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ABSTRACT

In this paper, a new class of audio representations is introduced,

together with a corresponding fast decomposition algorithm. The

main feature of these representations is that they are both sparse

and approximately shift-invariant, which allows similarity search in

a sparse domain. The common sparse support of detected similar

patterns is then used to factorize their representations. The potential

of this method for simultaneous structural analysis and compress-

ing tasks is illustrated by preliminary experiments on simple musical

data.

Index Terms— Sparse Representation, Matching Pursuit, Au-

dio Signal Decomposition, Audio Similarity, Factorization

1. INTRODUCTION

The need for intelligent storage of ever-growing digital multimedia

data has posed an interesting challenge on the Computer Science

community. The rise of search engines, file-sharing plateforms and

social networks on the internet, has proven that the ability to quickly

retrieve consistent information from huge databases is now as im-

portant as managing its storage. One can see it as a joint optimiza-

tion problem of space consumption and data access time but also as

a concurrency between machine-oriented and human-readable sys-

tems. The compromise is set by the choice of a representation (i.e

a transformation) of the data, that will hopefully be much sparser

than the original data while keeping as much information as possible

(ideally all of it), that is to say capturing only its very essence, and

making it easily parsable by machines and/or humans.

A typical such task is archival of audio data, where indexing

and compressing at the same time is crucial. Intuition (along with

considerable research in the past years) tells us that a good way to

proceed is to decompose the time-series that constitute the raw data

in audio, as a combination of elementary sound objects or atoms.

This idea is also strongly linked to the belief that human brain some-

how processes sounds in a similar fashion, at least at a perception

level [1].

So far, audio coding schemes have essentially focused on reduc-

ing short-term redundancies (usually frame-by-frame). The possi-

bility of using long term redundancies, as can be done on text using

sequential data compression methods [2] where repeating patterns

are detected and factorized, remains a challenging issue for audio

signals. However, pattern repetition is an extremely common feature

in music, with groups of notes called “motifs” in classical music,

or “riffs” in popular music. At a larger time-scale, the verse-chorus

structure is another example of (near) repetition. In a radio station,
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the same popular song may be played tens of times during a single

day. For archival purposes, one may be interested in audio represen-

tations where these repetitions, or near-repetitions, appear clearly.

Looking for large-scale similarities directly in the PCM domain

is doomed to failure, first because the data rates would make this an

extremely high-dimensional search problem, but more fundamen-

tally because most of the time the repeats are not perfect at the bit

level : note levels, durations, etc. may be slightly different. A better

idea is to look for similarities in a sparse domain, for instance one of

the transform-domain used in audio coding, e.g. the Modified Dis-

crete Cosine Transform (MDCT). Recently, Ravelli [3] has enlight-

ened the potential of a multiscale MDCT-based greedy decomposi-

tions for very low bit-rate coding : this larger dictionary allows for

even sparser decompositions. Working in a sparse domain has sub-

stantial advantages: first, the amount of data is reduced, with hope

that pattern classification becomes tractable again ; then, the infor-

mation is sorted, with the largest coefficients accounting for the most

salient sound structures : similarity search can then be progressive,

first at a crude level, and then with finer and finer details.

However, these MDCT-based decompositions suffer from a ma-

jor drawback : because they rely on some a priori slicing of the

signal, they are not shift-invariant. In other words, the representa-

tion of a time-shifted signal x(· − τ ) can be quite different from the

representation of x with the time parameters shifted by τ . All the

timing (i.e., phase) information is here hidden in the amplitude of

the MDCT parameters.

The main contributions of this paper can be summarized as fol-

lows :

• we propose a new shift-invariant decomposition (in the sense

of [4]), based on adding time-shifts to the multiscale MDCT

of [3],

• we provide an efficient decomposition scheme, called LOMP

(for Locally Optimized Matching Pursuit), that effectively

finds near shift-invariant decompositions at the cost of a

small increase in computational complexity per iteration,

compared to standard shift-dependent Matching Pursuit (note

that this drawback is offset by a significantly faster energy

decay, hence the addition of shift-invariance results in a faster

algorithm per dB of SNR).

• we assess the potential of these decompositions for factoriz-

ing repeated musical patterns, on preliminary tests.

The rest of the paper goes as follows: Section 2 briefly intro-

duces the multiscale MDCTMatching Pursuit framework and its ob-

served limitations for our purposes. The novel shift-invariant decom-

position, together with an effective decomposition algorithm, that

reduces these limitations is presented in Section 3. Then, in Sec-

tion 4, this new representation is applied to audio factorization and

preliminary compression experiments illustrate its potential.



2. SIGNALMODEL

2.1. Sparse Representation problem

Let x ∈ R
N be a digital signal of length N . Let Φ = {φk}k=1..K

be a dictionary of K waveforms. We are looking for the smallest

combination of I atoms fromΦ that minimizes a quadratic error ǫ =
‖x−

PI

i=1 αiφi‖
2. For very large signals such as for audio, the most

widely-used approach is to use a greedy algorithm, that iteratively

builds a representation by selecting at each step the best atom in

the dictionary and subtracting it from the signal. Convergence is

assured by the fact that the overall energy of the residual is strictly

decreasing, but there is no guarantee of finding the global minimum.

The basic version is called Matching Pursuit [5], and it has been

extensively studied, modified and improved [6]. In practice, one has

to stop the algorithm after a finite number of steps, usually when

the approximation x̃ =
P

ı∈I
αiφi fulfills a fidelity depth criteria,

expressed as a Signal-To-Residual Ratio (SRR) :

SRR = 10 log

„

‖x̃‖2

‖x− x̃‖2

«

(1)

The approximation is fully characterized by the vector α which has

I non zero coefficients. If the dictionary is redundant enough (i.e

K > N ), one might expect sparsity (i.e I << N ) to arise at an

acceptable fidelity (SRR) level.

2.2. Multiscale MDCT dictionary

The Multiscale MDCT dictionary as described in [3] consists in a

union of 8 MDCT basis of different scales Φ =
S

Φm, distributed

in a dyadic way. The multiscale nature of the dictionary provides a

structural decomposition of the sounds, with harmonics (using large

scales), transient parts (using short, well localized atoms) and speech

or noise (using middle-sized atoms). Efficient implementations of

the Matching Pursuit algorithm take advantage of the hierarchical

structure of the dictionary, and the use of Fast Fourier Transform to

achieve nearly real-time performances.

2.3. Similarity detection and time invariance

The issue of similarity detection in the sparse domain has been stud-

ied for example in [7]. However, our main goal is quite different,

since we seek to use the similarity information as a tool for factor-

izing similar audio segments. Thus, an additional constraint on the

representation is that it should have some robustness to time shifts

(in Blumensath’s sense [4] ) that may result from non-aligned frame

slicings. Representations obtained with the multi-scale dictionary

above are not time-invariant, as with any MDCT-based decomposi-

tion. Actually, the phase information is embedded in the α coef-

ficients, and thus they greatly vary with temporal offsets. This is

a serious obstacle to similarity detection, since two similar audio

segments may have different sparse decompositions if they are not

sample-aligned.

3. LOCAL OPTIMIZATION OF THEMATCHING

PURSUIT

3.1. Shift-invariant multiscale MDCT dictionary

An effective yet computationally intensive solution to the above is-

sue is to use a fully shift-invariant dictionary as in [4]. Let ΦG be

a multiscale MDCT dictionary, and let Φ
G
m be a single scale sub-

dictionary of size Lm. The MDCT is a 50% overlapped transform,

therefore, for a N -length signal,ΦG
m is an orthonormal basis of R

2N

Φ
G
m can be upgraded in the following manner: for each atom

φm,i of Φ
G
m, add all possible shifted versions φm,i,τ = φm,i ∗ δτ

with τ living in
ˆ

−Lm

4
, Lm

4

˜

to the dictionary, thus yielding Φ
F
m a

highly redundant dictionary of size N.Lm. Repeating this operation

in all the basis, a global dictionary Φ
F =

S

Φ
F
m can be built.

3.2. Hybrid approach: Locally Optimized Matching Pursuit

(LOMP)

Using Φ
F leads to sparser, clearer representations, but the complex-

ity of a Matching Pursuit over Φ
F (called here FullMP) would be

prohibitive for real data analysis. We propose here a hybrid ap-

proach that uses atoms from Φ
F at the cost of a search over Φ

G.

Alternatively, this can be seen as an attempt to extract the phase in-

formation out of α into a separate vector τ , thus yielding phase-

invariance properties. At iteration n let rn be the residual, the best

atom φG
kmax

= arg maxφk∈ΦG |〈φk, rn〉| of length Lm is selected

in Φ
G. Then a local optimization is performed yielding

φ
F
kmax,τmax

= arg max
τ∈[−Lm

4
,

Lm

4
]

|
D

r
n
, (φG

kmax
∗ δτ )

E

| (2)

where ∗ denotes the convolution product and δτ is a discrete

dirac impulse located in τ (this convolution is simply a time shift

by τ samples). The modified algorithm is given in Algorithm 1,

the major difference with the standard MP algorithm is summarized

in step 4 in bold. It is worth noticing that contrary to the method

proposed in [6], where smaller sub-atoms are constructed at each

iteration to fit locally the energy distribution, the LOMP algorithm

performs a temporal realignement of the selected atom, which can

be implemented efficiently using FFTs.

Algorithm 1 Locally Optimized Matching Pursuit (LOMP)

Input: x , Φ

Output: α, τ and r such that x =
P

i∈I
αi.(φi ∗ δ(τi)) + r

1: r0 := x

2: repeat

3: Find index kmax = arg maxφk∈Φ | 〈φk, rn〉 |
4: Compute local optimal time-shift

τmax = arg maxτ | 〈r
n, (φkmax

∗ δτ )〉 |
5: Update projection score : αmax ← 〈r

n, φkmax,τmax
〉

6: Update residual : rn+1 ← rn − αmax.φkmax,τmax

7: until a stopping condition is met

3.2.1. Convergence discussion

As a weak (or partially) greedy algorithm, one can prove (see for

instance [8]) the convergence of Algorithm 1. Moreover, one might

easily be convinced that, at least for the first iterations, the conver-

gence rate of the FullMP algorithm is faster than standard MP on the

original (and much smaller) MDCT dictionary (called here “MP”).

For LOMP algorithm, an intermediate behavior can be expected.

Figure 1 offers an insight of this for a short segment of orchestra

music taken from the MPEG SQAM database. Implementation of

all three algorithms using Python programming language showed an

equivalent complexity for MP and LOMP, on a standard PC. Indeed,

at each iteration : normalized by the SRR gain, LOMP has a smaller

computation time than the standard (non shift-invariant) MP.
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Fig. 1. Comparison of (a) : convergence rates and (b) : Complexities

in computational time , for MP , FullMP and LOMP decomposition

of 4096 samples of orchestra signal over a dictionary of 3 MDCT

basis (32,128,512).

3.2.2. Time invariance discussion

LOMP atoms are more expensive to encode since an additional time-

shift coefficient is to be encoded. However, since the convergence

rate is often faster, one might hope to obtain sparser representation.

Section 4 will further investigate this point. Meanwhile, LOMP rep-

resentations are much more robust to time shifts than MP ones. Fig-

ure 2 illustrates the lack of stability of MP decompositions and how

LOMP solves this issue. Moreover, one can see that LOMP decom-

position are sparser, and that temporal reassignment result in fewer

pre-echo artefacts. Indeed, changes are visible between (a) and (b)

due to phase shifts and different frame slicing, while (c) and (d) are

almost perfectly identical. Such robustness paves the way for sim-

ilarity detection and compressing redundant patterns in the sparse

domain.

4. FACTORIZATION IN THE SPARSE DOMAIN

4.1. Factorization paradigm

Let x̃ and ỹ be the two LOMP representation in Figure 2 (c) and

(d). The set of atoms {φi} and coefficient vector α for x̃ and ỹ are

almost equals. In other words, both representation share the same

sparse support and their differences are entirely characterized by the

sets of time-shifts τx and τy. This has two important consequences:

first the common sparse support denotes a similarity between x and

y. Second, it means that one only needs to encode α and the set

of atoms {φi} once, as a common factor to describe both x̃ and ỹ.

Alternatively, ỹ can be described using the sparse support of x̃ and
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Fig. 2. Energy distributions of a bell sound decomposed by MP and

LOMP algorithms. Left: original signal decomposition at 20 dB of

SRR with 8 MDCT basis with MP (a) and LOMP (c). Right: decom-

position of the same signals shifted in time by 100 samples with MP

(b) and LOMP (d).

τy. Now this paradigm can be extended to any x and y. Knowing

a representation x̃ as a reference, let ŷ be an approximation of y,

which support is the same as x̃ and has a set of time-shift τy. A

method to build such ŷ is described by Algorithm 2

Algorithm 2 Factorization

Input: y , Φ , x̃ =
P

i∈I
αiφi ∗ δ(τx

i )
Output: τy such that y =

P

i∈I
αiφi ∗ δ(τy

i ) + r

1: r0 := y

2: for all i ∈ I do

3: Compute local optimal time-shift

τmax = arg maxτ |〈r
n, (αi.φi ∗ δτ )〉|

4: Update residual : rn+1 ← rn − αi.(φi ∗ τmax)
5: end for

This paradigm is close to the information theory concept of dis-

tributed source coding where repetitions are considered as correlated

sources that are not co-located [9]. However, in audio and musical

streams, a prior detection of these repeating segments is required.

4.2. Similarity Detection

If x and y are either identical or simply similar (which might be the

case for repeated choruses in a pop song, chords sequences in classi-

cal music, or even whole songs and news reports on radio broadcast

recordings), then chances are that atoms from x̃ are useful to de-
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Fig. 3. SRR reached by factorizing y (few piano notes) using 4 dif-

ferent signals xi as references, at 5 different levels of decomposition

scribe y, and a good way to measure it is to observe the residual’s en-

ergy decay in Algorithm 2, or alternatively the SRR of reconstructed

ŷ.

To illustrate this method, Figure 3 presents the SRR of ŷ when

using 4 different {xi}i=1..4 as reference signal for the factorization,

and at different decomposition levels. Here y is the first 8 piano

notes (2 s, 1st half of the 1st bar) taken from the left channel of a

piano recording of Bach’s first Prelude in C Major, from the Well-

Tempered Clavier. The first case is simply x1 = y, obviously the

factorization is complete and the reached SRR matches the refer-

ence’s one. More interestingly, x2 is the exact same musical pattern

played right afterwards in the piece (2nd half of the 1st bar), thus the

correlation between x2 and y is far lower. Third example, x3 is the

right channel corresponding to y. Finally, for the irrelevant case, x4

is a few seconds exctracted from an orchestra recording, therefore

having no similarity with y .

One can observe that a factorization at a shallow depth (3 to 5

dB) allows us to detect the three types of similarity and reject the

irrelevant case. Moreover, the detection process yields a preliminary

decomposition of y in the same time that is reveals the signal struc-

ture.

4.3. Compression Experiments

Knowing its reference x̃, a factorized approximation ŷ of y is de-

scribed completely by the set of atom time shifts τy. One can pic-

ture the factorization process as a greedy decomposition in which

the sequence of atom choice in the dictionary and their amplitude

is arbitrarily fixed (only local time-shifts are allowed). This strong

constraint can result in a lower approximation precision compared to

MP decomposition, but its cost is also fairly reduced, which means

that high compression levels can be achieved.

Working on the same Bach’s signal, different decomposition

techniques are compared: MP and LOMP on a 8xMDCT dictionary,

and factorization using LOMP decompositions of x1, x2 and x3, in a

simple encoding task. For MP and LOMP decompositions, atom co-

efficients are encoded using a simple 7-bit uniform scalar quantizer

and plain entropy coding of the quantized coefficients, atom indexes

have a fixed cost of log2(2.N) and for LOMP atoms, an additional

cost for the time shifts is also evaluated by plain entropy coding. For

factorized representations, only the set of time shifts is encoded.

Results are shown Figure 4. The quality of the compression is

here measured by the Signal-To-Noise Ratio (SNR) of the decoded

signal. At very low bitrates, the factorization approach is interesting,

even when the reference is a different (albeit closely related) signal.
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Fig. 4. Bitrates and SNR obtained with MP, LOMP or factorization

using different references

When near exact redundancy is detected and used for factorization,

important coding gains may be achieved with this technique.

5. CONCLUSION AND FUTUREWORK

We have presented a multiscale greedy decomposition of audio sig-

nals that introduces robustness to time shifts, while increasing the

sparsity of the representation, at a negligible computational penalty.

Using this framework, similarity detection can be performed along

with an enhanced compressive scheme through factorization in the

representation domain, even for non-perfect redundancies. Many ex-

tensions of this work are yet to be undertaken, among which a study

of the semantic similarities that may or may not be factorized. The

scalability of this approach will also be investigated so as to design

a complete audio coding scheme based on this model.
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