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Energy estimates and cavity interaction for a critical-exponent

cavitation model

Duvan Henao Sylvia Serfaty

July 11, 2011

Abstract

We consider the minimization of
´
Ωε

|Du|p dx in a perforated domain Ωε := Ω \
⋃M

i=1Bε(ai)

of Rn, among maps u ∈ W 1,p(Ωε,Rn) that are incompressible (detDu ≡ 1), invertible, and

satisfy a Dirichlet boundary condition u = g on ∂Ω. If the volume enclosed by g(∂Ω) is greater

than |Ω|, any such deformation u is forced to map the small holes Bε(ai) onto macroscopically

visible cavities (which do not disappear as ε → 0). We restrict our attention to the critical

exponent p = n, where the energy required for cavitation is of the order of
∑M

i=1 vi| log ε| and
the model is suited, therefore, for an asymptotic analysis (v1, . . . , vM denote the volumes of the

cavities). We obtain estimates for the “renormalized” energy 1
n

´
Ωε

∣∣∣ Du√
n−1

∣∣∣p dx −
∑

i vi| log ε|,
showing its dependence on the size and the shape of the cavities, on the initial distance between

the cavitation points a1, . . . ,aM , and on the distance from these points to the outer boundary

∂Ω. Based on those estimates we conclude, for the case of two cavities, that either the cavities

prefer to be spherical in shape and well separated, or to be very close to each other and appear

as a single equivalent round cavity. This is in agreement with existing numerical simulations,

and is reminiscent of the interaction between cavities in the mechanism of ductile fracture by

void growth and coalescence.

1 Introduction

1.1 Motivation

In nonlinear elasticity, cavitation is the name given to the sudden formation of cavities in an

initially perfect material, due to its incompressibility (or near-incompressibility), in response to

a sufficiently large and triaxial tension. It plays a central role in the initiation of fracture in

metals [35, 62, 34, 78, 58] and in elastomers [29, 80, 32, 22, 18] (especially in reinforced elastomers

[57, 31, 15, 9, 52]), via the mechanism of void growth and coalescence. It has important applications

such as the indirect measurement of mechanical properties [45] or the rubber-toughening of brittle

polymers [46, 14, 76, 48]. Mathematically, it constitutes a realistic example of a regular variational

problem with singular minimizers, and corresponds to the case when the stored-energy function of

the material is not W 1,p-quasiconvex [2, 5, 7], the Jacobian determinant is not weakly continuous

[7], and important properties such as the invertibility of the deformation may not pass to the weak

limit [55, Sect. 11]. The problem has been studied by many authors, beginning with Gent-Lindley
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[30] and Ball [4]; see the review papers [29, 41, 25], the variational models of Müller-Spector [55] and

Sivaloganathan-Spector [70], and the recent works [38, 49] for further motivation and references.

The standard model in the variational approach to cavitation considers functionals of the form

ˆ
Ω
|Du|p dx, (1.1)

where the deformation u : Ω ⊂ Rn → Rn is constrained to be incompressible (i.e. detDu = 1) and

globally invertible, and either a Dirichlet condition u = g or a force boundary condition is applied.

Unless the boundary condition is exactly compatible with the volume, cavities have to be formed.

If p < n this can happen while still keeping a finite energy. A typical deformation creating a cavity

of volume ωnA
n at the origin (ωn being the volume of the unit ball in Rn) is given by

u(x) = n
√
An + |x|n x

|x|
. (1.2)

We can easily compute that

|Du|2 ∼
x=0

(n− 1)A2

|x|2
. (1.3)

In that situation the origin is called a cavitation point, which belongs to the domain space, and

its image by u is the cavity, belonging to the target space. Contrarily to the usual, we study the

critical case p = n where the cavity behaviour (1.2) just fails to be of finite energy.

This fact is analogous to what happens for S1-valued harmonic maps in dimension 2, which

were particularly studied in the context of the Ginzburg-Landau model, see Bethuel-Brezis-Hélein

[10]. For S1-valued maps u from Ω ⊂ R2, the topological degree of u around a point a is defined

by the following integer

d =
1

2π

ˆ
∂B(a,r)

∂u

∂τ
× u.

Points around which this is not zero are called vortices. Typical vortices of degree d look like

u = eidθ (in polar coordinates). If d 6= 0 again |Du|2 just fails to be integrable since for the typical

vortex |Du|2 ∼x=0
|d|2
|x|2 , just as above (1.3), up to a constant factor. So there is an analogy in

that sense between maps from Ω to C which are constrained to satisfy |u| = 1, and maps from

Ω to R2 which satisfy the incompressibility constraint detDu = 1. We see that in this analogy

(in dimension 2) the volume of the cavity divided by π plays the role of the absolute value of the

degree for S1-valued maps. In this correspondence two important differences appear: the degree is

quantized while the cavity volume is not; on the other hand the degree has a sign, which can lead

to “cancellations” between vortices, while the cavity volume is always positive.

In the context of S1-valued maps, two possible ways of giving a meaning to
´
Ω |Du|2 are the

following. The first is to relax the constraint |u| = 1 and replace it by a penalization, and study

instead ˆ
Ω
|Du|2 + 1

ε2
(1− |u|2)2 (1.4)

in the limit ε→ 0; this is the Ginzburg-Landau approximation. The second is to study the energy

with the constraint |u| = 1 but in a punctured domain Ωε := Ω\ ∪i B(ai, ε) where ai’s stand for
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the vortex locations:

min
|u|=1

ˆ
Ωε

|Du|2 (1.5)

again in the limit ε → 0; this can be called the “renormalized energy approach”. Both of these

approaches were followed in [10], where it is proven that the Ginzburg-Landau approach essentially

reduces to the renormalized energy approach. More specifically, when there are vortices at ai, |Du|
will behave like |di|/|x−ai| near each vortex (where di is the degree of the vortex) and both energies

(1.4) and (1.5) will blow up like π
∑

i d
2
i log

1
ε as ε→ 0. It is shown in [10] that when this divergent

term is subtracted off (this is the “renormalization” procedure), what remains is a nondivergent

term depending on the positions of the vortices ai and their degrees di (and the domain), called

precisely the renormalized energy. That energy is essentially a Coulombian interaction between the

points ai behaving like charged particles (vortices of same degree repel, those of opposite degrees

attract) and it can be written down quite explicitly.

Our goal here is to study cavitation in the same spirit. A first attempt, which would be the

analogue of (1.4), would be to relax the incompressibility constraint and study for example

ˆ
Ω
|Du|2 + (1− detDu)2

ε
. (1.6)

We do not however follow this route which seems to present many difficulties (one of them is

that this energy in two dimensions is scale invariant, and that contrarily to (1.4) the nonlinearity

contains as many order of derivatives as the other term), but it remains a seemingly interesting

open problem, which would have good physical sense. Rather we follow the second approach, i.e.

that of working in punctured domains while keeping the incompressibility constraint.

For the sake of generality we consider holes which can be of different radii ε1, · · · , εm, define
Ωε := Ω\ ∪mi=1 B(ai, εi) and look at

min
detDu=1

ˆ
Ωε

|Du|2 (1.7)

(or mindetDu=1

´
Ωε

|Du|n in dimension n), in the limit ε → 0. This also has a reasonable physical

interpretation: it corresponds to studying the incompressible deformation of a body that contains

micro-voids which expand under the applied boundary deformation. One may think of the points

ai as fixed, then they correspond to defects that pre-exist, just as above. Or the model can be seen

as a fracture model where we postulate that the body will first break around the most energetically

favorable points ai (see, e.g., the discussion in [4, 43, 69, 29, 42, 55, 6, 71, 74, 49, 50]). It can also

be compared to the core-radius approach in dislocation models [13, 59, 28].

Following the analogy above, we would like to be able to subtract from (1.7) a leading order

term proportional to log 1
ε , in order to extract at the next order a “renormalized” term which

will tell us how cavities “interact” (attract or repel each other), according to their positions and

shapes. This is more difficult than the problem (1.5) because the condition detDu = 1 is much

less constraining than |u| = 1. While the maps with |u| = 1 can be parametrized by lifting in the

form u = eiϕ, to our knowledge no parametrization of that sort exists for incompressible maps. In

addition while the only characteristic of a vortex is an integer –its degree–, for incompressible maps,

the characteristics of a cavity are more complex –they comprise the volume of the cavity and its
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shape–, and there is no quantization. For these reasons we cannot really hope for something as nice

and explicit as a complete “renormalized energy” for this toy cavitation model. However we will

show that we can obtain, in particular in the case of two cavities, some quantitative information

about the cavities interaction that is reminiscent of the renormalized energy.

1.2 Method and main results : energy lower bounds

Our method relies on obtaining general and ansatz-free lower bounds for the energy on the one

hand, and on the other hand upper bounds via explicit constructions, which match as much as

possible the lower bounds. This is in the spirit of Γ-convergence (however we will not prove a

complete Γ-convergence result). For simplicity in this section we present the results in dimension

2, but they carry over in higher dimension.

To obtain lower bounds we use the “ball construction method”, which was introduced in the

context of Ginzburg-Landau by Jerrard [44] and Sandier [65, 66]. The crucial estimate for Ginzburg-

Landau, or more simply S1-valued harmonic maps, is the following simple relation, corollary of

Cauchy-Schwarz: ˆ
∂B(a,r)

|Du|2 ≥ 1

2πr

(ˆ
∂B(a,r)

∂u

∂τ
× u

)2

= 2π
d2

r
(1.8)

if d is the degree of the map on ∂B(a, r). Integrating this relation over r ranging from ε to 1 yields

a lower bound for the energy on annuli, with the logarithmic behavior stated above. One sees that

the equality case in (1.8) is achieved when u is exactly radial (which corresponds to u = eidθ in

polar coordinates), so the least energetically costly vortices are the radial ones. For an arbitrary

number of vortices the “ball construction” à la Jerrard and Sandier allows to paste together the

lower bounds obtained on disjoint annuli. Previous constructions for bounded numbers of vortices

include those of Bethuel-Brezis-Hélein [10] and Han-Shafrir [36]. The ball construction method will

be further described in Section 3.1.

For the cavitation model, there is an analogue to the above calculation, which is also our

starting point. Assume that u develops a cavity of volume v around a cavitation point a in the

domain space. By v we really denote the excess of volume created by the cavity (we still refer to

it as cavity volume), this way the image of the ball B(a, ε) contains a volume πε2 + v. Using the

Cauchy-Schwarz inequality, we may write

ˆ
∂B(a,r)

|Du|2 ≥ 1

2πr

(ˆ
∂B(a,r)

|Du · τ |

)2

. (1.9)

But then one can observe that
´
∂B(a,r) |Du · τ | is exactly the length of the image curve of the circle

∂B(a, r). We may then use the classical isoperimetric inequality

(PerE(a, r))2 ≥ 4π|E(a, r)| (1.10)

where | · | denotes the volume, and E(a, r) is the region enclosed by this image curve, which contains

the cavity, and has volume πr2 + v by incompressibility. Inserting this into (1.9), we are led toˆ
∂B(a,r)

|Du|2

2
≥ Per2(E(a, r))

4πr
≥ |E(a, r)|

r
≥ v

r
+ πr. (1.11)
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This is the building block that we will integrate over r and insert into the ball construction, to

obtain our first lower bound, which is proved in Section 3.1. To state it, we will use the notion of

weak determinant:

〈DetDu, φ〉 := − 1

n

ˆ
Ω
u(x) · (cofDu(x))Dφ(x) dx, ∀φ ∈ C∞

c (Ω)

whose essential features we recall in Section 2.4; as well as Müller and Spector’s invertibility “con-

dition INV” [55] which is defined in Section 2.3 (Definition 5) and which essentially means that the

deformations of the material, in addition to being one-to-one, cannot create cavities which would

at the same time be filled by material coming from elsewhere. Even though we have discussed

dimension 2, we directly state the result in dimension n.

Proposition 1.1. Let Ω be an open and bounded set in Rn, and Ωε = Ω\ ∪mi=1 B(ai, εi) where

a1, · · · ,am ∈ Ω and the B(ai, εi) are disjoint. Suppose that u ∈ W 1,n(Ωε,Rn) and that condition

INV is satisfied. Suppose, further, that DetDu = Ln in Ωε (where Ln is the Lebesgue measure),

and let vi := |E(ai, εi)| − ωnε
n
i (with E(ai, εi) as in (1.10)). Then for any R > 0

1

n

ˆ
Ωε

(∣∣∣∣ Du√
n− 1

∣∣∣∣n − 1

)
dx ≥

 m∑
i,B(ai,R)⊂Ω

vi

 log
R

2
∑m

i=1 εi
.

Note that
∑

i vi = V is the total cavity volume, which due to incompressibility is completely

determined by the Dirichlet data, in the case of a displacement boundary value problem.

Examining the equality cases in the chain of inequalities (1.9)–(1.11) already tells us that the

minimal energy is obtained when “during the ball construction” all circles (at least for r small) are

mapped into circles and the cavities are spherical. A more careful examination of (1.9) indicates

that the map should at least locally follow the model cavity map (1.2). It is the same argument that

has been used by Sigalovanathan and Spector [72, 73] to prove the radial symmetry of minimizers

for the model with power p < n.

When there is more than one cavity, and two cavities are close together, we can observe that

there is a geometric obstruction to all circles “of the ball construction” being mapped into circles.

This is true for any number of cavities larger than 1; to quantify it is in principle possible but a

bit inextricable for more than 2. For that reason and for simplicity, we restrict to the case of two

cavities, and now explain the quantitative point.

Let a1 and a2 be the two cavitation points with |a1−a2| = d, small compared to 1. For simplicity

of the presentation let us also assume that ε1 = ε2 = ε. The ball construction is very simple in

such a situation: three disjoint annuli are constructed, B(a1, d/2)\B(a1, ε), B(a2, d/2)\B(a2, ε)

and B(a, R)\B(a, d), where a is the midpoint of a1 and a2 (see Figure 1). These annuli can be

seen as a union of concentric circles centred at a1, a2, a respectively. To achieve the optimality

condition above, each of these circles would have to be mapped by u into a circle. If this were true,

the images of B(a1, d/2) and B(a2, d/2) would be two disjoint balls containing the two cavities,

call them E1 and E2. By incompressibility, |E1| = v1 + π(d/2)2 and |E2| = v2 + π(d/2)2. Then the

image of B(a, d) would also have to be a ball, call it E, which contains the disjoint union E1 ∪E2,

and by incompressibility

|E| = v1 + v2 + πd2. (1.12)
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∂Ω

R

d

a1

ε

a2

d/2

Figure 1: Ball construction in the reference configuration

If d is small compared to v1 and v2 it is easy to check this is geometrically impossible: the radius

of the ball E1 is certainly bigger than
√
v1/π, that of E2 than

√
v2/π and since E is a ball that

contains their disjoint union, its radius is at least the sum of the two, hence |E| ≥ (
√
v1 +

√
v2)

2.

This is incompatible with (1.12) unless πd2 ≥ 2
√
v1v2.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

(a) µ = 0.5

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

(b) µ = 1.5

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

(c) µ = 3

Figure 2: Incompressible deformation u : B(0, d) \ {a1,a2} → R2, d = |a2 − a1|, opening dis-

torted cavities of volumes v1 + πε21, v2 + πε22; deformed configuration for increasing values of the

displacement load (µ :=
√

v1+v2
πd2

). Choice of parameters: d = 1, v2v1 = 0.3.

So in practice, if d is small compared to the volumes, the circles are not all mapped to exact

circles, the inclusion and disjointness are preserved, but some distortion in the shape of the images

has to be created either for the “balls before merging” i.e. E1 and E2 – this corresponds to what is

sketched on Figure 2 – or for the “balls after merging” i.e. E – this corresponds to what is sketched

in Figure 3 (the situations of Figures 2 and 3 correspond to the test-maps we will use to get energy

upper bounds, see below Section 1.3).

A convenient tool to quantify how much these sets differ from balls, which is what we exactly

mean by “distortion”, is the following
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(a) Reference

configuration

(b) Deformed

configuration, µ = 1

(c) Deformed

configuration, µ = 2

(d) Deformed

configuration, µ = 3

Figure 3: Incompressible deformation of B(0, d), d := |a2−a1|, for increasing values of µ :=
√

v1+v2
πd2

.

Final cavity volumes v1 and v2 given by d = 1, v2v1 = 0.3.

Definition 1. The Fraenkel asymmetry of a measurable set E ⊂ Rn is defined as

D(E) := min
x∈Rn

|E4B(x, rE)|
|E|

, with rE such that |B(x, rE)| = |E|

where 4 denotes the symmetric difference between sets.

Note that D(E) is a scale-free quantity which depends not on the size of E, but on its shape.

The following proposition, which we shall prove in Section 3.3, allows to make the observations

above quantitative in terms of the distortions.

Proposition 1.2. Let E, E1, and E2 be sets of positive measure in Rn, n ≥ 2 such that E ⊃ E1∪E2

and E1 ∩E2 = ∅, and assume without loss of generality that |E1| ≥ |E2|. Then

|E|D(E)
n

n−1 + |E1|D(E1)
n

n−1 + |E2|D(E2)
n

n−1

|E|+ |E1 ∪ E2|

≥ Cn

(
|E2|

|E1|+ |E2|

) n
n−1

(
(|E1|

1
n + |E2|

1
n )n − |E|

(|E1|
1
n + |E2|

1
n )n − |E1 ∪ E2|

)n(n+1)
2(n−1)

for some constant Cn > 0 depending only on n.

The fact that E1, E2, E cannot simultaneously be balls is made explicit by the fact that D(E1),

D(E2), D(E) cannot all vanish unless the right-hand side is negative, which can happen only if |E|
is large relative to |E1| and |E2|. The first factor in the estimate degenerates only when one of the

sets is very small compared to the other.

Note that such a geometric constraint is also true for more than two merging balls, so in principle

we could treat (with more effort) the case of more than two cavities, however the estimates would

degenerate as the number of cavities gets large.

These estimates on the distortions are useful for us thanks to the following improved isoperi-

metric inequality, precisely expressed in terms of the Fraenkel asymmetry:
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Proposition 1.3 (Fusco-Maggi-Pratelli [27]). For every Borel set E ⊂ Rn

PerE ≥ nω
1
n
n |E|

n−1
n (1 + CD(E)),

where C is a universal constant.

In dimension 2, we thus have the improved isoperimetric inequality

(PerE)2 ≥ 4π|E|+ C|E|D2(E), (1.13)

for some universal C > 0. Inserting (1.13) instead of (1.10) into the basic estimate (1.11) gives us

ˆ
∂B(a,r)

|Du|2

2
≥ |E(a, r)|

r
+
C

r
|E(a, r)|D2(E(a, r)) ≥ v

r
+ πr +

C

r
|E(a, r)|D2(E(a, r)). (1.14)

This then allows us to get improved estimates when integrating over r (in a ball construction

procedure), keeping track of the fact that to achieve equality, all level curves E(a, r) which are

images of circles during the ball construction would have to be circles. This way, after subtracting

off the leading order term
∑

i vi log
1∑
i εi

we can retrieve a next order “renormalized” term that will

account for the cavity interaction. This is expressed in the following main result.

Theorem 1 (Lower bound). Given Ω ⊂ Rn a bounded open set, let Ωε := Ω \ (Bε1(a1)∪Bε2(a2)),

where a1,a2 ∈ Ω, ε1, ε2 > 0, and assume that Bε1(a1) and Bε2(a2) are disjoint and contained in Ω.

Suppose that u ∈W 1,n(Ωε,Rn) satisfies condition INV and DetDu = Ln in Ωε. Set

a :=
a1 + a2

2
, d := |a1 − a2|, v1 := |E(a1, ε1)| − ωnε

n
1 , v2 := |E(a2, ε2)| − ωnε

n
2 .

Then, for all R such that B(a, R) ⊂ Ω,

1

n

ˆ
Ωε∩B(a,R)

(∣∣∣∣Du(x)√
n− 1

∣∣∣∣n − 1

)
dx ≥ v1 log

R

2ε1
+ v2 log

R

2ε2

+ C(v1 + v2)

((
min{v1, v2}
v1 + v2

) n
n−1

− ωnd
n

v1 + v2

)
+

logmin

{(
v1 + v2
2nωndn

) 1
n2

,
R

d
,

d

max{ε1, ε2}

}

for some constant C independent of Ω, a1, a2, d, v1, v2, ε1, and ε2 (t+ stands for max{0, t}).

Two main differences appear in this lower bound compared to Proposition 1.1. First, the leading

order term (v1+v2) log
1

ε1+ε2
has been improved to v1 log

1
ε1
+v2 log

1
ε2
, which shows that the energy

goes to infinity as ε1 → 0 or ε2 → 0, even if ε1+ε2 6→ 0. This term is optimal since it coincides with

the leading order term in the upper bound of Theorem 2 below, and in fact it should be possible

to replace
∑

i vi log
1∑
i εi

with
∑

i(vi log
1
εi
) in Proposition 1.1 (however, this would require a more

sophisticated ball construction, and it is not immediately clear how to obtain a general result for

the case of more than two cavities). Second, and returning to the discusion in dimension two and

choosing ε1 = ε2 = ε, compared to Proposition 1.1 we have gained the new term

C(v1 + v2)

((
min{v1, v2}
v1 + v2

)2

− πd2

v1 + v2

)
min

{
log 4

√
v1 + v2
4πd2

, log
R

d
, log

d

ε

}
,
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This term is of course worthless unless πd2

v1+v2
<
(
min{v1,v2}
v1+v2

)2
i.e. πd2 ≤ min{v21 ,v22}

v1+v2
. Under that con-

dition, it expresses an interaction between the two cavities in terms of the distance of the cavitation

points relative to the data of v1, v2 and ε. As πd2

v1+v2
→ 0 the interaction tends logarithmically to

+∞; this expresses a logarithmic repulsion between the cavities, unless the term log d
ε is the one

that achieves the min above, which can only happen if log d is comparable to log ε. This expresses

an attraction of the cavities when they are close compared to the puncture scale, which we believe

means that two cavities thus close would energetically prefer to be merged into one. This suggests

that three scenarii are energetically possible:

Scenario (i) the cavities are spherical and the cavitation points are well separated (but not nec-

essarily the cavities themselves), this is the situation of Figure 3

Scenario (ii) the cavitation points are at distance � 1 but all but one cavity are of very small

volume and hence “close up” in the limit ε→ 0

Scenario (iii) “outer circles” (in the ball construction) are mapped into circles and cavities (as

well as cavitation points) are pushed together to form one equivalent round cavity, this is the

situation of Figure 2. This seems to correspond to void coalescence (c.f. [81, 47]).

1.3 Method and main results: upper bound

After obtaining this lower bound, we show that it is close to being optimal (at least in scale). To

do so we need to construct explicit test maps and evaluate their energy (in terms of the parameters

of the problem). The main difficulty is that these test maps have to satisfy the incompressibility

condition outside of the cavitation points, and as we mentioned previously, there is no simple

parametrization of such incompressible maps. The main known result in that area is the celebrated

result of Dacorogna and Moser [20] which provides an existence result for incompressible maps

with compatible boundary conditions. Two methods are proposed in their work, one of them

constructive, however they are not explicit enough to evaluate the Dirichlet energy of the map.

The question we address can be phrased in the following way: given a domain with a certain

number of “round holes” at certain distances from each other, and another domain of same volume,

with the same number of holes whose volumes are prescribed but whose positions and shapes are

free; can we find an incompressible map that maps one to the other, and can we estimate its energy´
|Du|n in terms of the distance of the holes and the cavity volumes?

We answer positively this question, still in the case of two holes, by using two tools:

(a) a family of explicitly defined incompressible deformations preserving angles, that we introduce

(b) the construction of incompressible maps of Rivière and Ye [63, 64], which is more tractable

than Dacorogna and Moser to obtain energy estimates.

We believe it would be of interest to tackle that question in a more general setting: compute

the minimal Dirichlet energy of an incompressible map between two domains with same volume,

and the same number of holes, the holes having arbitrary shapes and sizes; and find appropriate
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geometric parameters to evaluate it as a function of the domains. This question is beyond the scope

of our paper however and we do not attempt to treat it in that much generality.
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(a) δ = 0.1
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(b) δ = 0.4
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(c) δ = 0.9

Figure 4: Transition from round to distorted cavities: d = 1,
√

v1+v2
πd2

= 1.5, v2v1 = 0.3.

Our main result (proved in Section 4.1) is the following.

Theorem 2. Let a1,a2 ∈ Rn, v1 ≥ v2 ≥ 0, and suppose that d := |a1 − a2| > ε1 + ε2. Then, for

every δ ∈ [0, 1] there exists a∗ in the line segment joining a1 and a2, and a piecewise smooth map

u ∈ C(Rn \ {a1,a2},Rn) satisfying condition INV, such that DetDu = Ln + v1δa1 + v2δa2 in Rn

and for all R > 0

ˆ

B(a∗,R)\(Bε1 (a1)∪Bε2 (a2))

1

n

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤ C1(v1 + v2 + ωnR
n) + v1

(
log

R

ε1

)
+

+ v2

(
log

R

ε2

)
+

+ C2(v1 + v2)

(
(1− δ)

(
log

R

d

)
+

+ δ

(
n

√
v2
v1

log
d

ε1
+ 2n

√
v2
v1

log
d

ε2

))
(C1 and C2 are universal constants depending only on n).

If we are not preoccupied with boundary conditions but just wish to build a test configura-

tion with cavities of prescribed volumes and cavitation points at distance d, then the above result

suffices. This is obtained by our construction of an explicit family of incompressible maps, which

contains parameters allowing for all possible cavitation points distances d and cavity volumes v1, v2.

The feature of this construction is that it allows for our almost optimal estimates, as the shapes

of the cavities are automatically adjusted to the optimal scenario according to the ratio between

d, ε,
√
v1,

√
v2, their logs, etc, as in the three scenarii of the end of the previous subsection. In

other words, the construction builds cavities which, when d is comparable to ε, are distorted and

form one equivalent round cavity while the deformation rapidly becomes radially symmetric (as in

Scenario (iii)); and cavities which are more and more round as d gets large compared to ε (as in

Scenario (i)). For the extreme cases δ = 1 and δ = 0, the maps are those that were presented in

Figures 2 and 3 respectively. The result for intermediate values of δ is shown in Figure 4.
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2dδ

2(ρ1 − d1)2(ρ2 − d2)

θ1

2d

a2a1

Ω1 Ω2

θ2

d1 d1 d2 d2

Figure 5: Geometric construction of domains Ω1, Ω2 satisfying |Ω1|
|Ω2| =

v1
v2
.

The idea of the construction is the following. Take two intersecting balls B(ã1, ρ1) and B(ã2, ρ2)

such that the width of their union is exactly 2d and the width of their intersection is 2dδ, and let

Ω1 and Ω2 be as in Figure 5 (the precise definition is given in (4.4)). As will be proved in Section

4.1, for every δ ∈ [0, 1] there are unique ρ1 and ρ2 such that |Ω1|
|Ω2| =

v1
v2
. The cavitation points a1

and a2 are suitably placed in Ω1 and Ω2, respectively, in such a way that |a1−a2| = d. It is always

possible to choose a∗ between a1 and a2 such that Ω1 ∪ Ω2 is star-shaped with respect to a∗. In

order to define u in Rn \ Ω1 ∪ Ω2 we choose a∗ as the origin and look for an angle-preserving map

u(x) = λa∗ + f(x)
x− a∗

|x− a∗|
, λn − 1 :=

v1 + v2
|Ω1 ∪ Ω2|

=
v1
|Ω1|

=
v2
|Ω2|

.

By so doing, we can solve the incompressibility equation detDu = 1 explicitly, since for angle-

preserving maps the equation has the same form as in the radial case,

detDu(x) =
fn−1(x)∂f∂r (x)

rn−1
≡ 1, r = |x− a∗|,

which we will see can be solved as

fn(x) = |x− a∗|n +A

(
x− a∗

|x− a∗|

)n
,

where the function A : Sn−1 → R is completely determined if we prescribe u on ∂Ω1 ∪ ∂Ω2. Inside

Ω1 and Ω2 the deformation u is defined analogously, taking a1 and a2 as the corresponding origins.

The resulting map creates cavities at a1 and a2 with the desired volumes, and with exactly the

same shape as ∂Ω1 and ∂Ω2. For compatibility we impose u(x) = λx on ∂Ω1 ∪ ∂Ω2.

In the energy estimate, (1 − δ) log R
d is the excess energy due to the distortion of the ‘outer’

curves u(∂B(a∗, r)), r ∈ (d,R), and δ
(

n

√
v2
v1

log d
ε1

+ 2n

√
v2
v1

log d
ε2

)
is that due to the distortion of

the curves u(∂B(ai, r)), r ∈ (εi, d), i = 1, 2 near the cavities. When δ = 0, Ω1 and Ω2 are tangent

balls, the cavities are spherical, and the second term in the estimate vanishes. The outer curves

are distorted because their shape depends on that of ∂(Ω1 ∪ Ω2), hence a price of the order of

11



(v1 + v2) log
R
d is felt in the energy. When δ = 1, at the opposite end, Ω1 ∪ Ω2 is a ball of radius

d, the deformation is radially symmetric outside Ω1 ∪ Ω2, and no extra price for the outer curves

is paid. In contrast, the cavities are “D-shaped” (they are copies of ∂Ω1 and ∂Ω2), and a price of

order (v1 + v2) 2n

√
v2
v1

log d
ε is obtained as a consequence (in this case the excess energy vanishes as

v2
v1

→ 0, in agreement with the prediction of Theorem 1).

Since the last term of the energy estimate is linear in δ, by taking1 either δ = 0 or δ = 1 (and

assuming R > d) the estimate becomes

C(v1 + v2)min

{
log

R

d
, n

√
v2
v1

log
d

ε1
+ 2n

√
v2
v1

log
d

ε2

}
.

Comparing it against the corresponding term for the lower bound, namely2,

C(v1 + v2)min

{(
v2
v1

) n
n−1

log
R

d
,

(
v2
v1

) n
n−1

log
d

max{ε1, ε2}

}
,

we observe that there are still some qualitative differences. First of all, in the case when ε1 � ε2,

a term of the form log d
ε1

+ log d
ε2

is much larger than log d
max{ε1,ε2} . We believe that the expression

in the lower bound quantifies more accurately the effect of the distortion of the cavities, and that

the obstacle for obtaining a comparable expression in the upper bound is that the domains Ω1 and

Ω2 in our explicit constructions are required to be star-shaped. For example, in the case d ∼ ε2, an

energy minimizing deformation u would try to create a spherical cavity at a1 (so as to prevent a

term of order log d
ε1

from appearing in the energy due to the distortion of the first cavity), and, at

the same time, to rapidly become radially symmetric (because of the price of order log R
d due to the

distortion of the ‘outer’ circles). Therefore, for values of πε22 � v1+ v2, the second cavity would be

of the form B\B1 for some balls B1 and B such that B1 ⊂ B, |B1| = v1, and |B| = v1+v2. In other

words, u must create “moon-shaped” cavities, which cannot be obtained if u is angle-preserving.

In the second place, the interaction term in the lower bound vanishes as v2
v1

→ 0 regardless of

whether the minimum is achieved at log R
d or at log d

ε , whereas in the upper bound this vanishing

effect is obtained only for the case of distorted cavities (when log d
ε is the smallest). This is

because when δ = 0 and v1 � v2, the circular sector3 {a∗ + deiθ, θ ∈ (π2 ,
3π
2 )} is mapped to a

curve λa∗ + f(ϕ)eiϕ with polar angles ϕ ranging almost from 0 to 2π. This “angular distortion”

necessarily produces a strict inequality in (1.9), so in principle it could be possible to quantify its

effect in the lower bound. It is not clear, however, whether for a minimizer an interaction term of

the form (v1 + v2) log
R
d will always be present (in the case when v2

v1
→ 0), or if the fact that such a

term appears in the upper bound is a limitation of the method used for the explicit constructions.

Finally, the factor v2
v1

in front of log d
ε1

and log d
ε2

is raised to a different exponent in each term,

the reason being that Ω1 and Ω2 play different roles in the upper bound construction. Provided

δ > 0, when v2
v1

→ 0 the first subdomain is becoming more and more like a circle (its height and its

width tend to be equal, and the distortion of the first cavity tends to vanish) whereas Ω2 becomes

1When considering boundary conditions, not all values of δ can be chosen, see the discussion below.
2we assume, e.g., that v1 + v2 < 4πR2, in order to illustrate the main point
3we state this in two dimensions for simplicity
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increasingly distorted (the ratio between its height and its width tends to infinity). The factor
2n

√
v2
v1

in front of log d
ε2

is only due to the fact that the effect in the energy of the distortion of the

cavities also depends on the size of the cavity.

Dirichlet boundary conditions

If we want our maps to satisfy specific Dirichlet boundary conditions, then they need to be “com-

pleted” outside of the ball B(a∗, R) of the previous theorem. For that we use the method of Rivière

and Ye, and show how to obtain explicit Dirichlet energy estimates from it. We consider the

radially symmetric loading of a ball, but other boundary conditions could also be handled. Let

a∗, δ, ρ1, ρ2, Ω1, Ω2 be as before. We are to find R1, R2, and an incompressible diffeomorphism

u : {R1 < |x− a∗| < R2} → Rn such that

i) Ω1 ∪ Ω2 ⊂ B(a∗, R1) and u|∂B(a∗,R1) coincides with the map of Theorem 2

ii) u|∂B(a∗,R2) is radially symmetric.
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(a) δ = 0.1, reference configuration,

π(R2
2 −R2

1) = 3.06(v1 + v2)(1− δ)
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(d) δ = 0.1, deformed configuration.

Thick line at u(∂B(a∗, R1)).
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(b) δ = 0.4, reference configuration,

π(R2
2 −R2

1) = 3.12(v1 + v2)(1− δ)
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(e) δ = 0.4, deformed configuration.

Thick line at u(∂B(a∗, R1))
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(c) δ = 0.9, reference configuration,

π(R2
2 −R2

1) = 2.46(v1 + v2)(1− δ)
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(f) δ = 0.9, deformed configuration.

Thick line at u(∂B(a∗, R1))

Figure 6: Transition to a radially symmetric map. A larger initial domain is necessary in order to

create spherical cavities. Parameters: Ω = B(0, R2),
√

v1+v2
πd2

= 1.5, v2v1 = 0.3, d = 1, R1 ≈ d.
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Not all values of R1 and R2 are suitable for the existence of a solution, since the reference config-

uration {R1 ≤ |x−a∗| ≤ R2} must contain enough material to fill the space between u(∂B(a∗, R2))

(with shape prescribed by the Dirichlet data) and u(∂B(a∗, R1)) (whose shape is determined by

Theorem 2, see Figure 6). In the case of a radially symmetric loading, the farther Ω1 ∪ Ω2 is from

being a ball, the larger the reference configuration has to be. If δ = 1 nothing has to be imposed;

if δ < 1, we must have that

ωn(R
n
2 −Rn1 ) ≥ C(v1 + v2)(1− δ)

for some constant C (see Lemma 4.5). It turns out that the above necessary condition is also

sufficient, as we show in the following theorem:

Theorem 3. Suppose that a1, a2 ∈ Rn and d := |a1 − a2| > ε1 + ε2. Let δ ∈ [0, 1], v1 ≥ v2 ≥ 0,

Vδ := 22n+1n(v1 + v2)(1− δ), R1 ≥ max

{
n

√
Vδ
ωn
, 2d

}
, R2 :=

n

√
Rn1 +

Vδ
ωn
. (1.15)

Then there exists a∗ in the segment joining a1 and a2 and a piecewise smooth homeomorphism

u ∈W 1,∞(Rn \ {a1,a2},Rn) such that DetDu = Ln+ v1δa1 + v2δa2 in Rn, u|Rn\B(a∗,R2) is radially

symmetric, and for all R ≥ R1

1

n

ˆ
B(a∗,R)\(Bε1 (a1)∪Bε2 (a2))

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤ C1(v1 + v2 + ωnR
n) + v1 log

R

ε1
+ v2 log

R

ε2

+ C2(v1 + v2)

(
(1− δ)

(
log n

√
Vδ
ωndn

)
+

+ δ

(
n

√
v2
v1

log
d

ε1
+ 2n

√
v2
v1

log
d

ε2

))
.

The main differences with respect to Theorem 2 are that u is now radially symmetric in

Rn \ B(a∗, R2) and that log R
d has been replaced with log n

√
Vδ
ωndn

= C + log n

√
(v1+v2)(1−δ)

ωndn
in the

interaction term. The proof is presented in Section 4.2. As a consequence we finally obtain

Corollary 1. Let Ω be a ball of radius R ≥ 2d, with d > ε1 + ε2 > 0. Then, for every v1 ≥ v2 ≥ 0

there exist a1, a2 ∈ Ω with |a1 − a2| = d, and a Lipschitz homeomorphism u : Ω \ {a1,a2} → Rn,
such that DetDu = Ln + v1δa1 + v2δa2 in Ω, u|∂Ω ≡ λid (with λn − 1 := v1+v2

|Ω| ), and

1

n

ˆ
Ω\(Bε1 (a1)∪Bε2 (a2))

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤ C1(v1 + v2 + ωnR
n) + v1 log

R

ε1
+ v2 log

R

ε2

+ C2(v1 + v2) min
δ∈[δ0,1]

(
(1− δ)

(
log

(v1 + v2)(1− δ)

ωndn

)
+

+ δ

(
n

√
v2
v1

log
d

ε1
+ 2n

√
v2
v1

log
d

ε2

))

with δ0 := max
{
0, 1− |Ω|−2nωndn

4n+1nωndn

}
.

The value of δ0 is such that δ ≥ δ0 if and only if ωnR
n ≥ ωnR

n
1 +Vδ, with ωnR

n
1 := Vδ+ωn(2d)

n;

the idea is to be able to use Theorem 3 and obtain a final energy estimate depending only on v1,

v2, d, ε1, ε2 and the size |Ω| of the domain.
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1.4 Convergence results

Once we have upper and lower bounds, we are able to show that for “almost-minimizers” one of

the three scenarii described after Theorem 1 holds in the limit ε→ 0.

Theorem 4. Let Ω be an open and bounded set in Rn, n ≥ 2. Let εj → 0 be a sequence, that we will

denote in the sequel simply by ε. Let {Ωε}ε be a corresponding sequence of domains of the form Ωε =

Ω \
⋃m
i=1Bε(a1,ε), with m ∈ N, a1,ε, . . . ,am,ε ∈ Ω and ε such that the balls Bε(a1,ε), . . . , Bε(am,ε)

are disjoint. Assume that for each i = 1, . . . ,m the sequence {ai,ε}ε is compactly contained in Ω.

Suppose, further, that there exists uε ∈ W 1,n(Ωε,Rn) satisfying condition INV, DetDuε = Ln in

Ωε, supε ‖uε‖L∞(Ωε) <∞ and

1

n

ˆ
Ωε

∣∣∣∣Duε(x)√
n− 1

∣∣∣∣n dx ≤

(
m∑
i=1

vi,ε

)
log

diamΩ

ε
+ C

(
|Ω|+

m∑
i=1

vi,ε

)
, (1.16)

where4 vi,ε := |E(ai,ε, ε;uε)| − ωnε
n and C is a universal constant.

Then (extracting a subsequence) the limits ai = limε→0 ai,ε and vi = limε→0 vi,ε, i = 1, . . . ,m

are well defined, and there exists u ∈ ∩1≤p<nW
1,p(Ω,Rn) ∩W 1,n

loc

(
Ω \ {a1, . . . ,am},Rn

)
such that

• uε ⇀ u in W 1,n
loc

(
Ω \ {a1, . . . ,am},Rn

)
• DetDuε

∗
⇀ DetDu in Ω \ {a1, . . . ,am} locally in the sense of measures

• DetDu =
∑m

i=1 viδai + Ln in Ω.

When m = 2, one of the following holds:

i) if a1 6= a2 and v1, v2 > 0 (assume without l.o.g. v1 ≥ v2), then

• the cavities imT(u,a1) and imT(u,a2) (as defined in (2.3)) are balls of volume v1, v2

• |E(ai,ε, ε;uε)4 imT(u,ai)| → 0 as ε→ 0 for i = 1, 2

• under the additional assumption that v1 + v2 < 2nωn(dist(
a1+a2

2 , ∂Ω))n,

ωn|a2 − a1|n

v1 + v2
≥ C1 exp

(
−C2

(
1 +

|Ω|
v1 + v2

+ log
ωn(diamΩ)n

v1 + v2

)/(
v2

v1 + v2

) n
n−1

)

for some universal constants C1 and C2 depending only on n;

ii) if min{v1, v2} = 0 (say v2 = 0), then imT (u,a1) (the only cavity opened by u) is spherical;

iii) if a1 = a2 and v1, v2 > 0 (assume v1 ≥ v2), then

• imT(u,a1) is a ball of volume v1 + v2

• |a2,ε − a1,ε| = O(ε) as ε→ 0

4Now we write E(ai,ε, ε;uε), and not just E(ai,ε, ε), to highlight the dependence on uε. It corresponds to the

cavity opened by uε at ai,ε (compare with (1.10) and (2.3)).
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• the cavities must be distorted in the following sense (Cn being as in Proposition 1.2):

lim inf
ε→0

v1D
(
E(a1,ε, ε;uε)

) n
n−1 + v2D

(
E(a2,ε, ε;uε)

) n
n−1

v1 + v2
> Cn

(
v2

v1 + v2

) n
n−1

. (1.17)

In the situation of two cavities, the three cases above correspond to the three scenarii of the

end of Section 1.2 in the same order.

The main ingredients for the proof are the comparison of the upper bound (1.16) with the

lower bounds Proposition 1.1 and Theorem 1, standard compactness arguments, and an argument

introduced by Struwe [77] in the context of Ginzburg-Landau which allows to deduce from the

energy bounds sufficient compactness of uε.

1.5 Additional comments and remarks

We note first that our analysis works provided that the distance of the cavitation points to the

boundary does not get small (thus the domain cannot be too thin either). It is an interesting

question to better understand what happens when they do get close to the boundary, as well as

the effect of the boundary conditions.

Second, it follows from our work that it is always necessary to compare quantities in the reference

configuration with quantities in the deformed configuration, due to the scale-invariance in elasticity.

For example, we have shown that a large price needs to be paid (in terms of elastic energy) in order

to open spherical cavities whenever the distance between the cavitation points is small compared

to the final size of the cavities (ωnd
n � v1 + v2). If we only know that the cavitation points are

becoming closer and closer to each other, from this alone we cannot conclude that the cavities

will interact and that the total elastic energy will go to infinity, as the following argument shows.

Suppose that u is an incompressible map defined on the unit cube Q ⊂ Rn, opening a cavity, and

satisfying affine boundary conditions of the form u(x) ≡ Ax on ∂Q, A ∈ Rn×n. Then, by rescaling

u and reproducing it periodically, it is possible to construct a sequence of incompressible maps

creating an increasingly large number of cavities, at cavitation points that are closer and closer to

each other, in such a way that all the deformations in the sequence have exactly the same elastic

energy (cf. Ball & Murat [7]; see also [60, 49, 50]). This is possible because the cavities themselves

are also becoming increasingly smaller, with radii decaying at the same rate as the distance between

neighbouring cavitation points. This example also shows that the strategy of filling the material

with an arbitrarily large number of small cavities is, in a sense, equivalent to forming a single

big cavity (there is no interaction between the singularities). Here we complement that result by

showing that if it is not possible to create an infinite number of cavities, then the interaction effects

in the energy do become noticeable, and under some circumstances can even be quantified.

Third, we mention that the idea of partitioning the domain and using angle-preserving maps

inside the resulting subdomains (as described in Section 1.3) can be used to produce test maps

that are incompressible and open any prescribed number of cavities (for example by dividing the

initial domain in angular sectors, as in Figure 7). The relative size of the cavities can be controlled

by specifying the volume ratios of the subdomains in the partition; the cavity shapes will also be
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Figure 7: Incompressible maps creating multiple cavities of arbitrary sizes.

determined by the shape of those subdomains. The deformations thus constructed may be relevant

for future work on the subject, for instance when obtaining energy estimates.

Finally, we discuss the case p 6= n. It is not clear how to extend the analysis to this case, the

main reason being that the energy is no longer conformally invariant while the “ball-construction

method” is only suited for such cases. To see this in a simple way, let us consider the case of two

cavities, assuming incompressibility, letting ε1 = ε2 → 0, and let us try to reproduce the steps (1.8)

and (1.11) with (1.14). The p-equivalent of (1.14) obtained by Hölder’s inequality (and by relating

|Du|n−1 to the area element |(cofDu)ν|, see Lemma 3.1) is

ˆ
∂B(a,r)

∣∣∣∣Du(x)√
n− 1

∣∣∣∣p dHn−1(x) ≥ Per(E(a, r))
p

n−1

(nωnrn−1)
p

n−1
−1

≥ nω
n−p
n

n
|E(a, r)|

p
n

r1−(n−p)

(
1 + CD(E(a, r))

p
n−1

)
.

According to this, when p 6= n we may bound from below the energy in B(a1,
d
2) ∪ B(a2,

d
2) (with

d = |a2 − a1|) by

ˆ

B(a1,
d
2
)∪B(a2,

d
2
)

ω
p−n
n

n

n

∣∣∣∣Du(x)√
n− 1

∣∣∣∣p ≥ (v p
n
1 + v

p
n
2

)(d
2

)n−p
+ C(v1 + v2)

p
n

ˆ d
2

0
〈D(E(ai, r))

p
n−1 〉rn−p−1,

where 〈D(E(ai, r)))
p

n−1 〉 stands for the average distortion

〈D(E(ai, r)))
p

n−1 〉 :=
(
v

p
n
1 D(E(a1, r))

p
n−1 + v

p
n
2 D(E(a2, r))

p
n−1

)
(v1 + v2)

− p
n .

Analogously, we can bound the energy in B(a, R) \B(a, d) (with a = a1+a2
2 ) by

ˆ

B(a,R)\B(a,d)

ω
p−n
n

n

n

∣∣∣∣Du(x)√
n− 1

∣∣∣∣p ≥ (v1 + v2)
p
n

ˆ R

d
rn−p−1 + C(v1 + v2)

p
n

ˆ R

d
D(E(a, r))

p
n−1 rn−p−1
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and obtain:

ˆ
B(a,R)

ω
p−n
n

n

n

∣∣∣∣Du(x)√
n− 1

∣∣∣∣p ≥ (v1 + v2)
p
n

(ˆ d
2

0
+

ˆ R

d

)
rn−p−1 +

(
v

p
n
1 + v

p
n
2 − (v1 + v2)

p
n

)(d
2

)n−p
︸ ︷︷ ︸

II

+ C(v1 + v2)
p
n

[ˆ d
2

0
〈D(E(ai, r))

p
n−1 〉rn−p−1 +

ˆ R

d
D(E(a, r))

p
n−1 rn−p−1

]
︸ ︷︷ ︸

III

.

Assume that v1 + v2 is fixed (as is the case in the Dirichlet problem). Let us first consider the

case p < n. Since the limit ε → 0 is not singular in this case (contrarily to p = n), the problem

cannot be analyzed by asymptotic analysis. If we guide ourselves only by the second and third

terms (II and III), when p < n we can say the following. The factor v
p
n
1 + v

p
n
2 − (v1 + v2)

p
n in II

is minimized when min{v1, v2} = 0, hence it motivates the creation of just one cavity (the same

can be said for the problem with M cavities, because v
p
n
1 + · · ·+ v

p
n
M is concave and the restriction

v1 + . . . + vM = const. is linear). If the above difference has to be positive, the factor
(
d
2

)n
suggests that the two cavitation points would want to be arbitrarily close, and that the cavities

will tend to act as a single cavity. This is consistent with the prediction for III; indeed, consider

the corresponding estimate for p = n:

1

n

ˆ
Ωε∩B(a,R)

∣∣∣∣Du(x)√
n− 1

∣∣∣∣n dx ≥ (v1 + v2)

(ˆ d
2

ε
+

ˆ R

d

)
dr

r

+ C(v1 + v2)

[ˆ d
2

ε
〈D(E(ai, r))

n
n−1 〉 dr

r
+

ˆ R

d
D(E(a, r))

p
n−1

dr

r

]
.

Under a logarithmic cost, it is much more important to minimize the distortions D(E(ai, r)) of the

circles u(∂B(ai, r)), i = 1, 2, ε < r < d
2 near the cavities, rather than the distortion of the outer

circles D(E(a, r)), r > d. As was discussed before, this leads either to the case of well-separated

and spherical cavities (scenario (i) in p. 9), or to the conclusion that if outer circles are mapped

to circles (scenario (iii)) then the distance between cavitation points must be of order ε (Theorem

4iii)). In contrast, When p < n, in the presence of the weight rn−p−1, minimizing the distortions

D(E(a, r)), r > d gains more relevance compared to the distortion near the cavities.

For the previous reasons, we believe that the deformations of scenario (i) will not be global

minimizers, instead the body will prefer to open a single cavity. If multiple cavities have to be

created, then the cavitation points will try to be close to each other, and the deformation will try

to rapidly become radially symmetric. The cavities will be distorted and try to act as a single cavity

(as in scenario (iii), which creates a state of strain potentially leading to fracture by coalescence),

at distances between the cavitation points that are of order 1 (not of order ε). This, in fact, is

what has been observed numerically [81, 47].
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Let us now turn to p > n. The lower bound reads

ˆ
Ωε∩B(a,R)

ω
p−n
n

n

n

∣∣∣∣Du(x)√
n− 1

∣∣∣∣p dx+
(v1 + v2)

p
n

p− n
Rn−p ≥ (v

p
n
1 + v

p
n
2 )

ˆ d
2

ε
rn−p−1︸ ︷︷ ︸

I

+(v1 + v2)
p
ndn−p︸ ︷︷ ︸

II

+ C(v1 + v2)
p
n

[ˆ d
2

ε
〈D(E(ai, r))

p
n−1 〉rn−p−1 +

ˆ R

d
D(E(a, r))

p
n−1 rn−p−1

]
.

This time the limit ε → 0 is singular, even more so than for p = n. The factor v
p
n
1 + v

p
n
2 is now

minimized when the cavities have equal volumes. Regarding d, the first term prefers small distances

(d = 2ε) while the second prefers d → ∞; since (v1 + v2)
p
n > v

p
n
1 + v

p
n
2 , it can be said that II has

a stronger influence, hence d large should be preferred5. With respect to the third term, it is now

much more vital to create spherical cavities (so as to minimize the first of the two integrals) than

when p = n. This implies that it is scenario (i), rather than (ii) or (iii), which should be observed.

The case p < n, therefore, should favour a single cavity and coalescence, p > n should favour

many cavities and splitting, and both situations are possible in the borderline case that we have

studied: p = n.

1.6 Plan of the paper

In Section 2 we describe our notation and recall the notions of perimeter, reduced boundary,

topological image, distributional determinant, and the invertibility condition INV. In Section 3

we begin by extending (1.14) to the case of an arbitrary power p and space dimension n (Lemma

3.1). In Section 3.1 we prove the lower bound for an arbitrary number of cavities using the ball

construction method (Proposition 1.1). In Section 3.2, we prove the main lower bound (Theorem

1) and postpone the proof of our estimate on the distortions (Proposition 1.2) to Section 3.3. The

energy estimates for the angle-preserving ansatz are presented in Section 4.1 and proved in Section

4.3. In Section 4.2 we show how to complete the maps away from the cavitation points so as to fulfil

the boundary conditions, and in Section 4.4 we comment briefly on the numerical computations

presented in this paper based on the constructive method of Dacorogna & Moser [20]. Finally, the

proof of the main compactness result and of the fact that in the limit only one of the three scenarii

holds (Theorem 4) is given in Section 5.
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2 Notation and preliminaries

2.1 General notation

Let n denote the space dimension. Vector-valued and matrix-valued quantities will be written in

bold face. The set of unit vectors in Rn is denoted by Sn−1. Given a set E ⊂ Rn, λ ≥ 0 and

h ∈ Rn, we define λE := {λx : x ∈ E} and E + h := {x + h : x ∈ E}. The interior and the

closure of E are denoted by IntE and E, and the symmetric difference of two sets E1 and E2 by

E14E2. If E1 is compactly contained in E2, we write E1 ⊂⊂ E2. The notations B(x, R), BR(x) are

used for the open ball of radius R centred at x, and B(a, R), BR(a) for the corresponding closed

ball. The distance from a point x to a set E is denoted by dist(x, E), the distance between sets by

dist(E1, E2), and the diameter of a set by diamE.

Given A an n × n matrix, AT will be its transpose, detA its determinant, and cofA its

cofactor matrix (defined by AT cofA = (detA)1, where 1 stands for the n × n identity matrix).

The adjugate matrix of A is adjA = (cofA)T .

The Lebesgue and the k-dimensional Hausdorff measure are denoted by Ln andHk, respectively.

If E is a measurable set, Ln(E) is also written |E| (as well as |I| for the length of an interval I).

The measure of the k-dimensional unit ball is ωk (accordingly, Hn−1(∂B(x, r)) = nωnr
n−1). The

exterior product of 1 ≤ k ≤ n vectors a1, . . . ,ak ∈ Rn is denoted by a1 ∧ · · · ∧ ak or
∧k
i=1 ai. It is

k-linear, antisymmetric, and such that |a1 ∧ · · · ∧ ak| is the k-dimensional measure of the k-prism

formed by a1, . . .ak (see, e.g., [24, 75, 33, 1]). In particular, |x|2 = |x · e|2 + |x ∧ e|2 for all x ∈ Rn

and e ∈ Sn−1. With a slight abuse of notation, when k = n the expression a1 ∧ · · · ∧ an is used to

denote the determinant (in the standard basis) of the matrix with column vectors a1, . . . ,an ∈ Rn.
The characteristic function of a set E is referred to as χE , and the restriction of u to E as u|E .

The sign function sgn : R → {−1, 0, 1} is given by sgnx = x/|x| if x 6= 0, sgn 0 = 0. The notation

id is used for the identity function id(x) ≡ x. The symbol
ffl
E f stands for the integral average

1
|E|

´
E f . The support of a function f is represented by spt f .

The space of infinitely differentiable functions with compact support is denoted by C∞
c (Ω), and

the Lp norm of a function f by ‖f‖Lp . Sobolev spaces are denoted by W 1,p(Ω,Rn), as usual. The
Hilbert spaceW 1,2(Ω,Rn) is denoted byH1(Ω,Rn). The weak derivative (the linear transformation)

of a map u ∈ W 1,p(Ω,Rn) at a point x ∈ Rn is identified with the gradient Du(x) (the matrix of

weak partial derivatives).

Use will be made of the coarea formula (see, e.g., [24, 23, 1]): if E ⊂ Rn is measurable and

φ : E → R is Lipschitz, then for all f ∈ L1(E)

ˆ
E
f(x)|Dφ(x)|dx =

ˆ ∞

−∞

(ˆ
{x∈E:φ(x)=t}

f(x) dHn−1(x)

)
dt.

2.2 Perimeter and reduced boundary

Definition 2. The perimeter of a measurable set E ⊂ Rn is defined as

PerE := sup

{ˆ
E
div g(y) dy : g ∈ C1

c (Rn,Rn), ‖g‖∞ ≤ 1

}
.
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Definition 3. Given y0 ∈ Rn and a non-zero vector ν ∈ Rn, we define

H+(y0,ν) := {y ∈ Rn : (y − y0) · ν ≥ 0}, H−(y0,ν) := {y ∈ Rn : (y − y0) · ν ≤ 0}.

The reduced boundary of a measurable set E ⊂ Rn, denoted by ∂∗E, is defined as the set of points

y ∈ Rn for which there exists a unit vector ν ∈ Rn such that

lim
r→0+

|E ∩H−(y,ν) ∩B(y, r)|
|B(y, r)|

=
1

2
and lim

r→0+

|E ∩H+(y,ν) ∩B(y, r)|
|B(y, r)|

= 0.

If y ∈ ∂∗E then ν is uniquely determined and is called the unit outward normal to E.

The definition of perimeter coincides precisely with the Hn−1-measure of the reduced boundary,

as follows from the well-known results of Federer, Fleming and De Giorgi (see, e.g., [24, 83, 23, 1])6.

2.3 Degree and topological image

We begin by recalling the notion of topological degree for maps u that are only weakly differentiable

[56, 26, 12, 17].

If u ∈W 1,p(Ω,Rn) and x ∈ Rn, then, for a.e. r ∈ (0,∞) with ∂B(x, r) ⊂ Ω,

(R1) u(z) and Du(z) are defined at Hn−1-a.e. z ∈ ∂B(x, r)

(R2) u|∂B(x,r) ∈W 1,p(∂B(x, r),Rn)

(R3) D(u|∂B(x,r))(z) = (Du(z))|Tz(∂B(x,r)) (the n-dimensional and the tangential weak derivatives

coincide; Tz(∂B(x, r)) denotes the tangent plane) for Hn−1-a.e. z ∈ ∂B(x, r)

(this follows by approximating by C∞ maps and using the coarea formula). If, moreover, p > n−1,

then, by Morrey’s inequality, there exists a unique map u ∈ C0(∂B(x, r)) that coincides with

u|∂B(x,r) Hn−1-a.e. With an abuse of notation we write u(∂B(x, r)) to denote u(∂B(x, r)).

If p > n−1 and (R2) is satisfied, for every y ∈ Rn \u(∂B(x, r)) we define deg(u, ∂B(x, r),y) as

the classical Brouwer degree [68, 26] of u|∂B(x,r) with respect to y. The degree deg(u, ∂B(x, r), ·)
is the only L1(Rn) map [56, 12] such that

ˆ
Rn

deg(u, ∂B(x, r),y) div g(y) dy =

ˆ
∂B(x,r)

g(u(z)) · (cofDu(z))ν(z) dHn−1(z) (2.1)

for every g ∈ C1(Rn,Rn), ν(z) being the outward unit normal to ∂B(x, r).

For a map u ∈ W 1,p(Ω,Rn) that is invertible, orientation-preserving, and regular except for

the creation of a finite number of cavities, deg(u, ∂B(x, r),y) is equal to 1, roughly speaking, only

at those points y enclosed by u(∂B(x, r)). Because of this, the degree is useful for the study of

cavitation, since we can detect a cavity by looking at the set of points where the degree is 1, but

which do not belong to the image of u (they are not part of the deformed body). This gave rise to

Šverák’s notion of topological image [79].

6When PerE = ∞, the result is true if we consider the measure-theoretic boundary, as defined in [23, Th. 5.11.1].

For sets of finite perimeter the two notions of boundary coincide Hn−1-a.e., thanks to a result of Federer [24] (also

available in [1, Th. 3.61], [23, Lemma 5.8.1], or [83, Sect. 5.6]).
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Definition 4. Let u ∈W 1,p(∂B(x, r),Rn) for some x ∈ Rn, r > 0, and p > n− 1. Then

imT(u, B(x, r)) := {y ∈ Rn : deg(u, ∂B(x, r),y) 6= 0}.

It was pointed out by Müller-Spector [55, Sect. 11] that Sobolev maps may create cavities in

some part of the body, and subsequently fill them with material from somewhere else (even if they

are one-to-one a.e. [3]). In order to avoid this pathological behaviour, they defined a stronger

invertibility condition, based on the topological image7.

Definition 5. Let u ∈W 1,p(Ω,Rn) with p > n− 1. We say that u satisfies condition INV if

i) u(z) ∈ imT(u, B(x, r)) for a.e. z ∈ B(x, r) ∩ Ω

ii) u(z) ∈ Rn \ imT(u, B(x, r)) for a.e. z ∈ Ω \B(x, r)

for every x ∈ Rn and a.e. r ∈ (0,∞) such that u|∂B(x,r) ∈W 1,p(∂B(x, r),Rn).

In the following proposition we summarize some of the main virtues of condition INV. We add

a sketch of the proof to make it easier for the interested reader to compile the different ideas and

conciliate the different notation in [79], [55, Lemmas 2.5, 3.5 and 7.3], [17, Lemmas 3.8 and 3.10],

[39, Lemma 2], and [40, Prop. 6 and Lemma 15].

Proposition 2.1. Let u ∈W 1,p(Ω,Rn) with p > n− 1 satisfy detDu > 0 a.e. and condition INV.

Then, for every x ∈ Rn there exists a full-L1-measure subset Rx of {r ∈ (0,∞) : ∂B(x, r) ⊂ Ω} for

which (R1)–(R3), conditions i)-ii) of Definition 5, and the following properties are satisfied:

i) deg(u, ∂B(x, r),y) ∈ {0, 1} for every y ∈ Rn \ u(∂B(x, r))

ii) ∂∗ imT(u, B(x, r)) = u(∂B(x, r)) up to Hn−1-null sets

iii) Per
(
imT(u, B(x, r))

)
=

ˆ
∂B(x,r)

|(cofDu(z))ν(z)|dHn−1(z)

iv) | imT(u, B(x, r))| = 1

n

ˆ
∂B(x,r)

u(z) · (cofDu(z))ν(z) dHn−1(z).

Moreover, for every x,x′ ∈ Rn and every r ∈ Rx, r
′ ∈ Rx′

v) imT(u, B(x, r)) ⊂ imT(u, B(x′, r′)) if B(x, r) ⊂ B(x′, r′)

vi) imT(u, B(x, r)) ∩ imT(u, B(x′, r′)) = ∅ if B(x, r) ∩B(x′, r′) = ∅.

7The original definition of condition INV in [55, Sect. 3] required that i) and ii) were satisfied only for a.e. r ∈ (0,∞)

such that B(x, r) ⊂ Ω. Here we impose i) and ii) for a.e. r ∈ (0,∞) such that ∂B(x, r) ⊂ Ω. As explained in [37],

this modification is necessary when considering perforated domains, due to Sivaloganathan & Spector’s example of

leakage between cavities [74, Sect. 6].
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Proof. Call Ω0 the set of x ∈ Ω for which there exist w ∈ C1(Rn,Rn) and a compact set K ⊂ Ω

such that

lim
r→0+

|K ∩B(x, r)|
|B(x, r)|

= 1, u|K = w|K , and Du|K = Dw|K . (2.2)

Since u ∈W 1,p(Ω,Rn), it is possible to find (combining Federer’s approximation of approximately

differentiable maps by Lipschitz functions, Rademacher’s theorem, and Whitney’s extension the-

orem, see, e.g., [23, Cor. 6.6.3.2], [24, Thms. 3.1.8 and 3.1.16], [55, Prop. 2.4], [39, Lemma

1]) an increasing sequence of compact sets {Kj}j∈N contained in Ω, and a sequence {wj}j∈N
of maps in C1(Rn,Rn), such that u|Kj = wj |Kj , ∇uj |Kj = Dw|Kj , and |Ω \ Kj | < 1

j for

each j ∈ N. By Lebesgue’s differentiation theorem, |Kj \ K ′
j | = 0 where K ′

j := {x ∈ Kj :

limr→0+(r
−n|B(x, r) \K|) = 0}. Since Ω0 ⊃

⋃
j∈NK

′
j , it follows that |Ω \ Ω0| = 0.

Define Rx as the subset of {r ∈ (0,∞) : ∂B(x, r) ⊂ Ω} for which (R1)–(R3), conditions i)-ii) of

Definition 5, and the following properties are satisfied:

(R4) Hn−1(∂B(x, r) \ Ω0) = 0

(R5) detDu(z) > 0 for Hn−1-a.e. z ∈ ∂B(x, r).

The fact that |{r ∈ (0,∞) : ∂B(x, r) ⊂ Ω} \Rx| = 0 is a consequence of the coarea formula and of

the discussion before Definition 4. For this choice of Rx we have that the properties listed in the

proposition are satisfied for all (not only for a.e.) r ∈ Rx. This follows from (2.1), the fact that

u|Ω0
is one to one (by [55, Lemmas 3.4 and 2.5]; only minor modifications are required, see [39,

Lemma 2] if necessary), and a careful inspection of the proofs of [55, Lemmas 2.5, 3.5 and 7.3].

By Proposition 2.1v) the topological image of B(x, r) can be defined for all x ∈ Rn and all

r ≥ 0 such that {z : r < |z| < r + δ} ⊂ Ω for some δ > 0 (not only for radii r ∈ Rx). Indeed, since

the sequence {imT(u, B(x, r)) : r ∈ Rx} is increasing for every x ∈ Rn, we may define

E(x, r) :=
⋂
r′>r
r′∈Rx

imT(u, B(x, r)). (2.3)

Whenever explicit mention of u is necessary (such as in Theorem 4 where sequences of deformations

are considered), we write E(a, r;u). Finally, if a point a ∈ Rn is such that B(a, δ) \ {a} ⊂ Ω for

some δ > 0, we define its topological image as E(ai, 0), and denote it by imT(u,a).

2.4 The distributional determinant

It is well known that the Jacobian determinant of a C2 vector-valued map u : Ω ⊂ Rn → Rn has a

divergence structure. When n = 2 or n = 3, this is

detDu = u1,1u2,2 − u2,1u1,2 = (u1u2,2),1 − (u1u2,1),2
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detDu = u1,1

∣∣∣∣∣ u2,2 u2,3
u3,2 u3,3

∣∣∣∣∣+ u1,2

∣∣∣∣∣ u2,3 u2,1
u3,3 u3,1

∣∣∣∣∣+ u1,3

∣∣∣∣∣ u2,1 u2,2
u3,1 u3,2

∣∣∣∣∣
=

(
u1

∣∣∣∣∣ u2,2 u2,3
u3,2 u3,3

∣∣∣∣∣
)
,1

+

(
u1

∣∣∣∣∣ u2,3 u2,1
u3,3 u3,1

∣∣∣∣∣
)
,2

+

(
u1

∣∣∣∣∣ u2,1 u2,2
u3,1 u3,2

∣∣∣∣∣
)
,3

,

where ui,j denotes the j-th partial derivative of the i-th component of u. In higher dimensions, we

may write detDu = Div((adjDu)un ).

One of the main ideas in Ball’s theory for nonlinear elasticity [2] is that if the divergence is taken

in the sense of distributions, the right-hand side of the above expressions is well defined for maps

that are only weakly differentiable. This motivated his definition of the distributional determinant

of a map u ∈W 1,n−1(Ω,Rn) ∩ L∞
loc(Ω,Rn) as the distribution DetDu ∈ D′(Ω) given by

〈DetDu, φ〉 := − 1

n

ˆ
Ω
u(x) · (cofDu(x))Dφ(x) dx, φ ∈ C∞

c (Ω) (2.4)

(see also [54, 16, 10, 67, 21, 11] and references therein for subsequent developments and for the role

of DetDu in compensated compactness, homogenization, liquid crystals, and superconductivity).

If a map u ∈ W 1,p(Ω,Rn), p > n − 1, satisfies condition INV, then u(z) is contained in the

region enclosed by u(∂B(x, r)) for every x ∈ Rn, a.e. z ∈ Ω ∩ B(x, r), and a.e. r > 0 such that

∂B(x, r) ⊂ Ω. Consequently, u ∈ L∞
loc(Ω,Rn), and the distributional determinant is well defined.

Proposition 2.2 (cf. [55], Lemma 8.1). Let u ∈ W 1,p(Ω,Rn), p > n − 1, satisfy detDu > 0 a.e.

and condition INV. Then

i) DetDu = (detDu)Ln + µs, where µs is singular with respect to Ln

ii) |E(x, r) \ imT(u, B(x, r))| = 0 for every x ∈ Rn and r ∈ Rx

iii) |E(x, r2) \E(x, r1)| = DetDu(Ar1,r2) for all r1 ≥ 0 and r2 > 0 such that the annulus Ar1,r2 :=

{x ∈ Rn : r1 < |x| < r2} is contained in Ω.

Proof. Let x ∈ Rn and set S := {r ∈ (0,∞) : ∂B(x, r) ⊂ Ω}. The map

ω(r) :=
1

n

ˆ
∂B(x,r)

u(z) · (cofDu(z))ν(z) dHn−1(z), r ∈ Rx

belongs to L1(S). Suppose [r1, r2] ⊂ S for some r1, r2 ∈ Rx. For δ > 0 let φδ(z) := ψδ(|z − x|),
where ψδ ∈ C∞

c ([0,∞)) is such that ψδ = 1 in (r1 + δ, r2 − δ), ψδ = 0 in [0, r1] ∪ [r2,∞), and

δ‖ψ′
δ‖∞ ≤ 2. It is clear that φδ → χAr1,r2

pointwise as δ → 0+, and that

〈DetDu, φδ〉 = ω(r2)− ω(r1) +

 r1+δ

r1

δψ′
δ(r)(ω(r1)− ω(r)) +

 r2

r2−δ
δψ′

δ(r)(ω(r2)− ω(r)).

The proof follows from [55, Lemma 8.1], Proposition 2.1iv)–v), and Lebesgue’s differentiation the-

orem aplied to ω.
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3 Lower bounds

The following is the basic estimate that allows us to relate the elastic energy to the volume and

distortion of the cavities. It extends (1.14) to an arbitrary exponent p and dimension n.

Lemma 3.1. Suppose that u ∈ W 1,p(Ω,Rn), p > n − 1, satisfies detDu > 0 a.e. and condition

INV. Then, for every x ∈ Ω and r ∈ Rx (as defined in Proposition 2.1),

−
ˆ
∂B(x,r)

∣∣∣∣∣D
(
u|∂B(x,r)

)
(x)

√
n− 1

∣∣∣∣∣
p

dHn−1(x) ≥
(
|E(x, r)|
|B(x, r)|

) p
n

(1 + CD
(
E(B(x, r))

) p
n−1 .

Equality is attained only if u|∂B(x,r) is radially symmetric.

Proof. Given x ∈ Rn, r > 0 and z ∈ ∂B(x, r) such that Du(z) is well defined, we have that

|(cofDu(z))ν(z)| = |(Du(z))e1 ∧ · · · ∧ (Du(z))en−1| ≤ |(Du)e1| · · · |(Du)en−1|

≤ (n− 1)
1−n
2
(
|(Du)e1|2 + · · ·+ |(Du)en−1|2

)n−1
2 ,

{e1, . . . , en−1,ν(z)} being an orthonormal basis of Rn with ν(z) := (z− x)/r. Equality holds only

if |(Du)ei| = |(Du)ej | and (Du)ei ⊥ (Du)ej for i 6= j, as in Sivaloganathan-Spector [72, 73]. If

r ∈ Rx, by Propositions 2.1iii), 2.2ii), and 1.3, we obtain

−
ˆ
∂B(x,r)

∣∣∣∣∣D
(
u|∂B(x,r)

)
√
n− 1

∣∣∣∣∣
n−1

dHn−1 ≥
(
|E(x, r)|
ωnrn

)n−1
n

(1 + CD
(
E(x, r)

)
).

The conclusion follows by Jensen’s inequality.

3.1 Ball constructions, the case of multiple cavities

In this Section we prove Proposition 1.1 (our first lower bound, valid for an arbitrary number of

cavities). We start by introducing the necessary notation, and by recalling the ball construction

method in Ginzburg-Landau theory, following the presentation in [67].

Collections of balls will be denoted by expressions with B. If B is a ball, r(B) denotes its radius.

If B is a collection of balls, then r(B) =
∑

B∈B r(B). If λ ≥ 0, λB := {λB : B ∈ B}. We use
⋃

B
to denote the union

⋃
B∈B B of a collection of balls. Given a measurable set A and a collection of

balls B, we denote {B ∩ A : B ∈ B} by A ∩ B. Given F : Rn × (0,∞) → R, we regard F as a

function defined on the set of all balls (cf. [67, Def. 4.1]), and write F(B) for F(x, r) if B = B(x, r)

(or B(x, r)). Also, we write F(B) for
∑

B∈B F(B) if B is a collection of balls.

Proposition 3.2 (cf. [67], Th. 4.2). Let B0 be a finite collection of disjoint closed balls and let

t0 := r(B0). There exists a family {B(t) : t ≥ t0} of collections of disjoint closed balls such that

B(t0) = B0 and

i) For every s ≥ t ≥ t0,
⋃
B(t) ⊂

⋃
B(s).

ii) There exists a finite set T such that if [t1, t2] ⊂ [t0,∞) \ T , then B(t2) = t2
t1
B(t1).
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iii) r(B(t)) = t for every t ≥ t0.

We point out that we chose a different parametrization from the one in [67, Th. 4.2]. Here t

corresponds to et there.

Definition 6 ([67], Def. 4.1). We say that a function F : Rn × (0,∞) → R is monotonic (when

regarded as a function defined in the set of balls) if F(x, r) is continuous with respect to r and

F(B) ≤ F(B′) for any families of disjoint closed balls B,B′ such that
⋃

B ⊂
⋃

B′.

Proposition 3.3 (cf. [67], Prop. 4.1). Let F : Rn × (0,∞) → R be monotonic in the sense of

Definition 6. Let B0 and {B(t) : t ≥ t0} satisfy the conditions of Proposition 3.2. Then,

F(B(s))−F(B0) ≥
ˆ s

t0

∑
B(x,r)∈B(t)

r
∂F
∂r

(x, r)
dt

t
(3.1)

for every s ≥ t0, and for every B ∈ B(s)

F(B)−F(B0 ∩B) ≥
ˆ s

t0

∑
B(x,r)∈B(t)∩B

r
∂F
∂r

(x, r)
dt

t
. (3.2)

Lemma 3.1 applied to F(x, r) =
´
B(x,r)

(∣∣∣Du(x)√
n−1

∣∣∣p − 1
)
dx and Proposition 3.3 immediately

imply the following result (stated without proof).

Proposition 3.4. Suppose that u ∈ W 1,p(Ω,Rn) with p > n − 1 satisfies detDu > 0 a.e. and

condition INV. Suppose, further, that B0 and {B(t) : t ≥ t0} satisfy the conditions of Proposition

3.2. Then, for every s > t0 such that Ωs :=
⋃

B(s) \
⋃
B0 ⊂ Ω,

1

n

ˆ
Ωs

(∣∣∣∣Du(x)√
n− 1

∣∣∣∣p − 1

)
dx ≥

ˆ s

t0

∑
B∈B(t)

|B|

(
|EB|

p
n

|B|
p
n

(1 + CD(EB))
p

n−1 − 1

)
dt

t
,

where EB denotes E(x, r) for B = B(x, r). Analogously, for every B ∈ B(s)

1

n

ˆ

B\
⋃

B1

(∣∣∣∣Du(x)√
n− 1

∣∣∣∣p − 1

)
dx ≥

ˆ s

t0

∑
B′∈B(t)∩B

|B′|

(
|EB′ |

p
n

|B′|
p
n

(1 + CD(EB′))
p

n−1 − 1

)
dt

t
.

Proposition 1.1 finally follows from Proposition 3.4 and the incompressibility constraint:

Proof of Proposition 1.1. Let A := {i : B(ai, R) ⊂ Ω}, t0 := r(B0) =
∑

i∈A εi, and B0 :=⋃
i∈ABεi(ai). Let {B(t) : t ≥ t0} be the family obtained by applying Proposition 3.2 to B0.

Then, applying Proposition 3.4, if
⋃

B(s) ⊂ Ω,

1

n

ˆ
Ωε∩

⋃
B(s)

(∣∣∣∣Du(x)√
n− 1

∣∣∣∣n − 1

)
dx ≥

ˆ s

t0

∑
B∈B(t)

(
(|EB| − |B|) + C|EB|D(EB)

n
n−1

) dt

t
. (3.3)
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Proceeding as in the proof of Proposition 2.2 and using incompressibility we obtain∣∣∣∣∣∣EB \
⋃

ai∈B
E(ai, εi)

∣∣∣∣∣∣ = DetDu

B \
⋃

ai∈B
Bεi(ai)

 = |B| −
∑
ai∈B

ωnε
n
i ,

hence, by the definition of vi in the statement of the proposition,

|EB| − |B| =

∣∣∣∣∣∣
⋃

ai∈B
E(ai, εi)

∣∣∣∣∣∣−
∑
ai∈B

ωnε
n
i =

∑
ai∈B

vi. (3.4)

Combining (3.3) and (3.4) we obtain

1

n

ˆ
Ωε∩

⋃
B(s)

(∣∣∣∣Du(x)√
n− 1

∣∣∣∣n − 1

)
dx ≥

 ∑
i,B(ai,R)⊂Ωε

vi

 log
s

t0
+ C

ˆ s

t0

 ∑
B∈B(t)

|EB|D(EB)
n

n−1

 dt

t
.

Let s0 := sup{s ∈ [t0, R) :
⋃

B(s) ⊂ Ω}. If s0 = R, the claim is proved. Otherwise, from

Proposition 3.2 we deduce that there exists a ball B(a, r) ∈ B(s0), of radius r ≤ s0, containing at

least one ai, i ∈ A, such that B(a, r) ∩ ∂Ω 6= ∅. The proof is completed by observing that

R < dist(ai, ∂Ω) ≤ |ai − a|+ dist(a, ∂Ω) < 2s0.

3.2 The case of two cavities: proof of Theorem 1

In this section, we prove Theorem 1 assuming Proposition 1.2, whose proof is postponed to Section

3.3.

We will need the following lemma.

Lemma 3.5 (Modulus of continuity of the distortion). Let E,E′ ⊂ Rn be measurable. Then

i) ||E|D(E)− |E′|D(E′)| ≤ 2|E4E′|

ii)
∣∣∣|E|D(E)

n
n−1 − |E′|D(E′)

n
n−1

∣∣∣ ≤ 2
n

n−1 n+1
n−1 |E4E′|.

Proof. Let B′ be a ball such that |B′| = |E′| and |E′|D(E′) = |E′4B′|. For all measurable sets B

|E4B| − |E′|D(E′) = ‖χE − χB‖L1 − ‖χE′ − χB′‖L1 ≤ ‖χE − χE′‖L1 + ‖χB − χB′‖L1 .

Testing with concentric balls, and taking the minimum over all balls B with |B| = |E|, yields

|E|D(E)− |E′|D(E′) ≤ ‖χE − χE′‖L1 + ||E| − |E′||

(‖χB − χB′‖L1 = ||E| − |E′|| since B and B′ are concentric). Combining this with the fact that

||E| − |E′|| = |‖χE‖L1 − ‖χE′‖L1 | ≤ ‖χE − χE′‖L1 , we obtain i).
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Property ii) follows from i), the mean value theorem, and the fact that D(E) ≤ 2 for all E (a

direct consequence of its definition). To be more precise, suppose that |E| > |E′|, then∣∣∣|E|D(E)
n

n−1 − |E′|D(E′)
n

n−1

∣∣∣
=
∣∣∣|E|−

1
n−1 (|E|D(E))

n
n−1 − |E′|−

1
n−1 (|E′|D(E′))

n
n−1

∣∣∣
≤ |E|−

1
n−1

∣∣∣(|E|D(E))
n

n−1 − (|E′|D(E′))
n

n−1

∣∣∣+ (|E′|D(E′))
n

n−1

∣∣∣|E|−
1

n−1 − |E′|−
1

n−1

∣∣∣
≤ 2n

n− 1
|E|−

1
n−1 (max{|E|D(E), |E′|D(E′)})

1
n−1 |E4E′|+ 2

n
n−1

n− 1
||E| − |E′||,

completing the proof.

We now proceed to the proof of Theorem 1. As in (3.4), by Proposition 2.2 we have that

|E(B)| = |B|+
∑

i:ai∈B vi for all balls B with ∂B ⊂ Ωε. Hence, Lemma 3.1 implies that

1

n

ˆ
∂B(x,r)

(∣∣∣∣Du(x)√
n− 1

∣∣∣∣n − 1

)
dHn−1(x) ≥

 ∑
i:ai∈B(x,r)

vi + C|E(x, r)|D
(
E(x, r)

) n
n−1

 1

r
(3.5)

for all x ∈ Rn and all r ∈ Rx. Given R > d such that B(a, R) ⊂ Ω, let

A1 := Bd/2(a1) \Bε1(a1), A2 := Bd/2(a2) \Bε2(a2), A3 := BR(a) \Bd(a).

By considering that Ωε ∩B(a, R) ⊃ A1 ∪A2 ∪A3 and integrating successively in each annulus, we

obtain

1

n

ˆ
Ωε∩B(a,R)

(∣∣∣∣Du(x)√
n− 1

∣∣∣∣n − 1

)
dx ≥ v1 log

d

2ε1
+ v2 log

d

2ε2
+ (v1 + v2) log

R

d
(3.6)

+ C

ˆ d/2

ε1

|E(a1, r)|D
(
E(a1, r)

) n
n−1

dr

r
+ C

ˆ d/2

ε2

|E(a2, r)|D
(
E(a2, r)

) n
n−1

dr

r

+ C

ˆ R

d
|E(a, r)|D

(
E(a, r)

) n
n−1

dr

r
.

Proposition 1.2 applied to E1 = E(a1,
d
2), E2 = E(a2,

d
2), and E = E(a, r), r ∈ (d,R) gives

|E(a, r)|D
(
E(a, r)

) n
n−1

≥ C(v1 + v2)

(
(|E1|

1
n + |E2|

1
n )n − |E(a, r)|

(|E1|
1
n + |E2|

1
n )n − |E1 ∪ E2|

)n(n+1)
2(n−1) (min{|E1|, |E2|}

|E1|+ |E2|

) n
n−1

(3.7)

− |E(a1, d/2)|D
(
E(a1, d/2)

) n
n−1 − |E(a2, d/2)|D

(
E(a2, d/2)

) n
n−1 .

Define g(β1, β2) := (β
1
n
1 + β

1
n
2 )n − (β1 + β2) (when n = 2, g(β1, β2) = 2

√
β1β2). Using that

|Ei| = vi +
ωndn

2n , i = 1, 2 we may write

(|E1|
1
n + |E2|

1
n )n = g(|E1|, |E2|) + (|E1|+ |E2|) = g(|E1|, |E2|) + 2 · ωnd

n

2n
+ v1 + v2. (3.8)
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Estimate (3.7) is meaningful if |E(a, r)| ≤ (|E1|
1
n + |E2|

1
n )n, i.e. if

ωnd
n ≤ ωnr

n ≤ g

(
v1 +

ωnd
n

2n
, v2 +

ωnd
n

2n

)
+
ωnd

n

2n−1
(3.9)

(since g is increasing in β1 and β2 and g(β, β) = (2n − 2)β, the inequality holds at least for r = d).

Define ρ as the radius for which ωnr
n is in the middle of the two extremes in (3.9),

ωnρ
n :=

(
2n−1 + 1

)ωndn
2n

+
1

2
g

(
v1 +

ωnd
n

2n
, v2 +

ωnd
n

2n

)
. (3.10)

For all r ∈ (d,min{ρ,R}) we have that E(a, r) ⊂ E(a, ρ), hence

|E(a, r)| < ωnρ
n + v1 + v2 =

1

2
g(|E1|, |E2|) + (2n−1 + 1)

ωnd
n

2n
+ v1 + v2. (3.11)

Noticing that g is 1-homogeneous, combining (3.8) and (3.11) we obtain

(|E1|
1
n + |E2|

1
n )n − |E(a, r)|

(|E1|
1
n + |E2|

1
n )n − |E1 ∪ E2|

≥
1
2g(|E1|, |E2|)− (2n−1 + 1− 2)ωndn

2n

g(|E1|, |E2|)
=

1

2
− 2n−1 − 1

g
(
2n|E1|
ωndn

, 2
n|E2|
ωndn

) .
Without loss of generality, assume that ωnd

n < v1 + v2. Estimate g
(
2n|E1|
ωndn

, 2
n|E2|
ωndn

)
by

g(1 + x, 1 + y) =
n−1∑
k=1

(
n

k

)(
(1 + x)k(1 + y)n−k

) 1
n ≥

n−1∑
k=1

(
n

k

)
(1 + kx)

1
n (1 + (n− k)y)

1
n

≥
n−1∑
k=1

(
n

k

)
(1 + x)

1
n (1 + y)

1
n ≥ (2n − 2)(1 + x+ y)

1
n (3.12)

(with x = 2n|E1|
ωndn

− 1 = 2nv1
ωndn

and y = 2nv2
ωndn

) to obtain

(
(|E1|

1
n + |E2|

1
n )n − |E(a, r)|

(|E1|
1
n + |E2|

1
n )n − |E1 ∪ E2|

)n(n+1)
2(n−1)

≥

1

2
− 2n−1 − 1

(2n − 2)
(
1 + 2n v1+v2ωndn

) 1
n


n(n+1)
2(n−1)

≥ 4
−n(n+1)

2(n−1) .

On the other hand, |E1 ∪ E2| < 2(v1 + v2) (because ωnd
n < v1 + v2), and since |E1| ≥ v1 and

|E2| ≥ v2, we can substitute min{|E1|,|E2|}
|E1|+|E2| with min{v1,v2}

v1+v2
in (3.7). Hence, for all r ∈ (d,min{ρ,R}),

all s1 ∈ (ε1, d/2) and all s2 ∈ (ε2, d/2),

|E(a, r)|D
(
E(a, r)

) n
n−1 + |E(a1, s1)|D

(
E(a1, s1)

) n
n−1 + |E(a2, s2)|D

(
E(a1, s1)

) n
n−1 (3.13)

≥ C(n)(v1 + v2)

(
min{v1, v2}
v1 + v2

) n
n−1

−
2∑
i=1

∣∣∣|E(ai, si)|D
(
E(ai, si)

) n
n−1 − |E(ai,

d
2)|D

(
E(ai,

d
2)
) n

n−1

∣∣∣ .
Denoting E(a1, s1), E(a2, s2), and E(a, r) by Es1 , Es2 , and Er, from (3.6) we obtain

1

n

ˆ
Ωε∩B(a,R)

(∣∣∣∣Du(x)√
n− 1

∣∣∣∣n − 1

)
dx ≥ v1 log

R

2ε1
+ v2 log

R

2ε2
(3.14)

+ C inf
r∈(d,min{ρ,R})
si∈(εi,d/2)

(
|Er|D(Er)

n
n−1 + |Es1 |D(Es1)

n
n−1 + |Es2 |D(Es2)

n
n−1

)
logmin

{
ρ

d
,
R

d
,
d

ε

}
,
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with ε = max{ε1, ε2}. In order to estimate log ρ
d , from (3.10) and (3.12) we find that

ρn

dn
≥ 2−(n+1)g

(
1 + 2nv1

ωndn
, 1 + 2nv2

ωndn

)
≥ (2−1 − 2−n)

(
1 + 2n v1+v2ωndn

) 1
n ≥ (1− 21−n)

(
v1+v2
ωndn

) 1
n
.

The proof is completed by combining (3.13) and (3.14) with Lemma 3.5.

3.3 Estimate on the distortions

This section is devoted to the proof of Proposition 1.2.

Lemma 3.6. Let q > 1 and suppose that E, E1, and E2 are sets of positive measure such that

E ⊃ E1 ∪E2 and E1 ∩ E2 = ∅. Then

|E|D(E)q + |E1|D(E1)
q + |E2|D(E2)

q

|E|+ |E1 ∪ E2|
≥ min

B,B1,B2

(
‖χB − χB1 − χB2‖L1 − (|B| − |B1| − |B2|)

|E|+ |E1 ∪ E2|

)q
,

where the minimum is taken over all balls B, B1, B2 with |B| = |E|, |B1| = |E1|, |B2| = |E2|.

Proof. Let B, B1, B2 attain the minimum in the definition of D(E), D(E1), D(E2), that is, suppose

that |B| = |E|, |B1| = |E1|, |B2| = |E2| and

|E|D(E) = |E4B|, |E1|D(E1) = |E14B1|, |E2|D(E2) = |E24B2|.

Since χB − χB1 − χB2 = (χB − χE) + (χE − χE1 − χE2) + (χE1 − χB1) + (χE2 − χB2), then

‖χB − χB1 − χB2‖L1 − ‖χE − χE1 − χE2‖L1 ≤ |E|D(E) + |E1|D(E1) + |E2|D(E2).

Also, note that ‖χE − χE1 − χE2‖L1 = |E| − |E1| − |E2| = |B| − |B1| − |B2| because E1 ∩ E2 = ∅
and E1 ∪ E2 ⊂ E. The result follows by Jensen’s inequality applied to the map t 7→ tq.

Lemma 3.7. Let B,B1, B2 be measurable subsets of Rn. Then

‖χB − χB1 − χB2‖L1 − (|B| − |B1| − |B2|) = 2(|B1|+ |B2| − |B ∩ (B1 ∪B2)|) (3.15)

= 2(|B1 \B|+ |B2 \B|+ |B ∩B1 ∩B2|). (3.16)

Proof. Consider, first, the elementary relations

|Bi \B| = |Bi| − |B ∩Bi|, i = 1, 2. (3.17)

|B ∩ (B1 ∪B2)| = |B ∩B1|+ |B ∩B2| − |B ∩B1 ∩B2|. (3.18)

|B \ (B1 ∪B2)| = |B| − |B ∩ (B1 ∪B2)|. (3.19)

From (3.17) and (3.18) we obtain

|B1 \B|+ |B2 \B|+ |B ∩B1 ∩B2| = |B1|+ |B2| − |B ∩ (B1 ∪B2)|. (3.20)

From (3.19) and (3.20) we obtain

|B \ (B1 ∪B2)| = |B| − (|B1|+ |B2|) + (|B1 \B|+ |B2 \B|+ |B ∩B1 ∩B2|). (3.21)
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Decomposing Rn as
⋃
α,α1,α2∈{0,1}{y : (χB, χB1 , χB2) = (α, α1, α2)} we find that

‖χB − χB1 − χB2‖L1 =|B ∩B1 ∩B2|+ |B \ (B1 ∪B2)|
+ 2|(B1 ∩B2) \B|+ |(B1 \B) \B2|+ |(B2 \B) \B1|.

Since |(B1 ∩B2) \B| can be seen either as |(B1 \B) ∩B2| or as |(B2 \B) ∩B1|,

‖χB − χB1 − χB2‖L1 = |B ∩B1 ∩B2|+ |B \ (B1 ∪B2)|+ |B1 \B|+ |B2 \B|.

Using (3.20) and (3.19) we obtain (3.15); from (3.21) we obtain (3.16).

From (3.15) we see that the minimization problem in the conclusion of Lemma 3.6 is equivalent

to

max{|B ∩ (B1 ∪B2)| : B,B1, B2 balls of radii R,R1, R2}, (3.22)

where R, R1, R2 are such that |E| = ωnR
n, |E1| = ωnR

n
1 , |E2| = ωnR

n
2 .

Lemma 3.8. Suppose 0 < R1, R2 < R < R1 + R2. Then (3.22) admits a solution, unique up to

isometries of the plane, characterized by the facts that:

i) the centres of B, B1, B2 are aligned

ii) ∅ 6= B1 ∩B2 ⊂ B, B1 6⊂ B, and B2 6⊂ B

iii) ∂B ∩ ∂B1, ∂B1 ∩ ∂B2, and ∂B2 ∩ ∂B are ((n− 2)-dimensional) circles having the same radius

(or, if n = 2, the common chords between B and B1, B1 and B2, and B2 and B all three have

the same length, see Figure 8a).

In addition, the solution to (3.22) is such that

|B ∩B1 ∩B2| ≥
2n−1

n!
(R1 +R2 −R)

n+1
2

(
R1R2

R1 +R2

)n−1
2

. (3.23)

The proof of Lemma 3.8 uses the auxiliary Lemmas 3.9 and 3.10. As mentioned in Section 2,

we write a ∧ b to denote the exterior product of a,b ∈ Rn. In particular, we use that |a ∧ b| =
|b|dist(a, 〈b〉). The purpose of Lemma 3.9 is to show that B(p + he, R) can be written as the

intersection of the two sets in Figure 8b), for all h ∈ R. We then write the derivative of the area of

the sublevel sets with respect to h as a surface integral on ∂B(p+he, R), using the coarea formula

(Lemma 3.10).

Lemma 3.9. Let R > 0, p ∈ Rn, e ∈ Sn−1. Define

φ(y) := (y − p) · e−
√
R2 − |(y − p) ∧ e|2

ψ(y) := (y − p) · e+
√
R2 − |(y − p) ∧ e|2

in the infinite slab S := {y ∈ Rn : |(y − p) ∧ e| < R}. Then, for all h ∈ R,

B(p+ he, R) = {y ∈ S : φ(y) < h} ∩ {y ∈ S : ψ(y) > h}.
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h1 h h2

B1

B

B2

{y : ψ(y) > h}

{y : φ(y) < h}

Figure 8: On the left: optimal choice of B, B1 and B2 in (3.23), with h = h1 = h2. On the right:

sublevel sets {φ < h} and {ψ > h} in the proof of Lemma 3.10 (as h increases the level sets move

along the slab S, in the direction of e).

Proof. By Pithagoras’s theorem |y − (p + he)|2 = |(y − p) · e − h|2 + |(y − p) ∧ e|2. Then

y ∈ B(p+ he, R) if and only if y ∈ S and |(y − p) · e− h| <
√
R2 − |(y − p) ∧ e|2, that is, if and

only if

y ∈ S, (y − p) · e ≥ h and φ(y) < h,

or y ∈ S, (y − p) · e ≤ h and ψ(y) > h.

This proves that B(p+ he, R) ⊂ {φ < h} ∩ {ψ > h},

{φ < h} \B(p+ he, R) ⊂ {y ∈ Rn : (y − p) · e < h}
and {ψ > h} \B(p+ he, R) ⊂ {y ∈ Rn : (y − p) · e > h}.

From this we see that {φ < h} ∩ {ψ > h} ⊂ B(p+ he, R), so the conclusion follows.

Lemma 3.10. Let p ∈ Rn, R > 0, E ⊂ Rn measurable, and suppose that

Hn−1(∂B(p, R) ∩ ∂E) = 0. (3.24)

Then the map y 7→ |B(y, R) ∩ E| is differentiable at y = p with gradient

Dy

(
|B(y, R) ∩ E|

)∣∣
y=p

=

ˆ
∂B(p,R)∩E

z− p

R
dHn−1(z) .

Proof. Given e ∈ Sn−1 arbitrary, let φ, ψ, and S be as in Lemma 3.9. By definition of φ and ψ, we

have that φ(y) < (y − p) · e < ψ(y) for all y ∈ S, hence

(y − p) · e ≤ h ⇒ φ(y) < h and (y − p) · e ≥ h ⇒ ψ(y) > h

for all h ∈ R. Thus, {φ < h}∪{ψ > h} = S and is independent of h. From the elementary relation

|E ∩ S1 ∩ S2|+ |E ∩ (S1 ∪ S2)| = |E ∩ S1|+ |E ∩ S2| we obtain (first for the case |E ∩ S| <∞, then
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for all measurable sets)

|E ∩B(p+ he, R)| − |E ∩B(p, R)|
= (|E ∩ {φ < h}|+ |E ∩ {ψ > h}| − |E ∩ S|)− (|E ∩ {φ < 0}|+ |E ∩ {ψ > 0}| − |E ∩ S|)
= |E ∩ {0 ≤ φ < h}| − |E ∩ {0 < ψ ≤ h}|.

Writing y ∈ S as p+ λe+ µe′, with |e′| = 1 and e ⊥ e′, a direct computation shows that

Dφ(y) = e− µe′√
R2 − µ2

and Dψ(y) = e+
µe′√
R2 − µ2

.

Hence, by the coarea formula and Pithagoras’s theorem,

|E ∩B(p+ he, R)| − |E ∩B(p, R)| =
ˆ h

0

(ˆ
{φ=τ}∩E

dHn−1(y)

|Dφ(y)|
−
ˆ
{ψ=τ}∩E

dHn−1(y)

|Dψ(y)|

)
dτ

=

ˆ h

0

ˆ
∂B(p+τe,R)∩E

sgn(λ− τ)

√
R2 − µ2

R
dHn−1(y) dτ

= e ·
ˆ h

0

ˆ
∂B(p+τe,R)∩E

y − p− τe

R
dHn−1(y) dτ.

Since h and e are arbitrary, the above equation expresses that for all h ∈ Rn

|E ∩B(p+ h, R)| − |E ∩B(p, R)| = h ·
ˆ 1

0

ˆ
∂B(p,R)

z− p

R
χE−τh(z) dHn−1(z) dτ.

Denoting |{τ ∈ (0, 1) : z+ τh ∈ E}| by α(z,h, E), Fubini’s theorem gives∣∣∣∣∣|E ∩B(p+ h, R)| − |E ∩B(p, R)| − h ·
ˆ
∂B(p,R)∩E

z− p

R
dHn−1(z)

∣∣∣∣∣
≤ |h|

ˆ
∂B(p,R)

(χE(z)− α(z, h, E)) dHn−1(z).

Due to the connexity of the line segment joining z and z + h, if dist(z, ∂E) ≥ |h| then either

z ∈ IntE and α(z,h, E) = χE(z) = 1, or z ∈ Rn \ E and α(z,h, E) = χE(z) = 0. Therefore,

lim sup
h→0

|h|−1

∣∣∣∣∣|E ∩B(p+ h, R)| − |E ∩B(p, R)| − h ·
ˆ
∂B(p,R)∩E

z− p

R
dHn−1(z)

∣∣∣∣∣
≤ lim

h→0
Hn−1({z ∈ ∂B(p, R) : dist(z, ∂E) < |h|}) = Hn−1(∂B(p, R) ∩ ∂E),

completing the proof.

Remark 1. The example p = 0, R = 1, E = (−1, 1)n \ B(0, 1) shows that |B(y, R) ∩ E| is not

always differentiable with respect to y if (3.24) is not satisfied. However, this condition holds in

the situations to be considered in the sequel, namely, when E is a ball, the union of balls, or the

intersection of balls of radii different from R.
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Proof of Lemma 3.8. The existence of solutions to (3.22) can be easily deduced from the continuity

of |B∩(B1∪B2)| with respect to the centres of B, B1, and B2. Let (B,B1, B2) be one such solution.

We divide the proof of i)-iii) in the following steps.

Step 1: one of the following possibilities occur

dist(B1 ∩B2, B) > 0, dist(B1 ∩B2,Rn \B) > 0, or B1 ∩B2 = ∅. (3.25)

Suppose, looking for a contradiction, that neither B1 ∩B2∩B = ∅ nor B1 ∩B2 ⊂ B. Then, by the

connexity of B1 ∩B2, there exists x0 ∈ B1 ∩B2 ∩ ∂B. Let B = B(p, R), e := x0−p
|x0−p| , and consider

the following parametrization of ∂B(p, R) using spherical coordinates

f(θ, ξ) := p+ (R cos θ)e+ (R sin θ)ξ, θ ∈ [0, π], ξ ∈ Sn−2
e := Sn−1 ∩ 〈e〉⊥.

Applying Lemma 3.10 to E = B1 ∪B2 (see Remark 1)

d

dh
(|B(p+ he, R) ∩ (B1 ∪B2)|)

∣∣∣∣
h=0

=

ˆ
∂B∩(B1∪B2)

e · z− p

R
dH1(z)

= Rn−1

ˆ
Sn−2
e

ˆ
θ∈(0,π): f(θ,ξ)∈E

cos θ(sin θ)n−2 dθ dHn−2(ξ)

We can write the integral with respect to θ as

ˆ π/2

0
cos θ(sin θ)n−2

(
χE(f(θ, ξ))− χE(f(π − θ, ξ))

)
dθ.

If we prove that

f(π − θ, ξ) ∈ B1 ∪B2 ⇒ f(θ, ξ) ∈ B1 ∪B2 for every θ ∈ [0, π/2] (3.26)

and that

χE(f(θ, ξ))− χE(f(π − θ, ξ)) = 1 for all (θ, ξ) in a set of positive measure, (3.27)

we will obtain that d
dh (|B(p+ he, R) ∩ (B1 ∪B2)|) > 0 at h = 0. The contradiction will follow by

noting that if (B,B1, B2) solves (3.22), then Dx|B(x, R) ∩ (B1 ∪B2)| must be zero at x = p.

Suppose that f(π−θ0, ξ) ∈ Bi for some i = 1, 2 and some θ0 ∈ [0, π2 ]. Since Bi∩∂B is connected

and contains f(0, ξ) = x0, its projection to the plane p+ 〈e, ξ〉 must contain the whole of the arc

f(θ, ξ), θ ∈ [0, π − θ0). This proves (3.26). In order to prove (3.27), define θ1(ξ) := sup{θ ∈ [0, π] :

f(θ, ξ) ∈ B1 ∪B2}. Arguing as before, we see that

|{θ ∈ [0, π] : χE(f(θ, ξ))− χE(f(π − θ, ξ)) = 1}| > 0 (3.28)

unless θ1(ξ) = 0 or θ1(ξ) = π (by continuity, if (3.28) holds for at least one ξ ∈ Sn−2
e , then (3.27)

follows). Since R1, R2 < R, in fact θ1 = π is not possible (in that case x0 and x0 − 2Re would

belong to some Bi, but diamBi = 2Ri < 2R). It remains to rule out the possibility that θ1(ξ) = 0
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for all ξ, that is, that B∩ (B1∪B2) = {x0}. If that were the case then B and B1 would be tangent,

so for all h < R1 we would have that

|B(p+ he, R) ∩ (B1 ∪B2)| ≥ |B(p+ he, R) ∩B1| > 0 = |B ∩ (B1 ∪B2)|

and (B,B1, B2) would not be a solution to (3.22). This completes the proof.

Step 2: the centres of B, B1, B2 lie on a same line. In all the three cases considered in (3.25),

|B ∩ B1 ∩ B2| = |(B + h) ∩ B1 ∩ B2| for every h sufficiently small. Also, for given R, R1, R2, the

expression |B(yi, Ri) ∩ B(y, R)| is a decreasing function of |y − yi|, i = 1, 2. If y were not in the

line containing y1 and y2, both |y − y1| and |y − y2| could be reduced by displacing y towards

that line. By (3.18), this would increase |B ∩ (B1 ∪B2)|, contradicting the choice of (B,B1, B2) as

a solution to (3.22).

Step 3: (B,B1, B2) satisfies ii)-iii). Moreover, these conditions uniquely determine the distances

and relative positions between the centres (that is, the solution to (3.22) is unique up to isometries).

Let h, h1, and h2 denote, respectively, the radii of ∂B1 ∩ ∂B2, ∂B ∩ ∂B1, and ∂B ∩ ∂B2 (or the

semi-lengths of the common chords between B1 and B2, B and B1, and B and B2 if n = 2) defining

these radii (or lengths) as zero in case of empty intersection. By virtue of i), both p1−p and p2−p

are parallel to e := p2−p1

|p2−p1| , where p, p1, p2 are the centres of B, B1, B2, respectively. Setting

qi := (pi − p) · e, i = 1, 2, and using Cartesian coordinates (y1, . . . , yn) with p as the origin and

e in the direction of the y1-axis, we have that B = B
(
(0, 0, . . . , 0), R

)
, B1 = B((q1, 0, . . . , 0), R1

)
,

B2 = B
(
(q2, 0, . . . , 0), R2

)
. By (3.18) and8 Lemma 3.10,

∂

∂q1
|B ∩ (B1 ∪B2)| =

∂

∂q1
|B ∩B1| −

∂

∂q1
|(B ∩B2) ∩B1|

=

ˆ
∂B1∩B

z1 − q1
R1

dHn−1(z1, . . . , zn)−
ˆ
∂B1∩(B∩B2)

z1 − q1
R1

dHn−1(z1, . . . , zn).

In the first of the possibilities considered in (3.25), B cannot intersect both B1 and B2, hence

(B,B1, B2) is not optimal (for example, it would be better if B contained completely either B1 or

B2). In the other two cases we have ∂B1 ∩ (B ∩B2) = ∂B1 ∩B2. Parametrize ∂B1 by

z ∈ ∂B1 ⇔ z− p1 = (R1 cos θ)e+ (R1 sin θ)ξ, θ ∈ [0, π], ξ ∈ Sn−2
e := Sn−1 ∩ 〈e〉⊥.

By definition of e, q1 < q2. Therefore, z ∈ ∂B1 ∩B2 if and only if θ ∈ [0, θ2), where θ2 is one of the

two angles in [0, π] such that by h = R1 sin θ2 (when h = 0, we choose θ2 = 0 or θ2 = π according

to whether B2 ∩B1 = ∅ or B2 ⊂ B1). Thus,

∂

∂q1
|(B ∩B2) ∩B1| = Hn−2(Sn−2

e )

ˆ θ2

0
Rn−1 cos θ(sin θ)n−2 dθ = ωn−1h

n−1.

As for the integral on ∂B1 ∩ B, the same argument shows that it equals −(sgn q1)ωn−1h
n−1
1 . Af-

ter obtaining the corresponding expression for ∂
∂q2

|B ∩ B2|, and by virtue of the optimality of

(B,B1, B2), we obtain

sgn(q1)h
n−1
1 + hn−1 = hn−1 − sgn(q2)h

n−1
2 = 0.

8There is exactly one situation not covered by Lemma 3.10, namely when R1 = R2 and B1 = B2 ⊂⊂ B, but it is

easy to see that this does not give a maximum of |B ∩ (B1 ∪B2)|.

35



2(q2 − q1)

q2 − q1
2
√
R2 − h2

Figure 9: Relationship between h and the distance between the centres.

The case h = h1 = h2 = 0 is not optimal (due to the assumption R < R1 + R2), hence q1 <

0 < q2 and h = h1 = h2 > 0. This proves ii)-iii). It remains to show that q1, q2 and h are

uniquely determined by these conditions. Denoting the hyperplane containing the intersection

of the boundaries of two (intersecting) balls B′, B′′ by Π(B′, B′′), we have that the hyperplanes

Π(B1, B), Π(B1, B2), and Π(B2, B) are given by {y1 = a1}, {y1 = a}, and {y1 = a2}, for some a1,

a, a2 ∈ R. Clearly, the following must be satisfied

(a1 − q1)
2 + h2 = R2

1 (a− q1)
2 + h2 = R2

1 a22 + h2 = R2

a21 + h2 = R2 (a− q2)
2 + h2 = R2

2 (a2 − q2)
2 + h2 = R2

2.

In particular, |a1| = |a2| =
√
R2 − h2, |a1 − q1| = |a− q1| =

√
R2

1 − h2, and |a − q2| = |a2 − q2| =√
R2

2 − h2. Conditions ii)-iii) imply that a1 < q1 < a < q2 < a2 and a1 < 0 < a2. Therefore

q1 =
√
R2

1 − h2 −
√
R2 − h2, q2 =

√
R2 − h2 −

√
R2

2 − h2, (3.29)

which shows that q1 and q2 are determined by h. We also find that

a− q1 =
√
R2

1 − h2, q2 − a =
√
R2

2 − h2. (3.30)

Adding the equations in (3.30) and subtracting the equations in (3.29) yields (see Figure 9)

q2 − q1 =
√
R2 − h2 =

√
R2

1 − h2 +
√
R2

2 − h2. (3.31)

We may assume, without loss of generality, that R2 < R1. Rewrite (3.31) as

R2 −R2
1√

R2 − h2 +
√
R2

1 − h2
−
√
R2

2 − h2 = 0.

The expression at the left-hand side is increasing in h, and equals R − (R1 + R2) < 0 at h = 0,

and
R2−R2

1√
R2−R2

2+
√
R2

1−R2
2

> 0 at h = R2. This shows that h is uniquely determined by R,R1, R2, and

hence the balls B1, B2 too.
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Step 4: proof of (3.23). For each k ∈ {2, . . . , n} denote by Pk the k-dimensional polyhedron

with vertices (the convex hull of)

{(q2 −R2)e, (q1 +R1)e} ∪ {ae± hei : i = 2, . . . , k}, ei := (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
i-th position

.

It is easy to see that H2(P2) = hγ, where γ := |(q1 + R1) − (q2 − R2)|, and that Hk(Pk) =

2hHk−1(Pk−1)/k, for k ∈ {3, . . . , n}. Thus, |Pn| = (2n−1hn−1γ)/n!.

From the previous analysis, we have that B1 ∩ B2 contains Pn. From this we obtain (3.23),

since, by virtue of (3.31),

γ = R1 +R2 −
√
R2 − h2 > R1 +R2 −R, (3.32)

and γ =
h2

R1 +
√
R2

1 − h2
+

h2

R2 +
√
R2

2 − h2
<

(R1 +R2)h
2

R1R2
. (3.33)

We finally prove the main result.

Proof of Proposition 1.2. We can assume that |E1|
1
n + |E2|

1
n > |E|

1
n (otherwise the estimate is

trivially true). By (3.16) and (3.23) we have that

min(‖χB − χB1 − χB2‖L1 − (|B| − |B1| − |B2|)) ≥
2n

n!
(R1 +R2 −R)

n+1
2

(
R1R2

R1 +R2

)n−1
2

,

where the minimum is taken over all balls B, B1, B2 with |B| = |E|, |B1| = |E1|, |B2| = |E2|, and
R,R1, R2 are such that |E| = ωnR

n, |E1| = ωnR
n
1 , |E2| = ωnR

n
2 . Thus, by Lemma 3.6,

|E|D(E)
n

n−1 + |E1|D(E1)
n

n−1 + |E2|D(E2)
n

n−1

|E|+ |E1 ∪ E2|
≥ C

(R1 +R2 −R)
n+1
2

n
n−1

(Rn +Rn1 +Rn2 )
n

n−1

(
R1R2

R1 +R2

)n
2

The quantities Rn + Rn1 + Rn2 , R
n
1 + Rn2 , and (R1 + R2)

n are comparable, since we are assuming

that R < R1 +R2 and by virtue of the identity an + bn ≤ (a+ b)n ≤ 2n−1(an + bn). Hence

(Rn +Rn1 +Rn2 )
n

n−1 ≤ C(R1 +R2)
n2

n−1 = C(R1 +R2)
n(n+1)
2(n−1) (R1 +R2)

n
2 ,

which implies that

|E|D(E)
n

n−1 + |E1|D(E1)
n

n−1 + |E2|D(E2)
n

n−1

|E|+ |E1 ∪ E2|
≥ C

(
R1 +R2 −R

R1 +R2

)n(n+1)
2(n−1) R

n
2
1 R

n
2
2

(R1 +R2)n
. (3.34)

By the mean value theorem, there exists ξ between R and R1 +R2 such that

R1 +R2 −R =
(R1 +R2)

n −Rn1 −Rn2
nξn−1

(
(R1 +R2)

n −Rn

(R1 +R2)n −Rn1 −Rn2

)
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Since we are assuming that R < R1 +R2, then ξ ≤ R1 +R2 and

R1 +R2 −R

R1 +R2
≥ 1

n

(R1 +R2)
n −Rn1 −Rn2

(R1 +R2)n

(
(|E1|

1
n + |E2|

1
n )n − |E|

(|E1|
1
n + |E2|

1
n )n − |E1 ∪ E2|

)
. (3.35)

Suppose now that |E1| ≥ |E2|, so that R1
R1+R2

≥ 1
2 . By the binomial theorem,

(R1 +R2)
n −Rn1 −Rn2

(R1 +R2)n
=

n−1∑
k=1

(
n

k

)(
R1

R1 +R2

)n−k ( R2

R1 +R2

)k
≥ n

2n−1

R2

R1 +R2
(3.36)

(we have considered only the term corresponding to k = 1). Combining (3.35) with (3.36) we obtain

(
R1 +R2 −R

R1 +R2

)n(n+1)
2(n−1)

≥ C

(
R2

R1 +R2

)n(n+1)
2(n−1)

(
(|E1|

1
n + |E2|

1
n )n − |E|

(|E1|
1
n + |E2|

1
n )n − |E1 ∪ E2|

)n(n+1)
2(n−1)

.

The conclusion follows from (3.34) and the above equation, considering that R1
R1+R2

≥ 1
2 .

4 Upper bounds

As explained in the Introduction, we obtain the upper bounds of Theorem 2 and Corollary 1 by

finding suitable test functions opening cavities of different shapes and sizes, the main difficulties

being to satisfy the incompressibility constraint and the Dirichlet condition at the boundary. We

split the problem into two: in Section 4.1 we define a family of incompressible, angle-preserving

maps whose energy has the right singular behaviour as ε → 0, with leading order (v1 + v2)| log ε|,
and serves to define the test maps close to the singularities. In Section 4.2 we extend those maps,

using the existence results of Rivière & Ye [64], in order to match the boundary conditions.

4.1 Proof of Theorem 2

In order to compute the energy of the test functions, we will need the following auxiliary lemmas,

whose proof is postponed to Section 4.3.

Lemma 4.1. Let Ω be a domain in Rn, star-shaped with respect to a point a ∈ Rn, with Lipschitz

boundary parametrized by ζ 7→ a+ q(ζ)ζ, ζ ∈ Sn−1. Let v ≥ 0 and define u : Rn \ {a} → Rn by

u(a+ rζ) := λa+ f(r, ζ)ζ, f(r, ζ)n := rn + (λn − 1)q(ζ)n, r ∈ (0,∞), ζ ∈ Sn−1, (4.1)

with λn := 1 + v
|Ω| . Then u is a Lipschitz homeomorphism, detDu ≡ 1, u(x) = λx for all x ∈ ∂Ω,

u(Ω \ {a}) = λΩ \ imT(u,a), u(Rn \ Ω) = Rn \ λΩ, | imT(u,a)| = v, and for all r, ζ,

rn−1

∣∣∣∣Du(a+ rζ)√
n− 1

∣∣∣∣n ≤ C

(
r + |v|

1
n
max{q, |Dq|}

|Ω|
1
n

)n−1

+

(
q(ζ)n

|Ω|
+ C

max{qn−1, |Dq|n−1}|Dq|
|Ω|

)
v

r
.

Lemma 4.2. Suppose that ã ∈ Rn, 0 ≤ d ≤ ρ, and a = ã+de for some e ∈ Sn−1. Let ζ 7→ a+q(ζ)ζ,

ζ ∈ Sn−1 be the polar parametrization of ∂B(ã, ρ) taking a as the origin. Then
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i) for all ζ ∈ Sn−1, |q(ζ)| ≤ 2ρ, |Dq(ζ)| ≤ 2d|ζ ∧ e|, and |Dq(ζ)| ≤ 2d

∣∣∣∣∣ q(ζ)√
ρ(ρ− d)

∣∣∣∣∣
2

|ζ ∧ e|

ii) if ζ · (a− ã) < 0 then q(ζ) ≥ ρ |ζ · e| and 1 ≤ q(ζ)

d|ζ · e|+
√
ρ(ρ− d)

≤ 2

iii) if ζ · (a− ã) > 0 then
q(ζ)√
ρ(ρ− d)

≤
√
8

1 + dζ·e√
ρ(ρ−d)

.

Lemma 4.3. Let 0 ≤ d ≤ ρ, ã ∈ Rn, e ∈ Sn−1, and Ω := {x ∈ B(ã, ρ) : (x− ã) ·e > ρ−2d}. Then

n|Ω| > ωn−1d
n+1
2 (2ρ− d)

n−1
2 .

Proof of Theorem 2. - Step 1: Construction of the domain.

Given a1,a2 ∈ Rn we claim that it is possible to find a slab of width 2d (where d = |a2 − a1|) and
domains Ω1 and Ω2, as in Figure 5, such that |Ω2|

|Ω1| =
v2
v1
. For ease of exposition, however, let us

first fix d > 0, e ∈ Sn−1, and the slab S = {x ∈ Rn : |x · e| < d}, and suppose that a1 and a2 (with

|a2 − a1| = d) are still free to be chosen. Given ρ1 and ρ2 in (0, d) define

B1 = B
(
(−d+ ρ1)e, ρ1

)
and B2 = B

(
(d− ρ2)e, ρ2)

(the balls of radii ρ1, ρ2 contained in S and tangent to ∂S from the right and from the left). For

future reference, note that if ρi < ρ′i then Bi(ρi) ⊂ Bi(ρ
′
i), i = 1, 2. If the balls intersect, let

â ∈ (−d, d) be such that x · e = â for all x ∈ B1 ∩B2 and define

Ω1 := {x ∈ B1 : x · e < â}, Ω2 := {x ∈ B2 : x · e > â}, δ :=
2ρ1 + 2ρ2 − 2d

2d
(4.2)

(δ is the ratio between the width of B1 ∩B2 and that of B1 ∪B2). Set

d1 :=
â+ d

2
and d2 :=

d− â

2
. (4.3)

It is clear that â, Ω1, Ω2, d1, d2, and δ, thus defined, are determined by ρ1 and ρ2. Let

ρmin :=
v

1
n
1 d

v
1
n
1 + v

1
n
2

, B′
1 :=

(
(−d+ ρmin)e, ρmin

)
, B′

2 :=
(
ρmine, d− ρmin

)
(definition analogous to that of B1 and B2 but with radii ρmin and d− ρmin). The reference radius

ρmin is such that B′
1 and B′

2 are tangent, such that they fit precisely in the slab S, and such that
|B′

2|
|B′

1|
= v2

v1
. If 0 < ρ1 < ρmin and B1 ∩ B2 6= ∅ then Ω1 ⊂ B′

1 and Ω2 ⊃ B′
2, hence

|Ω2|
|Ω1| >

v2
v1
.

Therefore, if 0 < ρ1 < ρmin there exists no ρ2 ∈ [0, d] such that B1 and B2 intersect and |Ω2|
|Ω1| =

v2
v1
.

We are going to show that for every ρ1 in the remaining interval [ρmin, d) there exists one, and only

one, ρ2 ∈ (0, d) such that |Ω2|
|Ω1| =

v2
v1
. In particular, we may regard δ as a function of ρ1, and we will

see that δ increases, from 0 to 1, as ρ1 increases from ρmin to d. From this we will conclude that

for every δ ∈ [0, 1] there exist unique ρ1 and ρ2 for which Ω1 and Ω2 have the desired volume ratio.
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Fix ρ1 ∈ [ρmin, d). In order for B2 to intersect B1 we must have that ρ2 ≥ d− ρ1. Let ρ′2 < ρ′′2
be any two such values of ρ2. Define Ω′

1, Ω
′
2 as the domains obtained when ρ2 = ρ′2; analogous

definition for Ω′′
1, Ω

′′
2. It is easy to see that Ω′

1 ⊃ Ω′′
1 and Ω′

2 ⊂ Ω′′
2 (the intersection plane moves to

the left). Consequently, |Ω2|
|Ω1| is strictly increasing with respect to ρ2. When ρ2 = d− ρ1 the ratio is

(d−ρ1)2
ρ21

≤ (d−ρmin)
n

ρnmin
= v2

v1
≤ 1; when ρ2 = ρ1 the ratio is 1. This proves that there is exactly one ρ2

for which the ratio is v2
v1
. Moreover, the solution is such that d− ρmin ≤ ρ2 < d and ρ1 + ρ2 ≥ d.

Let us now prove that δ is increasing in ρ1 and that it goes from 0 to 1. Let ρ1 ∈ [ρmin, d),

ρ2 = ρ2(ρ1), and let Ω1 and Ω2 be the domains associated to ρ1 and ρ2. Suppose that ρ1 < ρ′1 < d,

and let Ω′
1 and Ω′

2 be the domains associated to the pair (ρ′1, ρ2). It is easy to see that Ω′
1 ⊃ Ω1

and Ω′
2 ⊂ Ω2 (the intersection plane moves to the right). Hence

|Ω′
2|

|Ω′
1|
< |Ω2|

|Ω1| =
v2
v1
. In the above

paragraph we showed that for every fixed ρ1, the ratio |Ω2|
|Ω1| is increasing in ρ2. Applying this to ρ′1,

and since the desired volume ratio for ρ′1 is larger than
|Ω′

2|
|Ω′

1|
, the value ρ′2 associated to ρ′1 must be

larger than ρ2. We conclude that ρ2 (and, hence, δ, by virtue of (4.2)) is increasing as a function

of ρ1. When ρ1 = ρmin, it is clear that ρ2 = d − ρmin and δ = 0. It can be shown that as ρ1 → d,

also ρ2 → d, and, therefore, δ → 1. To prove this, note first that B2 ⊂ B′
2 := B (0, d) and that

|B′
2 \ B1| → 0 as ρ1 → d (in the limit, B1 coincides with B′

2). Note also that B1 ⊂ Ω1 ∪ Ω2 (see

Figure 5). Then

lim
ρ1→d

|Ω1|
|B1|

= lim
ρ1→d

|Ω1|
|Ω1 ∪ Ω2|

(
1 +

|(Ω1 ∪ Ω2) \B1|
|B1|

)
=

v1
v1 + v2

(
1 +

limρ1→d |B2 \B1|
ωndn

)
=

v1
v1 + v2

.

For every ρ1 < d, the intersection B1 ∩B2 is a set of the form

A(ρ1) := {â(ρ1)e+ re′ : e′ ∈ Sn−1, e′ ⊥ e, r <
√
ρ21 − â(ρ1)2}.

Since â(ρ1) is determined by |Ω1|
|B1| , it has a well-defined limit â(d) as ρ1 → d. For every ρ1 < d,

the sphere ∂B2 can be characterized as the one containing de (the right-most point of the ball)

and the set A(ρ1). In the limit, it will be the sphere containing de and A(d) (unless v2 = 0, A(d)

cannot consist only of de). But A(ρ1) ⊂ B1(ρ1) for all ρ1 < d, and in the limit B1 coincides with

B(0, d) (which also contains de). Hence B2 tends to coincide with B1, and ρ2 → d, as desired. The

limiting domains are those given by (4.2), with â given by the limiting value â(d).

Going back to the original statement, suppose that a1 and a2 are given, and let d := |a2 − a1|
and e := a2−a1

|a2−a1| . For every δ ∈ [0, 1] define ρ1(δ), ρ2(δ), d1(δ), and d2(δ) as in the previous

discussion (d1 and d2 are completely determined by ρ1 and ρ2: they are the semi-distances from

the intersection plane to the walls of the slab). The domains of Figure 5 are given by

Ω1 := {x ∈ B(ã1, ρ1) : (x− a1) · e < d1}, Ω2 := {x ∈ B(ã2, ρ2) : (x− a2) · e > −d2}, (4.4)

with

ã1 := a1 + (ρ1 − d1)e, ã2 := a2 − (ρ2 − d2)e, B1 := B(ã1, ρ1), B2 := B(ã2, ρ2).

For future reference recall that d1 + d2 = d, ρ2 ≤ ρ1 ≤ d, and ρ1 + ρ2 ≥ d. Note also that 2d1, the

distance from the intersection plane to the left wall of the slab, is smaller than the diameter 2ρ1 of

B1, that is, d1 ≤ ρ1 and d2 ≤ ρ2.
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- Step 2: Definition of the map.

We define u : Rn \ {a1,a2} piecewise, based on Lemma 4.1, in the following manner. Inside Ω1 we

apply Lemma 4.1 to Ω = Ω1 and a = a1; inside Ω2 we apply Lemma 4.1 to Ω = Ω2 and a = a2.

Finally, in order to define u in Rn \ Ω1 ∪ Ω2 we define

a∗ =
(ã1 + ρ1e) + (ã2 − ρ2e)

2
= ã1 + (d− ρ2)e = ã2 − (d− ρ1)e

(when δ = 0, a∗ is the intersection point; when δ = 1, a∗ is the center of the ball) and use Lemma

4.1 with Ω = Ω1 ∪ Ω2, a = a∗. Let ζ 7→ a1 + q1(ζ)ζ, ζ 7→ a2 + q2(ζ)ζ, and ζ 7→ a∗ + q(ζ)ζ be,

respectively, the polar parametrizations of ∂Ω1, ∂Ω2, and ∂(Ω1 ∪ Ω2) (with ζ ∈ Sn−1 in all cases).

To be precise,

u(x) :=


λa1 +

(
|x− a1|n + v1

|Ω1|q1

(
x−a1
|x−a1|

)n) 1
n x−a1

|x−a1| x ∈ Ω1 \ {a1}

λa2 +
(
|x− a2|n + v2

|Ω2|q2

(
x−a2
|x−a2|

)n) 1
n x−a2

|x−a2| x ∈ Ω2 \ {a2}

λa∗ +
(
|x− a∗|n + v1+v2

|Ω1+Ω2|q
(

x−a∗

|x−a∗|

)n) 1
n x−a∗

|x−a∗| x ∈ Rn \ Ω1 ∪ Ω2,

with

λn − 1 :=
v1
|Ω1|

=
v2
|Ω2|

=
v1 + v2
|Ω1 ∪ Ω2|

.

Since |Ω1|
|Ω2| =

v1
v2
, the construction is well defined and u(x) = λx for all x ∈ ∂Ω1∪∂Ω2. The resulting

map is an incompressible homeomorphism, creates cavities at the desired locations with the desired

volumes and is smooth except across ∂Ω1 ∪ ∂Ω2 (where it is still continuous). It only remains to

estimate its elastic energy.

- Step 3 : Evaluation of the energy in Rn \ (Ω1 ∪ Ω2).

By Lemma 4.2i), max{q, |Dq|} ≤ 2d, then, by Lemma 4.1

rn−1

∣∣∣∣Du(rζ)√
n− 1

∣∣∣∣n ≤ C

(
r +

d(v1 + v2)
1
n

|Ω1 ∪ Ω2|
1
n

)n−1

+

(
qn

|Ω1 ∪ Ω2|
+
Cdn−1|Dq|
|Ω1 ∪ Ω2|

)
v1 + v2
r

.

Since ρi, i = 1, 2 increases with δ and assumes the value
v

1
n
i d

v
1
n
1 +v

1
n
2

when δ = 0, it follows that

2ωnd
n > ωn(ρ

n
1 + ρn2 ) > |Ω1 ∪ Ω2| >

1

2
ωn(ρ

n
1 + ρn2 ) > 2−nωnd

n. (4.5)

Consequently, for any R > 0

1

n

ˆ
B(a∗,R)\Ω1∪Ω2

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤ C(v1 + v2 + ωnR
n) + (v1 + v2)

−́Sn−1 ωnq
n
(
log R

q

)
+
dHn−1

|Ω1 ∪ Ω2|

+ C(v1 + v2)−
ˆ
Sn−1

|Dq|
d

(
log

R

q

)
+

dHn−1,
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where (log x)+ denotes max{0, log x}. Note that −́Sn−1 ωnq(ζ)
n dHn−1(ζ) = |Ω1 ∪ Ω2|. Also, since

|a∗ − ã1|+ |a∗ − ã2| = d(1− δ), Lemma 4.2i) implies that |Dq| ≤ 2d(1− δ). Therefore,

1

n

ˆ
B(a∗,R)\Ω1∪Ω2

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤C(v1 + v2 + ωnR
n) + (v1 + v2)

(
1 + C(1− δ)

)(
log

R

d

)
+

+ C(v1 + v2)−
ˆ
Sn−1

(
qn

dn
+

|Dq|
d

)(
log

d

q(ζ)

)
+

dHn−1(ζ).

2d

2d1 2d2

ã

θ0

q| cos θ| ρ2e

B1

B2

S

(q sin θ)ξ
θ

x

Figure 10: Angle θ0 >
π
2 and choice of spherical coordinates for δ = 0.

The main problems at this point are that if δ → 0 then ρ2 is of the order of v2d
v1+v2

(so d
q → ∞

on ∂B2 ∩ ∂Ω2 if v2v1 → 0) and q(ζ) tends to vanish on ∂B1 ∩ ∂B2 (see Figure 10). Parametrize Sn−1

by ζ = − cos θ e+ sin θ ξ with θ ∈ (0, π) and ξ ∈ S := Sn−1 ∩ 〈e〉⊥. Since qn

dn | log
d
q | is bounded we

only study the term with |Dq|, that is, we are to prove that

Hn−2(S)

(ˆ π
2

0
+

ˆ π

π
2

)
(sin θ)n−2 |Dq(ζ(θ, ξ)|

d

(
log

d

q(ζ(θ, ξ))

)
+

dθ

is bounded independently of d, δ, v1, and v2. It can be shown that a∗ + q(θ, ξ)ζ(θ, ξ) ∈ ∂B1 for all

θ ∈ (0, π2 ) (due to the fact that ρ1 ≥ ρ2, see Figure 10), and clearly ζ ·(a∗−ã1) = − cos θ(d−ρ2) < 0.

Lemma 4.2ii) can thus be used to estimate the first integral by

2

ˆ π
2

0

ρ1
d

log
d

ρ1 cos θ
dθ ≤ 2

(
max
t∈[0,1]

|t log t|
) ˆ π

2

0

∣∣∣∣log 1

2

(π
2
− θ
)∣∣∣∣ dθ = π

e

(
1 + log

4

π

)
.

As for the second integral we divide (π2 , π) into (
π
2 , θ0]∪[θ0, π), according to whether a

∗+q(θ, ξ)ζ(θ, ξ)

belongs to ∂B1 or to ∂B2. For θ > θ0 we can still use Lemma 4.2ii) (this time with ã = ã2 and

ρ = ρ2) to obtain exactly the same upper bound as before. For θ ∈ (π2 , θ0), use parts i) and iii) of

Lemma 4.2 together with ρ1 − |a∗ − ã1| = dδ to obtain

|Dq|
d

≤ 2(d− ρ2)

δρ1

q2

d2
sin θ and |Dq| ≤ 16(d− ρ2)

(
1 +

(d− ρ2)| cos θ|√
δρ1d

)−2

sin θ.
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Then, for any α ∈ (0, 12), using that t2α| log t| ≤ (2αe)−1 for every t ∈ (0, 1),

ˆ θ0

π
2

|Dq|
d

(
log

d

q

)
+

dθ ≤
ˆ θ0

π
2

∣∣∣∣Dqd
∣∣∣∣1−α ∣∣∣∣Dqd

∣∣∣∣α(log dq
)

+

dθ

≤ 2α161−α

2αe

(
d− ρ2
d

)1−α(d− ρ2
δρ1

)α ˆ π

π
2

(
1 +

(d− ρ2)| cos θ|√
δρ1d

)2(α−1)

sin θ dθ

≤ 81−α

αe

(
δρ1
d

) 1
2
−α

−
ˆ d−ρ2√

δρ1d

0
(1 + t)2α−2 dt

The last integral can be bounded by means of the relation

(1− 2α)

ˆ x

0
(1 + t)2α−2 dt = 1− 1

(1 + x)1−2α
< 1− 1

1 + x
=

x

1 + x
.

Using that γ +
√
1− γ > 1 for all γ ∈ (0, 1) (applied to γ = d−ρ2

ρ1
= |a∗−a1|

ρ1
),

ˆ θ0

π
2

|Dq|
d

(
log

d

q

)
+

dθ ≤ 81−α

α(1− 2α)e

(
δρ1
d

) 1
2
−α d− ρ2

ρ1

1

γ +
√
1− γ

≤ 81−α

α(1− 2α)e
δ

1
2
−α
(
d− ρ2
d

) 1
2
−α(d− ρ2

ρ1

) 1
2
−α

≤ 81−α

α(1− 2α)e
δ

1
2
−α(1− δ)

1
2
−α.

We conclude that for all R > 0

1

n

ˆ
B(a∗,R)\Ω1∪Ω2

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤ C(v1 + v2 + ωnR
n) + (v1 + v2)

(
1 + C(1 − δ)

)(
log

R

d

)
+

.

- Step 4: Estimating the energy in Ωi.

Near the cavitation points we still have that −́ ωnq
n
i dHn−1 = |Ωi|, i = 1, 2, so by Lemma 4.1

1

n

ˆ
Ωi\Bεi (ai)

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤ C(vi + ωnρ
n
i ) + vi

(
log

2ρi
εi

)
+

+ C
v1 + v2
|Ω1 ∪ Ω2|

(ˆ
Sn−1

max{qi, |Dqi|}n−1|Dqi|dHn−1

)
log

2d

εi

≤ C(vi + ωnρ
n
i ) + vi log

2d

εi
+ C(v1 + v2)

ρn−1
i

dn−1

(ˆ
Sn−1

|Dqi|
d

)
log

2d

εi
.

For Ω1 set ζ = − cos θe+ sin θξ. If θ ∈ (0, π2 ) then, by Lemma 4.2, using that |a1 − ã1| = ρ1 − d1,

ˆ π
2

0
|Dq1| sinn−2 θ dθ ≤ 16(ρ1 − d1)

ˆ π
2

0

(
1 +

ρ1 − d1√
d1ρ1

cos θ

)−2

sin θ dθ

= 16
√
d1ρ1

ˆ ρ1−d1√
d1ρ1

0
(1 + t)−2 dt =

√
d1
ρ1

ρ1 − d1
γ +

√
1− γ

,
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with γ = 1− d1
ρ1
. Since γ +

√
1− γ ≤ 1 for γ ∈ [0, 1],

ρn−1
1

ˆ π
2

0
|Dq1| sinn−2 θ dθ ≤ ρn−2

1

√
d1ρ1(ρ1 − d1).

Define θ1 as in Figure 5. By Lemma 4.2, |Dq1| ≤ 2(ρ1 − d1) sin θ and q1 ≥
√
d1ρ1, hence

ρ1

ˆ θ1

π
2

|Dq1| sinn−2 θ dθ ≤ ρ1(ρ1 − d1)| cos θ1| ≤ (ρ1 − d1)
d1ρ1
q(θ1)

≤
√
d1ρ1(ρ1 − d1).

For θ ∈ (θ1, π), q1(ζ) is given by q1ζ · e = d1 hence

q1(θ) =
d1

cos(π − θ)
and |Dq1(ζ(θ, ξ))| =

∣∣∣∣q1(1− ζ ⊗ ζ)e

−ζ · e

∣∣∣∣ = d1 sin θ

cos2(π − θ)
.

Using that 1− | cos θ1| = sin2 θ1
1+| cos θ1| ≤ sin2 θ1 and that q(θ1) ≥ (ρ1 − d1) cos θ +

√
d1ρ1 ≥

√
d1ρ1,

ρ1

ˆ π

θ1

|Dq1|dθ ≤ d1ρ1

ˆ 1

| cos θ1|

dt

t2
≤ ρ1

d1 sin
2 θ1

cos(π − θ1)
=
ρ1(q1(θ1) sin θ1)

2

q1(θ1)
≤ 4
√
d1ρ1(ρ1 − d1),

the last equality being due to the fact that q(θ1) cos θ1 = d1 and a1+q(θ1)ζ(θ1, ξ) ∈ ∂B(ã1, ρ1). Now

we show that max{q1, |Dq1|} ≤ 8ρ1. The fact that q(θ1) ≥
√
d1ρ1 implies that ρ1| cos θ1| ≤

√
d1ρ1.

Clearly q(θ) is decreasing, therefore

q(θ) ≤ q(θ1) ≤ 2((ρ1 − d1)| cos θ1|+
√
d1ρ1) ≤ 4

√
d1ρ1 ≤ 4ρ1.

As for |Dq1|, we have that q1(θ) sin θ is decreasing and q(θ1) sin θ1 = 2
√
d1(ρ1 − d1), then

|Dq1| =
q1(q1 sin θ)

q1 cos(π − θ)
≤

2q1(θ1)
√
d1(ρ1 − d1)

d1
≤ 8
√
ρ1(ρ1 − d1)| ≤ 8ρ1.

The study of u in Ω2 being completely analogous, the conclusion is that for all R > 0

1

n

ˆ
B(a∗,R)\(Bε1 (a1)∪Bε2 (a2))

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤ C(v1 + v2 + ωnR
n) + v1 log

R

ε1
+ v2 log

R

ε2

+ C(v1 + v2)

(
(1− δ)

(
log

R

d

)
+

+

√
d1
d

ρ1 − d1
d

log
d

ε1
+

√
d2
d

ρ2 − d2
d

log
d

ε2

)
In the case of a1 it is ρ1−d1 that has an interesting behaviour, whereas for a2 it is d2. This follows

from our final ingredient: the ‘height’ of B(a1, ρ1)∩B(a2, ρ2), whether we measure it from the first

ball or from the second, is the same. The corresponding expression is d1(ρ1 − d1) = d2(ρ2 − d2).

As a consequence,

ρ1 − d1
d

=
δ(ρ1 − d1)

(ρ1 − d1) + (ρ2 − d2)
=

δd2
d1 + d2

= δ
d2
d
.

The theorem is thus proved since, by Lemma 4.3,(
d2
d

)n+1
2

≤ C
|Ω2|

ρ
n−1
2

2 d
n+1
2

≤ C

v2|Ω1∪Ω2|
v1+v2(

v
1
n
2

v
1
n
1 +v

1
n
2

d

)n−1
2

d
n+1
2

≤ C

((
v2

v1 + v2

) 1
n

)n+1
2

.
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4.2 Transition to radial symmetry

Our proof of Theorem 3 is based on the following result (see [53, 20, 82, 51, 19, 8] for related work):

Proposition 4.4 (Rivière-Ye, [64], Thm. 8). Let D be a smooth domain, k = 0, 1, 2, . . . and suppose

that g ∈ Ck,1(D) =W k+1,∞(D) with infD g > 0 and −́
D g = 1. Then, there exists a diffeomorphism

φ : D → D, satisfying detDφ = g in D and φ = id on ∂D, such that, for any α < 1, φ is in

Ck+1,α(D) and

‖φ− id‖Ck+1,α(D) ≤ C‖g − 1‖Ck,1(D)

for any 0 < δ < 1, where C depends only on α, k, D, infD g, δ, and ‖g‖0,δ.

Lemma 4.5. Let ζ ∈ Sn−1 7→ a∗ + q(ζ)ζ be the polar parametrization of ∂(Ω1 ∪ Ω2) and define

ρ(ζ)n := Rn1 + (v1 + v2)
q(ζ)n

|Ω1 ∪ Ω2|
, ζ ∈ Sn−1, (4.6)

R1 being fixed and such that Ω1 ∪ Ω2 ⊂ B(a∗, R1). Suppose that u is a one-to-one incompressible

map from {R1 < |x− a∗| < R2} onto {rζ : ρ(ζ) < r < R3}, for some R2, R3 ≥ 0. Then

ωn(R
n
2 −Rn1 ) >

π
3 − 1

2

2n−23π
(v1 + v2)(1− δ).

Proof. Denote maxSn−1 q = 2ρ1 − δd by qmax. By incompressibility,

ωnR
n
3 = v1 + v2 + ωnR

n
2 , (4.7)

hence the requirement that R3 ≥ ρ(ζ) for all ζ ∈ Sn−1 is equivalent to

ωn(R
n
2 −Rn1 ) > (v1 + v2)

ωn−́Sn−1(q
n
max − qn) dHn−1

|Ω1 ∪ Ω2|
.

Write ζ := − cos θe+ sin θξ with θ ∈ [0, π], ξ ∈ S := Sn−1 ∩ 〈e〉⊥. For all θ ∈ (0, π2 )

qmax − q(θ) = 2ρ1 − δd− (ρ1 − δd) cos θ −
√
δd(2ρ1 − δd) + (ρ1 − δd)2 cos2 θ

=

(
ρ1 + (ρ1 − δd)(1− cos θ)

)2 − (δd(2ρ1 − δd) + (ρ1 − δd)2 cos2 θ
)

ρ1 + (ρ1 − δd)(1− cos θ) +
√
δd(2ρ1 − δd) + (ρ1 − δd)2 cos2 θ

>
(ρ1 − δd)2(sin2 θ + (1− cos θ)2) + 2ρ1(ρ1 − δd)(1− cos θ)

(2ρ1 − δd) + (2ρ1 − δd) + ρ1 − δd

=
2(ρ1 − δd)(2ρ1 − δd)(1− cos θ)

5ρ1 − 3δd
>

2

3
(d− ρ2)(1− cos θ) >

2d

3
(1− δ)(1− cos θ),

where we have used that ρ1 − dδ = d− ρ2 and ρ2 ≤ d. Therefore,

ωn−́Sn−1(q
n
max − qn) dHn−1

|Ω1 ∪ Ω2|
>

Hn−2(S)

nωn

´ π
2
π
6
(qmax − q)qn−1

max(sin θ)
n−2 dθ

2dn
>

π
3 − 1

2

2n−23π
(1− δ). (4.8)
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Proof of Theorem 3. We prove the theorem in the following stronger version (see the remark after

the proof of Corollary 1): “Let R1, R2 be such that

R1 ≥ 2d and ωn(R
n
2 −Rn1 ) > 4nn(v1 + v2)(1− δ) (4.9)

(δ, v1, v2, a1, a2, d, ε1, and ε2 being as in the original statement). Then there exists a∗, C1, C2,

and u : Rn \ {a1,a2} → Rn such that u|Rn\B(a∗,R2) is radially symmetric and for all R ≥ R1

1

n

ˆ
B(a∗,R)\(Bε1 (a1)∪Bε2 (a2))

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤ C1(v1 + v2 + ωnR
n) + v1 log

R

ε1
+ v2 log

R

ε2

+ C2(v1 + v2)

(
(1− δ) log

R1

d
+ δ

(
n

√
v2
v1

log
d

ε1
+ 2n

√
v2
v1

log
d

ε2

))
+Σ

(
(v1 + v2)(1− δ)

ωn(Rn2 −Rn1 )

)
(v1 + v2 + ωnR

n
2 )

(
min{R,R2}

R1
− 1

)n
,

the function Σ being such that Σ(t) < ∞ in for t ∈ [0, 1
4nn) and Σ(t) = O(tn(n−1)) as t → 0”. The

Theorem follows by choosing R1 and R2 as in (1.15).

Since the constant in Proposition 4.4 depends on the reference domain, we work on the annulus

D := {z ∈ Rn : 1 ≤ |z| ≤ n
√
2} (we choose n

√
2 so that |D| = ωn). Our strategy is to define

u : B(a∗, R1) \ {a1,a2} → Rn as in Theorem 2 and to look for a map

u : {x ∈ Rn : R1 ≤ |x− a∗| ≤ R2} → {y = λa∗ + rζ : ρ(ζ) ≤ r ≤ R3, ζ ∈ Sn−1}

(where ρ is defined in (4.6)) of the form u = v ◦φ−1 ◦w−1, with φ : D → D a diffeomorphism and

w(rζ) := a∗ + ((2− rn)Rn1 + (rn − 1)Rn2 )
1
n ζ,

v(rζ) := λa∗ + ((2− rn)ρ(ζ)n + (rn − 1)Rn3 )
1
n ζ.

(4.10)

The maps w and v are parametrizations of the reference and target domains, and are defined so

that detDw is constant and v ◦ w−1 sends ∂B(a∗, R), R1 ≤ R ≤ R2 onto a curve enclosing a

volume of exactly v1 + v2 + ωnR
n (as can be seen by writing

v ◦w−1(a∗ +Rζ) = λa∗ +

(
Rn +

v1 + v2
ωn

(
1 +

Rn2 −Rn

Rn2 −Rn1

ωn
(
qn − −́ qn

)
|Ω1 ∪ Ω2|

)) 1
n

ζ, (4.11)

and by considering that |{λa∗ + rζ : ζ ∈ Sn−1, 0 < r < ρ(ζ)}| =
ffl
Sn−1 ωnρ

n dHn−1). The problem

for φ is φ = id on ∂D, detDφ = g := detDv
detDw in D. To use Proposition 4.4 we need to bound

g(rζ)− 1 =
v1 + v2

ωn(Rn2 −Rn1 )

(
1− ωnq(ζ)

n

|Ω1 ∪ Ω2|

)
and Dg(rζ) = − v1 + v2

Rn2 −Rn1

nqn−1Dq(ζ)

r|Ω1 ∪ Ω2|

for all ζ ∈ Sn−1, r ∈ [1, n
√
2]. Using (4.5) and the fact that ρ1(δ) ≤ d and q(ζ) ≥ δd for all δ, ζ,

ωn−́Sn−1(q
n
max − qn) dHn−1

|Ω1 ∪ Ω2|
≤ n(2d)n−1 (2ρ1 − δd)− δd

2−ndn
≤ 4nn(1− δ). (4.12)
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By Lemma 4.2i),

sup |Dg| ≤ (v1 + v2)

Rn2 −Rn1

2n(2d)n−1(1− δ)d

2−nωndn
≤ 4nn

(v1 + v2)(1− δ)

ωn(Rn2 −Rn1 )
.

This and Proposition 4.4 imply the existence of a (piecewise smooth) solution φ such that

‖φ− id‖C1(D) ≤ Σ

(
(v1 + v2)(1− δ)

ωn(Rn2 −Rn1 )

)
(4.13)

for some function Σ satisfying Σ(t) <∞ for t ∈ [0, 1
4nn) and Σ(t) = O(t) as t→ 0.

Define u = v ◦ φ−1 ◦w. Writing x = w(φ(z)) we obtain

|Du(x)|n =

∣∣∣∣Dv(z) adjDφ(z)Dw−1(x)

detDφ(z)

∣∣∣∣n ≤ Cn
Rn3
Rn1

Σn(n−1)

(
1− 4nn

(v1 + v2)(1− δ)

ωn(Rn2 −Rn1 )

)−n
.

The conclusion follows from (4.7).

Remark 2. For Dirichlet boundary conditions that are not necessarily radially symmetric, the above

method can still be used provided there is an initial diffeomorphism v, from the reference domain

D = {z : 1 < |z| < n
√
2} used above onto the desired target domain, for which g := detDv

detDw is

bounded away from zero. The final energy estimate will depend on infD g, ‖Dv‖∞‖Dw−1‖∞, and

‖g‖∞ + ‖Dg‖∞.

4.3 Proof of the preliminary lemmas

In this Section, we give the proofs of Lemmas 4.1, 4.2 and 4.3.

Proof of Lemma 4.1. First we show that for any map of the form u(x) := λa + f(x) x−a
|x−a| the

incompressibility equation reduces to an ODE of the form fn−1(r, ζ)∂f∂r (r, ζ) = rn−1. In order

to see this, we consider any local parametrization (s1, . . . , sn−1) 7→ ζ(s1, . . . , sn−1) of Sn−1 and

introduce a polar coordinate system of the form

x = x(r, s1, . . . , sn−1) = a+ rζ(s1, . . . , sn−1), r > 0, (s1, . . . , sn−1) ∈ D ⊂ Rn−1,

D being some parameter space. The claim follows by observing that

∂u

∂r
∧ ∂u

∂s1
∧ · · · ∧ ∂u

∂sn−1
= detDu(x)

(
∂x

∂r
∧ ∂x

∂s1
∧ · · · ∧ ∂x

∂sn−1

)
= detDu(x)

(
ζ ∧

n−1∧
k=1

r
∂ζ

∂sk

)

and

∂u

∂r
∧ ∂u

∂s1
∧ · · · ∧ ∂u

∂sn−1
=
∂f

∂r
ζ ∧

n−1∧
k=1

(
∂f

∂sk
ζ + f

∂ζ

∂sk

)
= fn−1∂f

∂r

(
ζ ∧

n−1∧
k=1

∂ζ

∂sk

)
.
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From the above we find that u(x) := λa + f(x)ζ is incompressible provided f(r, ζ)n ≡ rn +

A (ζ)n, for some A : Sn−1 → R. The definition in (4.1) is obtained by imposing the boundary

condition u(x) = λx on ∂Ω. Differentiating f in (4.1) with respect to ζ yields

fn−1(r, ζ)Dζf(r, ζ) = (λn − 1)qn−1(ζ)Dq(ζ), Dζf(r, ζ), Dq(ζ) : Tζ(Sn−1) → R

(Tζ(Sn−1) being the tangent plane to Sn−1 at ζ). Writing r(x) = |x − a|, ζ(x) = x−a
|x−a| we obtain

Dr = ζ, Dζ = 1−ζ⊗ζ
r , |Dζ|2 = n−1

r2
. Identifying Dζf(r, ζ) =

v
|Ω|

qn−1(ζ)
fn−1(r,ζ)

Dq(ζ) ∈ (Tζ(Sn−1))∗ with

a vector in 〈ζ〉⊥ ⊂ Rn in the usual manner, from f(x) = f(r(x), ζ(x)) we find that

Df(x) =
∂f

∂r
Dr + (Dζ)TDζf =

∂f

∂r
ζ +

Dζf

r
, |Df |2 =

∣∣∣∣∂f∂r
∣∣∣∣2 + ( v

|Ω|
qn−1

fn−1

|Dq|
r

)2

. (4.14)

Since Du = ζ ⊗Df + fDζ, (Dζ) · (ζ ⊗Df) = ζ · ((Dζ)Df) = 0, and ∂f
∂r = rn−1

fn−1 < 1, then

|Du|2 = |Df |2 + f2|Dζ|2 = (n− 1)
f2

r2
+

∣∣∣∣∂f∂r
∣∣∣∣2 + ∣∣∣∣Dζf

r

∣∣∣∣2 ≤ (n− 1)
f2

r2
+ 1 +

∣∣∣∣Dζf

r

∣∣∣∣2 . (4.15)

The leading order term (v1+v2)| log ε| in the energy estimates will come from (n−1)f
2

r2
, hence we

need to write
∣∣∣ Du√

n−1

∣∣∣n as f
n

rn plus a remainder term (for which we do not require an exact expression,

only an upper bound). To this end we will write an − bn, with a =
∣∣∣ Du√

n−1

∣∣∣ and b =√ 1
n−1 + f2

r2
, as∣∣∣∣ Du√

n− 1

∣∣∣∣n − ( 1

n− 1
+
f2

r2

)n
2

≤ (a− b)
∣∣an−1 + · · ·+ bn−1

∣∣ ≤ n
|a2 − b2|
a+ b

max{a, b}n−1 (4.16)

≤ n

n− 1

|(Dζf)/r|2

a

∣∣∣∣ Du√
n− 1

∣∣∣∣n−1

≤ C
v

1
n

|Ω|
1
n

|Dq|
r

∣∣∣∣ Du√
n− 1

∣∣∣∣n−1

,

where we have used that (n − 1)a2 ≥ |Dζf |2
r2

, and finally that fn−1 ≥
(
v
|Ω|q

n
)n−1

n
. Proceeding

analogously, writing c = f
r and bn − cn ≤ n b

2−c2
b+c b

n−1, we obtain(
1

n− 1
+
f2

r2

)n
2

≤ 1 +
v

|Ω|
qn

rn︸ ︷︷ ︸
fn/rn

+C

(
1 +

|v|
1
n

|Ω|
1
n

q

r

)n−1

. (4.17)

Based on (4.15) and (4.14), we bound
∣∣∣ Du√

n−1

∣∣∣n−1
by∣∣∣∣ Du√

n− 1

∣∣∣∣n−1

≤ C

(
1 +

v
1
n

|Ω|
1
n

max{q, |Dq|}
r

)n−1

≤ C

(
1 +

v
n−1
n

|Ω|
n−1
n

max{qn−1, |Dq|n−1}
rn−1

)
.

This combined with (4.16) and (4.17) yields

rn−1

∣∣∣∣ Du√
n− 1

∣∣∣∣n ≤ rn−1 + C

(
r +

|v|
1
n

|Ω|
1
n

q

)n−1

+ C
v

1
n

|Ω|
1
n

|Dq|rn−2

+

(
qn

|Ω|
+ C

max{qn−1, |Dq|n−1}|Dq|
|Ω|

)
v

r
.
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The proof is completed by substituting both r and |v|
1
n

|Ω|
1
n
|Dq| with r + |v|

1
n
max{q,|Dq|}

|Ω|
1
n

.

Proof of Lemma 4.2. Write ζ = cos θ e + sin θ ξ, θ ∈ (0, π), ξ ∈ Sn−1 ∩ 〈e〉⊥. By virtue of |(a +

q(ζ)ζ)− ã|2 ≡ ρ2,

q2 + 2qζ · (a− ã) = ρ2 − d2, q(θ, ξ) = −d cos θ +
√

(ρ2 − d2) + d2 cos2 θ.

Differentiate the first equation with respect to ζ and multiply by q

|Dq(θ, ξ)| =
∣∣∣∣ −2dq2(1− ζ ⊗ ζ)e

q2 + (q2 + 2qζ · (a− ã))

∣∣∣∣ ≤ 2dq2 sin θ

(ρ− d)(ρ+ d)
≤ 2dq2 sin θ

ρ(ρ− d)
.

Part ii) is proved directly from the second equation for q, considering that
√
ρ2 − d2 ≥

√
ρ(ρ− d)

and that γ+
√
1− γ ≥ 1 for all γ ∈ (0, 1). It is clear that q(ζ) = dist(a+q(ζ)ζ,a) ≤ diamB(ã, ρ) =

2ρ for all ζ ∈ Sn−1. The fact that |Dq(ζ)| ≤ 2d sin θ follows from the first expression for |Dq|.
Finally, if ζ · e = cos θ > 0 then

2−1

1 + d cos θ√
ρ(ρ−d)

≤ q(θ, ξ)√
ρ(ρ− d)

=

√
ρ− d

(√
ρ+ d√

ρ

)
√

(ρ2 − d2) + d2 cos2 θ + d cos θ
≤ 2

√
2

1 + d cos θ√
ρ(ρ−d)

.

Proof of Lemma 4.3. Call a := ã + (ρ − d)e. Consider the (n − 2)-sphere S := {x ∈ ∂B(ã, ρ) :

(x − a) · e = 0}. It is clear that Ω contains the cone generated by ã + ρe (the ‘right-most’ point

on ∂B(ã, ρ)) and S. Since the radius of S (the ‘height’) is given by h =
√
d(2ρ− d) (see Figure

11) and the base measures d, the volume of the cone is a constant times dhn−1 = d
n+1
2 (2ρ− d)

n−1
2 .

The value of the constant is obtained from

|Ω| ≥ Hn−2(Sn−2)

n− 1

ˆ ρ

ρ−d

(
ρ− x1
d

√
ρ2 − (ρ− d)2

)n−1

dx1 = ωn−1

√
ρ(2ρ− d)

n−1 d

n
.

d d

S

a
√
γ(2− γ)

1

√
2(2− γ)

√
2γ

γ2− γ

Figure 11: Cone generated by S and ã+ ρe (Lemma 4.3)
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4.4 Numerical computations

The deformations depicted in Figure 6 are obtained by the alternative method of Dacorogna-

Moser (constructive in nature and easier to implement, [20, Sect. 4]). Following the notation in

Theorem 3 (and restricting now to the case n = 2), let ρ(θ) :=
√
R2

1 + (v1 + v2)
q(θ)2

|Ω1∪Ω2| , where q(θ)

denotes the parametrization of ∂(Ω1 ∪ Ω2) using polar coordinates, taking a∗ to be the origin. Let

also 0 < R1 < R2 < R3 be such that B(a∗, R1) ⊃ Ω1 ∪ Ω2 and πR2
3 = v1 + v2 + πR2

2. Given

parametrizations w(s, t) and v(s, t), (s, t) ∈ D := [1,
√
2] × [0, 2π] of {x : R1 < |x − a∗| < R2}

and of
{
y = λa∗ + reiθ : ρ(θ) < r < R3

}
, respectively, the strategy is to find an incompressible

homeomorphism u : w(Q) → v(Q) of the form

u = v ◦ φ2 ◦ φ1 ◦w, with φ1(s, t) = (h(s, t), t), φ2(s, t) = (s, t+ η(s)β(t)).

Here η : [1,
√
2] → R is any function satisfying

 √
2

1
η(s) ds = 1, η(0) = η(1) = 0, 0 ≤ η ≤ 1 + ε,

 √
2

1
|1− η(s)|ds ≤ ε

for some ε ≤ min
{

min f
2max g ,

min g
max g

}
, where f(s, t) = detDw(s, t) and g(s, t) = detDv(s, t). The

functions β and h are found by defining g1(s1, t1) := g(φ2(s1, t1)) detDφ2(s1, t1) and solving

ˆ √
2

1

ˆ t+η(σ)β(t)

0
g(σ, τ) dτ dσ =

ˆ √
2

1

ˆ t

0
f(s, t) dt ds,

ˆ h(s,t)

1
g1(s1, t) ds1 =

ˆ s

1
f(s, t) ds

for every fixed t ∈ [0, 2π]. The solution is unique, and for v and w as in (4.10), it is such that´
R1<|x−a∗|<R2

|Du|2 ≤ C, where C is an expression that might possibly go to infinity only if the

target domain is too narrow, more precisely, if
v1 + v2

π(R2
2 −R2

1)

(
πq2max

|Ω1 ∪ Ω2|
− 1

)
↗ 1, (recall that

πq2max
|Ω1∪Ω2| − 1 is of the order of 1 − δ, equations (4.8) and (4.12)). In our computations we choose

R1 = qmax = 2ρ1 − dδ and R2 such that π(R2
2 −R2

1) = 2(v1 + v2)
(

πq2max
|Ω1∪Ω2| − 1

)
.

5 Proof of the convergence result, Theorem 4

We follow the strategy of Struwe [77] to prove that supε ‖uε‖W 1,p(Ωε) <∞ for all p < n. Fix ε > 0,

call B0 :=
⋃m
i=1Bε(ai,ε), t0 := r(B0) = mε, and let {B(t) : t ≥ t0} be the family obtained by

applying Proposition 3.2 to B0. Define ρ = sup{t ≥ t0 :
⋃

B(t) ⊂ Ω} and write Ck :=
⋃

B(rk) \⋃
B(rk+1), rk := 2−kρ. By using Hölder’s inequality, then comparing the lower bound of Proposition

3.4, to the upper bound, we find that for every p < n

ˆ
Ck

|Duε|p dx ≤ C(n, p)ρn−p2−(n−p)k

(
1

n

ˆ
Ωε

∣∣∣∣ Duε√
n− 1

∣∣∣∣n dx−
m∑
i=1

v1,ε log
rk+1

t0

) p
n

≤ Cρn−p2−(n−p)k

(
|Ω|+

m∑
i=1

vi,ε

) p
n (

C + log
diamΩ

ρ/m
+ (k + 1) log 2

) p
n

.
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Adding over k we find that

ˆ
Ωε

|Duε|p dx ≤ Cρn−p

(
|Ω|+

m∑
i=1

vi,ε

) p
n

 ∞∑
k=1

(C + k log 2)
p
n

2(n−p)k
+

(
log diamΩ

ρ/m

) p
n

2n−p − 1


+ n

p
n (n− 1)

p
2 |Ω|1−

p
n

(
1

n

ˆ
Ωε

∣∣∣∣ Duε√
n− 1

∣∣∣∣n dx−
m∑
i=1

vi,ε log
ρ

mε

) p
n

≤ C
(
ρn−p + |Ω|

n−p
n

)(
|Ω|+

m∑
i=1

vi,ε

) p
n (

C + log
diamΩ

ρ/m

) p
n

.

It can be seen (as in the proof of Proposition 1.1) that ρ ≥ 1
2 dist({a1,ε, . . . ,am,ε}, ∂Ω). Hence, in

order to prove that supε ‖Duε‖Lp <∞ it only remains to show that
∑m

i=1 vi,ε is uniformly bounded.

Choose r > ε such that the balls B(ai,ε, r) are disjoint and r ∈ Rai,ε for all i = 1, . . . ,m. By Propo-

sition 2.1, the topological images E(ai,ε, r;uε) are disjoint, contained in B(0, ‖uε‖L∞(Ωε)) (because

E(ai,ε, r;uε) is the region enclosed by u(∂B(ai,ε, r))), and such that E(ai,ε, ε;uε) ⊂ E(ai,ε, r;uε).

Therefore

m∑
i=1

(vi,ε + ωnε
n) =

m∑
i=1

|E(ai,ε, ε;uε)| ≤

∣∣∣∣∣
m⋃
i=1

E(ai,ε, r;uε)

∣∣∣∣∣ ≤ ωn‖uε‖nL∞(Ωε)
.

Since we are assuming that supε ‖uε‖L∞(Ωε) <∞, we obtain that supε ‖uε‖W 1,p(Ωε) <∞, as desired.

For the existence of a limit map and for the convergence in W 1,n
loc (Ω\{a1, . . .am},Rn), let δ > 0

be small, assume that |ai,ε−ai| < δ/2 for all i = 1, . . . ,m, and consider the following energy bound,

obtained again by comparing (1.16) with the lower bound of Proposition 3.4 (applied to s = δ/2)

1

n

ˆ
Ω\

⋃
B(δ/2)

∣∣∣∣ Du√
n− 1

∣∣∣∣n dx ≤
m∑
i=1

vi,ε log
diamΩ

δ/2m
+ C

(
|Ω|+

m∑
i=1

vi,ε

)
.

Since r(B(δ/2)) = δ/2, it follows that {uεj}j∈N is bounded in W 1,n(Ω \
⋃m
i=1Bδ(ai),Rn). From

this, and since δ > 0 is arbitrary, the existence of u and of a convergent subsequence follows by

standard arguments (see, e.g., [74] or [37]): inductively take succesive subsequences of {uεj}j∈N
(for some sequence δk → 0) converging weakly in W 1,n(Ω \

⋃m
i=1Bδk(ai),Rn). Choose then a

diagonal sequence {uεk}k∈N converging weakly in W 1,n(Ω \
⋃m
i=1Bδ(ai),Rn) for every δ > 0, to

some u ∈W 1,n
loc (Ω \ {a1, . . .am},Rn).

Since supε ‖uε‖W 1,p(Ωε) <∞ for all p < n, the maps uε can be extended, by multiplying them by

suitable cut-off functions ψε, inside the holes B(ai,ε, ε), in such a way that supε ‖ψεuε‖W 1,p(Ω) <∞.

It is easy to see that any weakly convergent subsequence of {ψεkuεk}k∈N must converge to the limit

map u defined above; this proves that u ∈W 1,p(Ω,Rn) for all p < n.

By the classical result of Reshetnyak [61, Thm. 4] and Ball [2, Cor. 6.2.2], cofDuεk ⇀ cofDu

in L
n

n−1

loc (Ω \ {a1, . . . ,am},Rn×n). By the definition of DetDu in (2.4), and since {DetDuε}ε>0 is

bounded as a sequence in the space of measures (DetDuε = Ln Ωε, by hypothesis), it follows

that DetDu coincides with Ln in Ω\{a1, . . . ,am}, and that DetDuε
∗
⇀ DetDu in Ω\{a1, . . . ,am}
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in the sense of measures. Moreover, by [70, Lemma 3.2] (applied to Ω \
⋃m
i=1B(ai, δ) instead of Ω),

we obtain that detDu(x) = 1 for a.e. x ∈ Ω \ {a1, . . . ,am}.
From Definition 5 and from the proof of [37, Lemma 4.2] it follows that the limit map u satisfies

condition INV. Proposition 2.2 then implies that DetDu = Ln +
∑m

i=1 ciδai for some coefficients

ci ∈ R, and the proof of the same proposition also shows that

1

n

ˆ
∂B(ai,r)

uε · (cofDuε)ν dHn−1 = ωnr
n +

∑
j:aj,ε∈B(ai,r)

vj,ε

1

n

ˆ
∂B(ai,r)

u · (cofDu)ν dHn−1 = ωnr
n +

∑
j:aj∈B(ai,r)

cj

for a.e. r > 0 such that ∂B(ai, r) ⊂ Ω (note that if ai = aj for some i 6= j, then the choice of the

coefficients ci is not unique). By standard arguments, for every δ > 0 there exists r < δ such that

uεk → u uniformly on ∂B(ai, r) and cofDuεk ⇀ cofDu in L
n

n−1 (∂B(ai, r)) (passing, if necessary,

to a subsequence that may depend on r). Taking, first, the limit as ε→ 0, then the limit as r → 0,

we obtain that DetDu = Ln +
∑m

i=1 viδai .

Consider now the case of two cavities. Set aε :=
a1,ε+a2,ε

2 , dε := |a2,ε − a1,ε|.

i) Suppose that v1 ≥ v2 > 0 and d = |a2 − a1| > 0. By Lemma 3.5 we have that for all r > ε∣∣∣|E(ai,ε, r;uε)|D(E(ai,ε, r;uε))
n

n−1 − |E(ai,ε, ε;uε)|D(E(ai,ε, ε;uε))
n

n−1

∣∣∣ ≤ 2
n

n−1 n+1
n−1ωnr

n,

hence, by (3.5), for all α ∈ (0, 1) and all R < min{d2 ,dist({a1,a2}, ∂Ω)} we have that

´
Ωε

1
n

∣∣∣Du(x)√
n−1

∣∣∣n
| log ε|

≥

∑2
i=1

(´ εα
ε +

´ R
εα

) ´
∂B(ai,ε,r)

1
n

∣∣∣Du(x)√
n−1

∣∣∣n dHn−1 dr

| log ε|

≥
2∑
i=1

(
vi,ε

log(R/ε)

| log ε|
+ (1− α)C

(
|E(ai,ε, ε;uε)|D(E(ai,ε, ε;uε))

n
n−1 − εαn

))
.

Combining this with (1.16) we obtain

2∑
i=1

vi,εD
(
E(ai,ε, ε;uε)

) n
n−1 ≤

(|Ω|+ v1,j + v2,j)
(
C2 + log diamΩ

R

)
C1| log ε1−α|

+ Cεαn.

Therefore, as ε→ 0, D
(
E(ai,ε, ε;uε)

)
→ 0 (i.e., uε tends to create spherical cavities).

As mentioned before, for every δ > 0 there exists r < δ such that uε|∂B(ai,r) converges uni-

formly, for each i = 1, 2, to u|∂B(ai,r) (passing to a subsequence, if necessary). By continuity

of the degree, this implies that imT(u,ai) is contained in E(ai, r;uε) for sufficienty small ε. In

particular, by definition of vi,ε and Proposition 2.2,

|E(ai, r;uε)4 imT(u,ai)| = |E(ai, r;uε)| − | imT(u,ai)| = (vi,ε + ωnr
n)− vi.
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On the other hand, B(ai,ε, ε) ⊂ B(ai, r) for sufficiently small ε. By Proposition 2.1 this implies

that E(ai,ε, ε;uε) ⊂ E(ai, r;uε), so, proceeding as in the proof of Proposition 2.2, we obtain

|E(ai,ε, ε;uε)4E(ai, r;uε)| = DetDu(B(ai, r) \B(ai,ε, ε)) = |B(ai, r) \B(ai,ε, ε)| < ωnδ
n.

Thus,

lim sup
ε→0

|E(ai,ε, ε;uε)4 imT(u,ai)| (5.1)

≤ lim sup
ε→0

(|E(ai,ε, ε;uε)4E(ai, r;uε)|+ |E(ai, r;uε)4 imT(u,ai)|) ≤ 2ωnδ
n

for all δ > 0, that is, the cavities formed by uε converge to the cavities formed by u.

Suppose, finally, that v1,ε + v2,ε < ωn(2R)
n and that B(aε, R) ⊂ Ω for some fixed R > 0 and

all ε sufficiently small. If ωnd
n ≥ 2−n(v1 + v2) there is nothing to prove, so assume, further,

that v1,ε + v2,ε > ωn(2dε)
n. Then R

dε
> 1 and n2

√
v1,ε+v2,ε
2nωndε

< n

√
R
dε
< R

dε
. By Theorem 1 and

(1.16), for sufficiently small ε > 0((
v2,ε

v1,ε + v2,ε

) n
n−1

− ωnd
n
ε

v1,ε + v2,ε

)
log

v1,ε + v2,ε
2nωndnε

≤ C

(
1 +

|Ω|
v1,ε + v2,ε

+ log
ωn(diamΩ)n

ωnRn

)
.

As ε→ 0, we obtain

ωnd
n

v1 + v2
≥ min

{
2−n,

1

2

(
v2

v1 + v2

) n
n−1

, 2−nF (Ω, v1, v2)

}
,

with

F (Ω, v1, v2) := exp

−
1 +

|Ω|
v1 + v2

+ log
ωn(2 diamΩ)n

v1 + v2

C

(
v2

v1 + v2

) n
n−1

 . (5.2)

Since exp( 1h) �
1
h as h→ 0+, there exists C(n) such that ωndn

v1+v2
≥ CF (Ω, v1, v2).

ii) Suppose that v1 > v2 = 0. Applying Proposition 3.2 to B0 := {Bε(a1,ε), Bε(a2,ε)} we obtain

B(t) = {B(a1,ε, t/2), B(a2,ε, t/2)} for t ∈ (2ε, dε), and B(t) = {B(aε, t)} for t ≥ dε. We

claim that if R < 2
3 dist({a1,ε,a2,ε}, ∂Ω) then

⋃
B(R) ⊂ Ω. Indeed, if R < dε, this holds

automatically. If R ≥ dε, then

3R

2
< dist(a1,ε, ∂Ω) ≤

dε
2

+ dist(aε, ∂Ω) ≤
R

2
+ dist(aε, ∂Ω) ⇒ B(aε, R) ⊂ Ω.

Therefore, by Proposition 3.4 and Lemma 3.5, for every α ∈ (0, 1)

|E(a1,ε, ε;uε)|D
(
E(a1,ε, ε;uε)

) n
n−1 log

εα

2ε

≤
ˆ
Ωε

1

n

∣∣∣∣ Duε√
n− 1

∣∣∣∣n dx− (v1,ε + v2,ε) log
R

2ε
+ 2

n
n−1 n+1

n−1(v2,ε + ωnε
αn) log

εα

2ε
.
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By virtue of (1.16) and again Lemma 3.5,

v1D
(
imT(u,a1)

) n
n−1 ≤ 2

n
n−1 n+1

n−1 lim
ε→0

(v2,ε + ωnε
αn + |E(a1,ε, ε;uj)4 imT(u,a1)|).

Proceeding as in (5.1) we find that

lim sup
ε→0

|E(a1,ε, ε;uε)4 imT(u,a1)| ≤ 2(v2 + ωnr
n)

for arbitrarily small values of r > 0, proving that imT(u,a1) is a ball.

iii) Suppose that v1 ≥ v2 > 0 and a1 = a2. Let R > 0 be such that B(aε, R) ⊂ Ω for all j ∈ N.
Since lim dε = |a2 − a1| = 0, (3.6) and (1.16) imply that

lim sup
ε→0

´ R
dε
|E(aε, r;uε)|D

(
E(aε, r;uε)

) n
n−1 dr

r

log dε
≤ C

(|Ω|+ v1 + v2)
(
1 + log diamΩ

R/2

)
lim
ε→0

log dε
= 0.

For α ∈ (0, 1) fixed and ε small B(aε, dε) ⊂ B(aε, d
α
ε ) ⊂ Ω. By Lemma 3.5, for all r ∈ (dε, d

α
ε )∣∣∣|E(aε, r;uε)|D

(
E(aε, r;uε)

) n
n−1 − |E(aε, dε;uε)|D

(
E(aε, dε;uε)

) n
n−1

∣∣∣ ≤ 2
n

n−1
n+ 1

n− 1
ωnd

αn
ε .

Dividing
´ dαε
dε

|E(aε, dε;uε)|D
(
E(aε, dε;uε)

) n
n−1 dr

r by log dα−1
ε we obtain

lim sup
ε→0

|E(aε, dε;uε)|D
(
E(aε, dε;uε)

) n
n−1 ≤ lim sup

ε→0
2

n
n−1

n+ 1

n− 1
ωnd

αn
ε = 0. (5.3)

Because of the continuity of the distributional determinant, | imT(u,a)| = v1 + v2. Using this,

and proceeding as in (5.1), it can be proved that limε→0

∣∣ imT(u,a1)4E(aε, dε;uε)| = 0, which

in turn implies that D
(
imT(u,a)

)
= 0.

In order to prove that at least one of the limit cavities must be distorted, we proceed as in

the proof of Theorem 1 by applying Proposition 1.2 to E1 = E(a1,ε, ε;uε), E2 = E(a2,ε, ε;uε),

and E = E(aε, dε;uε). Again we define g(β1, β2) := (β
1
n
1 + β

1
n
2 )n − (β1 + β2) and note that it

is increasing in its two variables. It is easy to see that

(|E1|
1
n + |E2|

1
n )n − |E|

(|E1|
1
n + |E2|

1
n )n − |E1 ∪E2|

≥ 1− ωnd
n
ε

g(v1,ε, v2,ε)

ε→0−→ 1.

Therefore,

lim inf
ε→0

|E|D(E)
n

n−1 + |E1|D(E1)
n

n−1 + |E2|D(E2)
n

n−1

|E|+ |E1 ∪E2|
≥ C

(
v2

v1 + v2

) n
n−1

.

Property (1.17) follows from (5.3). On the other hand, (3.6), (1.16), and Lemma 3.5 imply

that

2∑
i=1

ˆ min{ dε
2
,εα}

ε
C

(
vi,εD

(
Ei
) n

n−1 − 2
n

n−1 n+1
n−1ωnmin{d

n
ε

2n
, εαn}

)
dr

r

≤ (v1,ε + v2,ε) log
diamΩ

R/2
+ C(v1,ε + v2,ε + |Ω|).

54



for every fixed α ∈ (0, 1). Hence,

lim sup
ε→0

(
min

{
log

dε
2ε
, log εα−1

})
≤

C

(
log

diamΩ

R/2
+ 1 +

|Ω|
v1 + v2

)
lim inf
ε→0

(
v1,εD(E1)

n
n−1 + v2,εD(E2)

n
n−1

v1,ε + v2,ε
− εαn

) .

By virtue of (1.17), and since | log ε| → ∞, we conclude that lim sup
ε→0

dε/ε is finite.
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