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CONCERNING THE SEMISTABILITY OF

TENSOR PRODUCTS IN ARAKELOV GEOMETRY

Jean-Benoît Bost & Huayi Chen

Abstract. — We study the semistability of the tensor product of hermitian vector
bundles by using the ε-tensor product and the geometric (semi)stability of vector
subspaces in the tensor product of two vector spaces.

Notably, for any number field K and any hermitian vector bundles E and F over
SpecOK , we show that the maximal slopes of E, F , and E ⊗ F satisfy the following
inequality :

µ̂max(E ⊗ F ) 6 µ̂max(E) + µ̂max(F ) +
1

2
min

(
log(rkE), log(rkF )

)
.

We also prove that, for any OK -submodule V of E ⊗ F of rank 6 4, the slope of

V satisfies:
µ̂(V ) 6 µ̂max(E) + µ̂max(F ).

This shows that, if E and F are semistable and if rkE. rkF 6 9, then E ⊗ F also is
semistable.

Résumé. — Nous étudions la semi-stabilité du produit tensoriel de fibrés vectoriels
hermitiens en utlisant le produit ε-tensoriel et la (semi-)stabilité géométrique des
sous-espaces vectoriels dans le produit tensoriel de deux espaces vectoriels.

En particulier, si K désigne un corps de nombres et si E et F sont deux fibrés
vectoriels hermitiens sur SpecOK , nous montrons que les pentes maximales de E, F

et E ⊗ F satisfont à l’inégalité :

µ̂max(E ⊗ F ) 6 µ̂max(E) + µ̂max(F ) +
1

2
min

(
log(rkE), log(rkF )

)
.

Nous prouvons aussi que, pour tout sous OK -module V de E ⊗ F de rang 6 4, la
pente de V vérifie :

µ̂(V ) 6 µ̂max(E) + µ̂max(F ).

Cela entraîne que, si rkE. rkF 6 9 et que E et F sont semistables, le produit tensoriel
E ⊗ F l’est aussi.
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1. Introduction

1.1. This article is devoted to problems in Arakelov geometry motivated by classical
results in the theory of vector bundles on a projective curve over a field.

Notably we investigate the arithmetic analogue of the following:

Theorem 1.1. — Let k be a field of characteristic 0, and let E and F be two vector
bundles on a smooth projective integral curve C over k.

If E and F are semistable, then E ⊗ F also is semistable.

When k = C, Theorem 1.1 is a straightforward consequence of the existence, first
established by Narasimhan and Seshadri [42], of projectively flat metrics on stable
vector bundles (see also [22] and [49], notably Chapter I, Appendix A). This entails
Theorem 1.1 for an arbitrary base field k of characteristic zero, by considering a
subfield k0 of k of finite type over Q over which C and E, and F are defined, and a
field embedding of k0 in C (see for instance [37], Section 1.3, for the relevant invariance
property of semistability under extension of the base field).

Algebraic proofs of Theorem 1.1 that do not rely on the “analytic crutch” of special
hermitian metrics have been devised by several authors.

Notably such as an algebraic proof may be easily derived from Bogomolov’s work
on stable vector bundles ([5]; see also [45]). Actually the fact that, over curves,
Bogomolov’s notion of semistable vector bundles (the so-called tensorial semistability)
is equivalent to the classical one (in terms of slopes of subbundles) directly implies
Theorem 1.1.

An extension of Theorem 1.1, concerning semistable G-bundles for G an arbitrary
reductive group, has been established by Ramanan and Ramanathan [44]. Their
technique of proof, which like Bogomolov’s one relies on geometric invariant theory,
turned out to be crucial in the study of the preservation of semistability by tensor
products in various contexts (see notably [51]), in particular in Arakelov geometry
([17]).

Besides, Theorem 1.1 may be derived from the basic theory of ample and nef line
bundles on projective schemes over fields, as pointed out for instance in [41] (see loc.
cit., Section 3, completed by a reference to [34], Corollary 5.3; see also [30], and the
discussion in [40], Chapter 6). We shall discuss related arguments in more details in
paragraph 1.5 below.
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1.2. Recall that Arakelov geometry is concerned with analogues in an arithmetic con-
text of projective varieties over some base field k, of vector bundles F over them, and
of their Z-valued invariants defined by means of characteristic classes and intersection
theory. The objects of interest in Arakelov geometry are projective flat schemes X
over Z, say regular for simplicity, and hermitian vector bundles over them: by defini-
tion, a hermitian vector bundle over X is a pair E := (E, ‖.‖) consisting of some vector
bundle E over X and of some C∞ hermitian metric ‖.‖, invariant under complex con-
jugation, on the analytic vector bundle Ean

C over the complex manifold X (C), that is
deduced from E by the base change Z →֒ C and analytification. Arakelov geometric
invariants attached to such data are real numbers.

The simplest instance of schemes X as above are “arithmetic curves” SpecOK ,
defined by the ring of integers OK of some number field K. A hermitian vector bundle
E over SpecOK is precisely the data of some finitely generated projective OK-module
E, and of a family of hermitian norms (‖.‖σ)σ:K →֒C on the finite dimensional C-vector
spaces Eσ := E ⊗OK,σ C, invariant under complex conjugation.

Basic operations, such as ⊕, ⊗, Λ•, may be defined on hermitian vector bundles in
an obvious way. Moreover, if f : X ′ → X is a morphism between Z-schemes as above,
and E some hermitian vector bundle over X , we may form its pull-back

f∗E := (f∗E, fan∗
C ‖.‖),

which is a hermitian vector bundle over X ′.
When K →֒ K ′ is an extension of number fields and when f is the morphism

f : SpecOK′ −→ SpecOK

defined by the inclusion OK →֒ OK′ , this pull-back construction maps the hermitian
vector bundle

E := (E, (‖.‖σ)σ:K →֒C)

to

f∗E := (E′, (‖.‖′σ′)σ′:K′ →֒C),

where E′ := E ⊗OK
OK′ and, for any σ′ : K ′ →֒ C of restriction σ := σ′

|K , we let

‖.‖′σ′ := ‖.‖σ on E′
σ′ ≃ Eσ.

The Arakelov degree of the hermitian vector bundle E over SpecOK is defined as
the real number

d̂egE := log |E/OKs| −
∑

σ:K →֒C

log ‖s‖σ

when rkE = 1, where s denotes any element of E \ {0}, and as

d̂egE := d̂eg ΛrkEE

in general.
It turns out to be convenient to introduce also the normalized Arakelov degree :

d̂egnE :=
1

[K : Q]
d̂egE.
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It is indeed invariant by extension of the base field K. Namely, for any extension of
number fields K →֒ K ′, we have

(1) d̂egn π
∗E = d̂egnE

where
π : SpecOK′ −→ SpecOK

denotes the morphism defined by the inclusion OK →֒ OK′ .
As pointed out by Stuhler (when OK = Z) and Grayson, the Arakelov degree sat-

isfies formal properties similar to the ones of the degree of vector bundles on smooth
projective curves over some base field k. This allowed them to define some arith-
metic analogues of semistability, of successive slopes, and of the Harder-Narasimhan
filtration, concerning hermitian vector bundles over arithmetic curves ([50], [32]. We
refer to [1] and [19] for general discussions of the formalisms of slopes and associated
filtrations).

Indeed, if E is an arithmetic vector bundle over SpecOK , of positive rank rkE, its
slope is defined as the quotient

µ̂(E) :=
d̂egn E

rkE
.

The hermitian vector bundle E := (E, ‖.‖σ:K →֒C) is said to be semistable if, for
every non-zero OK-submodule F of E, the hermitian vector bundle F (defined by F
equipped with the restriction to Fσ of the hermitian metric ‖.‖σ) satisfies

µ̂(F ) 6 µ̂(E).

To define the successive slopes and the Harder-Narasimhan filtration of E, we
consider the set of points in R2 of the form (rkF, d̂egn F ), where F varies over the
OK-submodules of E. The closed convex hull of this set may be also described as

CE := {(x, y) ∈ [0, rkE]× R | y 6 PE(x)}
for some (uniquely determined) concave function

PE : [0, rkE] −→ R,

which is affine on every interval [i− 1, i], i ∈ {1, . . . , rkE}. The i-th slope µ̂i(E) of E
is the derivative of PE on this interval. These slopes satisfy

µ̂1(E) > µ̂2(E) > . . . > µ̂rkE(E),

and
rkE∑

i=1

µ̂i(E) = d̂egnE.

Any vertex of the so-called canonical polygon CE — that is, any point (i, PE(i))

where i is either 0, rkE, or an integer in ]0, rkE[ such that µ̂i(E) > µ̂i+1(E) —
is of the form (rkF, d̂egn F ) for some uniquely determined OK-submodule F of E.
Moreover these submodules are saturated (a OK-submodule F of E is said to be
saturated if E/F is torsion-free) and fit into a filtration

0 = E0 ( E1 ( . . . ( EN = E,



TENSOR PRODUCTS IN ARAKELOV GEOMETRY 5

the so-called Harder-Narasimhan, or canonical, filtration of E. It is straightforward
that

µ̂max(E) := µ̂1(E)

= max
06=F⊂E

µ̂(F ),

and that E is semistable iff µ̂max(E) = µ̂(E), or equivalently iff PE is linear, or iff the
Harder-Narasimhan filtration of E is trivial (that is : E0 = E, E1 = E).

It is natural to consider the joint data of the Harder-Narasimhan filtration
(Ek)06k6N and of the successive slopes

µ̂(Ek/Ek−1) = µ̂i(E) for rkEk−1 < i 6 rkEk.

They define the weighted Harder-Narasimhan filtration, an instance of weighted fil-
tration, or weighted flag, in the K-vector space EK (in the sense of Section 5.1 infra),
or equivalently, of a point in the real vectorial building I(GL(EK)) attached to the
reductive group GL(EK) over K (see [46]).

1.3. The successive slopes (µ̂i(E))16i6rkE of a hermitian vector bundle E satisfy
remarkable formal properties.

For instance, from the basic properties of the Arakelov degree, one easily derives
the following relations between the slopes of some hermitian vector bundle E over
SpecOK and of its dual E

∨
:

(2) µ̂i(E
∨
) = −µ̂rkE+1−i(E).

Besides, the invariance of the normalized Arakelov degree under number field ex-
tensions (1) and the canonical character of the Harder-Narasimhan filtration, together
with a simple Galois descent argument, imply ([8], Proposition A.2; compare [37],
Lemma 3.2.2) :

Proposition 1.2. — Let K denote a number field, K ′ a finite extension of K, and

π : SpecOK′ −→ SpecOK

the scheme morphism defined by the inclusion OK →֒ OK′ .
If E is a hermitian vector bundle over SpecOK , and if (Ei)06i6N denotes its

Harder-Narasimhan filtration, then the Harder-Narasimhan filtration of π∗E is
(π∗Ei)06i6N (:= (Ei ⊗OK

OK′)).
Consequently, for any i ∈ {1, . . . , rkE},

(3) µ̂i(π
∗E) = µ̂i(E),

and π∗E is semistable if (and only if) E is semistable.

A hermitian vector bundle E := (E, ‖.‖) over SpecZ is nothing else than a Eu-
clidean lattice. Its Arakelov degree may be expressed in terms of its covolume covolE:

d̂egE = − log covolE,
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and its successive slopes are related to its successive minima, classically defined in
geometry of numbers ([16], Chapter VIII). For instance, if we consider the first of
those :

λ1(E) := min
v∈E\{0}

‖v‖,

Minkowski’s First Theorem easily implies (see [6], or [14], 3.2 and 3.3) :

(4) 0 6 µ̂max(E)− logλ1(E)−1
6

1

2
log rkE.

In brief, successive slopes may be seen as variants of the classical successive minima
of Euclidean lattices which make sense for hermitian vector bundles, not only over
SpecZ, but over arbitrary arithmetic curves, and are compatible with extensions of
number fields.

Moreover they appear to be “better behaved” than the classical successive minima.
For instance relations (2) may be seen as an avatar of the “transference theorems”
relating successive minima of some euclidean lattice and of its dual lattice (cf. [16],
VIII.5, and [4]). However these theorems are not equalities, but involve error terms
depending on the rank of the lattice, whereas the slope relations (2) are exact equal-
ities.

These properties of the slopes of hermitian vector bundles make them espe-
cially useful when using Diophantine approximation techniques in the framework of
Arakelov geometry : working with slopes turns out to be an alternative to the classical
use of Siegel’s Lemma; their “good behavior” — notably their invariance under num-
ber fields extensions — make them a particularly flexible tool, leading to technical
simplifications in diverse Diophantine geometry proofs (see for instance [8] and [10],
and [11] for references).

1.4. Let K be a number field and let E and F be two hermitian vector bundles of
positive rank over SpecOK .

Recall that we have :
µ̂(E ⊗ F ) = µ̂(E) + µ̂(F ).

Applied to submodules of E and F , this implies the inequality:

µ̂max(E ⊗ F ) > µ̂max(E) + µ̂max(F )

(see for instance [17], Proposition 2.4).
In this article, we study the following:

Problem 1.3. — Let K be a number field and let E and F be two hermitian vector
bundles of positive rank over SpecOK .

Does the equality

(5) µ̂max(E ⊗ F ) = µ̂max(E) + µ̂max(F )

hold ?
In other words, is it true that, for any OK -submodule V of positive rank in E ⊗F,

the following inequality

(6) µ̂(V ) 6 µ̂max(E) + µ̂max(F )
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holds ?

This problem is easily seen to admit the following equivalent formulation:

Problem 1.4. — Does the semistability of E and F imply the one of E ⊗ F ?

and the following one as well:

Problem 1.5. — Does the weighted Harder-Narasimhan filtration of E⊗F coincide
with the tensor product (1) of the ones of E and F ?

1.5. To put these problems in perspective, we present a simple proof showing that
their geometric counterparts, concerning vector bundles on smooth projective curves
over a field of characteristic zero, have a positive answer. This will demonstrate how
Theorem 1.1 may be derived from the basic theory of ample line bundles on projective
varieties. (Our argument is in the spirit of the arguments in [41] and [34] alluded to
in 1.1, supra. However it avoids to resort to the representation theory of the linear
group. We refer the reader to [37], sections 3.1-2, and [40], Chapter 6, for related
results and references.) (2)

Let C be a smooth projective integral curve over some base field k, that we shall
assume algebraically closed for simplicity.

The analogue of the invariant logλ1(E)−1 (attached to some Euclidean lattice E)
for a vector bundle E of positive rank over C is its upper degree (3):

udegE := max
L→֒E,rkL=1

degL.

Recall that, if C′ is another smooth projective integral curve over k and π : C′ → C
a dominant (and consequently surjective and finite) k-morphism, then for any vector
bundle E over C, we have:

deg π∗E = deg π. degE,

where deg π denotes the degree of the field extension π∗ : k(C) → k(C′). Consequently
the slope of vector bundles, defined as

µ(E) :=
degE

rkE
,

satisfies
µ(π∗E) = deg π.µ(E)

and therefore the maximal slope, defined as

µmax(E) := max
06=F →֒E

µ(F ),

1. See Section 5, infra, for the definition of weighted flags or filtrations, and of their tensor
products.

2. The content of this section was discussed in [9] and partially appears in [14], Section 3.8.
Closely related arguments have been obtained independently by Y. André (cf. [2], Section 2).

3. This notion, and the notion of stable upper degree defined below, are variants of the lower

degree ld(E) and stable lower degree sld(E) introduced in [24]: we have udegE = −ld(E∨), and
sudegE = −sld(E∨).
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satisfies
µmax(π

∗E) > deg π.µmax(E).

In general, when the characteristic of k is positive, this inequality may be strict ([35],
[31]). However, when k is a field of characteristic zero or, more generally, when π is
generically separable, a Galois descent argument establishes the equality

(7) µmax(π
∗E) = deg π.µmax(E).

(See for instance [37], Lemma 3.2.2. It is the geometric counterpart of Proposition
1.2. The occurrence of the factor deg π in (7), that does not appear in the arithmetic
analogue (3), comes from the use of the normalized degree in the arithmetic case.)

Similarly we have :
udeg π∗E > deg π. udegE.

Here the inequality may be strict even in the characteristic zero case (4). However the
stable upper degree of E,

sudegE := sup
π:C′։C

1

deg π
udeg π∗E,

defined by considering all the finite coverings π : C′ ։ C as above, becomes com-
patible with finite coverings by its very definition. Namely, for every finite covering
π : C′ ։ C, we have:

sudeg π∗E = deg π. sudegE.

The following result is well-known (compare [40], Section 6.4), but does not seem
to be explicitly stated in the literature.

Proposition 1.6. — If k has characteristic zero, then, for any vector bundle of
positive rank over C, we have:

(8) sudegE = µmax(E).

Let us briefly recall how this Proposition follows from the basic properties of nef
line bundles over projective varieties (5).

Proof of Proposition 1.6. — Together with the invariance of the maximum slope by
pull-back (7), the trivial inequality

udegE 6 µmax(E)

4. Situations where this arises may be easily constructed as follows, say when k = C. Consider
an étale Galois covering π : C′ → C, of Galois group the full symmetric group Sd, d := deg π,
and define E as the kernel of the trace map π∗OC′ → OC . This vector bundle of rank d − 1 and
degree zero is stable. (This follows from the irreducibily of the permutation representation of Sd on
Cd−1 ≃ {(x1, . . . , xd) ∈ Cd | x1 + · · · + xd = 0}.) Consequently, when d > 3, we have udegE < 0.
Besides, π∗E is a trivial vector bundle of rank d− 1, and consequently udeg π∗E = 0.

5. A line bundle M on some projective integral scheme X over k is nef if, for every smooth
projective integral curve C′ over k and any k-morphism ν : C′ → X, the line bundle ν∗L on C′

has non-negative degree. Then, for any closed integral subscheme Y in X, the intersection number
c1(M)dimY .Y is non-negative. This definition and this property clearly depend only on the class of
L modulo numerical equivalence and immediately extend to Q-line bundles.
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applied over finite coverings of C shows that:

sudegE 6 µmax(E).

To establish the opposite inequality, consider the projective bundle

Psub(E) = P(E∨) := Proj(Sym(E∨)),

its structural morphism
p : Psub(E) −→ C,

and the canonical quotient line bundle over Psub(E)

p∗E∨ q−→ OE∨(1).

Consider also a point c in C(k). The line bundle OE∨(1) is ample relatively to p, and
O(c) is ample over C. Consequently the set of rational numbers

{δ ∈ Q | OE∨(1)⊗ p∗O(δ.c) is nef}
is of the form Q ∩ [λ,+∞[ for some (uniquely defined) real number λ.

We claim that

(9) λ = sudegE.

Indeed, for any smooth projective integral curve C′ over k, the datum of a k-morphism

ν : C′ −→ Psub(E)

is equivalent to the data of a k-morphism

π : C′ −→ C

and of a quotient line bundle over C′ of π∗E∨:

π∗E∨ −→M.

(This follows from the very definition of Psub(E) ≃ P(E∨). To ν is attached the
morphism π := p ◦ ν and the quotient line bundle

π∗E∨ ≃ ν∗p∗E∨ ν∗q−→M := ν∗O∨(1).)

In turn, giving the quotient line bundle π∗E∨ → M is equivalent to giving a (satu-
rated) sub-line bundle:

M∨ →֒ π∗E.

Moreover, with the above notation, we have for every δ ∈ Q :

degC′ ν∗(OE∨(1)⊗ p∗O(δ.c)) = degC′ M + degC′ π∗O(δ.c)

= − degC′ M∨ + δ deg π.

This degree is always non-negative when π is constant (then ν factorizes through a
fiber of p, over which OE∨(1) is ample). Consequently it is non-negative for every
ν : C′ → Psub(E) iff δ > sudegE. This establishes (9).

To complete the proof, we are left to show

(10) µmax(E) 6 λ.
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Let e := rkE. Recall that the direct image by p of the class c1(OE∨(1))e in the
Chow group CHe(Psub(E)) is the class

p∗c1(OE∨(1))e = −c1(E)

in CH1(C) and that
p∗c1(OE∨(1))e−1 = [C]

in CH0(C) (see for instance [25], Section 3.2). Consequently

c1(OE∨(1)⊗ p∗O(δ.c))e.[Psub(E)] = p∗(c1(OE∨(1)⊗ p∗O(δ.c))e).[C]

=
∑

06i6e

(
e

i

)
p∗(c1(OE∨(1))i)c1(O(δ.c))e−i.[C]

= (−c1(E) + eδc1(O(c)).[C]

= − degE + eδ

= e(δ − µ(E)).

More generally, for any (saturated) subvector bundle F of E, of positive rank f ,
the projective bundle Psub(F ) embeds canonically into Psub(E) and the restriction of
OE∨(1) to Psub(F ) may be identified with OF∨(1), and we get :

(11) c1(OE∨(1)⊗ p∗O(δ.c))f .[Psub(F )] = f(δ − µ(F )).

When OE∨(1) ⊗ p∗O(δ.c) is nef, this intersection number is non-negative. This
establishes the required inequality (10).

Proposition 1.6 will allow us to derive Theorem 1.1 in the equivalent form:

Theorem 1.7. — If k has characteristic zero, then for any two vector bundles E
and F of positive rank over C, we have:

µmax(E ⊗ F ) = µmax(E) + µmax(F ).

Observe that, as in the arithmetic case, the slope of vector bundles of positive rank
over a curve is additive under tensor product:

µ(E ⊗ F ) = µ(E) + µ(F ),

and that this immediately yields the inequality:

µmax(E ⊗ F ) > µmax(E) + µmax(F ).

Our derivation of the opposite inequality will rely on the following observation (com-
pare [14], Prop. 3.4.1 and 3.8.1):

Lemma 1.8. — For any two vector bundles E and F of positive rank over C, we
have

(12) udegE ⊗ F 6 µmax(E) + µmax(F ).

Observe that the inequality (12) holds even when the base field k has positive
characteristic.



TENSOR PRODUCTS IN ARAKELOV GEOMETRY 11

Proof. — Let us denote K := k(C) the function field of C.
Consider L a line bundle in E⊗F . By restriction to the generic point of C, it defines

a one-dimensional vector subspace LK in the K-vector space (E⊗F )K ≃ EK ⊗K FK .
Let l be a non-zero element of LK , and let VK and WK the minimal K-vector
subspaces of EK and FK such that l ∈ VK⊗KWK : the element l of EK⊗KFK may be
identified with a K-linear map T in HomK(E∨

K , FK) (resp. with tT in Hom(F∨
K , EK)),

and WK (resp. VK) is the image of T (resp. tT ). Moreover the K-linear map
T̃ : V ∨

K →WK defined by l seen as an element of VK ⊗K WK is invertible.
Clearly VK and WK do not depend of the choice of l in LK \ {0}, and if V and

W denote the saturated coherent subsheaves of E and F whose restrictions to the
generic point of C are VK and WK , then L is included in V ⊗W , which is saturated
in E ⊗ F .

Let r denote the common rank of V and W . Let us denote

detL,K := L⊗r
K

∼−→ (ΛrV ⊗ ΛrW )K

the unique K-isomorphism (of one-dimensional K-vector spaces) that maps l⊗r to
det T̃ , which is an element of

HomK(ΛrV ∨
K ,Λ

rWK) ≃ (ΛrV ⊗ ΛrW )K .

Observe that, if L, V , and W may be trivialized over some open subscheme U of C,
and if l is a regular section of L over U, then det T̃ defines a morphism of line bundles
over U , from ΛrV ∨

U to ΛrWU . This shows that detL,K is the restriction to the generic
point of C of a morphism of line bundles over C:

detL : L⊗r −→ ΛrV ⊗ ΛrW.

Since detL,K 6= 0, we obtain :

degL⊗r
6 deg(ΛrV ⊗ ΛrW ),

or equivalently:
degL 6 µ(V ) + µ(W ).

This shows that
degL 6 µmax(E) + µmax(F ).

Proof of Theorem 1.7. — For any finite covering π : C′ → C, we may apply Lemma
1.8 to π∗E and π∗F . So we have :

1

deg π
udeg π∗(E ⊗ F ) 6

1

deg π
µmax(π

∗E) +
1

deg π
µmax(π

∗F ).

When k is a field of characteristic zero, we may use the “invariance” of the maximal
slope under finite coverings (7), and we obtain

(13) sudegE ⊗ F 6 µmax(E) + µmax(F ).

Together with Proposition 1.6, this establishes the inequality

µmax(E ⊗ F ) 6 µmax(E) + µmax(F ).
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1.6. In the arithmetic situation, we may attach analogues of the upper and stable
upper degree to hermitian vector bundles over arbitrary arithmetic curves.

Namely, if K is a number field and E a hermitian vector bundle of positive rank
over SpecOK , we define its upper arithmetic degree ud̂egn E as the maximum of the
(normalized) Arakelov degree d̂egn L of a OK-submodule L of rank 1 in E equipped
with the hermitian structure induced by the one of E (cf. [14], 3.3), and its stable
upper arithmetic degree as

sud̂egn E := sup
K′

ud̂egn π
∗E,

where K ′ varies over all finite extensions of K, and π : SpecOK′ → SpecOK denotes
the associated morphism.

The analogue of Lemma 1.8 still holds in this context. In other words, the conjec-
tural estimate (6) is true when rkV = 1. (cf. [14], Prop. 3.4.1). Together with the
invariance of arithmetic slopes under extensions of number fields (Proposition 1.2),
this establishes:

Proposition 1.9. — For any two hermitian vector bundles of positive rank E and
F over SpecOK ,

(14) sud̂egnE ⊗ F 6 µ̂max(E) + µ̂max(F ).

To establish the additivity of maximal slopes under tensor product for hermitian
vector bundles (5), it would be enough to know that, as in the geometric case dealt
with in Proposition 1.6, the stable upper degree and the maximal slope of a hermitain
vector bundle coincide. Unfortunately, this is not the case.

More specifically, the trivial inequality

ud̂egn E 6 µ̂max(E),

together with Proposition 1.2 show that

(15) sud̂egnE 6 µ̂max(E).

Hermitian vector bundles for which this inequality is strict are easily found (6):

Proposition 1.10. — Let A2 be the euclidean lattice Z3 ∩ A2,R in the hyperplane

A2,R :=
{
(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 0

}

of R3 equipped with the standard euclidean norm.
Then, seen as a hermitian vector bundle over SpecZ, A2 is semi-stable and satisfies

(16) µ̂max(A2) = µ̂(A2) = −1

4
log 3

and

(17) sud̂egn(A2) = −1

2
log 2.

6. We refer to [29], Section 3.3, for further results on hermitian vector bundles E for which

µ̂max(E)− sud̂egn E take “large” positive values.
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Proof. — The semistability of A2 follows from the fact that the natural representation
by permutation of the coordinates of the symmetric group S3 on A2,R is (absolutely)
irreducible and preserves A2 (cf. [8], Proposition A.3, and Proposition 1.14 infra).

The covolume of A2 is
√
3, and consequently

d̂egA2 = − log
√
3.

Together with the semistability of A2, this establish (16).
To derive (17), firstly we observe that, for any i ∈ {1, 2, 3}, the Z-submodule Li of

rank 1 in A2 defined by the equation Xi = 0, satisfies

d̂egLi = −1

2
log 2.

(The line X1 = 0, for instance, admits as Z-basis the vector (0, 1 − 1), of euclidean
norm

√
2.)

Beside we claim that, for any number field K and any OK -submodule L of rank 1
in π∗A2 := A2 ⊗Z OK distinct from the three modules π∗Li, we have :

(18) d̂egn L 6 −1

2
log 3.

This will complete the proof of (17) (actually, of a more precise result). Observe also
that (18) may be an equality : consider a number field K containing a primitive third
root of unity ζ3, and L := OK(1, ζ3, ζ

2
3 ).

To establish the upper bound (18), consider the OK−linear morphisms

Xi|L : L −→ OK , i ∈ {1, 2, 3}.
By hypothesis they are non-zero, and therefore the following inequalities hold, as
straightforward consequences of the definition of the Arakelov degree :

d̂egn L 6 − 1

[K : Q]

∑

σ:K →֒C

log ‖Xi|L‖σ.

This implies :

3 d̂egn L 6 − 1

[K : Q]

∑

σ:K →֒C

log
∏

16i63

‖Xi|L‖σ.

To conclude, observe that, for any (z1, z2, z3) in A2,C, we have

|z1z2z3| 6 3−3/2(|z1|2 + |z2|2 + |z3|2)3/2,
and therefore, for every embedding σ : K →֒ C,

log
∏

16i63

‖Xi|L‖σ 6 −3

2
log 3.

Proposition 1.10 and its proof may be extended to higher dimensions. We leave as
an exercise for the reader the proof of the following :
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Proposition 1.11. — Let n be a positive integer, and let An be the euclidean lattice
Zn+1 ∩ An,R in the hyperplane

An,R :=
{
(x0, . . . , xn) ∈ Rn+1 | x0 + . . .+ xn = 0

}

of Rn+1 equipped with the standard euclidean norm.
The hermitian vector bundle An over SpecZ is semi-stable and its (maximal) slope

is

µ̂(An) = − 1

2n
log(n+ 1).

Moreover,

sud̂egn(A2) = −1

2
log 2.

More precisely, for any number field K and any OK -submodule L of rank 1 in π∗An :=
An ⊗Z OK , we have

d̂egn L 6 −1

2
logα(L),

where α(L) denotes the integer > 2 defined as the cardinality of

{i ∈ {0, . . . , n} | Xi,L 6= 0} .
Although the stable upper arithmetic degree and the maximal slope of a hermitian

vector bundle E over SpecOK may not not coincide, they differ by some additive
error bounded in terms of rkE only:

Proposition 1.12. — For any positive integer r, there exists C(r) in R+ such that,
for any number field K and any hermitian vector bundle E over SpecOK ,

(19) µ̂max(E) 6 sud̂egn(E) + C(r).

As pointed out in [8], Appendix, this follows from Zhang’s theory of ample her-
mitian line bundles in Arakelov geometry ([53]) applied to projective spaces, and
actually appears as an arithmetic analogue of the above derivation of Proposition 1.6
from the classical theory of ample and nef line bundles applied to projective bundles
over curves. Proposition 1.12 has been independently established by Roy and Thun-
der [47], who used direct arguments of geometry of numbers. Their proof shows that
Proposition 1.12 holds with

(20) C(r) =
log 2

2
(r − 1).

Actually, by using Zhang’s theory carefully, one obtains that it actually holds with

C(r) =
1

2
ℓ(r),

where

ℓ(r) :=
∑

26i6r

1

i

(see for instance [21], section 4.2, or [29], section 3.2). This improves on (20), since
ℓ(r) 6 log r, and is actually optimal, up to some bounded error term, as shown by
Gaudron and Rémond in [29].
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Observe that, from Propositions 1.9 and 1.12, we immediately derive:

Corollary 1.13. — For any two hermitian vector bundles E and F over some arith-
metic curve SpecOK , we have:

(21) µ̂max(E ⊗ F ) 6 µ̂max(E) + µ̂max(F ) + C(rkE. rkF ).

Here C(rkE. rkF ) denotes the value of the constant C(r) occurring in Proposition
1.12 when r = rkE. rkF. According to the above discussion of the possible value of
C(r), we obtain (see also [2], Theorem 0.5):

µ̂max(E ⊗ F ) 6 µ̂max(E) + µ̂max(F ) + ℓ(rkE. rkF )

6 µ̂max(E) + µ̂max(F ) +
1

2
log rkE +

1

2
log rkF.

(22)

1.7. In 1997, the first author discussed Problems 1.3–1.5 above during a conference
in Oberwolfach ([9]), and presented some evidence for a positive answer to these
problems, namely (i) the upper bound in Proposition 1.9 and the consequent validity
of (5) up to an error term stated in Corollary 1.13 above, (ii) a positive answer
to Problem 1.4 when E or F possesses an automorphism group acting irreducibly
(cf.Proposition 1.14 infra), and (iii) when E and F have rank two (cf. paragraph 1.9
below).

He also discussed the geometric approach in Section 1.5 and the examples in
Propositions 1.10 and 1.11 showing that sud̂egn E can be smaller than µ̂max(E).
This discussion, showing that, concerning vector bundles and projective bundles over
curves, the analogy between number fields and function fields is not complete (7),
made especially intriguing the available evidence for the “good behavior” under tensor
product of slopes of hermitian vector bundles.

In the next two paragraphs, we briefly discuss the positive evidence for this preser-
vation mentioned in points (ii) and (iii) above.

1.8. If E := (E, ‖.‖) is a hermitian vector bundle over SpecOK , we shall denote
AutE its automorphism group, namely the finite subgroup of GLOK

(E) consisting
of elements the image of which in GLC(Eσ) is unitary with respect to ‖.‖σ for every
embedding σ : K →֒ C.

Observe that, if F denotes another hermitian vector bundle over SpecOK , of
positive rank, there is a natural injection of automorphism groups:

AutE −→ Aut(E ⊗ F )
φ 7−→ φ⊗ IdF .

The following Proposition is a straightforward consequence of the invariance of
Harder-Narasimhan filtrations under automorphism groups (compare [8], Proposition
A.3):

7. a point made already clear by the study of projective geometry in the Arakelov context in [13].
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Proposition 1.14. — Let E be a hermitian vector bundle of positive rank over
SpecOK over such that the natural representation

AutE →֒ GLOK
(E) →֒ GLK(EK)

of AutE in EK is absolutely irreducible.
For any hermitian vector bundle of positive rank F over SpecOK , of canonical

filtration (Fi)06i6N , the canonical filtration of E ⊗ F is (E ⊗ Fi)06i6N .

In particular E is semistable, and for any semistable hermitian vector bundle F
over SpecOK , E ⊗ F is semistable.

Hermitian vector bundles E such that the natural representation of AutE in EK

is absolutely irreducible naturally arise. For instance, diverse remarkable classical
euclidean lattices — seen as hermitian vector bundles over SpecZ — satisfy this con-
dition, for instance the root lattices and the Leech lattice (cf. [20]). Other examples
of such hermitian vector bundles are given by the hermitian vector bundles defined
by sections of ample line bundles over (semi-)abelian schemes over SpecOK (cf. [8],
[43]).

1.9. We now turn to Problems 1.3–1.5 for rank two vector bundles. We want to
explain why, in this case, they have positive answers — that is, explicitly:

Proposition 1.15. — Let K be a number field and let E and F be two hermitian
vector bundles of rank two over SpecOK .

For any OK-submodule of E ⊗ F of positive rank, we have:

(23) µ̂(V ) 6 µ̂max(E) + µ̂max(F ).

This result is actually contained in the more general results established in the
sequel. However some basic, but important, geometric ideas are already displayed in
the proof of this simple case, that avoids the intricacies of the more general situations
considered below.

We need to establish (23) for V saturated of rank 1, 2, or 3. The case rkV = 1 has
been dealt with in Proposition 1.9). The case rkV = 3 reduces to the case rkV = 1
by means of the following simple duality result applied to G = E ⊗ F , together with
the isomorphism (E ⊗ F )∨ ≃ E

∨ ⊗ F
∨

(compare [48], section 1.5):

Lemma 1.16. — Let G := (G, ‖.‖) be a hermitian vector bundle over some arith-

metic curve SpecOK , and let G
∨
:= (G∨, ‖.‖∨) denote its dual.

Let V be some saturated OK-submodule of G, and let V ⊥ its orthogonal (saturated)
submodule in G∨:

V ⊥ :=
{
ξ ∈ G∨ | ξ|V = 0

}
.

Equipped with the restrictions of ‖.‖ and ‖.‖∨, they define hermitian vector bundles V

and V
⊥

that fit into a natural short exact sequence which is compatible with metrics :

0 −→ V
⊥ −→ G

∨ −→ V
∨ −→ 0.

Consequently

d̂egV
⊥
= d̂eg V − d̂egG,
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and, if rkV (and consequently rkV ⊥) is 6= 0 or rkG,

µ̂(V ) 6 µ̂(G) iff µ̂(V
⊥
) 6 µ̂(G

∨
).

To handle the case rkV = 2, we consider the quadratic form detE,F on E⊗F with
values in the line Λ2E ⊗ Λ2F — that is the element of S2(E ⊗ F )∨ ⊗ Λ2E ⊗ Λ2F
which maps an element φ of E ⊗ F ≃ Hom(E∨, F ) to its determinant detφ in
Hom(Λ2E∨,Λ2F ) ≃ Λ2E ⊗ Λ2F — and the relative position of the projective line
Psub(V ) and of the quadric Q of equation detE,F = 0, that parametrizes “simple
tensors” in E ⊗ F , in the projective space Psub(E ⊗ F ).

One easily checks that Psub(V ) is contained in Q precisely when V is of the form
V = L ⊗ F for some saturated OK–submodule L of rank 1 in E, or of the form
V = E ⊗M for some saturated OK–submodule M of rank 1 in F . When this holds,
we have :

µ̂(V ) = µ̂(L) + µ̂(F ) 6 µ̂max(E) + µ̂(F )

or
µ̂(V ) = µ̂(F ) + µ̂(M) 6 µ̂(E) + µ̂max(F ).

Suppose now that Psub(V ) is not contained in Q. There exists some K-rational
point in the intersection of the line Psub(V ) and of the hypersurface Q (the scheme
(Psub(V ) ∩ Q)K is actually a zero dimensional scheme of length 2 over K). After
possibly replacing the field K by some finite extension — which is allowed according
to the invariance of slopes under extension of the base field — we may assume that
there exist some rational point P in this intersection. The saturated OK-submodule
of V defined by the K-line attached to P is of the form L ⊗M where L (resp. M)
denotes a saturated OK-submodule of rank 1 in E (resp. in F ). The composite
morphism

p : V →֒ E ⊗ F ։ E/L⊗ F

is non-zero (indeed V 6⊂ L ⊗ F, since Psub(V ) 6⊂ Q) and its kernel contains L ⊗M .
Consequently its image im p is a OK-submodule of rank 1 in E/L⊗ F and its kernel
ker p is L⊗M. Moreover p : V → E/L⊗F is of archimedean norms 6 1. This implies:

d̂egn im p 6 µ̂max(E/L⊗ F ) = d̂egnE/L+ µ̂max(F )

and
d̂egn V 6 d̂egn L⊗M + d̂egn im p.

As d̂egn L⊗M = d̂egn L+d̂egnM and d̂egnE/L = d̂egn E− d̂egn L, we finally obtain:

d̂egn V 6 d̂egnM + µ̂max(F ) 6 µ̂max(E) + µ̂max(F ).

This completes the proof of (23) and of Proposition 1.15.
Observe that, even if one wants to establishes the upper bound (23) for euclidean

lattices only (that is, when K = Q), the above arguments uses the formalism of
hermitian vector bundles over SpecOK for larger number fields : the introduction of
the point P requires in general to introduce a quadratic extension of the initial base
field K.

It is also worth noting that a refinement of these arguments shows that, when
(Psub(V )∩Q)K is a reduced zero-dimensional scheme — or equivalently when the line
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Psub(V ) and the quadric Q meet in precisely two points over K, or when the Plücker
points Λ2VK \ {0} of VK in Λ2(E ⊗ F )K are semi-stable with respect to the action
of SL(EK)× SL(FK) in the sense of geometric invariant theory — then the following
stronger inequality holds:

(24) d̂egn V 6 µ̂(E) + µ̂(F ).

Indeed, in this situation there exists a K-basis (e1, e2) (resp. (f1, f2)) of EK (resp.
FK) such that (e1⊗f1, e2⊗f2) is a K-basis of VK . Actually this holds precisely when

{[e1 ⊗ f1], [e2 ⊗ f2]} = (Psub(V ) ∩ Q)(K).

After a possible finite extension of K, we may assume that (e1, e2) and (f1, f2)) are
actually K-bases of EK and FK . Then the inequality (24) is a consequence of the
following local inequalities, valid with obvious notations for every place v of K, p-adic
or archimedean:

(25) ‖e1 ⊗ f1 ∧ e2 ⊗ f2‖v > ‖e1 ∧ e2‖v.‖f1 ⊗ f2‖v.
To establish (25), by homogeneity, we may assume that ‖e1‖v = ‖f1‖v = 1 and

choose linear forms of norm 1,

η : EKv
−→ Kv and φ : EKv

−→ Kv

such that
η(e1) = φ(f1) = 0.

Then

(26) |η(e2)|v = ‖e1 ∧ e2‖v and |φ(f2)|v = ‖f1 ⊗ f2‖v.
Moreover η ⊗ φ is a linear form of norm 1 on (E ⊗ F )Kv

and vanishes on the vector
e1 ⊗ f1, which satisfies ‖e1 ⊗ f1‖v = 1. Consequently the restriction of η ⊗ φ to VKv

has norm 6 1, and

(27) |(η ⊗ φ)(e2 ⊗ f2)|v 6 ‖e1 ⊗ f1 ∧ e2 ⊗ f2‖v.
Finally (25) follows from (26) and (27).

1.10. Additional positive evidence for a positive answer to Problems Problems 1.3–
1.5 has been obtained by Elsenhans (in his Göttingen Diplomarbeit [23] under the
supervision of U. Stuhler) and by de Shalit and Parzanchevski ([48]).

They show that the inequality

(28) µ̂(V ) 6 µ̂max(E) + µ̂max(F )

holds for any sublattice V in the tensor product of two euclidean lattices E and F
under the following conditions on their ranks : rkE = 2 and rkV 6 4 ([23]), or
rkV 6 3 ([48]).

The arguments in [23] and [48] rely on some specific features of the theory of
euclidean lattices and of their reduction theory in low ranks, and consequently do not
generalize to hermitian vector bundles over general arithmetic curves SpecOK .

Besides, these arguments make conspicuous the role of the tensorial rank of ele-
ments of E⊗F when investigating the inequality (28). (The tensorial rank of a vector
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α in E ⊗ F is defined as the minimal integer m > 0 such that α can be written in
the form x1 ⊗ y1 + · · ·+ xm ⊗ ym with x1, . . . , xm ∈ E and y1, . . . , ym ∈ F . It is also
the rank of α considered as a homomorphism of Z-modules from E∨ to F . Note that
split tensor vectors — namely tensor vectors of tensorial rank 1 — have also been
considered by Kitaoka to study the first minimum of tensor product lattices; see [39]
for a survey.)

1.11. Concerning the “approximate validity” of the additivity of maximal slopes
under tensor product (that is, of equality (5) in Problem 1.3) established by means of
Zhang’s version of the “absolute Siegel’s Lemma” stated in Proposition 1.12, the best
result available in the literature seems to be the one in [29]:

(29) µ̂max(E1 ⊗ · · · ⊗ En) 6

n∑

i=1

(
µ̂max(Ei) +

1

2
log(rk(Ei))

)
.

(Observe that (29) does not follow formally from the special case when n = 2; a
similar observation applies to (30) infra.)

Another method for establishing that type of inequality has been developed by the
second author ([17]). This method, which involves the geometric invariant theory of
(the geometric generic fibers of ) subbundles in tensor products, may be considered
as an analogue in Arakelov geometry of the method of Ramanan and Ramanathan
[44] (based on previous results of Kempf [38]), and of its elaboration by Totaro in
[51]. It is directly related to the study of geometric invariant theory in the context of
Arakelov geometry and of related height inequalities by Burnol [15], Bost [7], Zhang
[54], and Gasbarri [26].

The key point of the method consists of estimating the Arakelov degree of some
hermitian line subbundle of a tensor product under some additional geometric semista-
bility condition. By using the classical theory of invariants (cf. [52, Ch. III] and [3,
Appendix 1]) to make “explicit” the geometric semistabiltiy condition, one derives
an upper bound for the Arakelov degree of the given hermitian line subbundle. The
general case can be reduced to the former one (where some geometric semistability
condition is satisfied) by means of Kempf’s instability flag. By this technique, the
upper bound

(30) µ̂max(E1 ⊗ · · · ⊗ En) 6

n∑

i=1

(
µ̂max(Ei) + log(rk(Ei))

)

has been proved in [17] for any family hermitian vector bundles (Ei)
n
i=1 of positive

rank over an arbitrary arithmetic curve SpecOK .
Beside avoiding the use of higher dimensional Arakelov geometry, implicit via

Zhang’s version of the “absolute Siegel’s Lemma” in the previous approach, this
method also shows that a positive answer to Problems 1.3-1.5 is equivalent to a
positive answer to:

Problem 1.17. — Let K be a number field and (Ei)
n
i=1 a family of hermitian vector

bundles of positive rank over SpecOK .
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Is it true that, for any OK-submodule V of positive rank in E1⊗· · ·⊗En such that
the Plücker point of VK is semistable under the action of SL(E1,K)× · · ·× SL(En,K),
the inequality

(31) µ̂(V ) 6

n∑

i=1

µ̂(Ei)

hold ?

1.12. The three lines of approach to the behavior of slopes of hermitian vector
bundles discussed in paragraphs 1.11 and 1.10 may seem to be rather distinct at
first sight. They are however closely related. For instance the first two approaches
rely on some version of reduction theory and of Minkowski’s first theorem. The
tensorial rank, essential in the arguments of [23] and [48], occurs naturally in the
geometric invariant theory of tensor products, as it precisely distinguishes the orbits
of SL(EK)× SL(FK) acting on EK ⊗ FK . It also appears in the proof of (24) above
and in in [29, §5.2].

Moreover, as we show in the sequel, a suitable combination of these approaches
leads to new evidences for a positive answer to Problems 1.3-1.5 and 1.17, encompass-
ing previously known results. It also provides new insights on possible refinements of
the conjectural slopes inequalities formulated in these problems.

Our results may be summarized as follows:

Theorem A. — For any two hermitian vector bundles of positive rank E and F over
some arithmetic curve SpecOK , we have :

µ̂max(E ⊗ F ) 6 µ̂max(E) + µ̂max(F ) +
1

2
min

(
ℓ(rk(E)), ℓ(rk(F ))

)
.

(Recall that, for any integer r > 1, ℓ(r) :=
∑

26j6r
1
j 6 log r.)

Theorem B. — Let E and F be two hermitian vector bundles of positive rank over
some arithmetic curve SpecOK . For any hermitian vector subbundle V of E⊗F such
that rk(V ) 6 4, one has

µ̂(V ) 6 µ̂max(E) + µ̂max(F ).

Moreover, if E and F are semistable and if rk(E) rk(F ) 6 9, then E ⊗ F also
issemistable.

Theorem A implies (by induction on n) that the following inequality

µ̂max(E1 ⊗ · · · ⊗ En) 6

n∑

i=1

µ̂max(Ei) +

n∑

i=2

1

2
log rk(Ei)

holds for any finite collection (Ei)
n
i=1 of hermitian vector bundles of positive ranks

on SpecOK . This result has been announced in 2007 (cf. [12]), together with the
related upper bound for the Arakelov degree of line subbundles in the tensor product
of several normed vector bundles stated to Corollary 3.5 infra.
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The proof of these results (and the actual formulation of Corollary 3.5) uses ε-
tensor products of hermitian vector bundles. For any two hermitian vector bundles
E and F , the ε-tensor product E ⊗ε F is an adelic vector bundle (in the sense
of Gaudron [27]). Its construction is similar to the one of the usual hermitian
tensor product E ⊗ F , except that, at archimedean places, the hermitian tensor
product norms (or equivalently, the Hilbert-Schmidt norms when we identify E ⊗ F
to Hom(E∨, F )) are replaced by the ε-tensor product norms (that is, the operator
norms on E ⊗ F ≃ Hom(E∨, F )).

It happens that various slope inequalities, already known for hermitian tensor prod-
ucts, still hold for ε-tensor product. For example, for any hermitian line subbundle
M of E ⊗ε F , we have the following variant of the inequality in Proposition 1.9.

(32) d̂egn(M) 6 µ̂max(E) + µ̂max(F ).

This formula can actually be considered as a slope inequality, concerning morphisms
between hermitian vector bundles (see the proof of Proposition 3.1). Moreover it is
stronger than the initial version in Proposition 1.9 (where M would be replaced by
the hermitian line subbundle of E⊗F with the same underlying OK-module M) since
the operator (or ε-) norm is not larger than the Hilbert-Schmidt (hermitian) norm.
A refinement of the inequality (32) leads to a short proof of Theorem A.

As explained above, the inequality (32) implies a particular case of Theorem B
where the rank of V is 1. It seems delicate to study the slope of hermitian vector
subbundles of a tensor product by using the technic of ε-tensor products, since a
vector subbundle of rank > 2 of an ε-tensor product is not necessarily hermitian.
Note however that the ratio of the Hilbert-Schmidt (hermitian) norm and the operator
(ε-) norm of a vector in a tensor product of two Hermitian spaces is controlled by
the tensorial rank of the vector. Based on this observation, we introduce a version
of the inequality (32) concerning again the hermitian tensor product, stronger than
what would be a priori expected from the conjectural estimates in Problems 1.3-1.5.
Namely we show that, for any hermitian line subbundle M of E ⊗ F , one has

(33) d̂egn(M) 6 µ̂max(E) + µ̂max(F )−
1

2
log ρ(M),

where ρ(M) is the tensorial rank of any non-zero vector in M .
Actually in the “extreme case” where ρ(M) = rk(E) = rk(F ) — this condition is

easily seen to be equivalent to the semistability of MK under the action of SL(EK)×
SL(FK) in the sense of the geometric invariant theory — we prove that

d̂egn(M) 6 µ̂(E) + µ̂(F )− 1

2
log ρ(M).

This observation suggests that a geometric semistability condition could lead to
stronger upper bounds for the slopes of hermitian vector subbundles in the tensor
product of hermitian vector bundles than the ones conjectured in Problem 1.17.

As emphasized in Totaro [51], geometric semistability conditions (for general linear
groups and their products) may be interpreted by means of auxiliary filtrations in a
purely numerical way, without explicit mention of group actions. This interpretation
becomes even clearer from a probabilistic point of view. Given a non-zero finite
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dimensional vector space W equipped with a decreasing R-filtration F , we define
a random variable ZF on the probability space {1, . . . , rk(W )} (equipped with the
equidistributed probability measure) as

ZF(i) = sup{t ∈ R | rk(F tW ) > i}.
The expectation of F , denoted E[F ], is then defined as the expectation of the random
variable ZF . If E and F are two vector spaces and if V is a non-zero vector subspace
of E ⊗ F , we say that V is both-sided semistable if for any filtration F of E and any
filtration G of F , one has E[(F⊗G)|V ] 6 E[F ]+E[G], where (F⊗G)|V is the filtration
of V such that

(F ⊗ G)|tV (V ) = V ∩
∑

a+b=t

Fa(E)⊗ Gb(F ).

The conjectural slope inequality (6) implies that, if E and F are two hermitian vector
bundles and if V is a non-zero hermitian vector subbundle of E ⊗ F such that V is
both-sided semistable, then:

µ̂(V ) 6 µ̂(E) + µ̂(F ).

Actually a refinement of this implication where we only assume that the conjecture
holds “up to rk(V )” is established in Theorem 7.3. The idea is similar to that in
previous works such as [7, 54, 26]. However, the proof relies on Harder-Narasimhan
filtrations indiced by R and is elementary, in the sense that it does not involve
explicitly geometric invariant theory. By using Kempf’s instability flag in this context,
we show that, in order to establish the inequality

µ̂(V ) 6 µ̂max(E) + µ̂max(F ),

it suffices to prove the same inequality under the supplementary conditions that E
and F are stable and that V is both-sided stable (see Theorem 7.5).

In the case where rk(V ) 6 4, the both-sided stability condition of V implies
some constraints on the successive tensorial ranks of vectors in V and permits to
conclude, by using inequalities similar to (33), together with a version of the “absolute
reduction theory” for V , derived from Zhang’s theory of arithmetic ampleness, that
takes tensorial rank into account.

In view of the methods that we apply in this article (geometric semistability
argument and absolute Siegel’s lemma), it is more convenient to work with the
absolute adelic viewpoint. For this purpose, we introduce in the second section the
notion of hermitian vector bundles over Q. It is a natural generalization of the classical
notion of hermitian vector bundles over the spectrum of an algebraic integer ring and
more generally the notion of hermitian adelic vector bundles (non-necessarily pure)
over a number field introduced by Harder and Stuhler [33] and Gaudron [27, 28].
Moreover, a hermitian vector bundle over Q can be approximated by a sequence
of hermitian vector bundles in usual sense (but over more and more large number
fields). Most of constructions and results of the slope theory can be generalized to
the framework of hermitian vector bundles over Q.

The sections 3 and 4 are devoted to diverse upper bounds for the Arakelov degree
of hermitian line subbundle of a tensor product bundle. We shall prove Theorem A in
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§4. The fifth section contains a reminder on R-filtrations of vector spaces. In the sixth
section, we describe the geometric semistability by the language of R-filtrations. In
the seventh section, we discuss the relationship between the geometric and arithmetic
semistability. Finally, we prove Theorem B in the last section of the article.

Acknowledgement. — We would like to thank Éric Gaudron and Gaël Rémond
for having communicated to us their article [29] and for their careful reading and
valuable remarks on this work. Part of this project has been effectuated during the
visit of both authors to Mathematical Sciences Center of Tsinghua University. We
are grateful to the center for hospitality.

2. Hermitian vector bundles over Q

In this article, Q denotes the algebraic closure of Q in C. Any subfield of Q which
is finite over Q is called a number field. If K is a number field, we denote by ΣK,f

(resp. ΣK,∞) the set of finite (resp. infinite) places of K, and define ΣK as the
disjoint union of ΣK,f and ΣK,∞. To each place v ∈ ΣK we associate an absolute
value |.|v which extends either the usual absolute value of Q or some p-adic absolute
value |.|p normalized such that |a|p := p−vp(a) for any a ∈ Q×, where vp is the p-adic
valuation. We denote by Kv the completion of K with respect to the absolute value
|.|v and by Cv the completion of an algebraic closure of Kv. The absolute value |.|v
extends in a unique way to Cv.

2.1. Norm families. — Let K be a number field. If E is a finite dimensional vector
space over K, denote by NE the set of norm families of the form h = (hv)v∈ΣK

, where
for any v, hv (which is also denoted by ‖.‖hv

or by ‖.‖v) is a norm on E⊗K Cv, which
is invariant by the action of Gal(Cv/Kv), and is an ultranorm if v is finite. Denote by
HE the subset of NE consisting of those families h such that hv is hermitian for any
infinite place v. The norm families in HE are called hermtian families. Note that,
when rk(E) = 1, one has HE = NE .

Let e = (e1, . . . , en) be a basis of E. It determines a norm family he such that

‖λ1e1 + · · ·+ λnen‖he

v
=

{
max
16i6n

|λi|v, v is finite,

(|λ1|2v + · · ·+ |λn|2v)1/2, v is infinite.

It is a hermitian family.

2.1.1. Induced norm families. — Let E, F and G be finite dimensional vector spaces
over K. Any injective K-linear map i : F → E defines a mapping i∗ : NE → NF

by restricting norms. It sends HE to HF . Similarly, any surjective K-linear map
p : E → G defines a mapping p∗ : NE → NG by projection of norms. One also has
p∗(HE) ⊂ HG.

2.1.2. Dual norm families. — Let E be a finite dimensional vector space over K.
Any norm family h on E induces by duality a norm family h∨ on E∨, which is in
HE∨ if h ∈ HE .
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2.1.3. Direct sum. — Let E and F be two finite dimensional vector spaces over K,
and hE (resp. hF ) be a norm family in HE (resp. HF ). We define a norm family
hE⊕F ∈ HE⊕F as follows. If v is a finite place and (x, y) ∈ ECv

⊕ FCv
, one has

‖(x, y)‖hE⊕F
v

= max(‖x‖hE
v
, ‖y‖hF

v
);

if v is a infinite place, then

‖(x, y)‖hE⊕F
v

= (‖x‖2hE
v
+ ‖y‖2hF

v
)1/2.

The norm family hE⊕F is called the direct sum of hE and hF , and is denoted by
hE ⊕ hF .

2.1.4. Tensor product. — Let E and F be two finite dimensional vector spaces over
K. There are many “natural ways” to define a tensor product map from NE × NF

to NE⊗F , see for example [27] Definition 2.10. Here we introduce two constructions
which will be used in the sequel.

The first construction is given by operator norms. We identify E⊗F with the space
of linear operators HomK(E∨, F ). Assume that hE and hF are two norm families in
NE and in NF respectively, we define hE ⊗ε h

F as the norm family (hEv ⊗ε h
F
v )v∈ΣK

,
where hEv ⊗ε h

F
v denotes the norm of linear operators from (E∨

Cv
, hE,∨

v ) to (FCv
, hFv ).

Thus one obtains a map NE ×NF → NE⊗F . It can be shown that the operator ⊗ε is
associative (up to isomorphism). Namely, if E, F and G are three finite dimensional
vector spaces over K and hE , hF and hG are norm families in NE , NF and NG

respectively, then hE ⊗ε (hF ⊗ε h
G) identifies with (hE ⊗ε h

F ) ⊗ε h
G under the

canonical isomorphism E⊗ (F ⊗G) ∼= (E⊗F )⊗G. This permits to define the tensor
product for several norm families. To any finite family (Ei)

n
i=1 of finite dimensional

vector spaces over K and any (hEi)ni=1 ∈ ∏n
i=1 NEi

we can associate an element
hE1 ⊗ε · · · ⊗ε h

En ∈ NE1⊗···⊗En
. We remind that hE1 ⊗ε · · · ⊗ε h

En need not be in
HE1⊗···⊗En

, even though each hEi is in HEi
. The operator ⊗ε is also commutative

(up to isomorphism) in the sense that, for all finite dimensional vector spaces E and
F over K equipped with norm families hE and hF , the norm families hE ⊗ε h

F and
hF ⊗ε h

E coincide under the canonical isomorphism E ⊗ F ∼= F ⊗ E.
The second construction is the Hermitian tensor product. Let (Ei)

n
i=1 be a family

of finite dimensional vector spaces over K. For (hEi)ni=1 ∈ ∏n
i=1 HEi

, denote by
hE1 ⊗ · · · ⊗ hEn the norm family (hE1

v ⊗ · · · ⊗ hEn
v )v∈ΣK

such that,

1) if v is finite, then hE1
v ⊗ · · · ⊗ hEn

v := hE1
v ⊗ε · · · ⊗ε h

En
v ,

2) if v is infinite, then hE1
v ⊗ · · · ⊗ hEn

v is the usual hermitian product norm on
E1,Cv

⊗ · · · ⊗ En,Cv
.

Note that one has hE1 ⊗ · · · ⊗ hEn ∈ HE1⊗···⊗En
, and for any infinite place v, the

following relation holds

(34) hE1
v ⊗ε · · · ⊗ε h

En

v 6 hE1
v ⊗ · · · ⊗ hEn

v .

2.1.5. Determinant. — Let E be a finite dimensional vector space over K and h ∈
HE . Recall that the determinant of E is the maximal exterior product detE :=
Λrk(E)E. We denote by det h the family of determinant norms. Recall that for any
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finite place v, dethv coincides with the quotient of the tensor power norm. However,
when v is infinite, dethv is defined as the hermitian norm such that

〈x1 ∧ · · · ∧ xr, y1 ∧ · · · ∧ yr〉dethv
= det(〈xi, yj〉hv

)16i,j6r ,

where r is the rank of E.

2.1.6. Scalar extension. — Let E be a finite dimensional vector space over K and
h ∈ NE . Assume that K ′/K is a finite extension of number fields. We define hK′ as
the family (hK′,w)w∈ΣK′ such that, for any place w ∈ ΣK′ lying over some v ∈ ΣK ,
one has hK′,w = hv on E ⊗K Cv = (E ⊗K K ′)⊗K′ Cw. Note that hK′ is an element
in NE⊗KK′ . If h ∈ HE , then hK′ ∈ HE⊗KK′ .

2.1.7. Distance of two norm families. — Let E be a finite dimensional vector space
over K and h, h′ be two norm families in NE . For any place v of K, the local distance
between h and h′ at v is defined as

dv(h, h
′) := sup

06=s∈ECv

∣∣ log ‖s‖hv
− log ‖s‖h′

v

∣∣

The global distance of h and h′ is defined as

d(h, h′) :=
∑

v∈ΣK

[Kv : Qv]

[K : Q]
dv(h, h

′).

Observe that the global distance is invariant by scalar extension.

2.1.8. Admissible norm families. — Let E be a finite dimensional vector space over
K. If e and f are two bases of E, one has

he = hf for all but finitely many v.

In particular, one has d(he, hf ) < +∞. In fact, for any matrix A ∈ GLn(k), there
exists a finite subset SA of ΣK such that A ∈ GLn(Ov) for any v ∈ ΣK \ SA, where
Ov denotes the valuation ring of Cv, and n is the rank of E.

Denote by N ◦
E the subset of NE consisting of norm families h such that there exists

a basis (or equivalently, for any basis) e of E such that the equality hv = hev holds
for all but finitely many places v. Define H◦

E := HE ∩N ◦
E . The norm families in N ◦

E

are called admissible families.

2.2. Hermtian vector bundles over Q. — Given a vector space V of finite rank
r over Q. For any number field K, we call model of V over K any K-vector subspace
VK of rank r of V which generates V as a vector space over Q. The number field K is
called the field of definition of the model VK . Note that if V1 and V2 are two models
of V , there exists a number field K which contains the fields of definition of V1 and
V2 and such that the K-vector subspaces of V generated by V1 and V2 are the same.

Let V be a vector space of finite rank over Q. We call norm family on V any pair
(V , h), where V is a model of V and h ∈ N ◦

V . Note that (V , h) is actually an adelic
vector bundle in the sense of [27] (non-necessarily pure, see also [28]). We say that
a norm family (V , h) on V is hermitian if h ∈ H◦

V . We say that two norm families
(V1, h1) and (V2, h2) are equivalent if there exists a number field K containing the
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fields of definition of V1 and V2 and such that V1,K = V2,K and h1,K = h2,K . This is
an equivalence relation on the set of all norm families on V .

We call normed vector bundle over Q any pair V = (V, ξ), where V is a finite
dimensional vector space over Q and ξ is an equivalence class of norm families on V .
Any element (V , h) in the equivalence class ξ is called a model of V . We say that a
normed vector bundle V over Q is a hermitian vector bundle if ξ is an equivalence class
of hermitian norm families. A normed vector bundle of rank 1 over Q is necessarily
hermitian. It is also called a hermitian line bundle.

Remark 2.1. — We observe immediately from the definition that any adelic vector
bundle (V , h) over some number field K defines naturally a normed vector bundle
V = (VQ, ξ) where ξ is the equivalence class of (V , h). In particular, any normed
(resp. hermitian) vector bundle on SpecOK determines a normed (resp. hermitian)
vector bundle over Q. However, a normed vector bundle over Q need not come from
a normed vector bundle in usual sense over the spectrum of an algebraic integer ring,
unless it admits a pure model (see [28]). In general, a normed vector bundle V can
be approximated by usual normed vecotor bundles in the sense that, for any ǫ > 0,
there exists a number field K, a pure adelic vector bundle (V , h′), and a model (V , h)
of V over K whose underlying K-vector space is V such that d(h, h′) < ǫ.

Let V and V ′ be two normed vector bundles over Q and f : V → V ′ be an
isomorphism of Q-vector spaces. We say that f is an isomorphism of normed vector
bundles if there exists a number field K and a model (V , h) (resp. (V ′, h′)) of V (resp.
V ′) whose field of definition is K and such that

(1) f descends to an isomorphism f̃ : V → V ′ of K-vector spaces,

(2) f̃ induces for each place v ∈ ΣK an isometry between (VCv
, hv) and (V ′

Cv
, h′v).

The operations on norm families discussed in §2.1 preserve admissible norm families
and the above equivalence relation. Hence they lead to the following constructions of
normed (hermitian) vector bundles.

2.2.1. Subbundles and quotient bundles. — Let V = (V, ξ) be a normed vector bundle
over Q and W be a vector subspace of V . For any model (V , h) of V , W =W ∩ V is
a model of the Q-vector space W (with the same field of definition as that of V). The
induced norm family on W defines a structure of normed vector bundle on V which
does not depend on the choice of the model (V , h). The corresponding normed vector
bundle W is called a normed vector subbundle of V .

Similarly, the normed vector bundle structure ξ induces by quotient for each
quotient space of V a structure of normed vector bundle on it. The normed vector
bundle thus obtained is called a normed quotient bundle of V . Note that, if V is
hermitian, then also are its normed subbundles and quotient bundles.

Let V ′, V and V ′′ be three normed vector bundles over Q and

(35) 0 // V ′ f
// V

g
// V ′′

// 0
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be a diagram of Q-linear maps. We say that

0 // V ′ f
// V

g
// V ′′

// 0

is a short exact sequence of normed vector spaces if the diagram (35) is a short exact
sequence in the category of Q vector spaces and if f (resp. g) defines an isomorphism
between V ′ (resp. V ′′) and a normed vector subbundle (resp. quotient bundle) of V .

2.2.2. Dual bundles. — Let V = (V, ξ) be a normed vector bundle over Q. Denote
by V

∨
the pair (V ∨, ξ∨), where ξ∨ is the equivalence class of the dual of a model in ξ,

called the dual of V . It is a normed vector bundle over Q. Moreover, it is hermitian
if V is hermitian.

2.2.3. Direct sum. — Let V = (V, ξ) and W = (W, η) be two hermitian vector
bundles over Q. Denote by V ⊕ W the pair (V ⊕ W, ξ ⊕ η), where ξ ⊕ η is the
equivalence class of the direct sum of two models (with the same field of definition)
of V and W respectively. It is a hermtian vector bundle over Q. We call it the direct
sum of V and W .

2.2.4. Tensor products. — Let V = (V, ξ) and W = (W, η) be two normed vector
bundles over Q. Denote by V ⊗ε W the pair (V ⊗W, ξ ⊗ε η), where ξ ⊗ε η denotes
the equivalence class of the ε-tensor product of two models (with the same field of
definition) of V and W respectively. It is a normed vector bundle over Q which does
not depend on the choice of models. We call it the ε-tensor product of V and W .

If in addition V and W are hermitian, the hermitian tensor product V ⊗ W is
defined in a similar way. It is a hermitian vector bundle over Q.

2.2.5. Determinant. — Let V be a hermitian vector bundle over Q and (V , h) be a
model of it. Denote by detV the hermitian vector bundle over Q whose hermitian
vector bundle structure is the equivalence class of (detV , deth), called the determinant
of V . It is a hermitian line bundle over Q.

2.3. Arakelov degree. — Let L be a hermitian line bundle over Q and

L = (L, (‖.‖v)v∈ΣK
)

be a model of L, where K is its field of definition. We define the (normalized) Arakelov
degree of L as

(36) d̂egn(L) := −
∑

v∈ΣK

[Kv : Qv]

[K : Q]
log ‖s‖v,

where s is a non-zero element in L. The sum in (36) does not depend on the choice
of s (by the product formula), and does not depend on the choice of the model (being
normalized, it is stable under scalar extensions).

More generally, the (normalized) Arakelov degree of a hermitian vector bundle E
over Q is defined as

d̂egn(E) := d̂egn(detE).
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If 0 // F // E // G // 0 is a short exact sequence of hermitian vector
bundles over Q, then one has

d̂egn(E) = d̂egn(F ) + d̂egn(G).

Moreover, if E is a hermitian vector bundle over Q and if F1 and F2 are two vector
subspaces of E, then the following relations hold :

rk(F1 ∩ F2) + rk(F1 + F2) = rk(F1) + rk(F2),(37)

d̂egn(F1 ∩ F2) + d̂egn(F1 + F2) > d̂egn(F 1) + d̂egn(F 2).(38)

In fact, by approximation (see Remark 2.1) we can reduce the problem to the case
where all hermitian vector bundles admit pure models. Then it suffices to apply [27],
Propositions 4.22 and 4.23 to suitable models.

2.4. Slopes. — If E is a non-zero hermitian vector bundle over Q, the slope of E
is defined as the quotient

µ̂(E) :=
d̂egn(E)

rk(E)
.

We say that E is semistable (resp. stable) if for any non-zero vector subspace F which
is strictly contained in E one has µ̂(F ) 6 µ̂(E) (resp. µ̂(F ) < µ̂(E)).

Proposition 2.2. — Let E be a non-zero hermitian vector bundle over Q. The set

{µ̂(F ) : F is a non-zero vector subspace of E}
attains its maximum, and there exists a non-zero subbudle Edes of E whose slope is
maximal and which contains all subbundles of E with the maximal slope.

Proof. — We prove the proposition by induction on the rank r of E. The case where
r = 1 is trivial. In the following, we assume r > 1.

If for any F ⊂ E, one has µ̂(F ) 6 µ̂(E), then Edes = E already verifies the
condition. Otherwise we can choose E′ ( E such that µ̂(E′) > µ̂(E) and that rk(E′)
is as large as possible. The induction hypothesis applied on E′ shows that there exists
E′

des ⊂ E′ which verifies the properties predicted by the conclusion of the Proposition.
One has µ̂(E′

des) > µ̂(E′) > µ̂(E). We shall verify that actually Edes := E′
des has

the required properties relatively to E. Let F be a non-zero subspace of E. If F is
contained in E′, then µ̂(F ) 6 µ̂(E′

des). Otherwise one has rk(F + E′) > rk(E′) and
hence µ̂(F + E′) 6 µ̂(E). By (38) one obtains

d̂egn(F ∩E′) + d̂egn(F + E′) > d̂eg(F ) + d̂eg(E′).

Moreover, one has

d̂egn(F + E′) 6 rk(F + E′)µ̂(E) < rk(F + E′)µ̂(E′),

and
d̂egn(F ∩ E′) 6 rk(F ∩ E′)µ̂(E′

des)

since F ∩E′ ⊂ E′. Thus

d̂egn(F ) <
(
rk(E′ + F )− rk(E′)

)
µ̂(E′) + rk(F ∩ E′)µ̂(E′

des) 6 rk(F )µ̂(E′
des).
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So the inequality µ̂(F ) 6 µ̂(E′
des) always holds, and the inequality is strict when

F 6⊂ E′. By the induction hypothesis, if F ⊂ E is such that µ̂(F ) = µ̂(E′
des), then

one has F ⊂ E′
des. The propositon is thus proved.

Definition 2.3. — Let E be a non-zero hermitian vector bundle over Q. Define

µ̂max(E) := sup{µ̂(F ) : F is a non-zero vector subspace of E},
called the maximal slope of E. By Proposition 2.2, we obtain that µ̂max(E) is finite,
and is attained by a vector subspace of E.

The following is an upper bound of the maximal slope of a quotient hermitian
vector bundle.

Proposition 2.4. — Let E be a hermitian vector bundle over Q and M be a non-zero
vector subspace of E such that E/M 6= 0. Let r be the rank of M . One has

(39) µ̂max(E/M) 6 (r + 1)µ̂max(E)− rµ̂(M).

Proof. — Let F be a vector subspace of E containing M and such that F/M =
(E/M)des. One has

d̂egn(F/M) = (rk(F )− r)µ̂(F/M) = (rk(F )− r)µ̂max(E/M).

Moreover,

d̂egn(F/M) = d̂egn(F )− d̂egn(M) 6 rk(F )µ̂max(E)− d̂egn(M).

Therefore

µ̂max(E/M) 6
rk(F )

rk(F )− r
µ̂max(E)− d̂egn(M)

rk(F )− r
=

rk(F )

rk(F )− r

(
µ̂max(E)−µ̂(M)

)
+µ̂(M).

This implies (39) since rk(F )/(rk(F )− r) is bounded from above by r + 1.

Let E be a non-zero hermitian vector bundle over Q. The proposition 2.2 implies
the existence of an increasing flag

(40) 0 = E0 ( E1 ( . . . ( En = E.

such that each subquotient Ei/Ei−1 is semistable and that the successive slopes form
a strictly decreasing sequence:

(41) µ̂(E1/E0) > . . . > µ̂(En/En−1).

In fact, it suffice to construct Ei in a recursive way such that Ei/Ei−1 = (E/Ei−1)des.
Similarly to the classical theory of Harder-Narasimhan filtrations for vector bundles
on a regular projective curve, the flag (40) (called the Harder-Narasimhan flag of
E) is characterized by the above two properties (semistable subquotients and strictly
decreasing successive slopes). The last slope in (41) equals the minimal value of slopes
of non-zero quotient hermitian vector bundles of E. It is denoted by µ̂min(E).
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2.5. Successive degrees. — Let E be a non-zero normed vector bundle over Q.
Inspired by [14], we defined the first degree of E as

d̂eg(1)n (E) := sup{d̂egn(L) |L is a vector subspace of rank 1 of E}.
This definition could be compared to [14, (3.20)]: if (E , h) is a model of E, then one
has

d̂eg(1)n (E) = sup
K′/K

ud̂egn(EK′ , hK′),

where K ′/K runs over all finite extensions of K. In particular, if E comes from a

hermitian vector bundle on the spectrum of an algebraic integer ring, then d̂eg
(1)
n (E)

is noting but the stable upper arithmetic degree of the hermitian vector bundle
introduced in §1.6.

Note that the first degree can be interpreted as an absolute minimum. In fact,
d̂eg

(1)
n (E) is just the opposite of the infimum of heights (with respect to the universal

line bundle equipped with Fubini-Study metrics) of algebraic points in P(E∨). In-
spired by this observation, we propose the following notion of successive degrees as
follows. Let E be a non-zero normed vector bundle of rank r over Q. For any integer
i ∈ {1, . . . , r}, let

(42) d̂eg(i)n (E) := inf
Z

(
sup{d̂egn(L) |L ∈ (P(E∨) \ Z)(Q)}

)
,

where Z runs over all closed subscheme of codimension > r−i+1 in P(E∨) (subscheme
of codimension r of P(E∨) refers to the empty scheme). Note that d̂eg

(i)
n (E) is the

opposite of the (r − i + 1)th logarithmic minimum of P(E∨). We have the following
relations

(43) d̂eg(1)n (E) > . . . > d̂eg(r)n (E).

We recall below a result of Zhang (in a particular case) which compares the sum
of successive minima and the height of an arithmetic variety (cf. [53] Theorem 5.2).

Theorem 2.5 (Zhang). — Let E be a non-zero hermitian vector bundle of rank r
over Q. Then the following inequalities hold

(44) 0 6 d̂egn(E)− 1

2

r∑

i=1

d̂eg(i)n (E) 6
1

2
rℓ(r),

where

(45) ℓ(r) =
∑

26j6r

1

j
.

Remark 2.6. — One has
ℓ(r) < log(r)

for any r > 2, and

log(r)− ℓ(r) = (1− γ) +O(r−1) (r → ∞),

where γ is the constant of Euler. The following are some values of the functions ℓ(r)
and ⌈exp(rℓ(r))⌉.
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r 2 3 4
ℓ(r) 1/2 5/6 13/12

⌈exp(rℓ(r))⌉ 3 13 77

As an application, one obtains the following absolute version of “Siegel’s lemma”
(cf. [27] 4.13 and 4.14)

Corollary 2.7. — For any hermitian vector bundle E of rank r > 0 over Q and any
positive real number ǫ, there exist hermitian line subbundles L1, . . . , Lr of E such that
E = L1 + · · ·+ Lr and that

(46) 0 6 d̂egn(E)−
r∑

i=1

d̂egn(Li) 6
1

2
rℓ(r) + ǫ.

Remark 2.8. — In the special case where r = 2 and E admits a pure model over
Z, the work of de Shalit et Parzanchevski implies (see [48] §1.3) that there exist
hermitian line subbundles L1 and L2 of E such that

µ̂(E)− 1

2

(
d̂egn(L1) + d̂egn(L2)

)
6

1

2
log

2√
3
.

Their method relies on the classical reduction theory of Euclidean lattices, which goes
back to Lagrange and Gauss.

By definition the first degree of a hermitian vector bundle is bounded from above
by the maximal slope. The theorem of Zhang leads to a reverse inequality with a
supplementary term which is 1

2ℓ(r).

Proposition 2.9. — For any hermitian vector bundle E of positive rank r over Q,
one has

(47) d̂eg(1)n (E) 6 µ̂max(E) 6 d̂eg(1)n (E) +
1

2
ℓ(r).

Proof. — As explained above, the first degree d̂eg
(1)
n (E) is bounded from above by

µ̂max(E). Consider the destabilizing vector subbundle Edes of E and let m denote

its rank. By definition, one has d̂eg
(1)
n (Edes) 6 d̂eg

(1)
n (E). Moreover, Theorem 2.5

applied to Edes gives

d̂egn(Edes) 6

m∑

i=1

d̂eg(i)n (Edes) +
1

2
ℓ(m) 6 md̂eg(1)n (Edes) +

1

2
mℓ(m).

Therefore,

µ̂max(E) = µ̂(Edes) 6 d̂eg(1)n (Edes) +
1

2
ℓ(m) 6 d̂eg(1)n (E) +

1

2
ℓ(r).
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2.6. Height of a linear map. — Let E be F be hermitian vector bundles over Q,
and f : E → F be a Q-linear map. There exist models EK and FK over the same
number filed K such that f descends to a K-linear map fK : EK → FK . We define
the height of f as

h(f) :=
∑

v∈ΣK

[Kv : Qv]

[K : Q]
log ‖fK,v‖,

where ‖fK,v‖ denotes the operator norm of the Cv-linear map EK⊗KCv → FK⊗KCv

induced by fK . Note that this definition does not depend on the choice of the models
EK and FK (such that the linear map f descends). Moreover, if f is an isomorphism
of vector spaces over Q, one has

d̂egn(E) = d̂egn(F ) + h(Λrf),

where r is the rank of E. Since h(Λrf) 6 rh(f), one obtains

µ̂(E) 6 µ̂(F ) + h(f)

provided that f is a non-zero isomorphism of vector spaces over Q. Therefore,
we obtain the following inequalities which should be considered a reformulation of
classical slope inequalities (see for example [10, §4.1.4]).

Proposition 2.10. — Let E and F be non-zero hermitian vector bundles over Q,
and f : E → F be a Q-linear map.

1) If f is injective, then µ̂max(E) 6 µ̂max(F ) + h(f).

2) If f is surjective, then µ̂min(E) 6 µ̂min(F ) + h(f).

3) If f is non-zero, then µ̂min(E) 6 µ̂max(F ) + h(f).

3. Line subbundles of an ε-tensor product

In this section, we prove an upper bound (Proposition 3.1) for the Arakelov degree
of a line subbundle in the ε-tensor product of two hermitian vector bundles. It leads
to non-trivial applications on the study of the maximal slope of tensor products (see
Theorem 3.6).

Proposition 3.1. — Let E and F be two non-zero hermitian vector bundles over Q.
One has

(48) d̂eg(1)n (E ⊗ε F ) 6 µ̂max(E) + µ̂max(F ).

Proof. — Let L be a one-dimensional subspace of E ⊗F and f ∈ L \ {0}, considered
as a Q-linear map from E∨ to F . Choose a number field K such that f give rise to a
K-linear map f̃ : E∨

K → FK , where EK and FK are respectively models of E and F .
One has

d̂egn(L) = −
∑

v∈ΣK

[Kv : Qv]

[K : Q]
log ‖f̃v‖v = −h(f)

Since f is non-zero, by the slope inequality (Proposition 2.10), one has

µ̂min(E
∨
) 6 µ̂max(F ) + h(f) = µ̂max(F )− d̂egn(L).
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Hence d̂egn(L) 6 µ̂max(F )− µ̂min(E
∨
) = µ̂max(E) + µ̂max(F ).

Definition 3.2. — Let E be a non-zero normed vector bundle of rank r over Q. We
define

ς(E) := inf
F(E

d̂eg(1)n (E/F ),

where F runs over all vector subspaces of E such that F ( E.

Assume that E is hermitian. By definition, one always has ς(E) 6 µ̂min(E).
Moreover Proposition 2.9 implies that

ς(E) > µ̂min(E)− 1

2
ℓ(r).

By passing to dual, one obtains

µ̂max(E) 6 −ς(E∨
) 6 µ̂max(E) +

1

2
ℓ(r).

The following is a variant of the inequality (48) where in the upper bound there
appears the first degree of E rather than the maximal slope, and we need not assume
that the normed vector bundle E is hermitian. As a price paid, the term µ̂max(F )

figuring in the upper bound is replaced by a larger term −ς(F∨
). This permits to

obtain an upper bound for the ε-tensor product of several hermitian vector bundles
in a recursive way (Corollary 3.5) and hence to establish a stronger upper bound (see
Theorem 3.6) for the maximal slope of tensor product of hermitian vector bundles.

Proposition 3.3. — Let E and F be non-zero normed vector bundles over Q. We
have

(49) d̂eg(1)n (E ⊗ε F ) 6 d̂eg(1)n (E)− ς(F
∨
).

Proof. — Let L be a one-dimensional subspace of E ⊗ F , considered as a subspace
of Hom(F∨, E). Pick a non-zero element f in L. If M is a subspace of rank one of
F∨/Ker(f), one has

d̂egn(M) 6 d̂egn(f(M))− d̂egn(L)

6 d̂eg(1)n (E)− d̂egn(L),

where the first inequality comes from the slope inequality, in considering d̂egn(L) as
the height of f : F∨ → E (cf. [10, Proposition 4.5]). Since M is arbitrary, one obtains

d̂egn(L) 6 d̂eg(1)n (E)− d̂eg(1)n (F∨/Ker(f)) 6 d̂eg(1)n (E)− ς(F
∨
).

Remark 3.4. — Let k be a field of characteristic 0, and K be the algebraic closure
of k(t) (the field of rational functions of one variable with coefficients in k). Similarly
to §2.2, we can introduce the notion of (ultra)normed vector bundles over K as an
equivalence class of adelic vector bundle (in the sense of Gaudron) over a function
field defined over k; such objects have been studied by Hoffmann, Jahnel, and Stuhler
[36]. It can be show that, for any non-zero normed vector bundle E over K, one

has d̂eg
(1)
n (E) = µ̂max(E) (see Proposition 1.6), and consequently ς(E) = µ̂min(E).
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Moreover, the analogue of Proposition 3.3 also holds in this setting. Therefore one
obtains (compare to Theorem 1.7 and Lemma 1.8)

µ̂max(E ⊗ F ) 6 µ̂max(E) + µ̂max(F )

(note that in function field case the ε-tensor product is just the usual tensor product).

However, in number field case, the inequality d̂eg
(1)
n (E) 6 µ̂max(E) could be strict.

The A2 lattice provides such a counter-example (see Proposition 1.10).
The above discussion also shows that, even if the normed vector bundles E and F

(over Q) are hermitian, one should not expect a result of the form

d̂eg(1)n (E ⊗ε F ) 6 d̂eg(1)n (E) + µ̂max(F ).

In fact, consider a hermitian vector bundle E which is semistable and such that
d̂eg

(1)
n (E) < µ̂max(E) (as A2 lattice for example). One has d̂eg(1)n (E⊗εE

∨
) > 0 since

the line in E ⊗ E∨ generated by the trace element has Arakelov degree 0. However,

d̂eg(1)n (E) + µ̂max(E
∨
) < µ̂max(E) + µ̂max(E

∨
) = 0.

The above theorem leads to the following corollary by induction.

Corollary 3.5. — For any integer N > 2 and N non-zero hermitian vector bundles
E1, . . . , ENover Q, the following inequality holds:

(50) d̂eg(1)n (E1 ⊗ε · · · ⊗ε EN ) 6 µ̂max(E1) + µ̂max(E2)−
∑

36i6N

ς(E
∨

i ).

Theorem 3.6. — For non-zero hermitian vector bundles E and F over Q, one has

µ̂max(E ⊗ F ) 6 µ̂max(E)− ς(F
∨
)

In particular,

(51) µ̂max(E ⊗ F ) 6 µ̂max(E) + µ̂max(F ) +
1

2
ℓ rk(F )).

Proof. — Let V = (E ⊗ F )des. Consider the one dimensional vector subspace L of
V ∨ ⊗ (E ⊗ F ) ∼= Hom(V,E ⊗ F ) generated by the inclusion map of V in E ⊗ F . As
a normed subbundle of V

∨ ⊗ε (E ⊗ F ), one has d̂egn(L) > 0 since L is generated by
the inclusion map. Moreover, one has

d̂egn(L) 6 d̂eg(1)n (V
∨ ⊗ε (E ⊗ F )) 6 d̂eg(1)n (V

∨ ⊗ε E ⊗ε F )

since the ε-tensor product norm is bounded from above by the hermitian tensor
product norm. By Corollary 3.5, one has

0 6 d̂egn(L) 6 µ̂max(V
∨
) + µ̂max(E)− ς(F

∨
).

Since V is semi-stable, µ̂max(V
∨
) = µ̂(V

∨
) = −µ̂(V ) = −µ̂max(V ). The proposition

is thus proved.
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Remark 3.7. — By the symmetry between E and F , the inequality (51) implies
Theorem A. Moreover, one obtains by induction from the previous theorem that, if
(Ei)

N
i=1 is a finite family of non-zero hermitian vector bundles over Q, then one has

µ̂max(E1 ⊗ · · · ⊗ EN ) 6 µ̂max(E1) + · · ·+ µ̂max(EN ) +

N∑

i=2

1

2
ℓ rk(Ei)).

4. Line subbundles of a hermitian tensor product

In this section, we study the Arakelov degree of a line subbundle in the hermtian
tensor product of two hermitian vector bundles over Q. Note that the hermitian tensor
product metric is usually grater than the ε-tensor product (see (34)). Therefore the
upper bound (48) leads to a similar one for the hermitian tensor product case. As
we shall show below, the upper bound obtained in such way can be refined where the
tensorial rank of the line subbundle appears (see Proposition 4.2). This method can
be generalized to obtain an upper bound for the Arakelov degree of a vector subspace
in the hermitian tensor product of two hermitian vector bundles, where the successive
tensorial ranks of the vector subspace appear.

4.1. Successive tensorial ranks of a line subbundle. — Let K be a field and
E and F be two vector spaces of finite rank over K. We say that a vector in E⊗F is
split if it can be written as the tensor product of a vector in E and a vector in F . For
a non-zero vector s ∈ E ⊗F , the tensorial rank of s is defined as the smallest integer
n > 1 such that s can be written as the sum of n split vectors. The tensorial rank of a
non-zero vector s ∈ E⊗F is denoted by ρ(s). Note that the function ρ(·) is invariant
by dilations. Namely, for any non-zero element a ∈ K, one has ρ(as) = ρ(s). If M is
a vector subspace of rank one of E ⊗ F , we denote by ρ(M) the tensorial rank of an
arbitrary non-zero element in M , called the tensorial rank of M .

Let s be a non-zero vector in E ⊗ F . The tensorial rank of s is equal to the rank
of s considered as a K-linear map from E∨ to F . If M is a one-dimensional vector
subspace of E ⊗ F , the tensorial rank of M coincides with the rank of the image of
M in E (namely the smallest vector subspace E1 of E such that M ⊂ E1 ⊗ F ), and
also the rank of the image of M in F .

The tensorial rank function is a geometric invariant which measures the algebraic
complexity of lines in a tensor product. For general subspaces, we propose the fol-
lowing notion of successive tensorial ranks for vector spaces over Q (similar definition
also makes sense for vector spaces over a general algebraically closed field, but we
only need the restricted case in this article).

Let E and F be two vector spaces of finite rank over Q, and V be a non-zero
subspace of rank r of E ⊗ F . For each integer i ∈ {1, . . . , r}, let

(52) ρi(V ) := sup
Z

(
inf{ρ(M) |M ∈ (P(V ∨) \ Z)(Q)}

)
,
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where Z runs over all closed subvarieties of codimension (8) r − i + 1 in P(E∨). The
integers (ρi(V ))ri=1 are called the successive tensorial ranks of V .

The successive tensorial ranks can also be interpreted via the dimensions of the
intersections of V with the determinantal subvarieties of E ⊗ F (considered as an
affine variety defined over Q). Recall that the k-th determinantal subvariety of E⊗F
is the closed subvariety Dk of E ⊗ F classifying the all tensor vectors which can be
written as the sum of k split vectors. Clearly one has

{0} = D0 ⊂ D1 ⊂ . . . ⊂ Dk ⊂ Dk+1 ⊂ . . . ,

and for any k > min(rk(E), rk(F )), one has Dk = E⊗F . With this notation, for any
vector subspace V of rank r > 1 of E ⊗ F , one has

ρi(V ) = min{k | dim(V ∩Dk) > i}, ∀ i ∈ {1, . . . , r}.

Remark 4.1. — Let E and F be hermitian vector bundles over Q, V be a hermitian
vector subbundle of rank r > 1 of E ⊗ F and ǫ be a positive real number. We can
choose in a recursive way one dimensional subspaces L1, . . . , Lr in V which are linearly
independent and such that d̂egn(Li) > d̂eg

(r)
n (V )− ǫ/r and ρ(Li) > ρi(V ). Note that

by Theorem 2.5, one has

d̂egn(E) 6

r∑

i=1

d̂egn(Li) +
1

2
rℓ(r) + ǫ.

This construction will be useful further in §8 for the study of upper bounds for the
Arakelov degree of a vector subbundle in the tensor product of two hermitian vector
bundles.

4.2. An upper bound for the Arakelov degrees of line subbudles. — We
begin by an upper bound for the Arakelov degree of an arbitrary line subbundle
of the tensor product of two hermitian vector bundles which can be considered as
a reformulation of Hadamard’s inequality. This upper bound is a variant of [14]
Proposition 3.4.1.

Proposition 4.2. — Let E and F be two hermitian vector bundles over Q, and M
be a non-zero vector subspace of rank 1 of E ⊗F . Let E1 and F1 be the images of M
in E and in F respectively. One has

(53) d̂egn(M) 6 µ̂(E1) + µ̂(F 1)−
1

2
log ρ(M).

In particular, one has

(54) d̂egn(M) 6 µ̂max(E) + µ̂max(F )−
1

2
log ρ(M).

8. By convention, in the case where i = 1, the condition codim(Z) = r means that the scheme Z

is empty.
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Proof. — The inequality (54) is a direct consequence of (53). In the following, we
prove the first one. By definition, E1 and F1 are respectively vector subspaces of rank
ρ(M) of E and F . Consider the K-linear maps

(55) M⊗r −→ E⊗r
1 ⊗ F⊗r

1 −→ Λr(E1)⊗ Λr(F1),

where r = ρ(M). Denote by ϕ the composed map. Let (ei)
r
i=1 and (fi)

r
i=1 be

respectively a basis of E1 and F1 such that

α = e1 ⊗ f1 + · · ·+ er ⊗ fr

is a non-zero element in M . The image of α⊗r by the composed map (55) is just

(56) ϕ(α⊗r) = r!(e1 ∧ · · · ∧ er)⊗ (f1 ∧ · · · ∧ fr).
Let K be a number field such that (ei)

r
i=1 (resp. (fi)

r
i=1) gives rise to a basis of a

model E1,K (resp. F1,K) of E1 (resp. F1) over K. Thus the homomorphism ϕ gives
rise to a K-linear map ϕ̃ from Kα⊗r to Λr(E1,K)⊗ Λr(F1,K).

By (56), for any finite place p of K, one has

‖ϕ̃‖p 6 |r!|p.
In fact, if ‖α‖p < 1, then we can choose (ei)

r
i=1 and (fi)

r
i=1 such that max

16i6r
‖ei‖p 6 1

and max
16i6r

‖fi‖p 6 1 since ‖α‖p is the operator norm of αCp
: E∨

1,Cp
→ F1,Cp

. Moreover,

for any infinite place σ of K, one has

‖α‖2rσ =

( ∑

16i,j6r

〈ei, ej〉σ〈fi, fj〉σ
)r

> rr‖e1 ∧ · · · ∧ er‖2σ · ‖f1 ∧ · · · ∧ fr‖2σ.

Hence
‖ϕ̃‖σ = |r!|σ · r−r.

By the slope inequality (cf. Proposition 2.10) and the product formula,

r d̂egn(M) 6 d̂egn(E1) + d̂egn(F 1)−
r

2
log(r).

Therefore,

d̂egn(M) 6 µ̂(E1) + µ̂(F 1)−
1

2
log ρ(M).

We obtain from (54) that, if V is a non-zero vector subspace of E ⊗ F , then one
has

(57) d̂eg(1)n (V ) +
1

2
log ρ1(V ) 6 µ̂max(E) + µ̂max(F ).

By Theorem 2.5, we obtain the following variant of (57).

Proposition 4.3. — Let E and F be two hermitian vector bundle over K, and V be
a non-zero vector subspace of E ⊗ F . One has

(58) µ̂(V ) 6 µ̂max(E) + µ̂max(F ) +
1

2
ℓ(r)− 1

2r

r∑

i=1

log ρi(V ),
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where r is the rank of V . In particular, the inequality

µ̂(V ) 6 µ̂max(E) + µ̂max(F )

holds as soon as
r∏

i=1

ρi(V ) > exp
(
rℓ(r)

)
.

Proof. — By the previous proposition, one obtains that

d̂eg(i)n (V ) 6 µ̂max(E) + µ̂max(F )−
1

2
log ρi(V ).

Therefore Theorem 2.5 implies that

d̂egn(V ) 6
r∑

i=1

d̂eg(i)n (V )+
1

2
rℓ(r) 6 r(µ̂max(E)+ µ̂max(F ))+

1

2
rℓ(r)− 1

2

∑

i=1

log ρi(V )

which gives (58).

5. Filtrations

In this section, the expressionK denotes an arbitrary field. LetW be a vector space
of finite rank overK. We call filtration ofW any decreasing family (F tW )t∈R of vector
subspaces ofW . We assume in convention that any filtration F is separated (F tW = 0
for t sufficiently positive), exhaustive (F tW =W for t sufficiently negative), and left
continuous (the function t 7→ rk(F tW ) is locally constant on left). The set of all
filtrations of W is denoted by Fil(W ). If F is a filtration of W , we denote by
λF : W → R ∪ {+∞} the map which sends x ∈ W to sup{t ∈ R |x ∈ F tW}. This
function takes finite values on W \ {0}.

5.1. Filtration as a weighted flag. — Let W be a finite dimensional vector space
over K. A filtration F of W can be considered as an increasing flag of W :

(59) 0 =W0 (W1 ( . . . (Wn =W

together with a strictly decreasing sequence of real numbers

a1 > . . . > an

which describes the jumps of the filtration. One has F tW = W if t 6 an, F tW = 0
if t > a1; and if i ∈ {1, . . . , n− 1} and t ∈ ]ai+1, ai], one has F tW =Wi. We say that
a basis e of W is compatible with the filtration F if for any t ∈ R one has

rk(F tW ) = #(e ∩ F tW ).

Note that this definition only depends on the flag associated to the filtration. In fact,
the basis e is compatible with the filtration F if and only if it is compatible with the
flag (59), namely for any i ∈ {1, . . . , n} one has #(e ∩Wi) = rk(Wi). Moreover, by
Bruhat decomposition for general linear groups, we obtain that, for all filtrations F1

and F2 of W , there always exists a basis of W which is simultaneously compatible
with F1 and F2.
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Given a basis e = (ej)
r
j=1 of a finite dimensional vector space W over K and a

map ϕ : e → R, one can construct a filtration Fe,ϕ of W as follows. For any t ∈ R,
F t

e,ϕ(W ) is taken as the vector subspace of W generated by the elements ej ∈ e such
that ϕ(ej) > t. The basis e is compatible with the filtration Fe,ϕ, and the restriction
of λFe,ϕ

on e coincides with ϕ. The filtration Fe,ϕ is said to be associated to the basis
e and the function ϕ.

Conversely, given a finite dimensional vector space W over K equipped with a
filtration F , and a basis e = (ej)

r
j=1 of W which is compatible with F . If we denote

by ϕ the restriction of λF on e, then the filtration associated to the basis e and the
function ϕ coincides with F . In particular, for any element x = a1e1+ · · ·+arer ∈ W ,
one has

(60) λF (x) = min{λF(ej) | 1 6 j 6 r, aj 6= 0}.

5.2. Filtration as a norm. — Let W be a finite dimensional vector space over K.
If F is a filtration of W , one has

λF (x+ y) > min(λF (x), λF (y)), λF (ax) = λF (x)

for any a ∈ K \ {0} and all x, y ∈W . Therefore the function

(x ∈W ) 7→ ‖x‖ := exp(−λF(x))

is actually a norm on W , where we have considered the trivial absolute value |.| on
K such that |a| = 1 for any a ∈ K \ {0}.

Conversely, given a norm ‖.‖ on the vector space W , one obtains a filtration F‖.‖

such that

F t
‖.‖(W ) = {x ∈ W : ‖x‖ 6 exp(−t)}.

For any x ∈ W , one has

‖x‖ = exp(−λF‖.‖
(x)).

Given a filtration F of W which corresponds to the norm ‖.‖. By (60) we obtain
that a basis e = (ej)

r
j=1 is compatible with the filtration F if and only if it is an

orthogonal basis of W with respect to the norm ‖.‖, namely for any x = a1e1 + · · ·+
arer ∈W one has

‖x‖ = max
16i6r

‖aiei‖ = max
16i6r
ai 6=0

‖ei‖.

5.3. Expectation. — Let W be a finite dimensional vector space over K and F
be a filtration of W . For any t ∈ R, we denote by sqtFW (or simply sqtW ) the
sub-quotient F tW/F t+W , where F t+W is defined as

⋃
ε>0 F t+εW . Note that there

exists a finite set such that, for any t ∈ R outside of this set, one has sqtFW = 0.
Hence the sum ∑

t∈R

t rk(sqtFW )
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is well defined (since it is actually a finite sum). If W is non-zero, we define the
expectation of F as

(61) E[F ] :=
1

rk(W )

∑

t∈R

t rk(sqtFW ).

Assume that the filtration F corresponds to the flag

0 =W0 (W1 ( . . . (Wn =W

together with the sequence
a1 > . . . > an.

One has

E[F ] =
1

rk(W )

n∑

i=1

ai rk(Wi/Wi−1).

We can also write E[F ] as an integral

(62) E[F ] = − 1

rk(W )

∫

R

t d rk(F tW ) = a+

∫ +∞

a

rk(F tW )

rk(W )
dt,

where a is a sufficient negative number (such that FaW =W ).
Assume that e = (ej)

r
j=1 is a basis of W which is compatible with the filtration

F . The projection of F tW onto sqt(W ) induces a bijection between {ej |λF (ej) = t}
and its image. Moreover, the image of {ej |λF (ej) = t} in the quotient space sqt(W )
forms a basis of the latter. Therefore, one has

E[F ] =
1

r

r∑

j=1

λF (ej).

If e′ = (e′j)
r
j=1 is another basis of W which is not necessarily compatible with the

filtration F , one has

(63) E[F ] >
1

r

r∑

j=1

λF (e
′
j).

The zero vector space over K has only one filtration. Its expectation is defined to
be zero by convention.

5.4. Random variable associated to a filtration. — LetW be a non-zero vector
space of finite rank over K and F be a filtration of W . We associate to the filtration
F a random variable ZF on {1, . . . , r} equipped with the equidistributed probability
measure such that

ZF(i) := sup{t ∈ R | rk(F tW ) > i}.
If the filtration F corresponds to the flag

0 =W0 (W1 ( . . . (Wn =W

together with the decreasing sequence a1 > . . . > an, then {a1, . . . , an} is just the
image of the random variable ZF . By definition E[F ] coincides with the expectation
of the random variable ZF . Denote by ‖F‖ the number E[Z2

F ]
1/2. We say that F is

trivial if ‖F‖ = 0, namely the filtration F has only a jump point which is 0. We say
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that the filtration F is degenerated if the random variable ZF is constant. If F and G
are two filtrations of W , we denote by 〈F ,G〉 the expectation of ZFZG . By definition
one has 〈F ,F〉 = ‖F‖2.

5.5. Construction of filtrations. — We explain below how to construct filtrations
from the existing ones.

5.5.1. Restricted filtration. — Let W be a finite dimensional vector space over K
and V be a vector subspace of W . If F is a filtration of W , we denote by F|V the
filtration of V such that

∀ t ∈ R, (F|V )tV := V ∩ F tW,

called the restriction of F on V . The norm corresponding to F|V is just the induced
norm on V (from that corresponding to F).

5.5.2. Quotient filtration. — Let W be a finite dimensional vector space over K, V
be a vector subspace of W and π :W → W/V be the quotient map. Any filtration F
of W leads to a quotient filtration π(F) of W/V such that

∀ t ∈ R, π(F)t(W/V ) = π(F t(W )).

The norm on W/V corresponding to π(F) is the quotient norm.

5.5.3. Tensor product. — Let E and F be two finite dimensional vector spaces over
K. Suppose given a filtration F of E and a filtration G of F . We define their tensor
product as the filtration F ⊗ G of E ⊗ F such that

(F ⊗ G)t(E ⊗ F ) :=
∑

a+b=t

FaE ⊗ GbF.

Proposition 5.1. — For any t ∈ R, the sub-quotient sqtF⊗G(E ⊗ F ) of the tensor
product filtration is isomorphic to

⊕

a+b=t

sqaF(E)⊗ sqbG(F ).

In particular, the following equality holds

(64) E[F ⊗ G] = E[F ] + E[G]
provided that neither E nor F is the zero vector space.

Proof. — Let e = (ei)
n
i=1 and f = (fj)

m
j=1 be respectively bases of E and F which are

compatible with the filtrations F and G. Let ϕ and ψ be respectively the restriction
of λF and λG on e and on f . Then the filtration F ⊗ G is associated to the basis

e⊗ f := {ei ⊗ fj | 1 6 i 6 n, 1 6 j 6 m}
of E⊗F and the function ϕ⊗ψ which sends ei⊗fj to ϕ(ei)+ψ(fj). For any t ∈ R, let
et = {ei |λF (ei) = t} and ft = {fj |λG(fj) = t}. The bijection between

⋃
a+b=t ea×fb

and

(e⊗ f)t = {ei ⊗ fj |λF (ei) + λG(fj) = t} = {ei ⊗ fj |λF⊗G(ei ⊗ fj) = t}
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which sends (ei, fj) to ei ⊗ fj induces an isomorphism between the K-vector spaces⊕
a+b=t sq

a
F(E) ⊗ sqbG(F ) and sqtF⊗G(E ⊗ F ).

The equality (64) is a direct consequence of the relation

rk(sqtF⊗G(E ⊗ F )) =
∑

a+b=t

rk(sqaF(E)) rk(sqbG(F ))

and the definition of the expectation (61).

From the proof of the previous proposition, we observe that, if e (resp. f) is a basis
of E (resp. F ) which is compatible with the filtration F (resp. G), then e ⊗ f is a
basis of E ⊗ F which is compatible with the tensor product filtration F ⊗ G. From
the metric point of view, this means that the norm on E ⊗ F corresponding to the
tensor product filtration F ⊗ G is the tensor product norm.

5.5.4. Exterior product. — Let E be a finite dimensional vector space over K and
n > 1 be an integer. Denote by πn : E⊗n → ΛnE the natural projection. If F is a
filtration of E, we denote by ΛnF the quotient filtration π∗(F⊗n), called the exterior
product filtration. If e = (ei)

r
i=1 is a basis of E which is compatible with the filtration

F , then (ei1 ∧ · · · ∧ ein)16i1<...<in6r is a basis of ΛnE which is compatible with ΛnF .
Moreover, one has

λΛnF(ei1 ∧ · · · ∧ ein) = λF (ei1) + · · ·+ λF (ein).

In particular, one has
(
r

n

)
E[ΛnF ] =

∑

16i1<...<in6r

n∑

j=1

λF (eij ) =

(
r − 1

n− 1

) r∑

i=1

λF (ei) = r

(
r − 1

n− 1

)
E[F ],

where the second equality can be proved by induction on n. Hence we obtain

(65) E[ΛnF ] = nE[F ].

5.5.5. Direct sum. — Let E and F be two finite dimensional vector spaces over K.
Suppose given a filtration F of E and a filtration G of F . We define the direct sum
of F and G as the filtration F ⊕ G of E ⊕ F such that

(F ⊕ G)t(E ⊕ F ) = F tE ⊕ GtF.

One has
(rk(E) + rk(F ))E[F ⊕ G] = rk(E)E[F ] + rk(F )E[G].

5.5.6. Refinement. — Let W be a finite dimensional vector space over K which is
non-zero. Let F be a filtration of W . Suppose given, for any t ∈ R, a filtration G(t) of
sqtF (W ). Let ẽt be a basis of sqtF(W ) which is compatible with the filtration G(t). The
vector family ẽt gives rise to a linearly independent family et in F t(W ). It turns out
that e :=

⋃
t∈R et is a basis of W . For any t ∈ R and any x ∈ et, let ϕ(x) = λG(t)

(x̄),
where x̄ denotes the class of x in sqtF(W ). Let G be the filtration associated to the
basis e and the function ϕ : e → R. By definition one has

(66) E[G] = 1

rk(W )

∑

t∈R

∑

x∈et

ϕ(x) =
∑

t∈R

rk(sqtF (W ))

rk(W )
E[G(t)].
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Moreover, the basis e is simultaneously compatible with the filtrations F and G. In
particular, one has

(67) 〈F ,G〉 = 1

rk(W )

∑

t∈R

t
∑

x∈et

ϕ(x) =
∑

t∈R

rk(sqtF (W ))

rk(W )
tE[G(t)].

5.5.7. Translation and dilation. — Let W be a finite dimensional vector space over
K and F be a filtration of W . For any real number a, let τaF be the filtration of W
such that

(τaF)tW = Fa+t(W ).

One has E[τaF ] = E[F ] + a. For any positive real number ε, let εF be the filtration
of W such that

(εF)tW = FεtW.

One has E[εF ] = εE[F ]. Moreover, the following relation between the translation and
the dilation holds. For all a ∈ R and ε > 0, one has

(68) τaε(εF) = ε(τaF).

If V is a vector subspace of W , one has

(69) τa(F|V ) = (τaF)|V and ε(F|V ) = (εF)|V .

Let E and F be two finite dimensional vector spaces over K, equipped with
filtrations F and G respectively. For any real number a one has

(70) τa(F ⊕ G) = (τaF)⊕ (τaG), τa(F ⊗ G) = (τaF)⊗ G = F ⊗ (τaG).

For any ε > 0, one has

(71) ε(F ⊕ G) = (εF)⊕ (εG), ε(F ⊗ G) = (εF)⊗ (εG).

Let W be a finite dimensional vector space over K, and F and G be two filtrations
of W . For any real number a and any ε > 0, one has

ZτaF = ZF + a, 〈τaF ,G〉 = 〈F ,G〉 + aE[G],(72)

ZεF = εZF , 〈εF ,G〉 = ε〈F ,G〉.(73)

5.5.8. Dual filtration. — Let W be a finite dimensional vector space over K and F
be a filtration of W . We define a filtration F∨ of the dual space W∨ as follows. For
any t ∈ R,

(F∨)tW∨ := (F−tW )⊥,

where for any vector subspace V of W , V ⊥ denotes the subset of W∨ of linear forms
ϕ such that ϕ|V is zero. By definition, for any element ϕ ∈W∨, one has

λF∨(ϕ) = − inf
x∈W

ϕ(x) 6=0

λF (x).

Moreover, one has E[F∨] = −E[F ].
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5.6. An expectation inequality. — Let E and F be two non-zero finite dimen-
sional vector space over K, and F and G be respectively filtrations of E and F . Let
e = (ei)

n
i=1 and f = (fj)

m
j=1 be bases of E and F which are respectively compatible

with filtrations F and G. By virtue of the proof of Proposition 5.1, the set

e⊗ f = {ei ⊗ fj | 1 6 i 6 n, 1 6 j 6 m}

is a basis of E ⊗F which is compatible with F ⊗G. Consider a vector subspace V of
E ⊗F which is of dimension one. Let ϕ be a non-zero element in V , which is written
as

ϕ =
∑

i,j

aijei ⊗ fj ,

where aij are elements in K. By (60), one has

E[(F ⊗ G)|V ] = λF⊗G(ϕ) = min{λF(ei) + λG(fj) | aij 6= 0}.

Note that the tensor vector ϕ corresponds to a K-linear map from E∨ to F , which
we denote by Tϕ.

Proposition 5.2. — With the notation above, if Tϕ is an isomorphism of K-vector
spaces, then the following inequality holds

(74) E[(F ⊗ G)|V ] 6 E[F ] + E[G].

Proof. — Let e = (ei)
n
i=1 be a basis of W of E which is compatible with the filtration

F . Denote by e∨ = (e∨i )
n
i=1 the dual basis of e. For any i ∈ {1, . . . , n}, one has

(75) λF (ei) + λG(Tϕ(e
∨
i )) = λF (ei) + min{λG(fj) | aij 6= 0} > λF⊗G(ϕ).

Since e is a basis of E which is compatible with the filtration F , one has

1

n

n∑

i=1

λF (ei) = E[F ].

Moreover, since Tϕ is an isomorphism, (Tϕ(e∨i ))
n
i=1 is a basis of F . By (63) one has

1

n

n∑

i=1

λG(Tϕ(e
∨
i )) 6 E[G].

By taking the average of (75) with respect to i ∈ {1, . . . , n}, one obtains (74).

6. Geometric semistability

In this section, we introduce several (semi)stability conditions for vector subspaces
in the tensor product of two vector spaces, and discuss their properties.
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6.1. Conditions of semistability. — Let E and F be two finite dimensional
vector spaces and V be a non-zero vector subspace of E ⊗ F .

1) We say that V is left semistable (resp. left stable) if for any non-degenerated
filtration F of E, one has

E[(F ⊗ G0)|V ] 6 E[F ] (resp. E[(F ⊗ G0)|V ] < E[F ]),

where G0 denotes the trivial filtration of F .

2) We say that V is right semistable (resp. right stable) if for any non-degenerated
filtration G of F , one has

E[(F0 ⊗ G)|V ] 6 E[G] (resp. E[(F0 ⊗ G)|V ] < E[G]),
where F0 denotes the trivial filtration of E.

3) We say that V is both-sided semistable (resp. both-sided stable) if for any filtration
F of E and any filtration G of F such that at least one filtration between them is
non-degenerated, one has

E[(F ⊗ G)|V ] 6 E[F ] + E[G] (resp. E[(F ⊗ G)|V ] < E[F ] + E[G]),
Remind that a filtration is said to be non-degenerated if its associated random variable
does not reduce to a constant function.

Remark 6.1. — Denote by P(V,F ,G) the relation E[(F ⊗ G)|V ] 6 E[F ] + E[G]. By
(68) and (70), for any a ∈ R, one has

(76) P(V,F ,G) ⇐⇒ P(V, τaF ,G) ⇐⇒ P(V,F , τaG)
Therefore, V is both-sided semistable if and only if, for any filtration F of E and any
filtration G of F satisfying E[F ] = E[G] = 0, one has E[(F ⊗ G)|V ] 6 0. Note that
the inclusion map of V into E ⊗ F defines a rational point x of the projective space
P(Λrk(V )(E ⊗ F )∨) (with the convention of Grothendieck). The argument above
shows that the vector subspace V is both-sided semistable if and only if the point
x is semistable in the sense of the geometric invariant theory under the action of
SL(E)× SL(F ) (with respect to the universal line bundle).

Proposition 6.2. — Let E and F be two finite dimensional vector spaces over K,
and V be a non-zero vector subspace of E ⊗ F . Then V is left semistable (resp. left
stable) if and only if, for any vector subspace E1 of E such that 0 ( E1 ( E, one has

(77)
rk(V ∩ (E1 ⊗ F ))

rk(V )
6

rk(E1)

rk(E)
(resp.

rk(V ∩ (E1 ⊗ F ))

rk(V )
<

rk(E1)

rk(E)
).

A similar result also holds for the right (semi)stability.

Proof. — “=⇒”: Let F be the filtration of E corresponding to the flag 0 ( E1 ( E
together with the jump points {1, 0}, and let G0 be the trivial filtration of F . One
has

E[(F ⊗ G0)|V ] =
rk(V ∩ (E1 ⊗ F ))

rk(V )
and E[F ] =

rk(E1)

rk(E)
.

Therefore, if V is left (semi)stable, then the inequality (77) holds.
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“⇐=”: Assume that the inequality (77) holds for any vector subspace E1 of E such
that 0 ( E1 ( E. Let F be a filtration of E. One has, for sufficient negative number
a,

E[(F ⊗ G0)|V ] = a+

∫ +∞

a

rk(V ∩ (F tE ⊗ F ))

rk(V )
dt 6 a+

∫ +∞

a

rk(F tE)

rk(E)
dt = E[F ].

The inequality is strict when V is left stable since there then exists an interval I of
positive length such that 0 ( F tE ( E for any t ∈ I.

Remark 6.3. — We observe from the above definition that, if V is both-sided
(semi)stable, then it is left and right (semi)stable. However, the converse is not
true in general. The following is a counter-example. Let E and F be two vector
spaces of dimension 3 over K. Let (x1, x2, x3) and (y1, y2, y3) be respectively a basis
of E and of F . Denote by E1 (resp. F1) the vector subspace of E (resp. F ) gener-
ated by x1 (resp. y1), and let V be the two-dimensional vector subspace of E ⊗ F
generated by x1 ⊗ y2 + x2 ⊗ y1 and x1 ⊗ y3 + x3 ⊗ y1. Consider the filtration F of E
corresponding to the flag 0 ( E1 ( E and the jump points {1, 0}, and the filtration
G of F corresponding to 0 ( F1 ( F and {1, 0}. By definition, the filtration F ⊗ G
corresponds to 0 ( E1 ⊗ F1 ( E1 ⊗ F + E ⊗ F1 ( E ⊗ F and {2, 1, 0}. Therefore
(F ⊗ G)|V is the filtration with only one jump point at 1. Hence

E[(F ⊗ G)|V ] = 1 > E[F ] + E[G] = 2/3,

which shows that V is not both-sided semistable. However, for any subspace E′ of
E such that 0 ( E′ ( E, if rk(E′) = 1, then V ∩ (E′ ⊗ F ) = 0; if rk(E′) = 2, then
rk(V ∩ (E′ ⊗ F )) 6 1. Therefore, we always have

rk(V ∩ (E′ ⊗ F ))

rk(V )
6

rk(E′)

rk(E)
.

By Proposition 6.2, we obtain that V is left stable. Similarly we can verify that it is
also right stable.

The following propositions describe the link between the geometric (semi)stability
and the tensorial rank of lines in the tensor product.

Proposition 6.4. — Let E and F be two finite dimensional vector spaces over K.
Let n and m be respectively the rank of E and F . Let V be a one-dimensional vector
subspace of E ⊗ F . Denote by ρ(V ) the tensorial rank of V , namely the rank of an
arbitrary non-zero vector in V , considered as a K-linear map from E∨ to F .

1) The following conditions are equivalent :

i) V is left (resp. right) stable,

ii) V is left (resp. right) semistable,

iii) ρ(V ) = n (resp. ρ(V ) = m).

2) If V is left and right semistable, then it is both-sided semistable.
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Proof. — 1) The implication “i)⇒ii)” is trivial.
“ii)⇒iii)”: let E1 be the image of V in E, namely E1 is the smallest vector subspace

of E such that V ⊂ E1 ⊗ F . If ρ(V ) < n, then 0 ( E1 ( E. One has

rk(V ∩ (E1 ⊗ F ))

rk(V )
= 1 >

rk(E1)

rk(E)
.

By Proposition 6.2, V is not left semistable.
“iii)⇒i)”: Assume that ρ(V ) = n. For any vector subspace E1 of E such that

0 ( E1 ( E, one has V ∩ (E1 ⊗ F ) = 0. Hence

rk(V ∩ (E1 ⊗ F ))

rk(V )
= 0 <

rk(E1)

rk(E)
.

Again by Proposition 6.2, we obtain that V is left stable.
2) Let ϕ be a non-zero element in V . If V is left and right semistable, then ϕ is an

isomorphism (as a K-linear map from E∨ to F ). By Proposition 5.2, V is both-sided
semistable.

Remark 6.5. — Note that even in the case where V is one-dimensional, the both-
sided semistability is in general not equivalent to the both-sided stability. Consider
the following example. Let E and F be vector spaces of rank two over K, and let
(x1, x2) and (y1, y2) be respectively a basis of E and F . Consider the subspace V of
E ⊗ F generated by x1 ⊗ y1 + x2 ⊗ y2. Let F be the filtration of E corresponding
to the flag 0 ( E1 ( E together with the jump set {1, 0}, where E1 is the vector
subspace of E generated by x1. Let G be the filtration of F corresponding to the flag
0 ( F1 ( F together with the jump set {1, 0}, where F1 is the vector subspace of F
generated by y1. The filtration (F ⊗G)|V has only one jump at 1 since V is contained
in E1 ⊗ F + E ⊗ F1. Hence E[(F ⊗ G)|V ] = 1 = E[F ] + E[G].

Proposition 6.6. — Let E and F be two finite dimensional vector spaces over K
and V be a non-zero vector subspace of E⊗F . If V is left semistable, then the image
of V in E is equal to E. Similarly, if V is right semistable, then the image of V in
F is equal to F .

Proof. — Let E1 be the image of V in E (namely the smallest vector subspace of E
such that V ⊂ E1 ⊗ F ). One has V ⊂ E1 ⊗ F . Hence by the left semistability of V
one has (see Proposition 6.2) rk(E1) > rk(E). Therefore E1 = E.

Proposition 6.7. — Let E and F be two finite dimensional vector spaces over K
and V be a non-zero vector subspace of E ⊗ F . Let E1 and F1 be respectively vector
subspaces of E and F such that 0 ( E1 ( E and 0 ( F1 ( F , and

r1 = rk(V ∩ (E1 ⊗ F1)), r2 = rk(V ∩ (E1 ⊗ F + E ⊗ F1)).

Assume that V is both-sided stable, then one has

(78)
r1 + r2
rk(V )

<
rk(E1)

rk(E)
+

rk(F1)

rk(F )
.
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Proof. — Let F be the filtration of E corresponding to the flag 0 ( E1 ( E and the
sequence 1 > 0. Let G be the filtration of F corresponding to the flag 0 ( F1 ( F
and the sequence 1 > 0. Then the tensor product filtration F ⊗G corresponds to the
flag

0 ( E1 ⊗ F1 ( E1 ⊗ F + E ⊗ F1 ( E ⊗ F

and the sequence 2 > 1 > 0. Therefore, the expectation of the restricted filtration
(F ⊗ G)|V is

2r1 + (r2 − r1)

rk(V )
=
r1 + r2
rk(V )

.

Since V is both-sided stable, one has

E[(F ⊗ G)|V ] < E[F ] + E[G] = rk(E1)

rk(E)
+

rk(F1)

rk(F )
.

The proposition is thus proved.

Corollary 6.8. — Let E and F be finite dimensional vector spaces over K and V be
a non-zero vector subspace of E⊗F . Assume that V is both-sided stable and contains
a line M of tensorial rank ρ, then one has

2

rk(V )
<

ρ

rk(E)
+

ρ

rk(F )
.

Proof. — Let E1 and F1 be respectively the images of M in E and in F . One has
rk(V ∩ (E1 ⊗ F1)) > 1 and rk(V ∩ (E1 ⊗ F + E ⊗ F1)) > 1. Note that rk(E1) =
rk(F1) = ρ. By the previous proposition, one obtains the required inequality.

Proposition 6.9. — Let E and F be two finite dimensional vector spaces over K
and V be a non-zero vector subspace of E ⊗ F . Assume that V is left stable and
contains a line of tensorial rank ρ, then one has

1

rk(V )
<

ρ

rk(E)
.

Similarly, if V is right stable and contains a line of tensorial rank ρ, then one has

1

rk(V )
<

ρ

rk(F )
.

Proof. — By symmetry it suffices to prove the first inequality. Let M be a one-
dimensional subspace of V which has tensorial rank ρ, and let E1 be its image in E.
Since V is left stable, by Proposition 6.2 one obtains

rk(V ∩ (E1 ⊗ F ))

rk(V )
<

rk(E1)

rk(E)
=

ρ

rk(E)
.

Since V ∩ (E1 ⊗ F ) contains M , it has rank > 1. The required inequality is thus
proved.
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6.2. Kempf’s filtration pair. — We recall below a result of Totaro [51, Proposi-
tion 2] which proves the existence of Kempf’s filtration pair for a vector subspace of
the tensor product of two vector spaces which is not both-sided semistable.

Proposition 6.10. — Let E and F be two finite dimensional vector spaces over K,
and S be the subset of Fil(E) × Fil(F ) consisting of filtration pairs (F ,G) such that
E[F ] = E[G] = 0 and that both of filtrations F and G are not trivial. Assume that
V is a non-zero vector subspace of E ⊗ F which is not both-sided stable. Then the
function Θ : S → R which sends (F ,G) to −E[(F ⊗ G)|V ](‖F‖2 + ‖G‖2)−1/2 attains
its minimum value c which is non-positive. Moreover, if (F1,G1) is a point in S at
which the function Θ takes its minimum value, then for all filtrations F ∈ Fil(E) and
G ∈ Fil(F ), one has

(79) E[(F ⊗ G)|V ] 6 E[F ] + E[G]− c
〈F1,F〉+ 〈G1,G〉

(‖F1‖2 + ‖G1‖2)1/2
.

The key point of the proof is a convexity lemma which has been introduced by
Ramanan and Ramanathan (cf. [44, Lemma 1.1], see also [51, Lemma 3]). Note
that in [51, Proposition 2], Totaro has assumed that V is not both-sided semistable.
In this case, the minimizing filtration pair (F1,G1) is unique up to dilation, and the
minimum value c of the function Θ is negative. In the case where V is not both-sided
stable but both-sided semistable, the proposition also holds and the proof is the same
as in [51]. However, in this case, the minimum value c equals 0, and the minimizing
filtration pair need not be unique up to dilation.

7. Applications in arithmetic semistability

In this section, we discuss the relationship between the geometric and arithmetic
(semi)stability conditions.

7.1. A criterion of the arithmetic semistability. — Let E be a non-zero
hermitian vector bundle over Q. For any filtration F of E, we define

Eµ̂[F ] := − 1

rk(E)

∫

R

t d d̂egn(F tE).

The following is a criterion of semistablity which is essentially due to Bogomolov (see
[45]).

Proposition 7.1. — A non-zero hermitian vector bundle E over Q is semistable
(resp. stable) if and only if, for any non-degenerate filtration F of E, one has

Eµ̂[F ] 6 µ̂(E)E[F ] (resp. Eµ̂[F ] < µ̂(E)E[F ]).

Proof. — “⇐=”: Let F be a vector subspace of E such that 0 ( F ( E. Denote by
F the filtration of E corresponding to the flag 0 ( F ( E and the jump points 1 > 0.
One has

Eµ̂[F ] =
d̂egn(F )

rk(E)
and E[F ]µ̂(E) =

rk(F )

rk(E)
µ̂(E).
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Hence we obtain the desired result.
“=⇒”: Let F be a non-degenerate filtration of E. If E is semistable, for sufficiently

negative number a, one has

Eµ̂[F ] = −aµ̂(E) +

∫ +∞

a

d̂egn(F tE)

rk(E)
dt

6 −aµ̂(E) + µ̂(E)

∫ +∞

a

rk(F t(E))

rk(E)
dt = µ̂(E)E[F ],

where the inequality is strict if E is stable.

7.2. Harder-Narasimhan filtration. — The R-indexed Harder-Narasimhan fil-
tration has been introduced [18, §2.2.2]. Let E be a non-zero hermitian vector bundle
over Q and 0 = E0 ( E1 ( . . . ( En = E be its Harder-Narasimhan flag (see §2.4).
We define a filtration F of E as follows:

F tE =
⋃

16i6n
µi>t

Ei,

where for each i ∈ {1, . . . , n}, µi := µ̂(Ei/Ei−1). It can be shown that (see [18]
Corollary 2.2.3)

F tE =
∑

06=F⊂E

µ̂min(F )>t

F.

Moreover, we observe from the definition that the expectation of F is just µ̂(E). The
filtration F is called the (R-indexed) Harder-Narasimhan filtration of E.

Note that, if E is a non-zero hermitian vector bundle over Q and if F is the
Harder-Narasimhan filtration of it, then for any t ∈ R, either the subquotient

sqtF(E) = F tE/F t+E

is either zero or semistable of slope t.

7.3. Strong slope inequalities under geometric (semi)stability. — Let
r, n,m be three integers which are > 1. We say that the condition B(r, n,m) holds
if for all hermitian vector bundles E and F of rank n and m on SpecQ respectively,
and any subspace V of rank r of E ⊗ F , one has

µ̂(V ) 6 µ̂max(E) + µ̂max(F ).

Denote by B(r) the condition

∀n > 1, ∀m > 1, B(r, n,m).

With this notation, the general validity of the conjectural inequality (6) — or equiv-
alently, a positive answer to Problems 1.3-1.5 — may be rephrased as:

∀ r > 1, B(r).
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Lemma 7.2. — Let p > 1 and r > 1 be integers, (Ei)
p
i=1 and (F i)

p
i=1 be two families

of hermitian vector bundles over Q, and V be a vector subspaces of rank r of

(E1 ⊗ F 1)⊕ · · · ⊕ (Ep ⊗ F p).

Assume that the condition B(s, n,m) holds for all integers s, n and m such that

1 6 s 6 r, n 6 max
16i6p

rk(Ei), m 6 max
16i6p

rk(Fi).

For any i ∈ {1, . . . , p}, let Fi and Gi be respectively the Harder-Narasimhan filtrations
of Ei and F i. Let H = (F1 ⊗ G1)⊕ · · · ⊕ (Fp ⊗ Gp). Then one has µ̂(V ) 6 E[H|V ].
Proof. — For any t ∈ R, the subquotient sqtH|V

(V ) identifies with a vector subspace
of

sqtH((E1 ⊗ F1)⊕ · · · ⊕ (Ep ⊗ Fp)) =

p⊕

i=1

⊕

a+b=t

sqaFi
(Ei)⊗ sqbGi

(Fi).

Moreover, the height of the inclusion map is non-positive. Since sqaFi
(Ei) (resp.

sqbGi
(F i)) is either zero or semistable of slope a (resp. b), by the hypothesis of the

lemma, for any non-zero vector subspace W of sqaFi
E ⊗ sqbGi

F such that rk(W ) 6 r,
one has µ̂(W ) 6 t. Therefore, under the hypothesis of the lemma, one has

d̂egn(sq
t
H|V

(V )) 6 t rk(sqtH|V
(V )).

By taking the sum with respect to t one obtains d̂egn(V ) 6 rk(V )E[H|V ] and hence
µ̂(V ) 6 E[H|V ].
Theorem 7.3. — Let r > 1 be an integer, E and F be two hermitian vector bundles
over Q, and V be a subspace of rank r of E ⊗ F . Assume that B(s) holds for any
s ∈ {1, . . . , r}.
1) If V is left semistable, then µ̂(V ) 6 µ̂(E) + µ̂max(F ).

2) If V is right semistable, then µ̂(V ) 6 µ̂max(E) + µ̂(F ).

3) If V is both-sided semistable, then µ̂(V ) 6 µ̂(E) + µ̂(F ).

Proof. — 1) Let F be the Harder-Narasimhan filtration of E (indexed by R) and G0

be the trivial filtration of F . For any t ∈ R, the subquotient sqt(V ) with respect to the
induced filtration (F ⊗ G0)|V can be considered as a vector subspace of sqtF (E)⊗ F .
Moreover, the height of the inclusion map sqt(V ) → sqtF(E)⊗F is non-positive. Since
the rank of sqt(V ) is no more than r, by the hypothesis of the theorem we obtain

d̂egn(sq
t(V )) 6 rk(sqt(V ))(t+ µ̂max(F )),

where we have used the fact that either sqtF (E) = 0 or sqtF (E) is semistable of slope
t. By taking the sum with respect to t, we obtain

d̂egn(V ) 6 rk(V )E[(F ⊗ G0)|V ] + rk(V )µ̂max(F ) 6 rk(V )(E[F ] + µ̂max(F )),

where the second inequality comes from the condition that V is left semistable. Since
F is the Harder-Narasimhan filtration, one has E[F ] = µ̂(E). So we obtain the desired
inequality.
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2) The proof is quite similar to that of 1). We need to consider the Harder-
Narasimhan filtration of F .

3) Let F be the Harder-Narasimhan filtration of E and G be that of F . Denote by
H the tensor product filtration F ⊗ G. By Lemma 7.2, one has

µ̂(V ) 6 E[H|V ] 6 E[F ] + E[G] = µ̂(E) + µ̂(F ),

where the second inequality comes from the both-sided semistability of V .

Proposition 7.4. — Let r > 1 be an integer, E and F be two hermitian vector
bundles over Q which are semistable, and V be a subspace of rank r of E⊗F . Assume
that condition B(s, n′,m′) holds for (9) (n′,m′) < (n,m) and 1 6 s 6 r. If V is not
both-sided stable, then

(80) µ̂(V ) 6 µ̂(E) + µ̂(F ).

Proof. — Let S be the subset of Fil(E)×Fil(F ) consisting of filtration pairs (F ,G)
such that E[F ] = E[G] = 0 and that both filtrations F and G are not trivial. Let
Θ : S → R be the function defined as

Θ(F ,G) = − E[(F ⊗ G)|V ]
(‖F‖2 + ‖G‖2)1/2 .

By Proposition 6.10, there exists a filtration pair (F1,G1) such that c := Θ(F1,G1) is
the minimum value of the function Θ. One has c 6 0. Moreover, for any filtration F
of E and any filtration G of F one has

(81) E[F ] + E[G]− E[(F ⊗ G)|V ] > c
〈F1,F〉+ 〈G1,G〉

(‖F1‖2 + ‖G1‖2)1/2
.

We construct filtrations F and G as in §5.5.6 such that, for any t ∈ R, the filtration
F (resp. G) induces by subquotient the Harder-Narasimhan filtration of sqtF1

(E)

(resp. sqtG1
(F )). Let H1 be the restriction of F1 ⊗ G1 on V . For any t ∈ R, the

subquotient sqtH1
(V ) identifies with a vector subspace of

sqtF1⊗G1
(E ⊗ F ) =

⊕

a+b=t

sqaF1
(E)⊗ sqbG1

(F ).

Moreover, the height of the inclusion map sqtH1
(V ) → sqtF1⊗G1

(V ) is non-positive.
Since both filtrations F1 and G1 are not degenerated, by Lemma 7.2, one has

d̂egn(sq
t
H1

(V )) 6 rk(sqtH1
(V ))E[H̃t],

where H̃t is the restriction of the subquotient filtration of sqtF1⊗G1
(E ⊗ F ) (induced

by F ⊗ G) on sqtH1
(V ). By taking the sum with respect to t, one obtains

d̂egn(V ) 6 rk(V )E[(F ⊗ G)|V ].
Hence

µ̂(V ) 6 E[(F ⊗ G)|V ] 6 −c 〈F1,F〉+ 〈G1,G〉
(‖F1‖2 + ‖G1‖2)1/2

+ E[F ] + E[G].

9. Namely, n′ 6 n, m′ 6 m, and n′ +m′ < n+m.
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For any t ∈ R, the filtration F induces by subquotient a filtration on sqtF1
(E) which

coincides with the Harder-Narasimhan filtration of sqtF0
(E). By (66), one has

E[F ] =
∑

t∈R

rk(sqtF1
(E))

rk(E)
µ̂(sqtF1

(E)) = µ̂(E).

Similarly, one has E[G] = µ̂(F ). Moreover, by (67), one has

〈F1,F〉 =
∑

t∈R

rk(sqtF1
(E))

rk(E)
tµ̂(sqtF0

(E)) =
1

rk(E)

∑

t∈R

td̂egn(sq
t
F1

(E))

= − 1

rk(E)

∫

R

t dd̂egn(F t
1(E)) = aµ̂(E) +

1

rk(E)

∫ +∞

a

d̂egn(F t
1(E)) dt,

where a is a sufficiently negative number (such that Fa
1 (E) = E). Since E is

semistable, one obtains that

〈F1,F〉 6 aµ̂(E) + µ̂(E)

∫ ∞

a

rk(F t
1(E))

rk(E)
dt = µ̂(E)E[F1] = 0.

Similarly, one has 〈G1,G〉 6 0. Therefore, µ̂(V ) 6 µ̂(E) + µ̂(F ).

Theorem 7.5. — Let r > 1 be an integer. Assume that

(1) B(s) holds for any s ∈ {1, . . . , r − 1},
(2) for any stable hermitian vector bundles E and F over Q such that rk(E) > 2,

rk(F ) > 2 and rk(E) rk(F ) > 2r, and any vector subspace V ⊂ E ⊗ F of rank r
which is both-sided stable, one has

µ̂(V ) 6 µ̂(E) + µ̂(F ).

Then the condition B(r) holds.

Proof. — Let E and F be two hermitian vector bundles over Q, and V be a subspace
of rank r of E ⊗ F . Let A = (N \ {0})2, equipped with the order

(a1, b1) 6 (a2, b2) if and only if a1 6 a2 and b1 6 b2.

We shall prove the inequality

(82) µ̂(V ) 6 µ̂max(E) + µ̂max(F )

by induction on (rk(E), rk(F )) ∈ A. The case where rk(E) = 1 or rk(F ) = 1 is
trivial. Assume that (82) is verified for vector subspaces of rank r in a tensor product
of hermitian vector bundles of ranks < (rk(E), rk(F )). It suffices to treat the case
where the image of V in E (resp. F ) equals E (resp. F ) since otherwise the inequality
(82) follows from the induction hypothesis by replacing E and F by the images of V
in E and in F (equipped with induced norms) respectively.

If E is not stable, there exists a non-zero vector subspace E1 of E such that E/E1

is stable and of slope 6 µ̂(E). Let V1 = V ∩ (E1 ⊗F ). One has rk(V1) < rk(V ) (since
V is left stable, see Proposition 6.2). Hence (by the hypothesis (1) of the theorem)

d̂egn(V 1) 6 rk(V1)(µ̂max(E1) + µ̂max(F )) 6 rk(V1)(µ̂max(E) + µ̂max(F )).
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Moreover, the quotient space V/V1 identifies with a vector subspace of (E/E1) ⊗ F ,
and the height of the inclusion map is non-positive. Hence

d̂egn(V /V 1) 6 rk(V /V 1)(µ̂max(E/E1)+ µ̂max(F )) 6 rk(V /V 1)(µ̂max(E)+ µ̂max(F )),

where we have used the hypothesis (1) of the theorem if V1 6= 0, and the induction
hypothesis if V1 = 0. The sum of the above two inequalities gives

d̂egn(V ) 6 rk(V )(µ̂max(E) + µ̂max(F )).

In a similar way, we can prove the same inequality in the case where F is not stable.
In the following, we assume that both E and F are stable. If V is not both-sided

stable, by Proposition 7.4 we obtain the inequality (82). By hypothesis (2) of the
theorem, it remains the case where V is both-sided stable and r > 1

2 rk(E) rk(F ). Let
W be the quotient space (E ⊗ F )/V . One has rk(W ) < 1

2 rk(E) rk(F ) < r. The dual
space W∨ identifies with a subspace of E∨ ⊗F∨. Thus induction hypothesis leads to
the inequality µ̂(W

∨
) 6 µ̂(E

∨
) + µ̂(F

∨
) since E

∨
and F

∨
are stable. Consequently

d̂egn(V ) = d̂egn(E ⊗ F )− d̂egn(W ) 6 d̂egn(E ⊗ F )− rk(W )(µ̂(E) + µ̂(F )),

which implies µ̂(V ) 6 µ̂(E) + µ̂(F ).

8. Subbundles of small rank

This section is devoted to the proof of Theorem B. We will firstly prove the assertion
B(r) for r 6 4. The main tool is the recursive argument that we have established in
Theorem 7.5. Note that the assertion B(1) has been proved in Proposition 4.2.

8.1. Subbundles of rank 2. — In this subsection, we study planes in the tensor
product of two hermitian vector bundles over Q. The theorem 7.5 permits us to
reduce the problem to the situation where the plane is both-sided stable in the tensor
product, which impose strong condition on the successive tensorial ranks of the plan.
We then apply the theorem of Zhang to obtain the desired upper bound.

Theorem 8.1. — Let E and F be two hermitian vector bundles over Q, and V be a
subspace of E ⊗ F which has rank 2. Then one has

µ̂(V ) 6 µ̂max(E) + µ̂max(F ).

Proof. — By Theorem 7.5, it suffices to treat the case where E and F have ranks
> 2, V is both-sided stable, and E and F are stable.

We claim that ρ1(V ) > 2. In fact, if ρ1(V ) = 1, then by Corollary 6.8 one obtains

1 =
2

rk(V )
<

1

rk(E)
+

1

rk(F )
6 1,

which leads to a contradiction. Thus one has

ρ1(V )ρ2(V ) = 4 > exp(2ℓ(2)) = e.

By Proposition 4.3, we obtain the result.
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8.2. Subbundles of rank 3. — In this subsection, we study subbundles V of rank
3 in a tensor product of two hermitian vector bundles over Q. Just as the rank two
case, the both-sided stability condition imposes constraints to the successive tensorial
ranks of V . In most situations the theorem of Zhang permits us to conclude except
two cases where the successive tensorial ranks of V are respectively 2, 2, 2 and 2, 2, 3.
We shall treat these cases separately. The main idea is to consider a suitably weighted
average of the Zhang’s upper bound ((84) and (87)) for the Arakelov degree of V and
the upper bounds ((85) and (88)) obtained from the induction hypothesis.

Theorem 8.2. — Let E and F be two hermitian vector bundles over Q, and V be a
vector subspace of E ⊗ F which has rank 3. Then one has

µ̂(V ) 6 µ̂max(E) + µ̂max(F ).

Proof. — By Theorem 7.5, it suffices to treat the case where E and F have ranks
> 2, rk(E) rk(F ) > 6, V is both-sided stable, and E and F are stable. In particular,
at least one of the vector spaces E and F has rank > 3. By symmetry we may
assume further that rk(E) > rk(F ) (and hence rk(E) > 3). We claim that ρ1(V ) > 2,
otherwise by Proposition 6.9 one obtains

1

3
=

1

rk(V )
<

1

rk(E)
6

1

3
,

which leads to a contradiction. Moreover, by Proposition 4.3, the inequality

µ̂(V ) 6 µ̂max(E) + µ̂max(F ).

holds once

ρ1(V )ρ2(V )ρ3(V ) > exp(3ℓ(3)) = e5/2 ≈ 12.182493 . . . .

Hence it remains the following two cases.
1) ρ1(V ) = ρ2(V ) = ρ3(V ) = 2.

We fix a constant ǫ > 0 which is sufficiently small. By Theorem 2.5 (see also
Remark 4.1) we obtain that there exist three lines V1, V2 and V3 of tensorial rank 2
in V such that V = V1 + V2 + V3 and

(83) d̂egn(V 1) + d̂egn(V 2) + d̂egn(V 3) > d̂egn(V )− 3

2
ℓ(3)− ǫ.

Without loss of generality, we may assume d̂egn(V 1) > d̂egn(V 2) > d̂egn(V 3). Let
E1 and F1 be the image of V1 in E and F respectively. The inequality (83) implies

(84) d̂egn(V ) 6 3 d̂egn(V 1) +
3

2
ℓ(3) + ǫ 6 3µ̂(E1) + 3µ̂(F 1) +

3

2
ℓ(3)− 1

2
log(8) + ǫ,

where the second inequality comes from Proposition 4.2.
The vector subspace V being both-sided stable (hence it is left stable), by Propo-

sition 6.2 one obtains

rk(V ∩ (E1 ⊗ F ))

rk(V )
<

rk(E1)

rk(E)
6

2

3
,
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which implies that rk(V ∩ (E1 ⊗F )) = 1 (and therefore V ∩ (E1 ⊗F ) = V1). Thus we
can identify V/V1 with a vector subspace of (E/E1)⊗ F . Hence (by Theorem 8.1)

d̂egn(V /V 1) 6 2µ̂max(E/E1) + 2µ̂max(F )

6 6µ̂max(E)− 4µ̂(E1) + 2µ̂max(F ),

where the second inequality comes from Proposition 2.4. Therefore, by using the
inequality (which results from Proposition 4.2)

d̂egn(V 1) 6 µ̂(E1) + µ̂(F 1)−
1

2
log(2),

one obtains

(85) d̂egn(V ) 6 6µ̂max(E)− 3µ̂(E1) + 3µ̂max(F )−
1

2
log(2).

(84)+(85) gives

2 d̂egn(V ) 6 6µ̂max(E) + 6µ̂max(F ) +
3

2
ℓ(3)− 1

2
log(8)− 1

2
log(2) + ǫ

Since 3
2ℓ(3)− 2 log(2) = −0.13629 . . ., we obtain the result.

2) ρ1(V ) = ρ2(V ) = 2, ρ3(V ) = 3.
We fix a constant ǫ > 0 which is sufficiently small. By Theorem 2.5 (see also

Remark 4.1) we obtain that there exists three lines V1, V2 and V3 in V such that
V = V1 + V2 + V3, ρ(Vi) > ρi(V ) (i ∈ {1, 2, 3}) and

(86) d̂egn(V 1) + d̂egn(V 2) + d̂egn(V 3) > d̂egn(V )− 3

2
ℓ(3)− ǫ.

We may assume further that ρ(V1) = ρ(V2) = 2 and ρ(V3) = 3 since the case where
ρ(V1) = ρ(V2) = ρ(V3) = 2 has been treated above.

Let E1 and F1 be the image of V1 in E and F respectively. By Proposition 4.2,
one has

d̂egn(V 1) 6 µ̂(E1) + µ̂max(F )−
1

2
log(2),

d̂egn(V 2) 6 µ̂max(E) + µ̂max(F )−
1

2
log(2),

d̂egn(V 3) 6 µ̂max(E) + µ̂max(F )−
1

2
log(3).

Hence the inequality (86) implies

(87) d̂egn(V ) 6 µ̂(E1) + 2µ̂max(E) + 3µ̂max(F ) +
3

2
ℓ(3)− 1

2
log(12) + ǫ.

Similarly to the case 1), the both-sided stability of V implies that V ∩ (E1 ⊗F ) = V1
and thus V/V1 identifies with a vector subspace of (E/E1)⊗ F . Hence

d̂egn(V /V 1) 6 2µ̂max(E/E1) + 2µ̂max(F )

6 6µ̂max(E)− 4µ̂(E1) + 2µ̂max(F ),
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where the second inequality comes from Proposition 2.4. Hence

(88) d̂egn(V ) 6 6µ̂max(E)− 3µ̂(E1) + 3µ̂max(F )−
1

2
log(2).

Note that 3×(87)+(88) gives

4 d̂egn(V ) 6 12µ̂max(E) + 12µ̂max(F ) +
9

2
ℓ(3)− 3

2
log(12)− 1

2
log(2) + 3ǫ.

Since
9

2
ℓ(3)− 3

2
log(12)− 1

2
log(2) =

15

4
− 3

2
log(12)− 1

2
log(2) = −0.323933 . . . ,

we obtain the desired result.

Remark 8.3. — By Lemma 1.16, we obtain from the result of this subsection that,
if E and F are hermitian vector bundles over Q such that rk(E). rk(F ) 6 6, then for
any non-zero subspace V of E ⊗ F , one has µ̂(V ) 6 µ̂max(E) + µ̂max(F ). In other
words, the condition B(r,m, n) holds for mn 6 6 and for any r.

8.3. Subbundles of rank 4. — Let E and F be two hermitian vector bundles
over Q, and V a subspace of E ⊗ F which has rank 4. Denote by r = rk(E) and
s = rk(F ). The aim of this section is to prove µ̂(V ) 6 µ̂max(E) + µ̂max(F ). By
Theorem 7.5, we may assume in what follows that E and F are stable and have ranks
> 2, rk(E) rk(F ) > 8 and V is both-sided stable. Moreover, by Proposition 4.3, the
required inequality holds once

ρ1(V )ρ2(V )ρ3(V )ρ4(V ) > exp(4ℓ(4)) = e13/3 ≈ 76.19785 . . . .

In the following, we assume in addition that

ρ1(V )ρ2(V )ρ3(V )ρ4(V ) 6 76.

In particular, one has ρ1(V ) 6 2 (since 34 = 81 > 76). Without loss of generality, we
assume rk(E) > rk(F ). Hence rk(E) > 3.

Compared to the rank 2 or 3 cases, the situation here is more complicated. Firstly,
the both-sided stability condition of V does not permit us to eliminate the case where
ρ1(V ) = 1. This difficulty can be recovered by using the symmetry between E and
F . Secondly, in the case where ρ2(V ) = 2 and r = s = 3, the devissage technic that
we have applied in the previous subsection does not provide the desired upper bound.
Our strategy is to prove the upper bound in a particular rank 5 case (see Lemma 8.4)
and then use a duality argument to reduced to the rank 4 case.

The rest of this subsection is organized as follows. We firstly treat the case where
the vector space V contains a line V1 which has tensorial rank 1. The crucial argument
is to show that the quotient space V/V1 still have the geometric semistability. In
the second step, we consider the case where ρ1(V ) = 2. We begin with an upper
bound (94) of the Arakelov degree of V by using the theorem of Zhang and the
upper bound (53) of the Arakelov degree of hermitian line subbundle in a tensor
product bundle. Then we establish upper bounds (96)—(99) of d̂egn(V ) by using the
induction hypothesis under diverse geometric conditions (presented in items 1. and
2.). It turns out that a suitable average of these two types of upper bounds give
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the desired inequality in most situations (presented in items a., b. and c.). The
exceptional cases is where r = s = 3, treated in the item d., where we use the rank 5
trick, as explained above.

Case 1: ρ1(V ) = 1. — By Proposition 6.9 one obtains rk(V ) > max(rk(E), rk(F )).
Hence the only possibility is rk(E) = rk(F ) = 3. Let V1 be a line of tensorial rank 1
in V , E1 and F1 be respectively the image of V1 in E and F . Since V is both-sided
stable, by Proposition 6.2 one obtains

rk(V ∩ (E1 ⊗ F )) <
rk(V ) rk(E1)

rk(E)
=

4

3
.

Hence V ∩ (E1 ⊗ F ) = V1. For the same reason, one has V ∩ (E ⊗ F1) = V1. The
quotient space V/V1 then identifies either with a vector subspace of (E/E1) ⊗ F , or
a vector subspace of E ⊗ (F/F1). Moreover, by Proposition 6.2 one obtains that, for
any subspace E′ of E which has rank 2, one has

rk(V ∩ (E′ ⊗ F )) <
rk(V ) rk(E′)

rk(E)
= 8/3.

Hence rk(V ∩ (E′ ⊗ F )) 6 2. If in addition E′ contains E1, then

rk
(
(V/V1) ∩ ((E′/E1)⊗ F )

)
6 1 <

rk(V/V1) rk(E
′/E1)

rk(E/E1)
= 3/2.

Hence (by Proposition 6.2) V/V1 is left stable as a vector subspace of (E/E1) ⊗ F .
For the same reason, V/V1 is right stable as a vector subspace of E ⊗ (F/F1).

By the results obtained in previous subsections together with Theorem 7.3 one
obtains

d̂egn(V /V 1) 6 3(µ̂(E/E1) + µ̂(F )) =
9

2
µ̂(E) + 3µ̂(F )− 3

2
µ̂(E1),(89)

d̂egn(V /V 1) 6 3(µ̂(E) + µ̂(F/F 1)) =
9

2
µ̂(F ) + 3µ̂(E)− 3

2
µ̂(F 1).(90)

Moreover, by Proposition 4.2 one has

(91) d̂egn(V 1) 6 µ̂(E1) + µ̂(F 1).

(89)+(90)+2×(91) gives

2 d̂egn(V ) 6
15

2
(µ̂(E) + µ̂(F )) +

1

2
(µ̂(E) + µ̂(F )) 6 8(µ̂(E) + µ̂(F )),

as required.

Case 2: ρ1(V ) = 2.— We fix a real number ε > 0 which is sufficiently small. By
Theorem 2.5 (see also Remark 4.1), there exists four lines Vi (i = 1, 2, 3, 4) in V which
span V as a linear space over Q and such that

(1) ρ(V1) 6 ρ(V2) 6 ρ(V3) 6 ρ(V4),

(2) for any i ∈ {1, 2, 3, 4}, ρ(Vi) > ρi(V ),

(3) d̂egn(V 1) + d̂egn(V 2) + d̂egn(V 3) + d̂egn(V 4) > d̂egn(V )− 2ℓ(4)− ε.
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Let a be the last index in {1, 2, 3, 4} such that ρ(Va) = 2. By permuting the lines, we
may assume that d̂egn(V 1) > . . . > d̂egn(V a).

Denote by r and s the rank of E and F over Q respectively. Remind that we have
assumed r > s (and hence r > 3 since rs > 8).

We choose a line V ′ in V of tensorial rank 2 such that

(92) d̂egn(V
′) > sup

M
d̂egn(M)− ε,

where M runs over all lines of tensorial rank 2 in V . Let E1 and F1 be respectively
the images of V ′ in E and F . By Proposition 4.2, one has

(93) d̂egn(V
′) 6 µ̂(E1) + µ̂(F 1)−

1

2
log(2).

As a consequence,

d̂egn(V ) 6

4∑

i=1

d̂egn(V i) + 2ℓ(4) + ε

6 a(µ̂(E1) + µ̂(F 1)− log
√
2 + ε) + (4− a)(µ̂(E) + µ̂(F )− log

√
3) + 2ℓ(4) + ε

= a(µ̂(E1) + µ̂(F 1)) + (4− a)(µ̂(E) + µ̂(F )) + a log
√
3/2 + 4(

1

2
ℓ(4)− log

√
3) + (a+ 1)ε

6 a(µ̂(E1) + µ̂(F 1)) + (4− a)(µ̂(E) + µ̂(F )) + a log
√
3/2

(94)

provided that ε is sufficiently small since 1
2ℓ(4)− log

√
3 = −0.007639... < 0.

The rank of E1 being 2, E contains E1 strictly. Hence (by Proposition 6.9) one
has

(95) 1 6 rk(V ∩ (E1 ⊗ F )) <
rk(V ) rk(E1)

rk(E)
=

8

r
,

which implies that 3 6 r 6 7. For the same reason, one has 2 6 s 6 7. Moreover, (95)
also implies rk(V ∩(E1⊗F )) 6 2, and rk(V ∩(E1⊗F )) = 2 only if r = 3. The following
are several upper bounds of d̂egn(V ) according to the values of rk(V ∩ (E1 ⊗F )) and
rk(V ∩ (E ⊗ F1)).

1. Assume that rk(V ∩ (E1 ⊗ F )) = 2. Let W be the intersection of E1 ⊗ F with V ,
which has rank 2. Since ρ1(V ) = 2, by Corollary 2.7 one has

d̂egn(W ) 6 2(d̂egn(V
′) + ε) + ℓ(2) 6 2(µ̂(E1) + µ̂(F 1)− log

√
2 +

1

2
ℓ(2)) + 2ε,

where in the first inequality we have used (92), and the second inequality comes from
(93). Note that log

√
2− 1

2ℓ(2) = 0.09657 . . . > 0. The quotient space V/W identifies
with a subspace of (E/E1)⊗ F . Hence

d̂egn(V /W ) 6 2(µ̂(E/E1) + µ̂(F )) = 6µ̂(E) + 2µ̂(F )− 4µ̂(E1),

where we have used the fact that r = 3 (and hence rk(E/E1) = 1). Therefore

(96) d̂egn(V ) 6 6µ̂(E) + 2µ̂(F )− 2µ̂(E1) + 2µ̂(F 1)− (log(2)− ℓ(2)) + 2ε.
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The same argument shows that, if s > 3 and if degV (F1) = 2 (and hence s = 3), then

(97) d̂egn(V ) 6 6µ̂(F ) + 2µ̂(E)− 2µ̂(F 1) + 2µ̂(E1)− (log(2)− ℓ(2)) + 2ε.

2. Assume that rk(V ∩ (E1 ⊗ F )) = 1. Then V ∩ (E1 ⊗ F ) = V ′ and hence
V/V ′ identifies with a subspace of (E/E1) ⊗ F . For any subspace E′ of E such
that E1 ( E′ ( E, by Proposition 6.9 one obtains

rk(V ∩ (E′ ⊗ F )) <
rk(V ) rk(E′)

rk(E)
=

4r′

r
,

where r′ is the rank of E′. Therefore

rk
(
(V/V ′) ∩ ((E/E1)⊗ F )

)
= rk(V ∩ (E′ ⊗ F ))− 1 6 ⌈4r′/r⌉ − 2,

which is no larger than

rk(V/V ′) rk(E′/E1)

rk(E/E1)
=

3(r′ − 2)

r − 2
.

Hence V/V1 is left semistable as a vector subspace of (E/E1)⊗F . By the results that
we have obtained in the previous subsection, together with Theorem 7.3, we obtain

d̂egn(V /V
′) 6 3(µ̂(E/E1) + µ̂(F )) =

3r

r − 2
µ̂(E) + 3µ̂(F )− 6

r − 2
µ̂(E1).

By (93), we obtain

(98) d̂egn(V ) 6
3r

r − 2
µ̂(E) + 3µ̂(F )− 8− r

r − 2
µ̂(E1) + µ̂(F 1)− log

√
2.

Similarly, if s > 3 and if rk(V ∩ (E ⊗ F1)) = 1, then

(99) d̂egn(V ) 6
3s

s− 2
µ̂(F ) + 3µ̂(E)− 8− s

s− 2
µ̂(F 1) + µ̂(E1)− log

√
2.

We now show that these upper bounds imply the inequality

d̂egn(V ) 6 4(µ̂(E) + µ̂(F )).

a. We first treat the case where rk(V ∩ (E1 ⊗ F )) = 2, which implies r = 3. Since
we have assumed rs > 8 and r > s, one has s = 3. If rk(V ∩ (E ⊗ F1)) = 2, then the
sum of (96) and (97) gives

2 d̂egn(V ) 6 8(µ̂(E) + µ̂(F ))− 2(log(2)− ℓ(2)) + 4ε < 8(µ̂(E) + µ̂(F ))

provided that ε is sufficiently small. If rk(V ∩(E⊗F1)) = 1, then 3a×(96)+2a×(99)+4×(94)
gives

(5a+ 4) d̂egn(V ) 6 (20a+ 16)(µ̂(E) + µ̂(F )) + 4a log
√
3/2

− 3a(log(2)− ℓ(2))− a log(2) + 6aε.

Since
4 log

√
3/2− 3(log(2)− ℓ(2))− log(2) = −0.4617 . . . < 0,

we obtain the required result.
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b. We then treat the case where r > 5. Note that in this case rk(V ∩ (E1 ⊗ F )) = 1.
Hence ((8− r)/(r − 2))×(94)+a×(98) gives
(8− r

r − 2
+ a

)
d̂egn(V ) 6 4

(8− r

r − 2
+ a

)
(µ̂(E) + µ̂(F )) +

a(8− r)

2(r − 2)
log(3/2)− a

2
log(2).

Since (8− r)/(r − 2) 6 1 and log(3/2) < log(2), we obtain the required result.

c. Consider the case where r 6 4 and rk(V ∩ (E1 ⊗ F )) = 1. Note that in this case s
cannot be 2 since otherwise ρ1(V ) = 1 by a dimension argument (10).

If rk(V ∩ (E ⊗ F1)) = 2, then 3a×(97)+2(r − 2)a×(98)+2(5− r)×(94) gives

((2r − 1)a+ (10− 2r)) d̂egn(V ) 6 4((2r − 1)a+ (10− 2r))

+ 2(5− r)a log
√
3/2− 3a(log 2− ℓ(2))− 2(r − 2)a log

√
2 + 2aε.

Since r > 3,

2(5− r)a log
√
3/2− 3a(log 2− ℓ(2))− 2(r− 2)a log

√
2 6 (2 log(3/2)− 2 log(2))a < 0,

as required.
If rk(V ∩ (E ⊗ F1)) = 1, then (r − 2)a×(98)+(s − 2)a×(99)+ (10 − r − s)×(94)

gives

(a(r + s−4) + 10− r − s) d̂egn(V ) 6 4(a(r + s− 4) + 10− r − s)(µ̂(E) + µ̂(F ))

+ a(10− r − s) log
√
3/2− a(r + s− 4) log

√
2.

If r + s > 7, one has

(10− r − s) log
√
3/2− (r + s− 4) log

√
2 6 3 log

√
3/2− 3 log(2) < 0

as required.

d. It remains the case where r = s = 3 and rk(V ∩ (E1 ⊗F )) = rk(V ∩ (E⊗F1)) = 1.
Consider the following lemma.

Lemma 8.4. — Let A and B be two stable hermitian vector bundles of rank 3, and
C be a vector subspace of rank 5 of A⊗B. Then one has

µ̂(C) 6 µ̂(A) + µ̂(B).

Proof. — By Proposition 7.4 and Remark 8.3, we may assume that C is both-sided
stable. Moreover, the locus of lines of tensorial rank in A ⊗ B is a subvariety of
codimension 4 in P(A∨ ⊗ B∨), hence has a non-empty intersection with C. Namely
the vector space C contains a line C1 with tensorial rank 1. Let A1 and B1 be
respectively the image of C1 in A and B. The stability of C in A ⊗ B implies (see
Proposition 6.2)

rk(C ∩ (A1 ⊗B)) <
rk(C) rk(A1)

rk(A)
=

5

3
,

10. The locus of lines of tensorial rank 1 in E ⊗ F is a subvariety of dimension (r − 1) + (s − 1)
(since it is isomorphic to P(E∨) × P(F∨)) in P(E∨ ⊗ F∨), which has dimension rs− 1. Any vector
subspace of rank 4 in E ⊗ F defines a subvariety of dimension 3 in P(E∨ ⊗ F∨), which should have
non-empty intersection with the locus of lines of tensorial rank 1 if r 6 4 and s = 2.
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and hence C ∩ (A1 ⊗B) = C1. Thus C/C1 can be considered as a vector subspace of
(A/A1)⊗ B. Moreover, if A′ is a vector subspace of A such that A1 ( A′ ( A, then
(by Proposition 6.2)

rk(C ∩ (A′ ⊗B)) <
rk(C) rk(A′)

rk(A)
=

10

3
,

namely rk(C ∩ (A′ ⊗B)) 6 3. This implies that

rk
(
(C/C1) ∩ ((A′/A1)⊗B)

)
6 2 =

rk(C/C1) rk(A
′/A1)

rk(A/A1)
.

By Proposition 6.2, C/C1 is left semistable. Hence the result obtained above together
with Theorem 7.3 implies that

d̂egn(C/C1) 6 4(µ̂(A/A1) + µ̂(B)) = 6µ̂(A) + 4µ̂(B)− 2µ̂(A1).

Combined with the estimate

d̂egn(C1) 6 µ̂(A1) + µ̂(B1)

this inequality leads to

(100) d̂egn(C) 6 6µ̂(A) + 4µ̂(B)− µ̂(A1) + µ̂(B1).

Finally, by symmetry one has

(101) d̂egn(C) 6 4µ̂(A) + 6µ̂(B) + µ̂(A1)− µ̂(B1).

The average of (100) and (101) gives the required inequality.

We apply the above lemma to A = E
∨
, B = F

∨
and C = ((E ⊗ F )/V )∨ to get

− d̂egn(E ⊗ F ) + d̂egn(V ) 6 −5(µ̂(E) + µ̂(F )).

Since d̂egn(E ⊗ F ) = 9(µ̂(E) + µ̂(F )), we obtain the required result.
We conclude the article by the following result, which follows from the first part of

Theorem B and the above lemma and completes the proof of Theorem B.

Theorem 8.5. — Let E and F be hermitian vector bundles of rank 6 3 over Q. One
has

µ̂max(E ⊗ F ) = µ̂max(E) + µ̂max(F ).
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