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Abstract. Games on graphs provide a natural and powerful model for reactive
systems. In this paper, we consider generalized reachability objectives, defined as
conjunctions of reachability objectives. We first prove that deciding the winner in
such games isPSPACE-complete, although it is fixed-parameter tractable with
the number of reachability objectives as parameter. Moreover, we consider the
memory requirements for both players and give matching upper and lower bounds
on the size of winning strategies. In order to allow more efficient algorithms, we
consider subclasses of generalized reachability games. Weshow that bounding
the size of the reachability sets gives two natural subclasses where deciding the
winner can be done efficiently.

1 Introduction

Graphs games.Our purpose is to study reactive systems by abstracting them
into graphs games: a state of the system is represented by a vertex in a finite
directed graph, and a transition corresponds to an edge. If in a given state, the
controller can choose the evolution of the system, then the corresponding vertex
is controlled by the first player, Eve. Otherwise, the systemevolves in an un-
certain way: we consider the worst-case scenario where a second player, Adam,
controls those states. To a run of the system corresponds a play on the game: we
put a pebble in the initial vertex, then Eve and Adam move thispebble along the
edges, constructing an infinite sequence. The specificationof the system gives
an objective Eve tries to ensure on this sequence. In order tosynthesize a con-
troller, we are interested in two questions: whether Eve wins in the game, and
what resources are needed to construct a winning strategy (see [GTW02] for
more details).

System specifications.To specify properties of a system, we construct a set
of infinite sequences representing the correct behaviors ofthe system. From
an infinite sequence we extract finite information to decide whether the run



it represents meet the specification. For instance, considering the set of ver-
tices visited infinitely often allows to specify the classical ω-regular proper-
ties,e.gBüchi, parity, Streett, Rabin and Müller objectives. Otherinformations
can be carried out, as for instance the set of vertices visited with positive fre-
quency [TBG09], or the order in which the vertices are visited for specifying
LTL objectives [KPV07,HTW08,Zim11]. In this work, we observe the set of
vertices visited at least once, which allows to specify reachability objectives,
also called weak objectives [NSW02,SW74,Mos91,KVW00]

Generalized reachability objectives.The (simple) reachability objective re-
quires, given a subset of verticesF , that a vertex fromF is reached. Reacha-
bility objectives only specifies that one property (represented byF ) is satisfied
along the run. We allow more properties to be specified by using generalized
reachability objectives, defined as conjunctions ofk reachability objectives. In
this context, a reachability objective is often referred asa color: a generalized
reachability objective is then to see each of thek colors at least once.

2 Definitions

The games we consider are played on anarenaA = (V, (V◦, V2), E), which
consists of a finite graph(V,E) and a partition(V◦, V2) of the vertex setV : a
vertex is controlled by Eve if it belongs toV◦ and by Adam if it belongs toV2.
Vertices fromV◦ are depicted by a circle, and vertices fromV2 by a square. We
denote byn the number of vertices andm the number of edges. Playing consists
in moving a pebble along the edges: the pebble is placed on theinitial vertexv0,
then the player who controls the vertex chooses an edge and sends the pebble
along this edge to the next vertex. From this infinite interaction results aplay
π, which is an infinite sequence of verticesv0, v1, . . . where for alli, we have
(vi, vi+1) ∈ E, i.e π is an infinite path in the graph. We denote byΠ the set
of all plays, and defineobjectivesfor a player by giving a set of winning plays
Φ ⊆ Π. The games are zero-sum, which means that if Eve has the objective Φ,
then Adam has the objectiveΠ \ Φ (the objectives are opposite). Formally, a
gameis given by a coupleG = (A, Φ) whereA is an arena andΦ an objective.

A strategyfor a player is a function that prescribes, given a finite history of
the play, the next move. Formally, astrategyfor Eve is a functionσ : V ∗ ·V◦ →
V such that for a finite historyw ∈ V ∗ and a current positionv ∈ V◦, the
prescribed move is legal,i.e along an edge:(v, σ(w · v)) ∈ E. Strategies for
Adam are defined similarly, and usually denoted byτ . Once a gameG = (A, Φ),
a starting vertexv0 and strategiesσ for Eve andτ for Adam are fixed, there is
a unique play denoted byπ(v0, σ, τ), which is said to be winning for Eve if it
belongs toΦ. The sentence “Eve wins fromv0” means that she has a winning
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strategy fromv0, that is a strategyσ such that for all strategyτ for Adam, the
play π(v0, σ, τ) is winning. The first natural problem we consider is to “solve
the game”, that is given a gameG and a starting vertexv0, to decide whether Eve
wins fromv0. We denote byWE(G) the winning positions of Eve, that is the set
of vertices from where Eve wins (also referred as winning set), and analogously
WA(G) for Adam. We can prove that in generalized reachability games, we have
WE(A, Φ) ∪WA(A, Φ) = V : from any vertex, either of the two players has a
winning strategy. We say that the games aredetermined.

The strategies as defined in their full generality above are infinite objects.
Indeed, in this general setting, to pick the next-move, Eve considers the whole
history of the play, whose size grows arbitrarily. A nicer setting, giving rise to
finitely-representable objects, is to define strategies relying on memory struc-
tures. Formally, amemory structureM = (M,m0, µ) for an arenaA consists
of a setM of memory states, an initial memory statem0 ∈ M , and an update
functionµ : M × E → M . A memory structure is similar in fashion to an au-
tomaton synchronized with the arena: it starts fromm0 and reads the sequence
of edges produced by the arena. Whenever an edge is taken, thecurrent state is
updated using the update functionµ. A strategy relying on a memory structure
M, whenever it picks the next move, considers only the currentvertex and the
current memory state: it is thus given by a next-move function ν : V◦×M → V .
Formally, given a memory structureM and a next-move functionν, we can de-
fine a strategyσ for Eve byσ(w · v) = ν(v, µ∗(w · v)). (The update function
can be extended to a functionµ∗ : V + → M by definingµ∗(v) = m0 and
µ∗(w · u · v) = µ(µ∗(w · u), (u, v)).) A strategy with memory structureM has
finite memory ifM is a finite set. It ismemoryless, orpositionalif M is a single-
ton: in this case, the choice for the next move only depends onthe current vertex.
Note that a memoryless strategy can be described as a function σ : V◦ → V .

We can make the synchronized product explicit: an arenaA and a memory
structureM for A induce the expanded arenaA×M = (V ×M, (V◦×M,V2×
M), E × µ) whereE × µ is defined by:((v,m), (v′,m′)) ∈ E′ if (v, v′) ∈ E
andµ(m, (v, v′)) = m′. There is a natural one-to-one mapping between plays
in A and inA×M, and also from memoryless strategies inA×M to strategies
in A usingM as memory structure. It follows that if a player has a memoryless
winning strategy for the arenaA×M, then he has a winning strategy usingM
as memory structure for the arenaA. Thiskeyproperty will be used later on.

A reachability objectiverequires that a vertex from a given subset of vertices
F is reached:Reach(F ) = {v0, v1, v2 . . . | ∃p ∈ N, vp ∈ F} ⊆ Π. Games
in the formG = (A,Reach(F )) are called reachability games. To determine
whether Eve wins a reachability game, we compute the reachability set attractor.

3



We define the sequence(Attri(F ))i≥0:

Attr0(F ) = F
Attri+1(F ) = Attri(F ) ∪ {u ∈ V◦ | ∃(u, v) ∈ E, v ∈ Attri(F )}

∪ {u ∈ V2 | ∀(u, v) ∈ E, v ∈ Attri(F )}

ThenAttr(F ) is the limit of the non-decreasing sequence(Attri(F ))i≥0. We
can prove thatWE(A,Reach(F )) is exactlyAttr(F ).

Generalized reachability objectives.A generalized reachability objectivere-
quires that each of the givenk subsets of verticesF1, . . . , Fk is reached:

GenReach(F1, . . . , Fk) = {π | ∀i,∃pi ∈ N, vpi ∈ Fi}.

Associating to each reachability objective a color, we can reformulate the gener-
alized reachability objective: it requires to see each of thek colors at least once,
in any order. Games in the formG = (A,GenReach(F1, . . . , Fk)) are called
generalized reachability games. The special cases where inA, V2 (respectively
V◦) is empty are called one-player (respectively opponent-player) generalized
reachability games.

Example 1.We consider the arena drawn in Figure 1. A generalized reachability
game is defined by the objectiveGenReach({1, 2}, {3}). The central vertex is
the initial one. Eve tries to visit one of the two thick vertices and the dashed
vertex.

12

3

Fig. 1. An example of a generalized reachability game

Contributions. Our contributions are as follows:
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– We first prove that deciding the winner in generalized reachability games
is PSPACE-complete. Using the same ideas, we also show that the one-
player restriction, where all vertices belong to Eve, isNP-complete, and
that the opponent-player restriction, where all vertices belong to Adam, can
be solved in polynomial time. On the positive side, it is fixed-parameter
tractable(FPT) with the numberk of colors as parameter.

– We study the size of the winning strategies for both players:we prove match-
ing upper and lower bounds,i.e in any arena, if Eve has a winning strategy,
then she has a winning strategy that uses2k − 1 memory states, and there is
an arena where Eve wins but there are no winning strategies with less than
2k − 1 memory states, and similarly for Adam with the bound

(
k

⌊k/2⌋

)
.

– We then consider the subclasses where we restrict the numberof vertices
sharing the same color (in other words, the size of reachability sets). This re-
veals a trichotomy: if three vertices are allowed to share the same color, then
deciding the winner is, as in the general case,PSPACE-complete. However,
if each color appears only once, then the problem is polynomial. If each
color appears only twice, then the problem is polynomial forone-player
games, where Eve controls all vertices.

Outline. In section 3, we first study the complexity of solving generalized reach-
ability games, for two-player and one-player games, and then give matching up-
per and lower bounds for the memory required. In section 4, weconsider the
subclasses of games where the size of reachability set is restricted, in order to
find tractable subclasses.

3 The complexity of generalized reachability games

In this section we prove that the winner problem in generalized reachability
games isPSPACE-complete. OurPSPACE-hardness result follows from a re-
duction fromQBF (evaluation of a quantified boolean formula in conjunctive
normal form). However, we show that solving generalized reachability games
with few colors is easy, as it is fixed-parameter tractable using the number of
colors as parameter.

We then study one-player restrictions. We prove that the one-player gen-
eralized reachability games areNP-complete. The other one-player restriction,
opponent-player generalized reachability games, can be solved in polynomial
time.

The last subsection investigates memory requirements for both players. We
present matching upper and lower bounds: Eve needs2k − 1 memory states and
Adam

( k
⌊k/2⌋

)
, wherek is the number of colors.
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3.1 PSPACE-completeness of solving generalized reachability games

As a first step we define a reduction fromQBF to the winner problem of gener-
alized reachability games. Consider a quantified boolean formula

Q1x1 Q2x2 . . . Qnxn φ ,

whereφ is a propositional formula in conjunctive normal form,i.e

φ =
∧

i≤k

ℓi,1 ∨ ℓi,2 ∨ . . . ∨ ℓi,ji

andℓi,j is eitherxi or ¬xi for somei ≤ n. We construct a generalized reach-
ability game where Eve wins if and only if the formula is true.Intuitively, the
two players will sequentially choose to assign values to variables, following the
quantification order and starting from the outermost variable. Eve chooses ex-
istential variables and Adam chooses universal variables.Formally, the game is
as follows:

– for each variablexi, there are two vertices,xi andxi;
– for each variablexi, there is a choice vertexvi which leads toxi andxi. The

choice vertex belongs to Eve ifxi is existentially quantified, and to Adam if
xi is universally quantified;

– for each variablexi with i < n, there are two edges fromxi andxi to the
next choice vertexvi+1;

– there is a sinks, and two edges fromxn andxn to s;
– for each clause{ℓi,1, . . . , ℓi,ji}, there is a reachability objectiveFi which

contains the corresponding vertices;
– the generalized reachability objective is given byGenReach(F1, . . . , Fk).

The initial vertex isv1. There is a natural bijection between assignments of
the variables and plays in this game; and an assignment satisfies the formula
φ if and only if the play satisfies the generalized reachability objective. The
evaluation order of the variables being the same in the formula and in the game,
we conclude that Eve has a winning strategy if and only if the formula is true.

Example 2.We consider the following quantified boolean formula

∀x ∃y ∀z (x ∨ ¬y) ∧ (¬y ∨ z) .

Figure 2 shows the game built by the reduction. The generalized reachability
objective isReach({x, y}) ∧ Reach({y, z}). Thick vertices represent the first
reachability objective and dashed vertices the second one.
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Fig. 2.An example of the reduction fromQBF to generalized reachability games.

Theorem 1 (Complexity of generalized reachability games).Solving gener-
alized reachability games isPSPACE-complete.

Proof. The previous reduction implies thePSPACE-hardness.
Let us first make a simple observation: if Eve has a winning strategy, then

she has a winning strategy that visits each reachability setwithin n · k steps.
Indeed, if she can enforce to visit a subset of vertices, thenshe can enforce it
within n steps.

Relying on this remark, we can simulate the game for up ton · k steps
using an alternating Turing machine: whenever a vertex belongs to Eve, the
corresponding state is disjunctive, and it is conjunctive if the vertex belongs to
Adam. A path of lengthn · k is accepted if it is winning,i.e if it contains one
vertex from each reachability setFi. This machine accepts if and only if Eve
wins, and works in polynomial time. SinceAPTIME = PSPACE, the result
follows.

3.2 Parameterized complexity

Solving generalized reachability games with few colors is easy:

Theorem 2 (Generalized reachability games withk colors). Solving gener-
alized reachability games is fixed-parameter tractable (FPT) with the number
of colors as parameter.

Roughly speaking, the only information needed during a playis the subset
of reachability sets already visited. We build a memory structure that keeps track
of this information. By constructing the product with this memory structure, we
turn a generalized reachability game into a (classical) reachability game.

Proof. We considerG = (G,GenReach(F1, . . . , Fk)) a generalized reacha-
bility game, andv0 a starting vertex. The memory structureM is defined by
(2{1,...,k},m0, µ), wherem0 is {i | v0 ∈ Fi}, andµ(S, (v, v′)) = S ∪ {i | v′ ∈
Fi}. LetF = {(_, S) | S = {1, . . . , k}}: a play for the generalized reachability

7



gameG from v0 is winning if and only if it is winning for the reachability game
G × M = (G × M,Reach(F )) from (v0,m0). Since deciding the winner in
a reachability game can be done in linear time using an attractor computation,
solving a generalized reachability game can be done in time2k ×O(n+m).

3.3 Solving one-player restrictions

Theorem 3 (One-player restrictions).Solving one-player generalized reacha-
bility games isNP-complete. Solving opponent-player generalized reachability
games is polynomial.

Proof. We first deal with one-player generalized reachability games, where Eve
controls all vertices. In our previous reduction, considerthe case where all vari-
ables in the original formula are quantified existentially.Then the problem corre-
sponds toSAT (satisfiability of a boolean formula in conjunctive normal form),
which isNP-complete. Resulting games are one-player games,i.e all vertices
belong to Eve, hence solving one-player generalized reachability games isNP-
hard.

We describe a non-deterministic algorithm to solve these games in polyno-
mial time. As noted before, if Eve wins, then she has a winningstrategy that
wins withinn · k steps. The algorithm guesses a path of lengthn · k and checks
whether it is winning. It follows that solving one-player generalized reachability
games isNP-complete.

We now consider opponent-player generalized reachabilitygames, given
by the objectiveGenReach(F1, . . . , Fk). The winning set for Adam isV \
⋂

iAttr(Fi), which can be computed in quadratic time.

3.4 Memory requirements

We first present upper bounds:

Lemma 1 (Memory upper bounds).For all generalized reachability games
G = (G,GenReach(F1, . . . , Fk)),

– if Eve wins, then she wins using a strategy with memory2k − 1;
– if Adam wins, then he wins using a strategy with memory

(
k

⌊k/2⌋

)
.

As in the proof forFPT membership, we make use of the memory struc-
tureM = (2{1,...,k},m0, µ), wherem0 is {i | v0 ∈ Fi}, andµ(S, (v, v′)) =
S ∪ {i | v′ ∈ Fi}. SettingF as{(_, S) | S = {1, . . . , k}}, a play for the gen-
eralized reachability gameG from v0 is winning if and only if it is winning for
the reachability gameG ×M = (G×M,Reach(F )) from (v0,m0).
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Proof. We considerG = (G,GenReach(F1, . . . , Fk)) a generalized reachabil-
ity game, andv0 a starting vertex. Since in the reachability gameG ×M, each
player has memoryless winning strategies, each player has in G a winning strat-
egy usingM as memory structure.

The memory set ofM has size2k. In order to get the correct bounds for
each player, we rely on two observations.

– Eve does not need a specific memory state to remember that all colors have
been reached, as in this case, she has already won. Thus, she can always win
with 2k − 1 memory states.

– If Adam wins inG ×M from (v, S) andS′ ⊆ S, then he wins from(v, S′)
using the same strategy. Considerv ∈ V a vertex inG, and the set of sub-
setsS such that(v, S) belongs to Adam’s winning set. Its maximal (with re-
spect to inclusion) elements are incomparable, so there areat most

( k
⌊k/2⌋

)
,

we denote them byS1(v), . . . , Sp(v). The idea is that fromv, there are
only p different options Adam has to consider, namelyS1(v), . . . , Sp(v).
Indeed, for anyS such that(v, S) is winning for Adam, there exists ani
such thatS ⊆ Si(v), so Adam can forgetS and assume the current position
is (v, Si(v)).
We define a memory structure on the memory set{1, . . . ,

( k
⌊k/2⌋

)
}. We aim

at constructing a strategy that will ensure that after a finite playπ · v, the
memory state is ani such thatSi(v) contains the set of visited colors. If
the initial vertex isv0, the initial memory state is ani0 such thatSi0(v0)
containsm0. We define the update function:µ(i, (v, v′)) is a j such that
Sj(v

′) containsµ(Si(v), v
′) = Si(v) ∪ {i | v′ ∈ Fi}.

Let us turn to the next-move function. Consider(v, S) in Adam’s winning
set, then there exists a transition to some(v′, S′) also in Adam’s winning
set. Applying this to(v, Si(v)) such thatS ⊆ Si(v), we get a vertexv′, and
defineν(v, i) to v′. Playing this strategy, the above invariant is satisfied, and
thus ensures to stay forever in Adam’s winning set, so it is winning. The
memory set contains

( k
⌊k/2⌋

)
memory states.

Lemma 2 (Memory lower bounds for both players).For all k,

– there existsG = (G,GenReach(F1, . . . , Fk)) a generalized reachability
game, where Eve needs2k − 1 memory states to win;

– there existsG = (G,GenReach(F1, . . . , Fk)) a generalized reachability
game, where Adam needs

(
k

⌊k/2⌋

)
memory states to win.

9



h

v1
1

1

v2

2
2

v3
3

3v4

4 4

v5

5

5

Fig. 3.A generalized reachability game where Eve needs2k − 1 memory states to win

Proof. We first describe a generalized reachability game where Eve needs2k−1
memory states to win. This example was proposed in [CHH11] ina similar
framework. The arena is shown in Figure 3, fork = 5. A vertex labelled byi
belongs toFi, and a vertex labelled byi has all colors buti. A play starts from
the hearth; first Adam chooses a petali, then Eve chooses either to reach color
i before going back to the heart (the play goes on), or to reach every colors but
i and to stop the play. Eve wins with the following strategy: the first time Adam
chooses the petali, she goes back to the heart; the second time, she stops the
play. This strategy uses2k memory states. She can save one memory state by
dropping the memory state corresponding to the case where she saw each petal,
as it is winning for her. However, we show that there is no winning strategy for
Eve with less than2k − 1 memory states. Letσ a strategy using the memory
structureM with less than2k − 1 memory states, andν its next-move function.
For each memory statem, we considerSm = {i | ν(vi, µ(m, (h, vi))) = i},
the set of petals where Eve would stop the play if Adam chose them. As there
are less than2k − 1 memory states, there is a strict subsetX of {1, . . . , k}
which is not the stopping set of any memory state. Adam can winagainstσ by
choosing, at each step, a petal in the symmetric difference of X andSm, where
m is Eve’s current memory underσ. (Indeed, if Adam plays forever inX, then
Eve will never stop the play and only colors fromX will be reached, otherwise,
whenever Eve stops the play, the last memory state from the heart was anm
such thatX ⊂ Sm, and the petal chosen is ani that belongs toSm \X, hence
that has never been reached.)

We now describe a generalized reachability game won by Adam,where he
needs

(
k

⌊k/2⌋

)
memory states to win. Letk = 2p + 1. A play consists in three

steps: first Eve choosesp colors, then Adam choosesp colors, and third Eve
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choosesp colors. In order to win, Adam must visit exactly the same colors Eve
visited (which requires

(
k

⌊k/2⌋

)
memory states), otherwise at leastp + 1 colors

have been visited when Eve plays for the second time, and she can choose and
visit the remaining colors that have not yet been visited.

4 Restrictions on the size of reachability sets

The above section shows two different directions which makegeneralized reach-
ability games hard: the first is the complexity of solving generalized reachability
games (PSPACE-complete), and the second is the memory required to con-
struct winning strategies for both players (exponential inthe number of colors).

In this section, we restrict the size of the reachability sets in order to find
tractable subclasses of generalized reachability games.

Notice that our reduction fromQBF only impliesPSPACE-hardness when
reachability sets have size at least three. Indeed, note that in the reduction, the
size of a reachability set in the generalized reachability game corresponds to the
size of the corresponding clause of the formula. Since the problem of evaluating
a quantified boolean formula is polynomial if the formula hastwo variables per
clause, our reduction does not imply thePSPACE-hardness of solving gener-
alized reachability games with reachability sets of size one or two. This remark
motivates our study of the subclasses of generalized reachability games where
each color appears once, and then where each color appears twice.

4.1 Reachability sets of size one

The case where reachability sets are singletons is polynomial:

Theorem 4 (Generalized reachability games where reachability sets have
size1). Solving generalized reachability games where reachability sets are sin-
gletons is inPTIME.

Proof. We denote byvi the only vertex inFi, for all i. In this case, the gener-
alized reachability objective can be expressed by

∧

i≤k Reach(vi). We will see
that Eve wins if and only if the preorder defined byv � v′ if v ∈ Attr(v′) is
total. Intuitively, it means that a winning strategy prescribes: “reachvf(1), then
vf(2), and so on”, wheref is a permutation over{1, . . . , k}.

We consider two cases:

– If the preorder� is total over{vi | 1 ≤ i ≤ k}, then we show thatWE,
set of winning positions for Eve, is∩iAttr(vi). Let v ∈ ∩iAttr(vi) andf
a permutation over{1, . . . , k} such that for all1 ≤ i ≤ k − 1, we have
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vf(i) ∈ Attr(vf(i+1)), we construct a winning strategy fromv that reaches
vf(1), thenvf(2), and so on. Note that this strategy only needsk memory
states. Conversely, ifv /∈ ∩iAttr(vi), then Eve cannot win, as Adam can
prevent her from reaching some reachability set.

– If the preorder� is not total, then there existvi and vj such thatvi /∈
Attr(vj) andvj /∈ Attr(vi). In this case Adam wins from everywhere, fol-
lowing the strategy “ifvi or vj has been reached, then avoid the other”. Note
that this strategy only needs2 memory states.

Checking that the preorder� is total can be done in polynomial time.

Note that as a corollary, we get memory upper bounds in this case: Eve
needs at mostk memory states and Adam at most2. It is not difficult to see that
these bounds are tight.

4.2 Reachability sets of size two

Let us now turn to the case where reachability sets have size two. We first ex-
tend the technique used for the previous case: it was stated that “Eve wins if and
only if there is a total order on colored vertices”. A similarapproach works for
one-player arenas, through a reduction to the satisfiability problem of boolean
formulas where clauses have size two. (This latter problem is known to be de-
cidable in polynomial time.)

Theorem 5 (Generalized reachability one-player games where color ap-
pears twice).Solving generalized reachability one-player games where reach-
ability sets have size two is inPTIME.

Proof. As in the previous subsection, we consider the preorder defined byv �
v′ if v ∈ Attr(v′). Note that in the case of one-player arenas,v ∈ Attr(v′)
reduces to “there is a path fromv to v′”.

Let Fi = {xi, yi} be the reachability sets, andv0 be a starting vertex. We
assume without loss of generality that there is a path fromv0 to everyFi (that is,
either toxi or yi), otherwise Eve cannot win. (This property is easily checked in
deterministic polynomial time.) A first statement is as follows: Eve wins from
v0 if and only if there existv1, . . . , vk colored vertices such that

1. for all 0 ≤ i ≤ k − 1, vi � vi+1 and
2. each color appears in{v1, . . . , vk}.

We turn this condition into a boolean formula where clauses have size2. We
consider the2 · k variablesXi andYi, that correspond to verticesxi andyi. We
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define the formulaφ:

∧

{(¬X ∨ ¬Y ) | if x 6� y andy 6� x}

︸ ︷︷ ︸

(a)

∧
∧

i

(Xi ∨ Yi)

︸ ︷︷ ︸

(b)

,

wherex, y ranges over colored vertices (that is, vertices fromFi for somei).
We argue that Eve wins fromv0 if and only if φ is satisfiable. Assume Eve

wins from v0: let v1, . . . , vk as in the previous statement, and set the corre-
sponding variables to true and the others to false, we claim that the formulaφ
is satisfied. Indeed, condition 2. ensures that the clauses under-braced(b) are
satisfied, and for the clauses under-braced(a), let x, y such thatx 6� y and
y 6� x, if x is one of thevi’s, theny cannot be, so¬X ∨ ¬Y holds. Conversely,
assume thatφ is satisfiable. The clauses under-braced(a) ensures that the order
� is total over vertices set to true. The clauses under-braced(b) ensures that at
least one vertex from each reachability set is set to true. Combining those two
statements, we reach the condition stated above.

The latter allows to decide in polynomial time whether Eve wins fromv0 by
checking the formulaφ for satisfiability.

We do not know the exact complexity of generalized reachability games
where reachability sets have size2. In the remaining of this subsection, we dis-
cuss this question, focusing on memory requirements for both players.

The memory required for Eve is still exponential, as shown inFigure 4 for
k = 4. Specifically, it shows a generalized reachability game where reachability
sets have size2 won by Eve, where she needs2⌊k/2⌋+1 − 1 bits of memory to
win. The arena is divided into two parts: the left hand side isa flower with⌊k/2⌋
petals, and the right hand side a one-player arena. The game starts at the heart
of the flower. First, Eve asks for each petal a color. Once thistask is completed,
she can move to the right hand side to reach the remaining colors. Eve needs
to remember the⌊k/2⌋ choices made by Adam (one for each petal), in order to
reverse them: if Adam chose the color1, then the color2 has not been reached,
so Eve has to choose color2. Remembering those choices and asking for each
petal requires2⌊k/2⌋+1 − 1 memory states. (This is the size of the complete
binary tree of depth⌊k/2⌋.)

On the other hand, the exact memory required for Adam remainsopen. The
figure 5, following an idea of Christof Loeding, shows a generalized reacha-
bility game where reachability sets have size2 won by Adam, where he needs
4 memory states to win. The game starts from the left hand side vertex. First
Eve chooses and visits three of the four colors (two colors inthe first column,
1 and2 or 3 and4, and then one in the second column), and sends the pebble
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1 2

3 4 1

2

3

4

Fig. 4. A generalized reachability game where Eve needs2⌊k/2⌋+1
− 1 memory states to win

to the right hand side vertex, controlled by Adam. There, he has four options,
each allowing all colors but one. Remembering the four possibilities requires
four memory states, and leads to a win. However, with less memory states, one
of the four option will never be played, and Eve wins.

Quite surprisingly, we could not generalize this example toobtain a better
lower bound than4. We do not know whether this bound is tight (in any arena,
if Adam wins, then he has a winning strategy with4 memory states), which
is plausible. Note that this would imply acoNPNP algorithm: guess a winning
strategy for Adam with4 memory states, and compose this strategy with the
game, then solve the resulting one-player game.

1 2

3 4

4

3

2

1

¬1

¬2

¬3

¬4

Fig. 5. A generalized reachability game where Adam needs4 memory states to win

Open problems.We were not able to give the exact complexity of generalized
reachability games where reachability sets have size2. The memory approach,

14



showing that Adam has winning strategy of constant size, seems promising to-
wards this question.
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