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On some expectation and derivative operators related to

integral representations of random variables with respect to a

PII process.

STÉPHANE GOUTTE ∗†, NADIA OUDJANE ‡ AND FRANCESCO RUSSO §.

February 2nd 2012

Abstract

Given a process with independent increments X (not necessarily a martingale) and a large class of

square integrable r.v. H = f(XT ), f being the Fourier transform of a finite measure µ, we provide explicit

Kunita-Watanabe and Föllmer-Schweizer decompositions. The representation is expressed by means of

two significant maps: the expectation and derivative operators related to the characteristics of X . We also

provide an explicit expression for the variance optimal error when hedging the claim H with underlying

process X . Those questions are motivated by finding the solution of the celebrated problem of global and

local quadratic risk minimization in mathematical finance.

Key words and phrases: Föllmer-Schweizer decomposition, Kunita-Watanabe decomposition, Lévy pro-

cesses, Characteristic functions, Processes with independent increments, global and local quadratic risk

minimization, expectation and derivative operators.

2010 AMS-classification: 60G51, 60H05, 60J75, 91G10

1 Introduction

Let X be an (Ft)-special cadlag semimartingale, where (Ft) is a filtration fulfilling the usual conditions. It

admits a unique decomposition M + A where M is an (Ft)-local martingale and A is an (Ft)-predictable

process with bounded variation. Given T > 0 and a square integrable random variable H which is FT -

measurable, we consider three specific issues of stochastic analysis that are particularly relevant in stochas-

tic finance.

Kunita-Watanabe (KW) decomposition. This problem consists in providing existence conditions and ex-

plicit expressions of a predictable process (Zt)t∈[0,T ] and an F0-measurable r.v. such that

H = V0 +

∫ T

0

ZsdMs +OT , (1.1)
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where (Ot) is an (Ft)-local martingale such that 〈O,M〉 = 0.

When X = M is a classical Brownian motion W and (Ft) is the associated canonical filtration, Z is

provided by the celebrated Clark-Ocone formula at least whenH belongs to the Malliavin-Sobolev type

space D1,2. In that case one has

H = E(H) +

∫ T

0

E(DsH |Fs)dWs, (1.2)

where DH = (DtH)t∈[0,T ] is the classical Malliavin derivative of H .

In the last ten years a significant scientific production appeared at the level of Malliavin calculus in re-

lation with Poisson measures in several directions. A trend which was particularly directed to obtain-

ing a generalization of Clark-Ocone formula was started by [22]. In Theorem 1, the authors obtained

a chaos type decomposition of a square integrable random variable H in the Poisson space generated

by a finite number of Lévy square integrable martingales (ηj), with respect to a well-chosen sequence

of strongly orthogonal martingales γ(m). This could allow to represent any H as an infinite sum of

stochastic integrals with respect to the γ(m), an infinite dimensional derivative D(m) with respect to

γ(m) and a Malliavin-Sobolev type space D1,2. A first formulation of a Clark-Ocone type formula was

produced by [19]: it consisted in representing square integrable random variables H with respect to

the γ(m) in terms of some predictable projections of D(m)H . Another class of stochastic derivative

(this time) with respect to ηj was introduced by [9]. With the help of an isometry obtained in [20], one

could deduce the more intrinsic (and recently widely used) Clark-Ocone type formula of the type

H = E(H) +

∫ T

0

∫

R

E(Dt,xH |Ft)Ñ(dt, dx)

where Ñ is the compensated Poisson random measure and (Dt,x) a two-indexed derivative operator.

This formula is also stated in Theorem 12.16 of [10]. Theorem 4.1 of [3] allows to provide an explicit

representation of the process Z appearing in (1.1) with the help of previous operator Dt,x.

Föllmer-Schweizer decomposition. That decomposition is a generalization of the Kunita-Watanabe one in

the sense that square integrable random variables are represented with respect to X instead of M . It

consists in providing existence conditions and explicit expressions of a predictable process ξ and an

F0-measurable square integrable r.v. H0 such that

H = H0 +

∫ T

0

ξsdXs + LT (1.3)

where LT is the terminal value of an orthogonal martingale L to M , the martingale part of X .

In the seminal paper [12], the problem is treated for an underlying process X with continuous paths.

In the general case, X is said to satisfy the structure condition (SC) if there is a predictable process

α such that At =
∫ t
0 αsd〈M〉s, t ∈ [0, T ], and

∫ T
0 α2

sd〈M〉s < ∞ a.s. An interesting connection with

the theory of backward stochastic differential equations (BSDEs) in the sense of [23], was proposed

in [27]. [23] considered BSDEs driven by Brownian motion; in [27] the Brownian motion is in fact

replaced by M . The first author who considered a BSDE driven by a martingale was [5]. The BSDE

problem consists in finding a triple (V, ξ, L) where

Vt = H −
∫ T

t

ξsdMs −
∫ T

t

ξsαsd〈M〉s − (LT − Lt),
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and L is an (Ft)-local martingale orthogonal to M . The solution (V0, ξ, L) of that BSDE constitutes a

triplet (H0, ξ, L) solving (1.3). The FS decomposition is motivated in mathematical finance by looking

for the solution of the so called local risk minimization, see [12] where H represents a contingent claim

to hedge and X is related to the price of the underlying asset. In this case, Vt represents the hedging

portfolio value of the contingent claim at time t, ξ represents the hedging strategy and the initial capital

V0 constitutes in fact the expectation of H under the so called minimal martingale measure, see [28].

Variance optimal hedging. This approach developed by M. Schweizer ([27], [29]) consists in minimizing

the quadratic distance between the hedging portfolio and the pay-off. More precisely, it consists in

providing existence conditions and explicit expressions of a predictable process (ϕt)t∈[0,T ] and an

F0-measurable square integrable r.v. V0 such that

(V0, ϕ) = Argmin
c,v

E
(
ε(c, v)

)2
, where ε(c, v) = H − c−

∫ T

0

vsdXs . (1.4)

The quantity V0 and process ϕ represent the initial capital and the optimal hedging strategy of the

contingent claim H .

When the market is complete and without arbitrage opportunities, the representation property (1.3)

holds with L ≡ 0; so those three decompositions (Kunita-Watanabe, Föllmer-Schweizer and Variance Opti-

mal) reduce to a single representation of the random variable H as a stochastic integral modulo a martin-

gale (risk neutral) change of measure. If the market model is incomplete (e.g. because of jumps or stochastic

volatility in prices dynamics) then those three decompositions are in general different and a residual term

must be added to each integral representation, e.g. OT and LT and ε(V0, ϕ). However, even in this in-

complete market setting, a nice exception occurs if the underlying price X is a martingale. Indeed, the

martingale property allows to bypass some theoretical difficulties leading again to three identical decom-

positions.

Most of the articles providing quasi-explicit expressions for those decompositions are precisely assum-

ing the martingale property for the process X , therefore coming down to consider the Kunita-Watanabe

decomposition. For instance in [16], the authors developed an original approach to find an explicit expres-

sion for the Kunita-Watanabe decomposition of a random variable H of the form H = f(YT ) where Y is a

reference Markov process and the price process X is a martingale related to Y . Their idea is to apply Ito’s

formula to derive the Doob-Meyer decomposition of E[H |Ft] and then to write the orthogonality condition

between E[H |F·]−
∫ ·

0
ZsdXs and X . In [7], the authors follow the same idea to derive the hedging strategy

minimizing the Variance Optimal hedging error under the (risk-neutral) pricing measure. They provide some

interesting financial motivations for this martingale framework. Their approach also applies to a broad

class of price models and to some path dependent random variables H . In some specific cases they obtain

quasi-explicit expressions for the Variance Optimal strategy. For instance, they prove that if X is the expo-

nential of a Lévy process, then the strategy is related to derivatives and integrals w.r.t. the Lévy measure of

the conditional expectation E[H |Ft].
Unfortunately, minimizing the quadratic hedging error under the pricing measure, can lead to a huge

quadratic error under the objective measure. Moreover, the use of Ito’s lemma in those approaches requires

some regularity conditions on the conditional expectation E[H |Ft]: basically it should be once differentiable

w.r.t. the time variable and twice differentiable w.r.t. the space variable with continuous partial derivatives.

In the non-martingale framework, one major contribution is due to [15] whose authors restricted their

analysis to the specific case where X is the exponential of a Lévy process and H = f(XT ), f being the
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Fourier-Laplace transform of a complex finite measure. The authors obtained an explicit expression for the

process ξ intervening in (1.3). This result was generalized to exponential of non stationary processes in the

continuous and discrete time setting in [13] and [14].

Following this approach, the objective of the present paper is to consider the non-martingale framework

and to provide quasi explicit expressions of both the Kunita-Watanabe and Föllmer-Schweizer decomposi-

tions when X is a general process with independent increments and H = f(XT ) is the Fourier transform

of a finite measure µ. Our method does not rely on Ito’s formula and therefore does not require any further

regularity condition on conditional expectations. The representation is carried by means of two significant

maps: the so-called expectation and derivative operators related to the characteristics of the underlying pro-

cess X . We also express explicitly the Variance Optimal hedging strategy and the corresponding Variance

Optimal error.

The paper is organized as follows. In Section 2 we recall some essential considerations related to the

Föllmer-Schweizer decomposition related to general special semimartingales. In Section 3 we provide the

framework related to processes with independent increments and related structure conditions. Section 4

provides the explicit Kunita-Watanabe and the Föllmer-Schweizer decompositions under minimal assump-

tions. Section 5 formulates the solution of the global minimization problem evaluating the variance of the

hedging error. Finally, in Section 6, we consider a class of examples, for which we verify that the assump-

tions are fulfilled.

2 Generalities on Föllmer-Schweizer decomposition and mean variance

hedging

In the whole paper, T > 0, will be a fixed terminal time and we will denote by (Ω,F , (Ft)t∈[0,T ], P ) a filtered

probability space, fulfilling the usual conditions. We suppose from now on F0 to be trivial for simplicity.

2.1 Optimality and Föllmer-Schweizer Structure Condition

LetX = (Xt)t∈[0,T ] be a real-valued special semimartingale with canonical decomposition, X =M+A. For

the clarity of the reader, we formulate in dimension one, the concepts appearing in the literature, see e.g.

[27] in the multidimensional case. In the sequel Θ will denote the space L2(M) of all predictable R-valued

processes v = (vt)t∈[0,T ] such that E
[∫ T

0 |vs|2d 〈M〉s
]
< ∞ . For such v, clearly

∫ t
0 vdX, t ∈ [0, T ] is well-

defined; we denote byGT (Θ), the space generated by all the r.v. GT (v) =
∫ T
0 vsdXs with v = (vt)t∈[0,T ] ∈ Θ.

Definition 2.1. The minimization problem we aim to study is the following: GivenH ∈ L2, an admissible strategy

pair (V0, ϕ) will be called optimal if (c, v) = (V0, ϕ) minimizes the expected squared hedging error

E[(H − c−GT (v))
2] , (2.1)

over all admissible strategy pairs (c, v) ∈ R×Θ. V0 will represent the initial capital of the hedging portfolio for the

contingent claim H at time zero.

The definition below introduces an important technical condition, see [27].

Definition 2.2. Let X = (Xt)t∈[0,T ] be a real-valued special semimartingale. X is said to satisfy the structure

condition (SC) if there is a predictable R-valued process α = (αt)t∈[0,T ] such that the following properties are

verified.
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1. At =
∫ t
0 αsd 〈M〉s , for all t ∈ [0, T ], so that dA≪ d 〈M〉.

2.

∫ T

0

α2
sd 〈M〉s <∞ , P−a.s.

Definition 2.3. From now on, we will denote byK = (Kt)t∈[0,T ] the cadlag processKt =
∫ t
0 α

2
sd 〈M〉s , for all t ∈

[0, T ] . This process will be called the mean-variance trade-off (MVT) process.

In [27], the process (Kt)t∈[0,T ] is denoted by (K̂t)t∈[0,T ].

2.2 Föllmer-Schweizer decomposition and variance optimal hedging

Throughout this section, as in Section 2.1, X is supposed to be an (Ft)-special semimartingale fulfilling the

(SC) condition.

Definition 2.4. We say that a random variable H ∈ L2(Ω,F , P ) admits a Föllmer-Schweizer (FS) decomposi-

tion, if it can be written as

H = H0 +

∫ T

0

ξHs dXs + LHT , P − a.s. , (2.2)

where H0 ∈ R is a constant, ξH ∈ Θ and LH = (LHt )t∈[0,T ] is a square integrable martingale, with E[LH0 ] = 0 and

strongly orthogonal to M , i.e. 〈LH ,M〉 = 0.

The notion of strong orthogonality is treated for instance in Chapter IV.3 p. 179 of [24].

Theorem 2.5. If X satisfies (SC) and the MVT processK is uniformly bounded in t andω, then we have the following.

1. Every random variable H ∈ L2(Ω,F , P ) admits a unique FS decomposition. Moreover, H0 ∈ R, ξ ∈ Θ and

LH is uniquely determined by H .

2. For every H ∈ L2(Ω,F ,P) there exists a unique (c(H), ϕ(H)) ∈ R×Θ such that

E[(H − c(H) −GT (ϕ
(H)))2] = min

(c,v)∈R×Θ
E[(H − c−GT (v))

2] . (2.3)

From the Föllmer-Schweizer decomposition follows the solution to the global minimization problem (2.1).

Next theorem gives the explicit form of the optimal strategy.

Theorem 2.6. Suppose that X satisfies (SC), that the MVT process K of X is deterministic and 〈M〉 is continuous.

Let α be the process appearing in Definition 2.2 of (SC) and let H ∈ L2.

min
(c,v)∈R×Θ

E[(H − c−GT (v))
2] = exp(−KT )E[(L

H
0 )2] + E

[∫ T

0

exp{−(KT −Ks)}d
〈
LH
〉
s

]
.

Proof. The result follows from Corollary 9 of [27]. We remark that being 〈M〉 continuous, the Doléans-Dade

exponential of K , E(X), equals exp(K).

In the sequel, we will find an explicit expression of the KW and FS decomposition for a large class of

square integrable random variables H , when the underlying process is a process with independent incre-

ments.
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3 Processes with independent increments (PII)

This section deals with the case of processes with independent increments. First, we recall some useful

properties of such processes, then, we obtain a sufficient condition on the characteristic function for the

existence of the FS decomposition.

Beyond its own theoretical interest, this work is motivated by its possible application to hedging derivatives

related to financial or commodity assets. Indeed, in some specific cases it is reasonable to introduce arith-

metic models (eg. Bachelier) in contrast to geometric models (eg. Black-Scholes model), see for instance

[2].

3.1 Generalities on PII processes

Let X = (Xt)t∈[0,T ] be a stochastic process. Let t ∈ [0, T ].

Definition 3.1. 1. The characteristic function of (the law of) Xt is the continuous function

ϕt : R → C with ϕt(u) = E[eiuXt ] .

2. The Log-characteristic function of (the law of) Xt is the unique function Ψt : R → R such that ϕt =

exp(Ψt(u)) and Ψt(0) = 0.

Notice that for u ∈ R we have Ψt(u) = Ψt(−u). Since ϕ : [0, T ]× R → C, is uniformly continuous and

ϕt(0) = 1, then there is a neighborhood U of 0 such that

ReΨt(u) > 0, ∀t ∈ [0, T ], u ∈ U . (3.1)

Definition 3.2. X = (Xt)t∈[0,T ] is a (real) process with independent increments (PII) iff

1. X has cadlag paths;

2. X0 = 0;

3. Xt −Xs is independent of Fs for 0 ≤ s < t ≤ T where (Ft) is the canonical filtration associated with X ;

moreover we will also suppose

4. X is continuous in probability, i.e. X has no fixed time of discontinuities.

The process X is said to be square integrable if for every t ∈ [0, T ], E[|Xt|2] <∞.

From now on, (Ft) will always be the canonical filtration associated with X . Below, we state some

elementary properties of the characteristic functions related to PII processes. In the sequel, we will always

suppose that X is a semimartingale. For more details about those processes the reader can consult Chapter

II of [17].

Remark 3.3. Let 0 ≤ s < t ≤ T , u ∈ R,

1. ΨXt
(u) = ΨXs

(u) + ΨXt−Xs
(u).

2. exp (iuXt −Ψt(u)) is an (Ft)-martingale.
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3. There is an increasing function a : [0, T ] → R and a triplet (bt, ct, Ft) called characteristics such that

Ψt(u) =

∫ t

0

ηs(u) das , for all u ∈ R . (3.2)

where ηs(u) :=
[
iubs − u2

2 cs +
∫
R
(eiux − 1− iux1|x|≤1)Fs(dx)

]
. Indeed b : [0, T ] → R, c: [0, T ] → R+ are

deterministic functions and for any t ∈ [0, T ], Ft is a positive measure such that∫
[0,T ]×R

(1 ∧ x2)Ft(dx)dat < ∞. For more details we refer to the statement and the proof of Proposition II.2.9

of [17].

4. The Borel measure on [0, T ]× R defined by Ft(dx)dat is called jump measure and it is denoted by ν(dt, dx).

5. We have
∫
[0,T ]×R

x2ν(dt, dx) = E

(∑
t∈[0,T ](∆Xt)

2
)

where ∆Xt = Xt − Xt− is the jump at time t of the

process X .

6. Suppose that X is square integrable. Since previous sum of jumps is bounded by the square bracket at time T ,

i.e. [X,X ]T , which is integrable, it follows that E
(∑

t∈[0,T ](∆Xt)
2
)
<∞.

Remark 3.4. 1. The process X is square integrable if and only if for every t ∈ [0, T ], u 7→ ϕt(u) is of class C2.

2. By (3.1), X is square integrable if and only if u 7→ Ψt(u) is of class C2, t ∈ [0, T ], u ∈ U .

3. If X is square integrable, the chain rule derivation implies

E[Xt] = −iΨ′

t(0) , E[Xt −Xs] = −i(Ψ′

t(0)−Ψ
′

s(0)), (3.3)

V ar(Xt) = −Ψ
′′

t (0) , (3.4)

V ar(Xt −Xs) = −[Ψ
′′

t (0)−Ψ
′′

s (0)] . (3.5)

Remark 3.5. Suppose that X is a square integrable PII process. We observe that it is possible to permute integral

and derivative in the expression (3.2). In fact consider t ∈ [0, T ]. We need to show that

d

du

∫

[0,t]×R

ν(ds, dx)g(s, x;u) =

∫

[0,t]×R

ν(ds, dx)
∂g

∂u
(s, x;u), (3.6)

where g(s, x;u) = ix(eiux − 1|x|≤1). We observe that

|g(s, x;u)|2 = |eiux − 1|x|≤1|2 = | cosux− 1|x|≤1|2 + | sinux|2 = 1|x|>1 + 41|x|≤1(sin
ux

2
)2

≤ 4(
u2

2
∨ 1)(x2 ∧ 1) .

Hence, we obtain that for any real interval [a, b] and for any u ∈ [a, b],

∣∣∣∣
∂g(s, x;u)

∂u

∣∣∣∣ =

∣∣∣∣
∂

∂u
(eiux − 1− iux1|x|≤1)

∣∣∣∣ =
∣∣ix(eiux − 1|x|≤1)

∣∣ ≤ 2x2(|u| ∨ 1)

≤ 2bx2 =: γ(s, x) .

Consequently by finite increments theorem, Remark 3.3 5) it follows that
∫
[0,T ]×R

ν(ds, dx)γ(s, x) < ∞. By the

definition of derivative and Lebesgue dominated convergence theorem the result (3.6) follows. So

Ψ′
t(u) = i

∫ t

0

bsdas − u

∫ t

0

csdas +

∫ t

0

(∫

R

ix(eiux − 1|x|≤1)Fs(dx)

)
das , for all u ∈ R . (3.7)
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Moreover, since ∣∣∣∣
∂

∂u

(
ix(eiux − 1|x|≤1)

)∣∣∣∣ =
∣∣x2eiux

∣∣ ≤ x2

we obtain similarly

Ψ′′
t (u) = −

∫ t

0

csdas −
∫

[0,T ]×R

x2eiuxFs(dx)das = −
∫ t

0

ξs(u)das , (3.8)

where ξs(u) = cs +
∫
R
x2eiuxFs(dx). In particular, for every u ∈ R, t 7→ Ψ′

t(u) and t 7→ Ψ′′
t (u) are absolutely

continuous with respect to das.

Remark 3.6. Suppose that X is square integrable. A consequence of Remark 3.5 is the following.

1. t 7→ Ψ
′

t(u) is continuous for every u ∈ R and therefore bounded on [0, T ].

2. t 7→ Ψ
′′

t (0) is continuous.

3.2 Structure condition for PII

Let X = (Xt)t∈[0,T ] be a real-valued semimartingale with independent increments and X0 = 0. From now

on, X will be supposed to be square integrable.

Proposition 3.7. 1. X is a special semimartingale with decompositionX =M+Awith the following properties:

〈M〉t = −Ψ
′′

t (0) and At = −iΨ′

t(0). In particular t 7→ −Ψ
′′

t (0) is increasing and therefore of bounded

variation.

2. X satisfies condition (SC) of Definition 2.2 if and only if

dΨ
′

t(0) ≪ dΨ
′′

t (0) and

∫ T

0

∣∣∣∣∣
dΨ

′

s

dΨ′′

s

(0)

∣∣∣∣∣

2

|dΨ′′

s (0)| <∞ . (3.9)

In that case

At =

∫ t

0

αsd 〈M〉s with αt = i
dΨ

′

t(0)

dΨ
′′

t (0)
for all t ∈ [0, T ]. (3.10)

3. Under condition (3.9), FS decomposition exists (and it is unique) for every square integrable random variable.

Before going into the proof of the above proposition, let us derive one implication on the validity of the

(SC) in the Lévy case. Let X = (Xt)t∈[0,T ] be a real-valued Lévy process, with X0 = 0. We assume that

E[|XT |2] <∞.

1. Since X = (Xt)t∈[0,T ] is a Lévy process then Ψt(u) = tΨ1(u). In the sequel, we will use the shortened

notation Ψ := Ψ1.

2. Ψ is a function of class C2 and Ψ
′′

(0) = V ar(X1) which is strictly positive if X1 is non deterministic.

Then by application of Proposition 3.7, we get the following result.

Corollary 3.8. Let X =M +A be the canonical decomposition of the Lévy process X . Then for all t ∈ [0, T ],

〈M〉t = −tΨ′′

(0) and At = −itΨ′

(0) . (3.11)
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If Ψ
′′

(0) 6= 0 then X satisfies condition (SC) of Definition 2.2 with

At =

∫ t

0

αd 〈M〉s with α = i
Ψ

′

(0)

Ψ′′(0)
for all t ∈ [0, T ] . (3.12)

Hence, FS decomposition exists for every square integrable random variable. If Ψ
′′

(0) = 0 then (Xt) verifies condition

(SC) if and only if Xt ≡ 0.

Proof of Proposition 3.7. 1. Let us first determine A and M in terms of the log-characteristic function of

X . Using (3.3) of Remark 3.4, we get E[Xt|Fs] = E[Xt −Xs +Xs | Fs] = −iΨ′

t(0) + iΨ
′

s(0) +Xs, then

E[Xt+iΨ
′

t(0)|Fs] = Xs+iΨ
′

s(0). Hence, (Xt+iΨ
′

t(0)) is a martingale and the canonical decomposition

of X follows Xt = Xt + iΨ
′

t(0)︸ ︷︷ ︸
Mt

−iΨ′

t(0)︸ ︷︷ ︸
At

, where M is a local martingale and A is a locally bounded

variation process thanks to the semimartingale property of X . Let us now determine 〈M〉, in terms of

the log-characteristic function of X . Using (3.3) and (3.5) of Remark 3.4, yields

E[M2
t |Fs] = E[(Xt + iΨ

′

t(0))
2|Fs] = E[(Ms +Xt −Xs + i(Ψ

′

t(0)−Ψ
′

s(0)))
2|Fs] ,

= M2
s + V ar(Xt −Xs) =M2

s −Ψ
′′

t (0) + Ψ
′′

s (0) .

Hence, (M2
t +Ψ

′′

t (0)) is a (Ft)-martingale, and point 1. is established.

2. is a consequence of point 1. and of Definition 2.2. On the other hand At =
∫ t
0 αsd 〈M〉s with αt =

i
dΨ

′

t(0)

dtΨ
′′
t (0)

for t ∈ [0, T ] .

3. follows from Theorem 2.5. In fact KT =

∫ T

0

(
dΨ

′

s

dΨ′′

s

(0)

)2

d(−Ψ
′′

s (0)) is deterministic and in particular

K is uniformly bounded.

Condition (SC) implies a significant necessary condition.

Proposition 3.9. If X satisfies condition (SC), then one of the two following properties hold.

1. X has no deterministic increments.

2. If Xb −Xa is deterministic then Xu = Xa, ∀u ∈ [a, b].

Proof. We suppose that (SC) is fulfilled and let 0 ≤ a < b ≤ T for which Xb − Xa is deterministic.

Consequently −(Ψ
′′

b (0) − Ψ
′′

a(0)) = V ar(Xb − Xa) = 0. This implies that Xt − Xa is deterministic for

every t ∈ [a, b]. By (3.9), it follows that Ψ
′

t(0) = Ψ
′

a(0), ∀t ∈ [a, b]. Hence, for any t ∈ [a, b], we have

Xt −Xa = E[Xt −Xa] = 0.

The following technical result will be useful in the sequel.

Proposition 3.10. If X satisfies condition (SC), there is ã : [0, T ] → R increasing such that dãt is equivalent to

−d(Ψ′′

t (0)) and (3.2) holds with dat replaced by dãt.

Proof. Appendix.

From now on, at will be replaced by −Ψ′′
t (0). Equalities and inequalities will generally hold d(−Ψ′′

t (0))

a.e. with respect to t.
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Corollary 3.11. We suppose that X is square integrable and it fulfills (SC). Then for every u ∈ R, t 7→ Ψt(u),

t 7→ Ψ′
t(u) and t 7→ Ψ′′

t (u), are a.c. w.r.t. −Ψ′′
t (0).

1. In particular,

Ψ
′

t(u) =

∫ t

0

ζs(u)d(−Ψ
′′

s (0)) and Ψ
′′

t (u) =

∫ t

0

ξs(u)d(−Ψ
′′

s (0)) ,

where

ζs(u) = ibs − ucs +

∫

R

ix(eiux − 1{|x|≤1})Fs(dx) and ξs(u) = cs +

∫

R

x2eiuxFs(dx) .

2. Setting u = 0, we obtain ξs(0) = cs +
∫
R
x2Fs(dx) = 1, d(−Ψ

′′

s (0)) a.e.

Proof. It follows from Proposition 3.10, item 3. of Remark 3.3 and Remark 3.5.

3.3 Examples

3.3.1 A Gaussian continuous process example

Let ψ : [0, T ] → R be a continuous increasing function, γ : [0, T ] → R be a bounded variation function. We

set Xt = Wψ(t) + γ(t), where W is the standard Brownian motion on R. Clearly, Xt = Mt + γ(t), where

Mt = Wψ(t), defines a continuous martingale, such that 〈M〉t = [M ]t = ψ(t). Since Xt ∼ N (γ(t), ψ(t)), for

all u ∈ R and t ∈ [0, T ], we have Ψt(u) = iγ(t)u − u2ψ(t)
2 which yields Ψ

′

t(0) = iγ(t) and Ψ
′′

t (0) = −ψ(t).
Taking into account Proposition 3.7 2, (SC) is verified if and only if γ ≪ ψ and

dγ

dψ
∈ L2(dψ). This is of

course always verified if γ ≡ 0. We have At =
∫ t
0
αsd 〈M〉s and αt =

dγ
dψ

∣∣∣
t

for all t ∈ [0, T ].

3.3.2 Processes with independent and stationary increments (Lévy processes)

We recall some log-characteristic functions of typical Lévy processes. In this case we haveΨt(u) = tΨ(u), t ∈
[0, T ], x ∈ R.

1. Poisson Case: If X is a Poisson process with intensity λ, then for all u ∈ R, Ψ(u) = λ(eiu − 1), Ψ
′

(0) =

iλ and Ψ
′′

(0) = −λ, which yields α ≡ 1.

2. NIG Case: This process was introduced by Barndorff-Nielsen in [1]. IfX is a Normal Inverse Gaussian

Lévy process with X1 ∼ NIG(θ, β, δ, µ), with θ > |β| > 0, δ > 0 then for all u ∈ R, Ψ(u) = µiu +

δ(γ0 − γiu) , where γiu =
√
θ2 − (β + iu)2. By derivation, one gets Ψ

′

(0) = iµ+ δ iβ
γ0

and Ψ
′′

(0) =

−δ( 1
γ0

+ β2

γ3
0

) which yields α ≡ i
Ψ

′

(0)

Ψ′′(0)
=
γ20(γ0µ+ δβ)

δ(γ20 + β)
.

3. Variance Gamma case: If X is a Variance Gamma process with X1 ∼ V G(θ, β, δ, µ) where θ, β >

0, δ 6= 0, then for all u ∈ R, The expression of the log-characteristic function can be found in [15] or

also [6], table IV.4.5 in the particular case µ = 0. We have Ψ(u) = µiu + δLog

(
θ

θ−βiu+u2

2

)
, Log(z) =

ln|z|+ iArg(z), the Arg(z) being chosen in ]− Π,Π], being the complexe logarithm. After derivation

it follows Ψ
′

(0) = i(µ− δβ) and Ψ
′′

(0) = δ
θ
(θ2 − β2), which yields α ≡ µ− δβ

θ2 − β2

θ

δ
.

10



3.3.3 Wiener integrals of Lévy processes

We take Xt =
∫ t
0 γsdΛs, where Λ is a square integrable Lévy process as in Section 3.3.2 with Λ0 = 0. Then,∫ T

0
γsdΛs is well-defined at least when γ ∈ L∞([0, T ]). It is then possible to calculate the characteristic

function and the cumulative function of
∫ ·

0 γsdΛs. Let (t, z) 7→ tΨΛ(z), denoting the log-characteristic

function of Λ.

Lemma 3.12. Let γ : [0, T ] → R be a Borel bounded function. The log-characteristic function of Xt is such that for

all u ∈ R, ΨXt
(u) =

∫ t
0 ΨΛ(uγs)ds , where E[exp(iuXt)] = exp

(
ΨXt

(u)
)
. In particular, for every t ∈ [0, T ],

u 7→ ΨXt
(u) is of class C2 and so Xt is square integrable for any t ∈ [0, T ].

Proof. Suppose first that γ is continuous, then
∫ T
0
γsdΛs is the limit in probability of

∑p−1
j=0 γtj (Λtj+1

− Λtj )

where 0 = t0 < t1 < ... < tp = T is a subdivision of [0, T ] whose mesh converges to zero. Using the

independence of the increments, we have

E


exp{i

p−1∑

j=0

γtj (Λtj+1
− Λtj )}


 =

p−1∏

j=0

E
[
exp{iγtj (Λtj+1

− Λtj )}
]
=

p−1∏

j=0

exp{ΨΛ(γtj )(tj+1 − tj)} ,

= exp{
p−1∑

j=0

(tj+1 − tj)ΨΛ(γtj )} .

This converges to exp
(∫ T

0 ΨΛ(γs)ds
)

, when the mesh of the subdivision goes to zero.

Suppose now that γ is only bounded and consider, using convolution, a sequence γn of continuous func-

tions, such that γn → γ a.e. and supt∈[0,T ] |γn(t)| ≤ supt∈[0,T ] |γ(t)|. We have proved that

E

[
exp

(
i

∫ T

0

γn(s)dΛs

)]
= exp

(∫ T

0

ΨΛ(γn(s))ds

)
. (3.13)

Now, ΨΛ is continuous therefore bounded, so Lebesgue dominated convergence and continuity of stochas-

tic integral imply the statement.

Remark 3.13. 1. A similar statement was written with respect to the log cumulant generating function, see [4].

2. The proof works also when Λ has no moment condition and γ is a continuous function with bounded variation.

Stochastic integrals are then defined using integration by parts.

Since ΨΛ is of class C2 we have, Ψ
′

t(u) =
∫ t
0
Ψ

′

Λ(uγs)γsds, and Ψ
′′

t (u) =
∫ t
0
Ψ

′′

Λ(uγs)γ
2
sds . So

Ψ
′

t(0) = Ψ
′

Λ(0)

∫ t

0

γsds, Ψ
′′

t (0) = Ψ
′′

Λ(0)

∫ t

0

γ2sds and αt = i
Ψ

′

Λ(0)

Ψ
′′

Λ(0)

1{γt 6=0}

γt
. (3.14)

Remark 3.14. 1. V ar(XT ) = −Ψ
′′

Λ(0)
∫ T
0 γ2sds.

2. If Ψ
′′

Λ(0) = 0 then V ar(XT ) = 0 and so V ar(Xt) = 0, ∀t ∈ [0, T ] and so X is deterministic. Consequently

Condition (SC) is only verified if X vanishes identically because of Proposition 3.9.

Proposition 3.15. Condition (SC) is always verified if Ψ
′′

Λ(0) 6= 0.

Proof. We take into account item 2. of Proposition 3.7. Let 0 < s < t ≤ T , (3.14) implies

Ψ
′

t(0)−Ψ
′

s(0) = Ψ
′

Λ(0)

∫ t

s

γrdr =

∫ t

s

Ψ
′

Λ(0)

γr
1{γr 6=0}γ

2
rdr =

∫ t

s

(−iαr) d
(
−Ψ

′′

r (0)
)
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where αr =
Ψ

′

Λ(0)

Ψ
′′
Λ
(0)

i
γr
1{γ 6=0}. This shows the first point of (3.9). In particular

∣∣∣∣
dΨ

′

t(0)

dΨ
′′
t (0)

∣∣∣∣ =
|Ψ

′

Λ(0)|

−Ψ
′′
Λ
(0)

1
γt

. The

second point of (3.9) follows because
∫ T
0 |iαr|2d

(
Ψ

′′

r (0)
)
= T

|Ψ
′

Λ(0)|2

(−Ψ
′′
Λ
(0))

2 <∞.

4 Explicit Föllmer-Schweizer decomposition in the PII case

Let X = (Xt)t∈[0,T ] be a semimartingale (measurable process) with independent increments with log-

characteristic function (t, u) 7→ Ψt(u). We assume that (Xt)t∈[0,T ] is square integrable. In this section,

we first evaluate an explicit Kunita-Watanabe decomposition of a random variable H w.r.t. the martingale

partM ofX . Later, we obtain the decomposition with respect toX . Before doing so, it is useful to introduce

in the following preliminary subsection an expectation operator and a derivative operator related to X .

From now on we will suppose the validity of the (SC) condition.

4.1 On some expectation and derivative operators

We first introduce the expectation operator related to X . For 0 ≤ t ≤ T , let ǫXt,T denote the complex valued

function defined for all u ∈ R by

ǫXt,T (u) := exp(ΨT (u)−Ψt(u)) . (4.1)

In the sequel, to simplify notations, we will write ǫt,T instead of ǫXt,T .

We observe that the function (u, t) 7→ ǫt,T (u) and (u, t) 7→ ǫ2t,T (u) are uniformly bounded because the

characteristic function is bounded. The lemma below shows that the function ǫt,T is closely related to the

conditional expectation.

Lemma 4.1. Let H = f(XT ) where f is given as a Fourier transform, f(x) := µ̂(x) :=
∫
R
eiuxµ(du) , of a (finite)

complex measure µ defined on R.

Then, for all t ∈ [0, T ], E[f(XT )|Ft] = et,T (Xt) where for all x ∈ R,

et,T (x) := ǫ̂t,Tµ(x) =

∫

R

eiuxǫt,T (u)µ(du) .

Proof. First, we easily check that
∫
R
ǫt,T (u)µ(du) <∞, since µ is supposed to be a finite measure.

Now, let us consider the conditional expectation E[f(XT ) |Ft]. By Fubini’s theorem,

E[f(XT ) |Ft] = E

[∫

R

eiuXT µ(du) | Ft
]
=

∫

R

µ(du)E[eiuXT | Ft] .

Finally, remark that by the independent increments property of X , we obtain

E[eiuXT |Ft] = E

[
eiu(XT −Xt)eiuXt | Ft

]
= exp

(
ΨT (u)−Ψt(u)

)
eiuXt , for all u ∈ R .

Now let us introduce the derivative operator related to the PII X . Let δXt denote the complex valued

function defined for all u ∈ R by the Radon-Nykodim derivative

δXt (u) := i
d(Ψ′

t(u)−Ψ′
t(0))

dΨ
′′

t (0)
, (4.2)
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which is well-defined by Corollary 3.11. In the sequel, to simplify notations, we will write δt instead of δXt .

By (3.7) in Remark 3.3 4., we obtain

δt(u) = iuct +

∫

R

x(eiux − 1)Ft(dx) . (4.3)

The lemma below shows that the function δt is closely related to the Malliavin derivative in the sense of [3].

Lemma 4.2. Let η be a finite complex measure defined on R with a finite first order moment and g its Fourier

transform, i.e. the complex-valued function such that for all x ∈ R, g(x) = η̂(x) :=
∫
R
eiuxη(du) .

1. g is differentiable with bounded derivative;

2. δt(u)η(du) is a finite complex measure.

3. For all x ∈ R,

δ̂tη(x) :=

∫

R

eiuxδt(u)η(du) = ctg
′(x) +

∫

R

(
g(x+ y)− g(x)

)
yFt(dy) . (4.4)

Proof. Item 1. is obvious. We prove item 2. i.e. that
∫
R
|δtη|(du) < ∞. For this, notice that the following

upper bound holds for all u, x ∈ R,

|x(eiux − 1)| = 2|x|
∣∣∣sin ux

2

∣∣∣ ≤ 2(|u| ∨ 1)(x2 ∧ |x|) . (4.5)

Now, using the expression (4.3) of δt yields

|δt(u)| ≤
√
2

[
ct|u|+ 2(1 + |u|)

∫

R

x2 Ft(dx)

]
≤ 2

√
2(1 + |u|) , (4.6)

because by point 2. of Corollary 3.11, ct ≤ 1 and
∫
R
x2Ft(dx) ≤ 1 d(−Ψ′′

t (0))−a.e. Finally, (4.6) and the fact

that η is supposed to have a finite first order moment imply the result.

We go on with the proof of point 3. Now we can consider the Fourier transform δ̂tη. Using Fubini’s theorem

and (4.6), we obtain the following expression

δ̂tη(x) =

∫

R

δt(u)η(du)e
iux

= ct

∫

R

iu η(du)eiux +

∫

R

(∫

R

η(du)eiu(x+y) −
∫

R

η(du)eiux
)
yFt(dy) .

We are now in the position to state an explicit expression for the Kunita-Watanabe decomposition of

some random variables of the form H = f(XT ). To be more specific, we consider a random variable which

is given as a Fourier transform of XT ,

H = f(XT ) with f(x) = µ̂(x) =

∫

R

eiuxµ(du) , for all x ∈ R (4.7)

for some finite complex signed measure µ.
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4.2 Explicit elementary Kunita-Watanabe decomposition

By Proposition 3.7, X admits the following semimartingale decomposition, Xt = At +Mt, where

At = −iΨ′

t(0) and 〈M〉t = −Ψ
′′

t (0) . (4.8)

Proposition 4.3. Let H = f(XT ) where f is of the form (4.7). Then, H admits the decomposition

H = E[H ] +

∫ T

0

ZtdMt + OT ,

where O is a square integrable (Ft)−martingale such that 〈O,M〉 = 0 and

Vt := E[H | Ft] = et,T (Xt) , and Zt = dt,T (Xt−) ,

where the complex valued functions et,T and dt,T are defined for all x ∈ R by

et,T (x) := ǫ̂t,Tµ(x) =

∫

R

ǫt,T (u)µ(du)e
iux and dt,T (x) := δ̂tǫt,Tµ(x) =

∫

R

δt(u)ǫt,T (u)µ(du)e
iux , (4.9)

with ǫt,T being defined in (4.1) and δt being defined in (4.2). Moreover, E[
∫ T
0 Z2

sd〈M〉s] <∞ .

In particular, V0 = E[H ] .

Remark 4.4. We remark that the (SC) condition is not a restriction when X is a martingale, since it is obviously

fulfilled. This would correspond to the classical Kunita-Watanabe statement.

Remark 4.5. In [3], they obtain a similar decomposition valid for a different class of random variables. On one hand

their class is more general, allowing for path dependent payoffs, on the other hand it requires some stronger regularity

assumptions since H is supposed to be in the Malliavin-Sobolev space D1,2. In our case, their regularity assumption

on the payoff function could be relaxed by applying the derivative operator δt after applying the expectation operator

ǫt,T whereas in [3], they take the conditional expectation of the payoff Malliavin derivative.

This trick of switching the conditional expectation and the differentiation is also implicitly used in the approach

developed in [16] or similarly in [7]. Their approach relies on the application of Ito’s lemma on the conditional

expectation E[H |Ft] and therefore requires some regularity conditions. Basically the conditional expectation should

be once differentiable w.r.t. the time variable and twice differentiable w.r.t. the space variable with continuous partial

derivatives. On the other hand, their method is valid for a large class of martingale processes X .

Besides, our approach only relies on the martingale property of (eiuXt−Ψt(u))0≤t≤T . Hence, X is not required to be

martingale as in [3], [16] or [7] and no specific regularity assumption on the payoff function or on the conditional

expectation are required. Our approach is unfortunately restricted to additive processes. However, this specific setting

allows to go one step further in providing an explicit expression for both the Follmer-Schweizer decomposition and

the variance optimal strategy, as we will see below. Moreover, the expression of the Kunita-Watanabe decomposition

derived in this specific case is quasi-explicit involving a simple Fourier transform.

If ǫt,Tµ admits a first order moment, then taking η = ǫt,Tµ, in Lemma 4.2, the conditional expectation function

et,T is differentiable w.r.t. the variable x and we obtain

dt,T (x) := δ̂tǫt,Tµ(x) =

∫

R

δt(u)ǫt,T (u)µ(du)e
iux = cte

′
t,T (x) +

∫

R

(
et,T (x+ y)− et,T (x)

)
yFt(dy) . (4.10)

The following lemma gives a condition on characteristics ct and Ft ensuring the differentiability of et,T .
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Lemma 4.6. Let X be a PII process with finite second order moments such that there exist positive reals β ∈ (0, 2)

and α verifying

inf
t∈[0,T )

(
ct +

∫

|x|≤|u|−1

x2 Ft(dx)

)
≥ α |u|−2+β , when |u| → ∞ . (4.11)

Let µ be a finite complex measure defined on R and f its Fourier transform such that for all x ∈ R, f(x) = µ̂(x) .

Then, for all t ∈ [0, T ), ǫt,Tµ is a finite complex measure with finite moments of all orders and all the derivatives of

all orders of x 7→ et,T (x) := ǫ̂t,Tµ(x) are well-defined and bounded.

Remark 4.7. When X is a Lévy process, Assumption (4.11) implies the Kallenberg condition stated in [18] ensuring

the existence of a transition density for a Lévy process X .

Proof of Lemma 4.6. We prove that
∫
R
upǫt,T (u)µ(du) <∞, for any nonnegative integer p. For this, we recall

that Remark 3.3 together with the lines below Proposition 3.10 say that for all u ∈ R and t ∈ [0, T ]

|ǫt,T (u)| = exp

{
−u

2

2

∫ T

t

cs d(−Ψ′′
s (0))

} ∣∣∣∣∣ exp
{∫ T

t

∫

R

(eiux − 1− iux1|x|≤1)Fs(dx) d(−Ψ′′
s (0))

}∣∣∣∣∣ . (4.12)

Consider now the second exponential term on the right-hand side of the above equality; it gives
∣∣∣∣∣exp

{∫ T

t

∫

R

(eiux − 1− iux1|x|≤1)Fs(dx) d(−Ψ′′
s (0))

}
∣∣∣∣∣ ≤ exp

{
− 2

∫ T

t

∫

R

(sin
ux

2
)2 Fs(dx) d(−Ψ′′

s (0))
}

(4.13)

≤ exp
{
− 2

∫ T

t

∫

|x|≤ π
|u|

(sin
ux

2
)2 Fs(dx) d(−Ψ′′

s (0))
}

≤ exp
{
− 2

∫ T

t

(u
π

)2 ∫

|x|≤ π
|u|

x2 Fs(dx) d(−Ψ′′
s (0))

}
.

Hence, we conclude that for all u ∈ R,

|ǫt,T (u)| ≤ exp
{
− u2

2

∫ T

t

[
cs +

4

π2

∫

|x|≤ π
|u|

x2 Fs(dx)

]
d(−Ψ′′

s (0))
}
. (4.14)

Then by Assumption (4.11), there exists two positive reals α and β such that

|ǫt,T (u)| ≤ exp{−α
(u
π

)β
(Ψ′′

t (0)−Ψ′′
T (0))} , as |u| → ∞ .

Finally, we can conclude that under Assumption (4.11), for any nonnegative integer p, the complex measure

upǫt,Tµ is finite with a bounded Fourier transform g
(p)
t,T , the p order derivative of et,T .

Remark 4.8. Notice that the explicit expression of the Kunita-Watanabe decomposition obtained in the case of an

additive process can be used to derive an explicit expression in the case where X is an Ornstein-Uhlenbeck process.

Indeed if we consider

Xt = e−αtX̃t , (4.15)

for a given positive real α ∈ R and additive process X̃ . Consider a function f satisfying condition (4.7). We define

now f̃ : [0, T ] × R → R by f̃(t, x̃) = f(e−αtx̃), for all x̃ ∈ R, so that f(XT ) = f̃(T, X̃T ). Then by application

of Proposition 4.3, we get f(XT ) = E[f(XT )] +
∫ T
0
Z̃Ts dM̃s + OT , where M̃ is the martingale part of X̃ . Now

dXt = −αe−αtX̃tdt+ e−αtdM̃t − ie−αtdΨ′
t(0) , where Ψ is the log-characteristic function of X̃ . By uniqueness of
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the Doob-Meyer decomposition of the special semimartingale X , the martingale part of X is Mt =
∫ t
0 e

−αsdM̃s and

finally we deduce the Kunita-Watanabe decomposition

f(XT ) = E[f(XT )] +

∫ T

0

ZsdMs +OT , with Zt = eαtZ̃Tt . (4.16)

This can be easily generalized when αt is replaced by α(t) a bounded deterministic function of t.

Proof of Proposition 4.3. Lemma 4.1 says that Vt := E [H |Ft] =
∫
Vt(u)dµ(u) where

Vt(u) = ǫt,T (u)e
iuXt = E [exp (iuXT ) |Ft] . (4.17)

Having observed that |ǫt,T (u)| ≤ 1, for all u ∈ R, we get

sup
t≤T,u∈R

E
[
|Vt(u)|2

]
≤ 1 . (4.18)

This implies that V is an (Ft)-square integrable martingale since µ is finite. We define

Zt =

∫

R

Zt(u)dµ(u) , (4.19)

where

Zt(u) = δt,T (u)ǫt,T (u)e
iuXt− . (4.20)

In the second part of this proof, we will show that

E

[∫ T

0

|Zt(u)|2d(−Ψ
′′

t (0))

]
≤ 2 . (4.21)

This implies in particular that process Z in (4.19) is well defined and E

[∫ T
0
|Zs|2d〈M〉s

]
<∞ . We define

Ot := Vt − V0 −
∫ t

0

ZsdMs . (4.22)

By additivity O is an (Ft)-square integrable martingale. It remains to prove that 〈O,M〉 = 0. For this, we

will show that

〈V,M〉 =
∫ t

0

Zsd〈M〉s ,

which will follow from the fact that VtMt−
∫ t
0
Zsd〈M〉s is an (Ft)-martingale. In order to establish the latter,

we prove that for every 0 < r < t,

E

[(
VtMt − VrMr −

∫ t

r

Zsd〈M〉s
)
Rr

]
= 0 (4.23)

for every bounded (Fr)-measurable variableRr. Taking into account (4.18) and (4.21), by Fubini’s theorem,

the left hand side of (4.23) equals

∫
dµ(u)E

[(
Vt(u)Mt − Vr(u)Mr −

∫ t

r

Zs(u)d(−Ψ
′′

s (0))

)
Rr

]
. (4.24)

It remains now to show that the expectation in (4.24) vanishes for dµ(u) almost all u. Below, we will show

that

Vt(u)Mt −
∫ t

0

Zs(u)d(−Ψ
′′

s (0))
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is an (Ft)-martingale, for dµ(u) almost all u. This implies that (4.24) is zero.

We evaluate E[VtMt|Fs]. Since V and M are (Ft)-martingales, using the property of independent incre-

ments we get

E[Vt(u)Mt|Fs] = E[Vt(u)Ms|Fs] + E[Vt(u)(Mt −Ms)|Fs] ,

= MsVs(u) + Vs(u)E[exp{iu(Xt −Xs)− (Ψt(u)−Ψs(u))}(Mt −Ms)] ,

= MsVs(u) + Vs(u)e
−(Ψt(u)−Ψs(u))E[eiu(Xt−Xs)(Mt −Ms)] .

Consider now the expectation on the right hand side of the above equality:

E[eiu(Xt−Xs)(Mt −Ms)] = E[eiu(Xt−Xs)(Xt −Xs)] + E[eiu(Xt−Xs)i(Ψ
′

t(0)−Ψ
′

s(0))] ,

= −i ∂
∂u

E[eiu(Xt−Xs)] + i(Ψ
′

t(0)−Ψ
′

s(0))E[e
iu(Xt−Xs)] ,

= −ieΨt(u)−Ψs(u)(Ψ
′

t(u)−Ψ
′

s(u)) + i(Ψ
′

t(0)−Ψ
′

s(0))e
Ψt(u)−Ψs(u) .

Consequently,

E[Vt(u)Mt|Fs] = MsVs(u)− iVs(u)(Ψ
′

t(u)−Ψ
′

s(u)) + iVs(u)(Ψ
′

t(0)−Ψ
′

s(0))

= MsVs(u)− iVs(u)
(
Ψ

′

t(u)−Ψ
′

t(0)− (Ψ
′

s(u)−Ψ
′

s(0))
)
.

This implies that
(
Vt(u)Mt + iVt(u)(Ψ

′

t(u)−Ψ
′

t(0))
)
t

is an (Ft)-martingale. Then by integration by parts,

Vt(u)(Ψ
′

t(u)−Ψ
′

t(0)) =

∫ t

0

Vs(u) d(Ψ
′

s(u)−Ψ
′

s(0)) +

∫ t

0

(Ψ
′

s(u)−Ψ
′

s(0))dVs(u) .

The proof is concluded once we have shown (4.21).

By Cauchy-Schwarz inequality

E

(∫ T

0

Z2
s d(−Ψ′′

s (0))

)
= E

(∫ T

0

∣∣∣∣
∫

R

δs(u)ǫs,T (u)e
iuXsµ(du)

∣∣∣∣
2

d(−Ψ′′
s (0))

)

≤ |µ|(R)
∫ T

0

∫

R

|δs(u)ǫs,T (u)|2 |µ|(du) d(−Ψ′′
s (0))

= |µ|(R)
∫

R

|µ|(du)
∫ T

0

|δs(u)ǫs,T (u)|2 d(−Ψ′′
s (0)) .

Let us consider now, for a given real u the integral w.r.t. to the time parameter in the right-hand side of

the above inequality. Using inequalities (4.13) and (4.12), we obtain

|ǫs,T (u)|2 ≤ −1

2
exp

{∫ T

s

−
[
u2cr + 4

∫

R

(sin
ux

2
)2 Fr(dx)

]
d(−Ψ

′′

r (0))

}
.

On the other hand, by (4.3) and (4.5) we have

|δs(u)|2 ≤ 2

[
u2c2s + 4

(∫

R

|x sin ux
2
|Fs(dx)

)2]

≤ 2

[
u2c2s + 4

∫

R

x2 Fs(dx)

∫

R

(sin
ux

2
)2 Fs(dx)

]
.
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Since cs ≤ 1,
∫
R
x2Fs(dx) ≤ 1, by item 2. of Corollary 3.11, we finally get

|δs(u)|2 ≤ 2γs(u) (4.25)

where

γs(u) = u2cs + 4

∫

R

(sin
ux

2
)2 Fs(dx). (4.26)

Then
∫ T

0

|δs(u)ǫs,T (u)|2 d(−Ψ
′′

s (0)) ≤ 2

∫ T

0

γs(u) exp

{∫ T

s

−γr(u) d(−Ψ
′′

r (0))

}
d(−Ψ

′′

s (0))

(4.27)

= 2

(
1− exp(

{∫ T

0

−γr(u) d(−Ψ
′′

r (0))
}
)

≤ 2.

Example 4.9. We take X = M = W the classical Wiener process with canonical filtration (Ft). We have Ψs(u) =

−u2s
2 so that Ψ

′

s(u) = −us and Ψ
′′

s (u) = −s. So Zs(u) = iuVs(u). We recall that Vs = E[exp(iuWT )|Fs] =
exp(iuWs) exp

(
−u2 T−s

2

)
. In particular, V0 = exp(−u2T

2 ) and so exp(iuWT ) = i
∫ T
0 u exp(iuWs) exp

(
−u2 T−s

2

)
dWs+

exp(−u2T
2 ). In fact that expression is classical and it can be derived from Clark-Ocone formula. In fact, if D is the

usual Malliavin derivative then E (Dt exp(iuWT )|Ft) = iu exp(iuWs − u2

2 (T − s)).

4.3 Explicit Föllmer-Schweizer decomposition

We are now able to evaluate the FS decomposition of H = f(XT ) where f is given by (4.7). First, we state

the following lemma.

Lemma 4.10. For all s, t ∈ [0, T ),
∫ t

s

Re
(
iδr(u)dΨ

′
r(0)

)
≤ KT +

∫ t

s

∫

R

(
sin

ux

2

)2
Fr(dx) d(−Ψ′′

r (0)), (4.28)

where the process K was defined in Definition 2.3.

Proof. Using (4.3) and (3.7), with a slight abuse of notation, it follows

Re
(
iδr(u)dΨ

′
r(0)

)
= −

(
br +

∫

|x|>1

xFr(dx)

) ∫

R

(x(cos(ux)− 1)Fr(dx)) d(−Ψ′′
r (0))

= 2

(
br +

∫

|x|>1

xFr(dx)

) ∫

R

(
x
(
sin

ux

2

)2
Fr(dx)

)
d(−Ψ′′

r (0))

≤
[(
br +

∫

|x|>1

xFr(dx)
)2

+
( ∫

R

x
(
sin

ux

2

)2
Fr(dx)

)2
]
d(−Ψ′′

r (0)) .

Indeed, by the (SC) condition using Proposition 3.7 and Corollary 3.11 1., we obtain that for all t ∈ [0, T ),
∫ t

s

(
br +

∫

|x|>1

xFr(dx)
)2
d(−Ψ′′

r (0)) =

∫ t

s

∣∣∣∣
dΨ′

r(0)

d(−Ψ′′
r (0)

∣∣∣∣
2

d(−Ψ′′
r (0)) = Kt −Ks ≤ KT ,

which is a deterministic bound. Finally, recalling that
∫
R
x2Fr(dx) ≤ 1 by Corollary 3.11 2., Cauchy-Schwarz

inequality implies ( ∫

R

x
(
sin

ux

2

)2
Fr(dx)

)2
≤
∫

R

(
sin

ux

2

)2
Fr(dx) .
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Theorem 4.11. The FS decomposition of H = f(XT ) where f satisfies (4.7) is the following

Ht = H0 +

∫ t

0

ξsdXs + Lt with HT = H , (4.29)

where

ξt = kt,T (Xt−) , with kt,T (x) =

∫

R

ei
∫

T

t
δs(u) dΨ

′
s(0) δt(u)ǫt,T (u)e

iuxµ(du) , (4.30)

and

Ht = ht,T (Xt) , with ht,T (x) =

∫

R

ei
∫

T

t
δs(u) dΨ

′
s(0) ǫt,T (u)e

iuxµ(du) , (4.31)

with ǫt,T defined in (4.1) and δt defined in (4.2).

Proof. Let us introduce the following notations, which will correspond to the expression (4.31) for Ht

and (4.30) for ξt in the case where µ = δu for a given real u:

Ht(u) := ei
∫

T

t
δs(u) dΨ

′
s(0) ǫt,T (u)e

iuXt and ξt(u) := ei
∫

T

t
δs(u) dΨ

′
s(0) δt(u)ǫt,T (u)e

iuX
t− . (4.32)

1. We first introduce the process H . Taking into account Lemma 4.10 together with inequalities (4.13)

and (4.12), |H(u)| is uniformly bounded in u and t. Indeed

|Ht(u)| = |ei
∫

T

t
δr(u) dΨ

′
r(0)| |ǫt,T (u)|

≤ exp

{
KT +

∫ T

t

∫

R

(
sin

ux

2

)2
Fr(dx) d(−Ψ′′

r (0))

}

exp

{∫ T

t

−1

2

[
u2cr + 4

∫

R

(
sin

ux

2

)2
Fr(dx)

]
d(−Ψ′′

r (0))

}

≤ exp(KT ) exp

{
−1

4

∫ T

t

γr(u) d(−Ψ′′
r (0))

}
(4.33)

≤ exp(KT ),

where γ was defined in (4.26).

By Fubini’s,

Ht =

∫

R

Ht(u)dµ(u) (4.34)

is well-defined and it equals the expression in (4.31). We prove now that ξ defined in (4.30) is a well-

defined square integrable process. Using the above bounds (4.33) and (4.25) we obtain

|ξt(u)|2 ≤ |δt(u)|2|Ht(u)|2

≤ 2γt(u) exp(2KT ) exp

{
−1

2

∫ T

t

γr(u) d(−Ψ′′
r (0))

}
, (4.35)

which finally implies

E

(∫ T

0

|ξt(u)|2d 〈M〉t

)
≤ 4

(
1− exp

{∫ T

t

γr(u) d(−Ψ′′
r (0))

})
≤ 4 . (4.36)

Hence, ξ(u) ∈ Θ := L2(M) for any u ∈ R. (4.36), (4.27) yield

∫

R

dµ(u)

∫ T

0

E(|ξt(u)|2)d 〈M〉t <∞ . (4.37)
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The above upper bound implies that ξt =
∫
R
ξt(u)dµ(u) is well-defined and ξ ∈ Θ and it equals the

expression (4.30). Consequently ξ ∈ L2(M) = Θ and using stochastic and classical Fubini’s we get

∫ t

0

ξsdXs =

∫

R

dµ(u)

∫ t

0

ξs(u)dXs . (4.38)

2. We go on with the proof of Theorem 4.11 showing the following:

a) Lt = Ht −H0 −
∫ t
0
ξsdXs is an eventually complex valued square integrable martingale;

b) 〈L,M〉 = 0 where M is the martingale part of the special semimartingale X .

3. We first establish a) and b) for the case µ is the Dirac measure at some fixed u ∈ R. We will show that

Ht(u) = H0(u) +

∫ t

0

ξs(u)dXs + Lt(u) with HT (u) = exp(iuXT ) , (4.39)

for fixed u ∈ R whereL(u) is a square integrable martingale and 〈L(u),M〉 = 0. Notice that by relation

(4.32), Ht(u) = ei
∫

T

t
δs(u)dΨ

′
s(0)Vt(u) with Vt(u) = eiuXtǫt,T (u), as introduced in (4.17). Integrating by

parts, gives

Ht(u) = H0(u) +

∫ t

0

ei
∫

T

r
δs(u)dΨ

′
s(0)Vr(u)

(
− iδr(u)dΨ

′
r(0)

)
+

∫ t

0

ei
∫

T

r
δs(u)dΨ

′
s(0)dVr(u) . (4.40)

We denote again by Z(u) the expression provided by (4.20). We observe that

ξt(u) = ei
∫

T

t
δs(u)dΨ

′
s(0)Zt(u).

We recall that

dVr(u) = Zr(u)dMr + dOr(u) = Zr(u)(dXr − dAr) + dOr(u) , (4.41)

where A is given by (4.8) and O(u) is a square integrable martingale strongly orthogonal to M . Re-

placing (4.41) in (4.40) yields

Ht(u) = H0(u) + Lt(u) +

∫ t

0

ei
∫

T

r
δs(u)dΨ

′
s(0)Zr(u)dXr

+ i

∫ t

0

ei
∫

T

r
δs(u)dΨ

′
s(0)Zr(u)dΨ

′
r(0)− i

∫ t

0

ei
∫

T

r
δs(u)dΨ

′
s(0)Vr(u)δr(u)dΨ

′
r(0)

= H0(u) + Lt(u) +

∫ t

0

ξs(u)dXs,

where

Lt(u) =

∫ t

0

ei
∫

T

r
δs(u)dΨ

′
s(0)dOr(u). (4.42)

L(u) is a local martingale which is also a square integrable martingale because
∫ T
0
e2Re(i

∫
T

t
δs(u)dΨ

′
s(0)d〈O〉t

is finite taking into account Lemma 4.10.

Since O(u) is strongly orthogonal with respect to M , then L(u) has the same property.

4. We treat now the general case discussing the points a) and b) in item 2. (4.38) and the Definition of H

show that

Lt := Ht −H0 −
∫ t

0

ξsdXs (4.43)
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fulfills ∫

R

Lt(u)dµ(u) = Lt, (4.44)

for every t ∈ [0, T ]. Let 0 ≤ s < t ≤ T and Rs a bounded Fs-measurable random variable. Us-

ing (4.33), (4.36) and Cauchy-Schwarz we obtain

E[(|Lt(u)|2) = E

( ∣∣∣∣Ht(u)−H0(u)−
∫ t

0

ξr(u)dXr

∣∣∣∣
2 )

≤ 2E
(
|Ht(u)|2

)
+ 4E

(
|H0(u)|2

)
+ 8

(
E

(∫ t

0

ξr(u)dMr

)2

+ E

(∫ t

0

ξr(u)αrd[M ]r

)2
)

≤ 2E
(
|Ht(u)|2

)
+ 4E

(
|H0(u)|2

)
+ 8 (1 +KT )E

(∫ t

0

|ξr(u)|2d(−Ψ
′′

r (0))

)

≤ 6 exp(2KT ) + 32(1 +KT ). (4.45)

(a) By (4.45), we observe that E
(∫

R
dµ(u)|Lt(u)|

)
< ∞. Fubini’s, (4.44) and the fact that L(u) is an

(Ft)-martingale give E[LtRs] = E[LsRs]. Therefore L is an (Ft)-martingale. For every t ∈ [0, T ],

(Lt) is a square integrable because of (4.43) and by additivity.

(b) By item 3. L(u)M is an (Ft)-local martingale. Moreover L(u) and M are square integrable

martingales. By Cauchy-Schwarz and Doob inequalities, it follows that E(supt∈[0,T ] |Lt(u)Mt|)
is finite. Consequently L(u)M is indeed an (Ft)-martingale. It remains to show that LM is an

(Ft)-martingale. This is a consequence of Fubini’s provided we can justify

E(LtMtRs) =

∫

R

dµ(u)E[Lt(u)MtRs]. (4.46)

For this we need to estimate ∫

R

dµ(u)E(|Lt(u)MtRs|) . (4.47)

By Cauchy-Schwarz the square of expression (4.47) is bounded by

||R||∞
∫

R

dµ(u)E
(
|Lt(u)|2

) ∫

R

dµ(u)E
(
|Mt|2

)
≤ |µ|(R)2||R||∞E

(
|MT |2

)
sup

t≤T ;u∈R

E
(
|Lt(u)|2

)

(4.47) follows by (4.45). This finally shows that the expression (4.29) in the statement of Theorem

4.11 is an FS type decomposition which could be theoretically complex.

5. It remains to prove that the decomposition is real-valued. Let (H0, ξ, L) and (H0, ξ, L) be two FS

decomposition of H . Consequently, since H and (St) are real-valued, we have

0 = H −H = (H0 −H0) +

∫ T

0

(ξs − ξs)dXs + (LT − LT ) ,

which implies that 0 = Im(H0)+
∫ T
0
Im(ξs)dXs+Im(LT ). By Theorem 2.5, the uniqueness of the real-

valued Föllmer-Schweizer decomposition yields that the processes (Ht),(ξt) and (Lt) are real-valued.
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5 The error in the quadratic minimization problem

Let H ∈ L2. The problem of minimization of the quadratic error given in Definition 2.1 is strongly con-

nected with the FS decomposition. We evaluate now the error committed by the mean-variance hedging

procedure. In the following lemma, we first calculate 〈L(u), L(v)〉 for any u, v ∈ R.

Lemma 5.1. We have

〈L(u), L(v)〉t =
∫ t

0

ǫt,T (u)ǫt,T (v)e
i
∫

T

t

(
δr(u)+δr(v)

)
dΨ′

r(0)dΓs(u, v) , (5.1)

where (Vt(u)) is the exponential martingale defined by Vt(u) = eiuXtǫt,T (u) , as introduced in (4.17) and

Γt(u, v) = νt(u, v)−
∫ t

0

δs(u)δs(v)d(−Ψ
′′

s (0)) , with (5.2)

νt(u, v) = Ψt(u+ v)−Ψt(u)−Ψt(v) (5.3)

Proof. We have

Lt(u) = Ht(u)−H0(u)−
∫ t

0

ξr(u)dXr

= Vt(u)e
i
∫

T

t
δs(u)dΨ

′
s(0) − eΨT (u)+i

∫
T

0
δs(u)dΨ

′
s(0) −

∫ t

0

ξr(u)dMr −
∫ t

0

ξr(u)dAr .

Using integration by parts and the fact that t 7→
∫ t
0
δs(u)dΨ

′
s(0) is continuous (since t 7→ Ψ

′′

t (0) is),

Lt(u) = Mt(u) +At(u) , (5.4)

where

Mt(u) =

∫ t

0

ei
∫

T

r
δs(u)dΨ

′
s(0)dVr(u)−

∫ t

0

ξr(u)dMr − eΨT (u)+i
∫

T

0
δs(u)dΨ

′
s(0) (5.5)

At(u) = −i
∫ t

0

ei
∫

T

r
δs(u)dΨ

′
s(0)Vr(u)δr(u)dΨ

′
r(0) + i

∫ t

0

ξr(u)dΨ
′
r(0) .

We observe that At(u) is predictable, A0(u) = 0, L0(u) = 0. By uniqueness of the decomposition of an

(Ft)-special semimartingale, we obtain

L(u)t = Mt(u) =

∫ t

0

Zs(u)d(−Ψ
′′

s (0)) (5.6)

Since 〈O(u),M〉 = 0 where O(u) was defined in (4.22), it follows

〈V (u),M〉t =
∫ t

0

Zs(u)d 〈M〉s , where Zt(u) = δt(u)Vt(u) . (5.7)

We need at this point to express the predictable covariation 〈V (u), V (v)〉, ∀u, v ∈ R. For this we decompose

the product V (u)V (v) to obtain

Vt(u)Vt(v) = Vt(u+ v)Rt(u, v) , (5.8)

where

Rt(u, v) =
ǫt,T (u)ǫt,T (v)

ǫt,T (u+ v)
= exp{−(νT (u, v)− νt(u, v))} .

Since (Rt(u, v))t∈[0,T ] is continuous, integrating by parts we obtain

Vt(u)Vt(v) =

∫ t

0

Rs(u, v)dVs(u+ v) +

∫ t

0

Vs(u + v)Rs(u, v)dνs(u, v) .
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Since (
∫ t
0 Rs(u, v)dVs(u+ v))t is an (Ft)-local martingale, it follows that

〈V (u), V (v)〉t =
∫ t

0

Vs(u+ v)Rs(u, v)(dΨs(u+ v)− dΨs(u)− dΨs(v)) . (5.9)

We come back to the calculus of 〈L(u), L(v)〉t; (5.5) and (5.6) give

〈L(u), L(v)〉t =

〈
L(u),

∫ .

0

ei
∫

T

r
δs(v)dΨ

′
s(0)dVr(v)

〉

t

=

〈∫ .

0

ei
∫

T

r
δs(u)dΨ

′
s(0)dVr(u),

∫ .

0

ei
∫

T

r
δs(v)dΨ

′
s(0)dVr(v)

〉

t

−
〈∫ .

0

ξr(u)dMr,

∫ .

0

ei
∫

T

r
δs(v)dΨ

′
s(0)dVr(v)

〉

t

=

∫ t

0

ei
∫

T

r

(
δs(u)+δs(v)

)
dΨ′

s(0)d 〈V (u), V (v)〉r −
∫ t

0

ξr(u)e
i
∫

T

r
δs(v)dΨ

′
s(0)d 〈M,V (v)〉r

Using (5.7), (5.8) and (5.9), we obtain

〈L(u), L(v)〉t =

∫ t

0

ei
∫

T

r

(
δs(u)+δs(v)

)
dΨ′

s(0)Vr(u+ v)Rr(u, v)dνr(u, v)

−
∫ t

0

Vr(u)Vr(v)e
i
∫

T

r

(
δs(u)+δs(v)

)
dΨ′

s(0)δr(u)δr(v)d(−Ψ
′′

r (0))

=

∫ t

0

ei
∫

T

r

(
δs(u)+δs(v)

)
dΨ′

s(0)ǫr,T (u)ǫr,T (v)
[
dνr(u, v) + δr(v)δr(u)dΨ

′′

r (0)
]
,

which concludes the proof.

Now we can evaluate the error committed by the mean-variance hedging procedure described at Sec-

tion 5.

Theorem 5.2. Let X = (Xt)t∈[0,T ] be a semimartingale with independent increments with log-characteristic func-

tion Ψ. Then the variance of the hedging error equals J0 :=
∫
R2 dµ(u)dµ(v)J0(u, v) where

J0(u, v) =

∫ T

0

exp

(∫ T

t

( dΨ′

s(0)

dΨ′′

s (0)

)2
dΨ

′′

s (0) + i

∫ T

t

(
δs(u) + δs(v)

)
dΨ′

s(0)

)
ǫt,T (u)ǫt,T (v)dΓt(u, v) ,

where ǫt,T is defined in (4.1), δt is defined in (4.2) and Γ is defined in (5.2).

Proof. Theorem 2.6 implies that the variance of the hedging error equals

E

(∫ T

0

exp{−(KT −Ks)}d 〈L〉s

)
, (5.10)

where K was defined in Definition 2.3. By (3.10), it follows that Kt =
∫ t
0

(
dΨ

′

s(0)

dΨ′′
s (0)

)2

d(−Ψ
′′

s (0)). We come

back to expression (5.1) given in Lemma 5.1. It gives

〈L(u), L(v)〉t = C1(u, v, t) + C2(u, v, t) (5.11)

where

C1(u, v, t) :=

∫ t

0

ei
∫

T

s

(
δr(u)+δr(v)

)
dΨ′

r(0)ǫs,T (u)ǫs,T (v)e
i(u+v)Xsdνs(u, v) (5.12)

23



C2(u, v, t) :=

∫ t

0

ei
∫

T

s

(
δr(u)+δr(v)

)
dΨ′

r(0)ǫs,T (u)ǫs,T (v)δs(u)δs(v)e
i(u+v)XsdΨ′′

s (0) . (5.13)

We need to show that

E

(∫

R2

d|µ|(u)d|µ|(v)|| 〈L(u), L(v)〉 ||var
)
<∞ . (5.14)

Observe that

‖C1(u, v, ·)‖var =
∫ T

0

|Hs(u)Hs(v)|d|νs|(u, v) .

Let us consider first the term involving the measure ν. Notice that

dνs(u, v) =

[
−uvcs +

∫

R

(eiux − 1)(eivx − 1)Fs(dx)

]
d(−Ψ

′′

s (0)) ,

Then, we obtain the following upper bound

d|νs|(u, v) ≤
[
|uv|cs + 2

∫

R

| sin ux
2
| | sin vx

2
|Fs(dx)

]
d(−Ψ

′′

s (0))

≤ 1

2

[
(u2 + v2)cs + 2

∫

R

[
(sin

ux

2
)2 + (sin

vx

2
)2
]
Fs(dx)

]
d(−Ψ

′′

s (0))

≤ 1

2

[
γs(u) + γs(v)

]
,

where γs is defined in (4.26). we obtain by setting γs(u, v) = (u2 + v2) cs2 +
∫
R
(sin ux

2 )2(sin vx
2 )2Fs(dx) Now,

using inequality (4.33) yields

‖C1(u, v, ·)‖var =
1

2
exp(2KT )

∫ T

0

[γs(u) + γs(v)] exp

{
−1

4

∫ T

s

[
γr(u) + γr(v)

]
d(−Ψ′′

r (0))

}
d(−Ψ

′′

s (0))

= 2 exp(2KT )
(
1− exp

{
−1

4

∫ T

0

[
γr(u) + γr(v)

]
d(−Ψ′′

r (0))

})

≤ 2 exp(2KT ) ,

which implies, by the fact that µ is finite
∫

R2

d|µ|(u)d|µ|(v)||C1(u, v, .)||var ≤ 2 exp(2KT )|µ|(R)2. (5.15)

Now, using (4.35),

‖C2(u, v, ·)‖var ≤
∫ T

0

|ξs(u)| |ξs(v)|d(−Ψ′′
s (0))

≤ 2 exp(2KT )

∫ T

0

√
γs(u)γs(v) exp

{
−1

4

∫ T

s

(
γr(u) + γr(v)

)
d(−Ψ′′

r (0))

}
d(−Ψ′′

s (0))

≤ −4 exp(2KT )

∫ T

0

(
−1

4

)(
γs(u) + γs(v)

)
exp

{
−1

4

∫ T

s

(
γr(u) + γr(v)

)
d(−Ψ′′

r (0))

}
d(−Ψ′′

s (0))

≤ 4 exp(2KT ) . (5.16)

Finally (5.16) implies ∫

R2

∥∥C2(u, v, .)
∥∥
var

d|µ|(u)d|µ|(v) ≤ 4 exp(2KT )|µ|(R)2. (5.17)

Since KT is deterministic, (5.17) and (5.15) imply (5.14). Previous considerations allow to prove that

〈L〉t =
∫

R2

dµ(u)dµ(v) 〈L(u), L(v)〉t . (5.18)
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For this, it is enough to show that

L2
t −

∫

R2

dµ(u)dµ(v) 〈L(u), L(v)〉t (5.19)

produces an (Ft)-martingale. First (5.14) shows that the second term in (5.19) is well-defined. By (4.45)

and Fubini’s, (5.19) gives
∫
R2 dµ(u)dµ(v)(Lt(u)Lt(v)− 〈L(u), L(v)〉t). By similar arguments as point 4.(a) in

the proof of Theorem 4.11, using the fact that (Lt(u)) is a martingale and applying Fubini’s, we are able to

show that (5.19) defines a martingale. According to (5.10), the last step of the proof consists in evaluating

the expectation of
∫ T
0 exp{−(KT −Ks)}d 〈L〉s taking into account (5.18) and Lemma 5.1.

6 Examples

6.1 The Gaussian examples

We refer here to the toy model introduced at Section 3.3.1. We suppose that Xt = γ(t) + Wψ(t) with ψ

increasing, dγ ≪ dψ and dγ
dψ

∈ L2(dψ). This guarantees the (SC) property because of Proposition 3.7 2.

Given f and µ expressed via (4.7), the FS-decomposition of H = f(XT ) is provided by Theorem 4.11 with

Ψ
′

t(0) = iγ(t) , δt(u) = iu , and ǫt,T (u) = exp[iu(γ(T )− γ(t))− u2

2
(ψ(T )− ψ(t))] ,

which yields

Ht(u) = exp[2iu(γ(T )− γ(t))− u2

2
(ψ(T )− ψ(t))]eiuXt and ξt(u) = iuHt(u)

According to Lemma 5.1, we can easily show that Γt(u, v) ≡ 0, for all t ∈ [0, T ], u, v ∈ R. Consequently, the

variance of the hedging error is zero.

6.2 The Lévy case

Let X be a square integrable Lévy process, with characteristic function Ψt(u) where Ψt(u) = tΨ(u) . It is

always a semimartingale since Ψ → eiΨt(u) has bounded variation, see Theorem 4.14 of [17]. By Remark

3.4, Ψ is of class C2(R). We suppose that Ψ
′′

(0) 6= 0. We have

dΨ
′

t(0)

dΨ
′′

t (0)
=

Ψ
′

(0)

Ψ′′(0)
.

Condition (SC) is verified taking into account Proposition 3.7. In conclusion, we can apply Theorem 4.11

taking into account (4.1) and (4.2), we obtain Vt(u) = exp((T − t)Ψ(u))eiuXt ,

Ht(u) = exp

(
(T − t)

(
Ψ(u) +

Ψ′(u)−Ψ′(0)

Ψ′′(0)
Ψ′(0)

))
eiuXt and ξt(u) = Ht(u)i

Ψ
′

(u)−Ψ
′

(0)

Ψ′′(0)
.

The factor Γt(u, v) appearing in Lemma 5.1 gives Γt(u, v) = tΓ(u, v) and

Γ(u, v) = (Ψ(u+ v)−Ψ(u)−Ψ(v)) +
(Ψ

′

(v)−Ψ
′

(0))(Ψ
′

(u)−Ψ
′

(0))

(−Ψ′′(0))
.

In particular, whenX is a Poisson process we have Γ(u, v) ≡ 0. This shows, as expected, that 〈L(u), L(v)〉 =
0, ∀u, v ∈ R.
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6.3 Wiener integral of Lévy processes

With the same notations as in subsection 3.3.3, we consider a square integrable Lévy process Λ = (Λt)t∈[0,T ]

such that Λ0 = 0 and V ar(Λ1) 6= 0. Let γ : [0, T ] → R be a bounded Borel function. We set Xt =
∫ t
0
γsdΛs,

t ∈ [0, T ]. For u ∈ R, t ∈ [0, T ], we have the following quantities. According to the observations below

Remark 3.13

ǫt,T (u) = exp

(∫ T

t

ΨΛ(uγs)ds

)
(6.20)

δt,T (u) = −iΨ
′

Λ(uγt)−Ψ
′

Λ(0)

Ψ
′′

Λ(0)
. (6.21)

Remark 6.1. If Λ = W then there is a Brownian motion W̃ such that Xt = W̃Ψ(t) with Ψ(t) =
∫ t
0
γ2sds. This was

the object of Section 6.1.

6.4 Representation of some contingent claims by Fourier transforms

In general, it is not possible to find a Fourier representation, of the form (4.7), for a given payoff func-

tion which is not necessarily bounded or integrable. Hence, it can be more convenient to use the bilateral

Laplace transform that allows an extended domain of definition including non integrable functions. We

refer to [8], [25] and more recently [11] for such characterizations of payoff functions. It should be cer-

tainly possible to extend our approach replacing the Fourier transform with the bilateral Laplace transform.

However, to illustrate the present approach restricted to payoff functions represented as classical Fourier

transforms, we give here one simple example of such representation extracted from [11]. The payoff of a

self quanto put option with strike K is

f(x) = ex(K − ex)+ and f̂(u) =

∫

R

eiuxf(x) dx =
K2+iu

(1 + iu)(2 + iu)
.

In this case µ admits a density which is proportional to f̂ which is integrable.

Appendix

Proof of Proposition 3.10. In the sequel, we will make use of Lemma 3.12 of [13] in a fairly extended gen-

erality.

Lemma 6.2. Let N be a complete metric space and µ and ν are two non-negative Radon non-atomic measures. We

suppose the following:

1. µ ≪ ν ;

2. µ(I) 6= 0 for every open ball I of N .

Then h :=
dµ

dν
6= 0 ν a.e. In particular µ and ν are equivalent.

1. If there are no deterministic increments then setting dµ(t) = −dΨ′′

t (0) and dν(t) = dat, it follows that

dat is equivalent to −dΨ′′

t (0), because of Lemma 6.2. Consequently the result is established.
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2. Suppose that not all the increments are non-deterministic. We decompose E := [0, T ] = ER ∪ ECR
where

ER =
{
t ∈ [0, T ]|V ar(X(t+ε)∧T −Xt) > 0, ∀ǫ > 0 or V ar(Xt −X(t−ε)+) 6= 0 ∀ǫ > 0

}
,

and its complementary

ECR =
{
t ∈ [0, T ]|∃ε > 0, V ar(X(t+ε)∧T −X(t−ε)+ = 0

}
.

Without restriction to generality we can suppose that T ∈ ER. Since ECR is an open subset of [0, T ],

it can be decomposed into a union
⋃
n∈N

In of open (disjoint) intervals of [0, T ]. We denote an =

inf In, bn = supn In. Clearly an and bn belong to ER and to its boundary, since ER is closed. We define

on E a semidistance d such that d(u, v) = V ar(Xv − Xu). The equivalence relation R on E defined

setting xRy if and only if d(x, y) = 0, produces the following equivalence classes:

{t}, t ∈ intER, In, n ∈ N.

The quotient E/d can be identified with family of typical representatives Ed = intER
⋃{bn, n ∈ N}.

We denote by ãt =
∫
[0,t]∩ER

das. The proof of Proposition 3.10 will be concluded if the two lemmas

below hold.

Lemma 6.3. (a)
∫
EC

R

d
(
−Ψ

′′

t (0)
)
= 0.

(b) Ψt(u) (resp. Ψ
′′

t (u)) is absolutely continuous with respect to dã, for every u ∈ R.

(c)
∫
EC

R

dãt = 0.

Lemma 6.4. dã is equivalent to d
(
−Ψ

′′

t (0)
)

.

Proof of Lemma 6.3. (a) Since each In is precompact, it can be recovered by a countable sequence

of subintervals of the type ]tn − εn, tn + εn[. So, by definition of ECR , we have
∫
In
d(−Ψ′′

t )(0) = 0.

The item follows then because ECR is the union of countable intervals.

(b) It is enough to show that for every B Borel subset of ECR we have
∫

B

ξs(u)das =

∫

B

ηs(u)das = 0,

where ηs(u) (resp. ξs(u)) was introduced in (3.2) (resp. (3.8)). We only treat the Ψt(u) case, the

other one being similar. By Proposition 3.9, if Xb −Xa is deterministic then X and in particular

t 7→ Ψt(u) is constant on [a, b]. Consequently
∣∣∣∣∣

∫

ER
C

ηs(u)das

∣∣∣∣∣ ≤
∑

n∈N

∣∣∣∣
∫

In

ηs(u)das

∣∣∣∣ =
∑

n∈In

∣∣∣∣
∫

In

dΨt(0)

∣∣∣∣ = 0.

(c) It is a consequence of the definition of ã.

Proof of Lemma 6.4. N := Ed is a complete metric space equipped with the distance, inherited from

E, still denoted by d. We define dµ (resp. dν) the measure on the Borel σ-algebra of N obtained by

restriction from −dΨ′′

t (0) (resp. dãt). This is possible since by items (a) and (c) of Lemma 6.3
∫

EC
R

d(−Ψ
′′

t (0)) =

∫

EC
R

dãs = 0.
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Condition 1 of Lemma 6.2 is verified by item (b). Concerning Condition 2. of the same lemma, let

t0 ∈ Ed ⊂ ER and B(t0) an open ball centered at t0. Obviously µ(B(t0)) > 0. By Lemma 6.2, ν ∼ µ on

the Borel σ-algebra of Ed and the result follows.

This concludes the proof of Proposition 3.10.
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