
Minimax optimality of the local multi-resolution

projection estimator over Besov spaces

Jean-Baptiste Monnier

To cite this version:

Jean-Baptiste Monnier. Minimax optimality of the local multi-resolution projection estimator
over Besov spaces. 13 pages, 1 figure. 2012. <hal-00674091v2>

HAL Id: hal-00674091

https://hal.archives-ouvertes.fr/hal-00674091v2

Submitted on 1 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

The local multi-resolution projection estimator (LMPE) has been first introduced in [7]. It
was proved there that plug-in classifiers built upon the LMPE can reach super-fast rates under a
margin assumption. As a by-product, the LMPE was also proved to be near minimax optimal in the
regression setting over a wide generalized Lipschitz (or Hölder) scale. In this paper, we show that a
direct treatment of the regression loss allows to generalize the minimax optimality of the LMPE to
a much wider Besov scale. To be more precise, we prove that the LMPE is near minimax optimal
over Besov spaces Bs

τ,q
, s > 0, τ ≥ p, q > 0, when the loss is measured in Lp-norm, p ∈ [2,∞)

(see Theorem 2.1), and over Besov spaces Bs

τ,q
, s > d/τ , τ, q > 0, when the loss is measured in

L∞-norm (see Theorem 2.2). Moreover, we show that an appropriate version of Lepski’s method
allows to make these results adaptive. Interestingly, all the proofs detailed here are largely different
from the ones given in [7].

AMS 2000 subject classifications: Primary 62G05, 62G08.

Key-Words: Nonparametric regression; Random design; Multi-resolution analysis

1 Introduction

1.1 The regression problem

Let us assume we dispose of a set Dn = {(Xi, Yi), i = 1, . . . , n} of n independent and identically
distributed random vectors. They are constituted of a co-variable X ∈ E ⊂ Rd and an associated
observation Y ∈ R and are generated by the model,

Y = f(X) + σξ, (1)

where f is an unknown map from E into R, ξ is a standard normal random variable independent from
X, which we write ξ ∼ Φ(0, 1), and the law PX of X admits an unknown density µ on E .
In the regression setting, our aim is to best recover f from the data Dn under the assumption that
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f belongs to a smoothness class F . To be more precise, our aim is to build a map fn from E into R
upon the data Dn so as to minimize the loss E‖fn − f‖pLp(E,µ)

uniformly over f . In other terms, we

aim at constructing fn such that,

sup
f∈F

E‖f − fn‖pLp(E,µ)
. (log n)δ inf

θn
sup
f∈F

E‖f − θn‖pLp(E,µ)
, δ ≥ 0, n ≥ 0,

where . means inferior or equal modulo a constant independent of n and the infθn is taken over all
the estimators θn of f , that is all measurable maps from E into R. When δ = 0 (δ > 0), fn will be
said to be (near-) minimax optimal over the smoothness class F .
Throughout the paper, we will work under the following assumption.

(CS1) There exist two universal constants 0 < µmin ≤ µmax < ∞ such that µmin ≤ µ(x) ≤ µmax for
all x ∈ E and E = [0, 1]d.

This is a strong but classical assumption which can be found in previous works such as [2, 1, 7], for
example.

1.2 Construction of the LMPE

We recall the construction of the LMPE, which was introduced in [7]. Assume we dispose of a multi-
resolution analysis (MRA) of L2(Rd) constituted of nested approximation spaces Vj ⊂ Vj+1, j ≥ 0,
which reproduce polynomials of degree r−1 (meaning that Pjp = p, where Pj stands for the orthogonal
projector from L2(Rd) into Vj and p is any polynomial of degree r−1). We assume that it is generated
by the Daubechies’ scaling function ϕ, meaning that (ϕj,k)k∈Zd stands for an orthonormal basis of Vj ,

where we have written ϕj,k(.) = 2j
d
2ϕ(2j .−k). In the sequel, we will refer to such a MRA as a r-MRA.

As described in [7], [0, 1]d can be partitioned into hypercubes of the form Oj,k = 2−j(k + [0, 1]d) for
ks that belong to a well chosen subset Zd

j of Zd. In addition, Suppϕ = [1 − r, r]d so that there are

only m = (2r − 1)d scaling functions which intercept a cell Oj,k. It is crucial here to notice that m is
a constant independent from both j and k. The LMPE of f at resolution level j is then obtained by
performing 2jd local regressions, that is one on each cell Oj,k.
Under the assumption that f belongs to a Besov ball, the remainder f−Pjf can be naturally controlled
so that it remains to estimate Pjf by localized projections onto the Oj,k. As detailed above, we denote
by ϕj,k1 , . . . , ϕj,km the scaling functions whose supports intercept the cell Oj,k. For any x ∈ Oj,k, we
can write

Pjf(x) = αj,k1ϕj,k1(x) + . . .+ αj,kmϕj,km(x),

so that we must estimate the m coefficients αj,ki to obtain an estimator of Pjf on Oj,k. This is done
by standard regression on Oj,k. More precisely, we consider the least-squares problem,

LS(Oj,k) = arg min
(a1,...,at)∈Rm

n∑

i=1

(
Yi −

m∑

t=1

atϕj,kt(Xi)

)2

1Oj,k
(Xi).

Solving the above least-squares problem boils down to the inversion of the local regression matrix
G ∈ Rm × Rm whose coefficients are the,

Gℓ,ℓ′ =
1

n

n∑

i=1

ϕj,kℓ(Xi)ϕj,kℓ′
(Xi)1Oj,k

(Xi). (2)
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Obviously, if G is invertible then LS(Oj,k) holds one single element. Finally, we define the LMPE f@
j

by spectral thresholding of the smallest eigenvalue of the local regression matrix λmin(G) at level π−1
n ,

where we can take πn = log n. We set indeed f@
j = 0 if λmin(G) < π−1

n and f@
j (x) =

∑m
t=1 a

@
t ϕj,kt(x)

for all x ∈ Oj,k otherwise, where a@ is the unique element of LS(Oj,k).

2 Results
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Figure 1: Each point of this figure at coordinates (s, 1/τ) stands for a Besov space Bs
τ,∞(E). Assume

that the regression loss is measured in Lp-norm. Generalized Lipschitz spaces Lips(E) are defined to
be the Besov spaces Bs

∞,∞(E) and thus correspond to the vertical coordinate axis 1/τ = 0 (see [8]).
Besov spaces Bs

τ,∞(E) get larger and larger along the arrows drawn on the figure. In [7, Corollary 7.1]
the LMPE was proved to be near minimax optimal over generalized Lipschitz spaces (thick vertical
red line). Here we show that these results can be extended to the whole domain {(1/τ, s) : 1/τ ≤ 1/p}.

In what follows, we prove that the LMPE is minimax optimal in the regression setting over Besov
spaces. This is a generalization of the results described in [7, Corollary 7.1], where the LMPE was
proved to be minimax optimal over generalized Lipschitz spaces Lips(E), which are slightly larger than
Hölder spaces. To be more precise, we prove in what follows that the LMPE is near minimax optimal
over Besov spaces Bs

τ,q(E), s > 0, τ ≥ p, q > 0, when the loss is measured in Lp-norm, p ∈ [2,∞)
(see Theorem 2.1), and over Besov spaces Bs

τ,q(E), s > d/τ , τ, q > 0, when the loss is measured in
L∞-norm (see Theorem 2.2). As described in Figure 1, these smoothness classes are much larger than
the Lipschitz spaces. In addition, it is well-known that, outside this domain, linear estimators such as
the LMPE are necessarily sub-optimal (see [4]). So that this is the largest domain on which we can
obtain the near-minimax optimality of the LMPE (up to the constraint p ≥ 2).
Interestingly, the proof of the initial result [7, Corollary 7.1] hinged on an integration of the exponential
control of the probability of deviation of the LMPE f@

j (x) from f(x) uniformly when x ∈ E (see [7,
Theorem 7.1]). The latter exponential control is very stringent and was initially introduced to prove
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results in the classification setting. It is however unnecessary in the regression setting and can thus
be relaxed. The following proofs hinge in fact on a direct inspection of the integrated Lp-loss and
are thus obtained by very different means from the ones used in [7]. In particular, they rely on the
recombination of the integrated approximation errors over the regression cells Oj,k of the partition of
E (see proof of Theorem 2.1).
In what follows, and for any τ > 0, we define jr, js, js,τ , J such that

2jr ∼ n
1

2r+d , 2js ∼ n
1

2s+d , 2js,τ ∼ n
1

2(s+ d
2− d

τ ) , 2Jd ∼ n

κπ2
n log n

,

where κ > 0 is a constant to be made more precise later. By an ∼ bn, we mean that there exist two
absolute constants independent of n such that can ≤ bn ≤ Can. Furthermore we define the grid Jn

of resolution levels such that Jn = {jr, jr + 1, . . . , J}. Of course, js, js,τ ∈ Jn under the assumption
that s ∈ (0, r).
In Theorem 2.1, we show that the LMPE is nearly minimax optimal in Lp-norm, p ∈ [2,∞) over a
wide Besov scale. This result contains [7, Corollary 7.1] as a particular case (take τ = q = ∞) and
thus generalizes it to larger smoothness classes.

Theorem 2.1. Assume (CS1) holds true. Let f@
j stand for the local multi-resolution estimator of

f defined in Section 1.2 and Bs
τ,q(E ,M) for the ball of radius M > 0 of Bs

τ,q(E). Then for all j ∈ Jn,
p ∈ [2,∞), s > 0, τ ≥ p and q > 0, we have the following result,

sup
f∈Bs

τ,q(E,M)
E‖f − f@

j ‖pLp(E,µ)
≤ C(p)πp

n

[(
2j

d
2√
n

)p

+ 2−jsp

]
,

where the constant C(p) is given explicitly in the proof. In particular, for j = js, we obtain

sup
f∈Bs

τ,q(E,M)
E‖f − f@

js‖
p
Lp(E,µ)

≤ C(p)πp
nn

− sp
2s+d .

The corresponding lower-bound result is well-known (see [10, 5, 7]), which finishes to prove the minimax
optimality of the LMPE.

In Theorem 2.2, we show that the LMPE is nearly minimax optimal in sup-norm over a wide Besov
scale. Notice interestingly that, until now, there were no results available in sup-norm for the LMPE.

Theorem 2.2. Assume (CS1) holds true. Let f@
j stand for the local multi-resolution estimator of f

defined in Section 1.2 and Bs
τ,q(E ,M) for the ball of radius M > 0 of Bs

τ,q(E). For all f ∈ Bs
τ,q(E ,M),

s > d/τ ,

sup
f∈Bs

τ,q(E,M)
E‖f − f@

j ‖zL∞(E) ≤ C(z)πz
n[log n]

z
2

((
2j

d
2√
n

)z

+ 2−j(s− d
τ
)z

)
,

where the constant C(z) is given explicitly in the proof. In particular, for j = js,τ , we obtain

sup
f∈Bs

τ,q(E,M)
E‖f − f@

js,τ‖zL∞(E) ≤ C(z)πz
n(log n)

z
2n

−
z(s− d

τ )

2(s+ d
2− d

τ ) .

The corresponding lower-bound result is well-known (see [10, 5, 7]), which finishes to prove the minimax
optimality of the LMPE.
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Both theorems prove the optimality of the estimators f@
js

and f@
js,τ

, whose resolution levels depend
on the regularity s of the unknown regression function f . In the following theorem, we show that
this dependence in s can be removed at the cost of a log n factor in the upper-bounds. The LMPE
is thus said to be adaptive near minimax optimal. To be more explicit, the adaptation hinge on the
data-driven choice j@ of the global resolution level j of the LMPE (see Theorem 2.3), which itself
hinges on a slightly modified version of Lepski’s method (see [6]).

Theorem 2.3. Assume (CS1) holds true. For all f ∈ Bs
τ,q(E ,M), s, q > 0, τ ≥ p, p ≥ 2, we define

the global resolution index j@ from the data Dn as follows for γ > 0,

j@ = inf

{
j ∈ Jn : ‖f@

j − f@
k ‖Lp ≤ γ log n

(
2j

d
2√
n
+

2k
d
2√
n

)
,∀k > n, k ∈ Jn

}
.

Then, for γ large enough, we obtain,

E‖f@
j@ − f‖pLp(E,µ)

. γp(log n)pπp
nn

− sp
2s+d , p ∈ [2,∞),

E‖f@
j@ − f‖zL∞(E) . γz(log n)zπz

nn
−

z(s− d
τ )

2(s+ d
2− d

τ ) .

So that f@
j@

is an adaptive near minimax optimal estimator of f .

In what follows, we detail the proofs of these three theorems. In order to alleviate notations, we will
denote throughout the sequel by H a cell Oj,k of the partition of [0, 1]d at level j and by GH the
associated local regression matrix (see eq. (2)). Furthermore, we will denote by Fj the partition of
[0, 1]d into hyper-cubes Oj,k at resolution level j.

3 Proofs

Remark 3.1. Recall that for any p ∈ [1,∞], there exist two absolute constants cp, Cp such that

cp2
jd( 1

2
− 1

p
) ≤ ‖ϕj,k‖Lp ≤ Cp2

jd( 1
2
− 1

p
)
.

Throughout the paper, constants of the form cp, Cp will exclusively refer to these constants. Further-
more, we will write ϑp := E|ξ|p, where the noise ξ has been defined in eq. (1).

3.1 Proof of Theorem 2.1

Proof of Theorem 2.1. Notice first that the regression loss can be broken up as follows,

E‖f − f@
j ‖pLP

≤
∑

H

E‖f − f@
j ‖pLP (H)

1{λmin(GH)<π−1
n },

+ 2p−1
∑

H

E‖Pjf − f@
j ‖pLP (H)1{λmin(GH)≥π−1

n } + 2p−1‖Rjf‖pLP
.

As described in the proof of [7, Theorem 7.1], we have, for f ∈ Bs
τ,q(E ,M),

‖f − f@
j ‖pLp(H)1{λmin(GH)<π−1

n } ≤ Mpµ(H)1{λmin(GH)<π−1
n },

|Pjf(x)− f@
j (x)|p1{λmin(GH)≥π−1

n } ≤ πp
n‖WH‖pℓ2‖ϕH(x)‖pℓ2 , ∀x ∈ H, (3)

5



where WH = (Wj,k1 , . . . ,Wj,km), ϕH(x) = (ϕj,k1(x), . . . , ϕj,km(x)), the ϕj,ki , 1 ≤ i ≤ m, are the scaling
functions whose supports intercept H and we have written

Wj,k =
1

n

n∑

i=1

Zj,k
i , Zj,k

i = ϕj,k(Xi)1H(Xi)(Rjf(Xi) + ξi).

So that, putting everything together, we obtain,

E‖f − f@
j ‖pLP

≤ Mpn sup
H∈Fj

P(λmin(GH) < π−1
n )

+ 2p−1πp
n

∑

H

(∫

H
‖ϕH(x)‖pℓ2µ(x)dx

)
E‖WH‖pℓ2

+ 2p−1‖Rjf‖pLP

= I + II + III.

I is of the right order since, according to Lemma 3.3, it can be made as small as desired for κ large
enough. III is also of the right order according to Lemma 4.1. Let us now turn to II. Write
Sj(H) = {ki, i = 1, . . . ,m} and notice that, with m = #Sj(H), we have,

‖ϕH(x)‖pℓ2 ≤ ‖ϕH(x)‖pℓ1 ≤ mp−1‖ϕH(x)‖pℓp .

We thus obtain

II ≤ µmax2
p−1πp

n

∑

H




∑

k∈Sj(H)

‖ϕj,k‖pLp


E‖WH‖pℓ2

≤ µmax2
p−1πp

nmCp
p2

jd(p
2
−1)E‖WH‖pℓ2

≤ C(p, µmax,m, ϑp, p)π
p
n





(
2j

d
2√
n

)2(p−1)

+

(
2j

d
2√
n

)p

 (1 + ‖Rjf‖pLp

) + ‖Rjf‖pLp


 ,

where the last inequality follows from Proposition 3.1, eq. (5) and we can choose

C(p, µmax,m, ϑp, p) = C(1) ∨C(2) ∨ C(3),

C(1) = µ2
maxm

p+122(p−1)Cp
pC

p
p′ ,

C(2) = µ2
maxm

p+124(p−1)Cp
pC

p
∞(1 ∨ ϑp),

C(3) = µ2
maxm

p+12
7
2
p−3Cp

p(C
p
2[p/2]′ ∨ [Cp

2ϑ
p
2
p ]).

To conclude, notice that for j ∈ Jn, 2
jd/2/

√
n ≤ 1, 2(p − 1) ≥ p since p ≥ 2 and ‖Rjf‖Lp ≤ M2−js

since f ∈ Bs
τ,q(E ,M) and τ ≥ p (see Lemma 4.1). In particular, we can choose

C(p) = (C(p, µmax,m, ϑp, p) + 1)(1 ∨Mp).
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3.2 Useful results for the proof of Theorem 2.1

Proposition 3.1. Remark that we have

E‖WH‖pℓ2 . n−p+1
(
2jd

p
2 ‖1HRjf‖pLp

+ 2jd(
p
2
−1)
)

+ n− p
2

(
2jd‖1HRjf‖pLp

+ 1
)
+ 2jd(1−

p
2
)‖1HRjf‖pLp

, (4)

where the upper-bound constants are detailed in the proof. We obtain the following result as a direct
consequence of eq. (4),

∑

H

E‖WH‖pℓ2 . n−p+1
(
2jd

p
2 ‖Rjf‖pLp

+ 2jd(
p
2
)
)

+ n− p
2

(
2jd‖Rjf‖pLp

+ 2jd
)
+ 2jd(1−

p
2
)‖Rjf‖pLp

. (5)

Proof. Recall first that we have written m = #Sj(H) = (2r − 1)d. It is enough to notice that
‖.‖ℓ2 ≤ ‖.‖ℓ1 and use Jensen inequality to get,

E‖WH‖pℓ2 ≤ mp−1
∑

k∈Sj(H)

E|Wj,k|p.

In addition, a triangular inequality leads to,

E|Wj,k|p ≤ 2p−1n−pE|
n∑

i=1

(
Zj,k
i − EZj,k

i

)
|p + 2p−1|EZj,k

i |p.

Now, eq. (4) follows from eq. (10) and eq. (13) in Lemma 3.1 below, and the constants can be read
off these latter equations.

Lemma 3.1. We have got the following four inequalities,

|EZj,k
i |p . 2jd(1−

p
2
)‖1HRjf‖pLp

, (6)

E|Zj,k
i |p . 2jd

p
2 ‖1HRjf‖pLp

+ 2jd(
p
2
−1), (7)

(
E|Zj,k

i |2
) p

2
. 2jd‖1HRjf‖pLp

+ 1, p ≥ 2, (8)

E|
n∑

i=1

(
Zj,k
i − EZj,k

i

)
|p . n

(
2jd

p
2 ‖1HRjf‖pLp

+ 2jd(
p
2
−1)
)
+ n

p
2

(
2jd‖1HRjf‖pLp

+ 1
)
, (9)

where the upper-bound constants can be read from eq. (10), eq. (11), eq. (12) and eq. (13) respectively.
Notice interestingly that all upper bounds are independent of k.

Proof. The proof of eq. (6) follows from Hölder’s inequality with (p′)−1+p−1 = 1. Notice indeed that,

|EZj,k
i |p = |Eϕj,k(Xi)1H(Xi)Rjf(Xi)|p

≤ µmax‖ϕj,k1HRjf‖pL1

≤ µmax‖ϕj,k‖pLp′
‖1HRjf‖pLp

≤ µmaxC
p
p′2

jd(1− p
2
)‖1HRjf‖pLp

. (10)
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The proof of eq. (7) is a straightforward consequence of the triangular inequality. Notice indeed that,

E|Zj,k
i |p = E|ϕj,k(Xi)1H(Xi)(Rjf(Xi) + ξi)|p

≤ 2p−1E|ϕj,k(Xi)1H(Xi)Rjf(Xi)|p + 2p−1E|ϕj,k(Xi)1H(Xi)ξi|p

≤ µmax2
p−1‖ϕj,k‖pL∞

‖1HRjf‖pLp
+ ϑpµmax‖ϕj,k1H‖pLp

≤ µmax2
p−1Cp

∞2jd
p
2 ‖1HRjf‖pLp

+ ϑpµmax2
p−1Cp

∞2jd(
p
2
−1). (11)

The proof of eq. (8) is a direct consequence of Hölder’s inequality with ([p/2]′)−1+(p/2)−1 = 1, p ≥ 2.
Notice indeed that

(
E|Zj,k

i |2
) p

2 ≤ 2p−1
(
E|ϕj,k(Xi)1H(Xi)Rjf(Xi)|2

)p
2 + 2p−1ϑ

p
2
2

(
E|ϕj,k(Xi)|2

) p
2

≤ µmax2
p−1‖ϕj,k‖pL2[p/2]′

‖1HRjf‖pLp
+ µmaxC

p
22

p−1ϑp/2 (Hölder)

≤ µmax2
p−1Cp

2[p/2]′2
jd‖1HRjf‖pLp

+ µmaxC
p
22

p−1ϑp/2, (12)

where the last inequality follows from the fact that

‖ϕj,k‖pL2[p/2]′
≤ Cp

2[p/2]′2
jd( 1

2
− 1

2[p/2]′
)p

= Cp
2[p/2]′2

jd.

Let us now turn to the proof of eq. (9). Notice first that a direct application of Rosenthal’s inequality
leads to,

E|
n∑

i=1

(
Zj,k
i − EZj,k

i

)
|p ≤

n∑

i=1

E|Zj,k
i − EZj,k

i |p +
(

n∑

i=1

E|Zj,k
i − EZj,k

i |2
)p/2

≤ n2p−1E|Zj,k
i |p + n

p
2 2

p
2

(
E|Zj,k

i |2
)p/2

(Jensen)

≤ nµmax2
2(p−1)Cp

∞(1 ∨ ϑp)(2
jd p

2 ‖1HRjf‖pLp
p
+ 2jd(

p
2
−1))

+ n
p
2µmax2

3p
2
−1(Cp

2[p/2]′ ∨ [Cp
2ϑ

p
2 ])(2jd‖1HRjf‖pLp

p
+ 1), (13)

where the last inequality follows from both eq. (11) and eq. (12).

3.3 Proof of Theorem 2.2

Proof of Theorem 2.2. Let us denote by Fj the partition of [0, 1]d associated to the r-MRA at hand
and by H a generic cell of this partition. Start with

E‖f − f@
j ‖zL∞

= E sup
H∈Fj ,x∈H

|f(x)− f@
j (x)|z

≤ E sup
H∈Fj ,x∈H

|Pjf(x)− f@
j (x)|z + ‖Rjf‖zL∞

The last term is of the right order according to Lemma 4.1. Focus now on the first one. Using the
same reasoning (and notations) as at the beginning of the proof of Theorem 2.1, we obtain

E sup
H∈Fj ,x∈H

|fj(x)− f@
j (x)|z ≤ MP( inf

H∈Fj

λmin(GH) ≤ π−1
n )

+ E sup
H∈Fj

πz
n‖WH‖zℓ2 sup

x∈H
‖ϕH(x)‖zℓ2

= I + II.
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A direct application of Lemma 3.3 shows that I is of the right order for κ large enough. Let us now
turn to II and notice that

II ≤ m
z
2Cz

∞2jd
z
2πz

nE sup
H

‖WH‖zℓ2

≤ mzCz
∞2jd

z
2πz

nE sup
H∈Fj ,k∈Sj(H)

|Wj,k|z.

Notice besides that

|Wj,k|z ≤ 2z−1| 1
n

n∑

i=1

Zj,k
i − EZj,k

i |z + 2z−1|EZj,k
i |z.

The rhs is handled directly thanks to eq. (14). As regards the lhs, notice that #{H ∈ Fj , k ∈ Sj(H)} =

m2jd and, given eq. (15), apply Proposition 4.1 (with K = 2j
d
2 ) conclude that

E sup
H∈Fj ,k∈Sj(H)

| 1
n

n∑

i=1

(Zj,k
i − EZj,k

i )|z ≤
(
2j

d
2 log(m2jd + ez−1)

n
+

√
2 log(m2jd + ez−1)

n

)z

.

Finally, putting everything together, we obtain

E‖f − f@
j ‖zL∞

. πz
n‖Rjf‖zL∞

+ (log n)
z
2

(
2j

d
2√
n

)z

.

3.4 Useful results for the proof of Theorem 2.2

Lemma 3.2. We have the following inequalities

E|Zj,k
i |z ≤ Cz

12
−jd z

2 ‖Rjf‖zL∞
, (14)

E|Zj,k
i − EZj,k

i |z ≤ C(z)(2j
d
2 )z−2(1 + ‖Rjf‖zL∞

), (15)

where we have written C(z) = µmax2
2z−1Cz

z (ϑz ∨ 1).

Proof. For the first inequality,

|EZj,k
i |z = |Eϕj,k(Xi)1H(Xi)Rjf(Xi)|z

≤ µmax‖Rjf‖zL∞
‖ϕj,k‖zL1

≤ µmaxC
z
12

−jd z
2 ‖Rjf‖zL∞

.

For the second one,

E|Zj,k
i − EZj,k

i |z ≤ 2zE|Zj,k
i |z

≤ 22z−1E|ϕj,k(Xi)1H(Xi)Rjf(Xi)|z + 22z−1E|ϕj,k(Xi)1H(Xi)ξi|z

≤ µmax2
2z−1Cz

z2
jd( z

2
−1)‖Rjf‖zL∞

+ µmax2
2z−1ϑzC

z
z2

jd( z
2
−1)

= µmax2
2z−1Cz

z (2
j d
2 )z−2(1 ∨ ϑz)(‖Rjf‖zL∞

+ 1).
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Lemma 3.3. Let us denote by Fj the partition of [0, 1]d into hyper-cubes Oj,k at resolution level j.
For j ∈ Jn = {jr, . . . , J} where 2Jd = n/(κπ2

n log n), and any H ∈ Fj , and for

κ ≥ κ̃(2µmaxm
4 +

4

3
m2), κ̃ > 0,

we have got

P(λmin(QH) ≤ π−1
n ) ≤ 2m2n−κ̃,

P( inf
H∈Fj

λmin(QH) ≤ π−1
n ) ≤ 2m2n−κ̃+1.

Proof. We know from [7, Proposition 12.3] that for all 0 < t ≤ gmin
2 ,

P(λmin(QH) ≤ t) ≤ 2m2 exp(−n2−jd t2

2µmaxm4 + 4
3m

2t
).

For n large enough, we have πn ≤ gmin
2 and the result follows directly from the latter inequality.

3.5 Proof of Theorem 2.3

Proof of Theorem 2.3. Assume first that p ∈ [2,∞) and write,

‖f − f@
j@‖

p
Lp

= ‖f − f@
j@‖

p
Lp
1{j@≤js} + ‖f − f@

j@‖
p
Lp
1{j@>js}

= I + II.

As regards I, notice that

I ≤ 2p−1‖f − f@
js‖

p
Lp

+ 2p−1‖f@
js − f@

j@‖
p
Lp
1{j@≤js}

≤ 2p−1‖f − f@
js‖

p
Lp

+ 2p−12γp(log n)pπp
n

(
2js

d
2√
n

)p

.

The left term is of the right order thanks to Theorem 2.1 and the last term as well by definition of js.
As regards II, we proceed as in the proof of [7, Theorem 7.2] and notice that,

E‖f − f@
j@‖

p
Lp
1{j@>js} ≤

∑

j>js

E‖f − f@
j ‖pLp

1{j@=j}

≤
∑

j>js

√
E‖f − f@

j ‖2pLp

√
P(j@ = j).

The expectation is bounded by a constant according to Theorem 2.1. And we have besides

P(j@ = j) ≤
∑

k≥j

P

(
‖f@

j − f@
k ‖Lp > γ(log n)πn

[
2j

d
2

√
n
+

2k
d
2

√
n

])

≤
∑

k≥j

P

(
‖f@

j − f‖Lp > γ(log n)πn
2j

d
2

√
n

)
+ P

(
‖f@

k − f‖Lp > γ(log n)πn
2k

d
2

√
n

)
,

which can be made as small as desired for γ large enough according to Proposition 3.2. For p = ∞,
the proof follows the same lines with js,τ in place of js.
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3.6 Useful results for the proof of Theorem 2.3

Proposition 3.2. For all f ∈ Bs
τ,q(E ,M), s, q > 0, τ ≥ p, p ≥ 2 and all j ≥ js (resp. j ≥ js,τ ) for

p < ∞ (resp. p = ∞), we have

P(‖f@
j − f‖Lp ≥ γ(log n)πn

2j
d
2√
n
) ≤ mn−C(p,r,σ)γn1{p=∞},

where the constant C(p, r, σ) can be found in the proof. In any case, the above term can thus be made
as small as possible for γ large enough.

Proof. Case where p ∈ [2,∞). Recall that #Fj = 2jd and notice first that for δ/2 ≥ ‖Rfj‖Lp ,

P(‖f@
j − f‖Lp ≥ δ) ≤ P(‖f@

j − fj‖pLp
≥ δp2−p)

= P(
∑

H

‖f@
j − fj‖pLp(H) ≥ δp2−p)

=
∑

H

P(‖f@
j − fj‖pLp(H) ≥ δp2−jd2−p)

≤
∑

H

P(‖f@
j − fj‖pLp(H) ≥ δp2−jd2−p, λmin(GH) ≥ π−1

n )

+
∑

H

P(λminH(GH) < π−1
n )

= I + II.

II can be made as small as desired thanks to Lemma 3.3. For the first term, we deduce from eq. (3)
that

I ≤
∑

H

P(πp
n‖WH‖pℓ2

∑

k∈Sj(H)

‖ϕj,k‖pLp
≥ 2−jdδp2−p)

≤
∑

H

P(πp
n‖WH‖pℓ2C

p
p2

jd(p
2
−1)m ≥ 2−jdδp2−p)

≤
∑

H

P(‖WH‖ℓ2 ≥ 2−j d
2 δ

2πnCpm
1
p

)

≤ m sup
k∈Sj(H)

P(|Wj,k| ≥
2−j d

2 δ

2πnCpm
1
p
+1

).

Now, notice that for j ≥ js, we have 2j
d
2 /
√
n ≥ 2−js. Hence we can apply [7, Proposition 12.5]

δ = γ(log n)2j
d
2 /
√
n to conclude that I ≤ mn−C(p,r,σ)γ, where C(p, r, σ) = (1 ∧ σ−2)/Cpm

1
p
+1

.

Case where p = ∞. The reasoning is similar as the one described above, with however a few slight

modifications. For δ/2 > 2−j(s− d
τ
) ≥ ‖Rjf‖L∞ , we have,

P(‖f − f@
j ‖L∞ ≥ δ) ≤ P(‖f − f@

j ‖zL∞
≥ δz2−z, inf

H
λmin(GH) ≥ π−1

n ) + P(inf
H

λmin(GH) < π−1
n )

= I + II.
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II is of the right order thanks to Lemma 3.3. Moreover, similar arguments as the ones described in
the proof of Theorem 2.2 allow to write,

I ≤ P

(
sup

H∈Fj ,k∈Sj(H)
|Wj,k| ≥

δ2−j d
2

2mπnC∞

)

≤ m2jd sup
H∈Fj ,k∈Sj(H)

P

(
|Wj,k| ≥

δ2−j d
2

2mπnC∞

)
.

Now, notice that for j ∈ Jn, 2
jd ≤ n/ log n. Notice besides that for j ≥ js,τ , we have 2j

d
2 /
√
n ≥

2−j(s− d
τ
). Hence, following similar arguments as in [7, Proposition 12.5] and choosing δ = γ(log n)2j

d
2 /
√
n,

we can conclude that I ≤ mn−C(∞,r,σ)γ+1, where C(∞, r, σ) = (1 ∧ σ−2)/mC∞.

4 Appendix

4.1 Properties of Besov spaces

Lemma 4.1. We recall that for all d ≥ 1, τ, q ∈ (0,∞], s > d/τ ,

f ∈ Bs
τ,q(M) ⇒ ‖Rjf‖L∞ ≤ M2−j(s− d

τ
). (16)

And for all d ≥ 1, q ∈ (0,∞], τ ∈ [p,∞), s > 0,

f ∈ Bs
τ,q(M) ⇒ ‖Rjf‖Lp ≤ M2−js. (17)

Proof. These results can be found in [3] for example. Eq. (16) is a straight consequence of the

embedding Bs
τ,q(M) ⊂ B

s− d
τ

∞,∞(M).

4.2 Uniform moment bound

Proposition 4.1 (see [9]). Let Z1, . . . , Zn be a set of n independent random variables such that, for
all i and p ∈ N,

Eγj(Zi) = 0,
1

n

n∑

i=1

E|γj(Zi)|p ≤
p!

2
Kp−2,

Then

E

(
max

1≤j≤N
| 1
n

n∑

i=1

γj(Zi)|p
)

≤
(
K log(N + ep−1)

n
+

√
2 log(N + ep−1)

n

)p

.
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