shall denote α1 the restriction of α on (0, h) and α2 the
measurable control of A such that α2(t) = α(t + h) a.e. t ≥ 0. Using yαx (s + h) = yα2

y
α1
x (h)

(s), we obtain on

the �rst hand:∫ ∞
0

e−λs`(yαx (s), α(s)) ds− z =
∫ ∞
h

e−λs`(yαx (s), α(s)) ds+
∫ h

0

e−λs`(yαx (s), α(s)) ds− z

= e−λh
(∫ ∞

0

e−λs`(yαx (s+ h), α(s+ h)) ds− ζα1
x,z(h)

)
= e−λh

(∫ ∞
0

e−λs`(yα2

y
α1
x

(s), α2(s)) ds− ζα1
x,z(h)

)
(4.7)

and on the other hand:

max
θ∈(0,∞)

e−λθg(yαx (θ)) = max
θ∈(0,∞)

e−λ(θ+h)g(yαx (θ + h))
∨

max
θ∈(0,h)

e−λθg(yα1
x (θ))

=
(
e−λh max

θ∈(0,∞)
e−λθg(yα2

y
α1
x (h)

(θ))
)∨

max
θ∈(0,h)

e−λθg(yα1
x (θ)). (4.8)

Combining (4.7) and (4.8), taking measurable controls α1 : (0, h)→ A and α2 ∈ A, we obtain

w̃g(x, z) = inf
α1

inf
α2

(
e−λh

∫ ∞
0

e−λs`(yα2

y
α1
x

(s), α2(s)) ds− ζα1
x,z(h)

)∨(
e−λh max

θ∈(0,∞)
e−λθg(yα2

y
α1
x (h)

(θ))
)

∨
max
θ∈(0,h)

e−λθg(yα1
x (θ))

= inf
α1

(
e−λhw̃g(yα1

x (h), ζα1
x,z(h))

)∨
max
θ∈(0,h)

e−λθg(yα1
x (θ))

which is the desired result.

5 Two-player games with state constraints

The approach presented in the previous sections can be extended to more general control problems lacking
controllability assumptions. We consider here the case of two-player games [40, 24, 6, 39, 7, 20].

In addition to the player taking control values in A, we consider B a non empty compact set of Rm
(m ≥ 1), and the set controls for the second player:

B :=
{
β : (0, T )→ Rm measurable, β(t) ∈ B a.e.

}
.
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We also consider a new dynamics f , distributed cost `, and terminal cost ϕ such that:

(A′1)

 (i) (t, x, a, b) ∈ [0, T ]× Rd ×A× B → f(t, x, a, b) ∈ Rd is continuous
(ii) ∃L ≥ 0, ∀x, y ∈ Rd, ∀(a, b) ∈ A× B, ∀t, s ∈ [0, T ],

|f(t, x, a, b)− f(s, y, a, b)| ≤ L(|x− y|+ |t− s|),

(A′2)

 (i) (t, x, a, b) ∈ [0, T ]× Rd ×A× B → `(t, x, a, b) ∈ Rd is continuous
(ii) ∃L ≥ 0, ∀x, y ∈ Rd, ∀(a, b) ∈ A× B, ∀t, s ∈ [0, T ],,

|`(t, x, a, b)− `(s, y, a, b)| ≤ L(|x− y|+ |t− s|),
(A′3) ϕ : Rd → R is Lipschitz continuous.

Again, we consider the "augmented" dynamics f̂ : [0, T ]× Rd+1 ×A× B → Rd+1 de�ned as follows:

f̂(t, (x, z), a, b) :=
(

f(t, x, a, b)
−`(t, x, a, b)

)
, ∀(x, z) ∈ Rd × R, a ∈ A, b ∈ B, t ∈ (0, T ).

The following convexity assumption of f̂ will be considered:

(A′4) ∀t, x, β, f̂(t, x,A, β) is a convex set.

Notice that this includes the case when f(t, x, a, b) = f1(t, x, b) · a+ f2(t, x, b) and A is a convex set.

For every x ∈ Rd and (α, β) ∈ At × B we de�ne the trajectory y = yα,βt,x as the solution of

ẏ(s) = f(s, y(s), α(s), β(s)) for a.e. s ∈ [t, T ], y(t) = x. (5.1)

in the Caratéodory sense.
Following the formulation of Elliott and Kalton [24], we de�ne the set of non-anticipative strategies

a ≡ a[·] as follows:

Γt :=
{
a : B→ A, ∀(β, β̃) ∈ B, and ∀s ∈ [t, T ],(

β(θ) = β̃(θ). a.e. θ ∈ [t, s]
)
⇒
(
a[β](θ) = a[β̃](θ), a.e. on [t, s]

)}
.

The value function for the �rst player is given by:

ϑ(t, x) := (5.2)

inf
a∈Γt

max
β∈B

{∫ T

t

`(s, ya[β],β
t,x (s), α(s), β(s)) ds+ ϕ(ya[β],β

t,x (T ))
∣∣∣∣ yαt,x(s) ∈ K, ∀s ∈ [t, T ]

}
.

As in Section 3, we add a new state variable z ∈ R, and we de�ne the following auxiliary control problem:

wg(t, x, z) := inf
a∈Γt

max
β∈B

(
ϕ(ya[β],β

t,x (T ))− ζa[β],β
t,(x,z)(T )

) ∨
max
θ∈[t,T ]

g(ya[β],β
t,x (θ)). (5.3)

where f̂ = (f,−`)T and ŷ = ŷα,βt,(x,z) ≡ (yα,βt,x , ζ
α,β
t,(x,z))

T is an absolutely continuous solution of

˙̂y(s) = f̂(s, ŷ(s), α(s), β(s)) a.e. s ∈ (t, T ), (5.4a)

ŷ(t) = (x, z)T. (5.4b)

In a similar way to the case of a one-player game, one can check easily that we have:

13



Lemma 5.1. Let (A′1)− (Ā′4) hold.
(i) ϑ̄ is a lower semi-continuous function.
(ii) The in�mum in (5.3) is reached. In particular,

wg(t, x, z) ≤ 0 ⇐⇒ ∃a[·] ∈ Γt, ∀β ∈ B,∫ T

t

`(s, ya[β],β
t,x (s), α(s), β(s)) ds+ ϕ(ya[β],β

t,x (T )) ≤ z,

y
a[β],β
t,x (θ) ∈ K, ∀θ ∈ [t, T ].

Therefore the value wg(t, x, z) is reached by some non-anticipative strategy, as soon as ϕ and g are
continuous. By using similar arguments as in the previous sections, we get:

Theorem 5.2. Assume (A′1)− (A′4), and g Lipschitz continuous.
(i) ∀t ∈ [0, T ], ∀(x, z) ∈ Rd × R,

ϑ(t, x) ≤ z ⇔ wg(t, x, z) ≤ 0.

(ii) The function wg is locally Lipschitz continuous on [0, T ] × Rd × R, more precisely there exists C ≥ 0
such that

|wg(t′, x̂′)− wg(t, x̂)| ≤ C(1 + |x̂|)
(
|t′ − t|+ |x̂′ − x̂|

)
In particular, wg has a linear growth : |wg(t, x̂)| ≤ C(1 + |x̂|) for some constant C ≥ 0.
(iii) Furthermore, u = wg is the unique continuous viscosity solution of the following HJ equation:

min(−∂tu+H(t, (x, z),∇u), u− g(x)) = 0, t ∈ (0, T ), x ∈ Rd, z ∈ R, (5.5a)

u(T, x, z) = max(ϕ(x)− z, g(x)), x ∈ Rd. (5.5b)

where H(t, (x, z), (p, q)) := max
α∈A

min
β∈B
−f̂(t, x, α, β) · (p, q) ≡ max

α∈A
min
β∈B
−f(t, x, α, β) · p+ `(t, x, α, β)q.

Corollary 5.3. Under (A′1)− (A′4), the function ϑ is characterized by means of the function wg through the
following relation

ϑ(t, x) = inf
{
z ∈ R, wg(t, x, z) ≤ 0

}
. (5.6)

This gives again a characterization of ϑ for two-player games with state constraints, by using a continuous
viscosity approach and without any controllability assumption.

6 Numerical example

We consider the classical zermelo type problem. A boat with coordinates y(t) = (y1(t), y2(t)) navigates in a
canal R× [−2, 2], starting from y(0) = x = (x1, x2), and wants to reach an island B = B̄(0, r0), r0 > 0, with
minimal fuel consumption. The dynamics is given by

ẏ1 = v cos(u) + c− ay2
2 , (6.1a)

ẏ2 = v sin(u), (6.1b)

where u ∈ [0, 2π] is the �rst control (angle), v ∈ [0, Vmax] is a second control (the speed of the boat), and
c−ay2

2 is the current drift (along the x1-axis). We shall choose the parameters Vmax = 1 and c = 2, a = 0.5.
The boundary y2 = ±

√
c
a ≡ ±2 (where the drift term c − ay2

1 vanishes) corresponds to the coast. The
evolution of the fuel mass m(t) is given by

ṁ = −b v

Vmax
, (6.2)

14



where b = 1 and v
Vmax

is a speed ratio. Therefore, the fuel consumption
∫ T
t
|ṁ(s)| ds is proportional to∫ T

t

v(s) ds.

Because of the drift term (which can be greater than Vmax), the system is not controllable. Consider the
set of constraints given by K := {x ∈ R2, g(x) ≤ 0} where

g(x) := max
(
ra − ‖x− a‖∞

)
, rb −max(|x1 − b1|,

1
5
|x2 − b2|

)
(6.3)

and where ra = 0.4, a = (−0.5, 0.5) and rb = 0.2, b = (−1,−1.5). The target C ≡ B(c, r0) with r0 = 0.25
and c = (1.5, 0) is represented by a function ψ de�ned by

ψ(x) := ‖x− c‖ − r0.

The optimal control problem is to minimize, whenever this is possible, the following

ϑ(t, x) = inf

{∫ T

t

v(s) ds, α = (u, v) ∈ A, yαx (T ) ∈ C,
(
yαx (θ) ∈ K, ∀θ ∈ [t, T ]

)}
where A is the set of measurable controls α = (u, v) : (0, T ) → [0, 2π] × [0, 1]. Therefore we are in the
situation of Section 3.7. We consider `(t, x, (u, v)) := v, a terminal cost ϕ(x) ≡ 0, and the PDE becomes

min
(
− wt + max(0, ‖∇xw‖+ wz)− (c− ay2

2)wy1 , w(t, x, z)− g(x)
)

= 0,

t ∈ (0, T ), (x, z) ∈ R2 × R, (6.4)

w(T, x, z) = max(−z, ψ(x), g(x)), (x, z) ∈ R2 × R. (6.5)

This last HJ equation is then solved by a �nite di�erence method (ENO scheme of second order in space,
see for instance [14]). Results are shown in Figure 1, at time t = 0 with T = 10 (computations done with
703 grid point). The value is recovered �nally using ϑ(t, x) = min

{
z ∈ R, w(t, x, z) ≤ 0

}
.

We have considered a discretisation of 703 spatial mesh points of the domain [−3, 2]×[−2, 2]×[Zmin, Zmax]
where Zmin = −0.1 and Zmax = 10. The time interval is [0, T ] ≡ [0, 10]. This example was solved by using
the C++ HJB-solver "Binope-HJ" [16].

A Comparison principle for HJ equations with obstacle terms

The aim of this section is to prove a comparison principle for the following HJ equation in presence of an
obstacle term:

min(−ut +H(t, x,∇u), u− g(t, x)) = 0 on (0, T )× Rd, (A.1)

u(T, x) = u0(x), x ∈ Rd (A.2)

where T > 0 and g ∈ C((0, T )× Rd), and H : (0, T )× Rd × Rd → R is continuous and assumed to satisfy:
(H1) there exists C ≥ 0 such that, for all (t, x) in (0, T )× Rd, p, q ∈ Rd,

|H(t, x, p)−H(t, x, q)| ≤ C(|x|+ 1)|p− q|, (A.3)

(H2) for any R > 0, there exists a function wR : [0,∞)→ [0,∞), limr→0+ wR(r) = 0 and

|H(t, x, p)−H(t, y, p)| ≤ wR((1 + |p|)|x− y|) (A.4)

for every (t, p) ∈ (0, T )× Rd, x, y ∈ BR, where BR denotes the open ball centred at 0 and of radius R.
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Figure 1: Left: values of v(t, .) at time t = 0. Right: isovalues in logarithmic scale. Here the values such
that ϑ(0, x, y) = 10 correspond to a non-reachable zone

Theorem A.1. Let u, v be two functions of C([0, T ] × Rd), and let g, h be in C([0, T ] × Rd). We assume
that u (resp. v) is a subsolution (resp. supersolution) of (A.1) in (0, T )× Rd:

min(−ut +H(t, x,∇u), u− g) ≤ 0 in (0, T )× Rd, (A.5)

min(−vt +H(t, x,∇v), v − h) ≥ 0 in (0, T )× Rd. (A.6)

We denote uT (x) := u(T, x) and vT (x) := v(T, x). Then for all t ∈ [0, T ],

sup
Rd

(u(t, .)− v(t, .)) ≤ max
(

sup
Rd

(uT − vT ), sup
(t,T )×Rd

(g − h)
)
. (A.7)

Proof. The result without the obstacle term can be found for instance in Ishii [29]. It su�ces to prove the
result for T > 0 small enough, the result for any T > 0 can then be deduced by immediate recursion.

Assuming that C > 0, we take T = 1/(2C) and L = L(x0) := 2C(|x0| + 1), and we de�ne the following
cone

Ox0 :=
{

(t, x) ∈ (0, T )× Rd, |x− x0| < Lt
}
.

(The case when C = 0 is trivial). We claim that for every t0 ∈ (0, T ):

u(t0, x0)− v(t0, x0) ≤ max
(

sup
x0+BL(T−t0)

(uT − vT ), sup
Ox0

(g − h)
)
, (A.8)

which concludes (A.7). Let us �x t0 ∈ (0, T ) and prove our claim (A.8).
First, remark that for any (t, x) ∈ Ox0 , the following holds: C(|x| + 1) ≤ C(|x0| + 1) + C|x − x0| ≤

L
2 + CLT ≤ L

2 + 1
2L = L, and thus

|H(t, x, p)−H(t, x, q)| ≤ L|p− q| (t, x) ∈ Ox0 . (A.9)

We also de�ne for any (t̄, x̄) ∈ Ωx0 and τ ∈ (t̄, T ) the following cone:

Ot̄,x̄,τ :=
{

(t, x) ∈ (t̄, τ)× Rd, |x− x0| < L(t− t̄)
}
.

According to Crandall-Lions [23], and Ishii [29], the following Lemma holds.
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Lemma A.2. If u, v belongs to C(Ot̄,x̄,t) with t ∈ (t̄, T ), and are respectively viscosity solutions of

−ut +H(t, x,∇u) ≤ 0 in Ot̄,x̄,t, (A.10)

−vt +H(t, x,∇v) ≥ 0 in Ot̄,x̄,t, (A.11)

then

u(t̄, x̄)− v(t̄, x̄) ≤ sup
x̄+BL(t−t̄)

(u(t, .)− v(t, .)).

Consider the set:
Σ := {(t, x) ∈ Ox0 , u(t, x) ≤ g(x)},

and its complementary in Ox0 :
Ω := Ox0\Σ.

Since u is a subsolution of (A.5), u is also a subsolution of ut+H(t, x,∇u) = 0 on the open set Ω. Furthermore
v being a supersolution of (A.6) on Ox0 , it is also a supersolution of vt +H(t, x,∇v) = 0 on the open set Ω.

On the other hand, from (A.6), it follows that v(t, x) ≥ g(x) everywhere. Hence

∀(t, x) ∈ Σ, u(t, x)− v(t, x) ≤ g(t, x)− h(t, x) ≤ sup
Ox0

(g − h). (A.12)

Now, assume that

u(t0, x0)− v(t0, x0) > M := max
(

sup
x0+BL(T−t0)

(u0 − v0), sup
Ox0

(g − h)
)
. (A.13)

Using the continuity of u− v in (t0, x0), there exists a neighborhood Υ ⊂ Ox0 of (t0, x0) satisfying:

u(t, x)− v(t, x) > M ≥ sup
Ox0

(g − h) ∀(x, t) ∈ Υ.

Taking into account (A.12), it follows that Υ is necessarily included in Ω. Hence there exists τ > t0 such
that the cone Ot0,x0,τ is also included in Ω. Set

t1 := sup
{
τ ∈ (t0, T ], Ot0,x0,τ

⋂
Σ = ∅

}
.

(Ot0,x0,t1 is the greatest cone Ot0,x0,τ such that Ot0,x0,τ ⊂ Ω.) By using Lemma A.2 in the cone Ot0,x0,t1 ,
we obtain:

u(t0, x0)− v(t0, x0) ≤ sup
x0+BL(t1−t0)

(u(t1, .)− v(t1, .)).

If t1 = T , then u(t0, x0) − v(t0, x0) ≤ supx0+BLT (uT − vT ) ≤ M , which contradicts (A.13). Hence t1 < T .

Let x1 ∈ x0 +BL(t1−t0) be a maximum of u(t1, ·)− v(t1, ·) on x0 +BL(t1−t0). Then,

M < u(t0, x0)− v(t0, x0) ≤ u(t1, x1)− v(t1, x1).

We re-iterate the previous argument and obtain the existence of a t2 in (t1, T ) corresponding to the greatest
cone of the form Ot1,x1,t2 and satisfying Ot1,x1,t2 ⊂ Ω, and then the existence of a point x2 in x1+BL(t2−t1) ⊂
x0 +BL(t2−t0) such that

M < u(t1, x1)− v(t1, x1) ≤ u(t2, x2)− v(t2, x2),

and so on. Therefore we construct an increasing sequence of times (tk), and a sequence of points (xk) s.t. all
the sequence (tk, xk) belongs to the cone Ox0 . Because Ox0 is a compact set, we can extract a convergent
subsequence towards an element (t∗, x∗) of Ox0 . Moreover,

M < u(t∗, x∗)− v(t∗, x∗).
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If t∗ = T , we obtain a contradiction. Hence t∗ < T . Now by continuity, we still must have u(t, x)−v(t, x) > M
in a neighborhood of (t∗, x∗), for instance in a tube C centered at (t∗, x∗) and de�ned by

C := ]t∗ − τ0, t∗ + τ0[ × (x∗ +BLτ0),

for a τ0 > 0 su�ciently small. In particular, for any x ∈ C, (t, x) /∈ Γ. On the other hand, as soon as
t∗ − tk < τ0, we have Otk,xk,tk+1 ⊂ Otk,xk,t∗ ⊂ C ⊂ Rd\Σ ≡ Ω. This contradicts the fact that tk+1 is the
maximal time τ such that Otk,xk,τ ⊂ Ω, and the proof of (A.8) is complete.
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