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ABSTRACT
This paper deals with sparse representations within a Bayesian
framework. For a Bernoulli-Gaussian model, we here propose
a method based on a mean-field approximation to estimate
the support of the signal. In numerical tests involving a recov-
ery problem, the resulting algorithm is shown to have good
performance over a wide range of sparsity levels, compared
to various state-of-the-art algorithms.

Index Terms— Sparse representations, Bernoulli-Gaussian
model, mean-field approximation.

1. INTRODUCTION

Sparse representations (SR) aim at describing a signal as the
combination of a small number of atoms chosen from an over-
complete dictionary. Let y ∈ RN be an observed signal and
D ∈ RN×M a rank-N matrix whose columns are normalized
to 1. One possible formulation of the SR problem writes

x? = arg min
x

‖y −Dx‖22 + λ‖x‖0, (1)

where ‖x‖0 denotes the number of nonzero elements in x and
λ is a parameter specifying the trade-off between sparsity and
distortion.

Finding the exact solution of (1) is usually an intractable
problem. Hence, suboptimal algorithms have to be considered
in practice. Among the large number of SR algorithms avail-
able in the literature, let us mention: iterative hard thresh-
olding (IHT) [1], which iteratively thresholds to zero certain
coefficients of the projection of the SR residual on the consid-
ered dictionary; matching pursuit (MP) [2] or subspace pur-
suit (SP) [3] which build up the sparse vector x by making
a succession of greedy decisions; and basis pursuit (BP) [4]
which solves a relaxed version of (1) by means of standard
convex optimization procedures.

A particular family of SR algorithms relies on a Bayesian
formulation of the SR problem, see e.g., [5, 6, 7, 8]. In a nut-
shell, the idea of these approaches is to model y as the output
of a stochastic process (promoting sparsity on x) and apply
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statistical tools to infer the value of x. In this context, we
recently introduced [9] a new family of Bayesian pursuit al-
gorithms based on a Bernoulli-Gaussian probabilistic model.
These algorithms generate a solution of the SR problem by
making a sequence of hard decisions on the support of the
sparse representation.

In this paper, exploiting our previous work [9], we pro-
pose a novel SR algorithm dealing with “soft” decisions
on the support of the sparse representation. Our algorithm
is based on the combination of a Bernoulli-Gaussian (BG)
model and a mean-field (MF) approximation. The proposed
methodology allows for keeping a measure of the uncertainty
on the decisions made on the support throughout the whole
estimation process. We show that, as long as our simulation
setup is concerned, the proposed algorithm is competitive
with state-of-the-art procedures.

2. MODEL AND BAYESIAN PURSUIT

In this section, we first introduce the probabilistic model
which will be used to derive our SR algorithm. Then, for
the sake of comparison with the proposed methodology, we
briefly recall the main expressions of the Bayesian Matching
Pursuit (BMP) algorithm introduced in [9].

2.1. Probabilistic Model

Let s ∈ {0, 1}M be a vector defining the SR support, i.e., the
subset of columns of D used to generate y. Without loss of
generality, we will adopt the following convention: if si = 1
(resp. si = 0), the ith column of D is (resp. is not) used
to form y. Denoting by di the ith column of D, we then
consider the following observation model:

y =

M∑
i=1

si xi di + n, (2)

where n is a zero-mean white Gaussian noise with variance
σ2
n. Therefore,

p(y|x, s) = N (Dsxs, σ
2
nIN ), (3)

where IN is the N ×N -identity matrix and Ds (resp. xs) is
a matrix (resp. vector) made up of the di’s (resp. xi’s) such



that si = 1. We suppose that x and s obey the following
probabilistic model:

p(x) =

M∏
i=1

p(xi), p(s) =

M∏
i=1

p(si), (4)

where p(xi) = N (0, σ2
x), p(si) = Ber(pi), and Ber(pi) de-

notes a Bernoulli distribution with parameter pi.
Note that model (3)-(4) (or variants thereof) has already

been used in many Bayesian algorithms available in the liter-
ature, see e.g., [9, 5, 10, 11]. The originality of this contribu-
tion is in the way we exploit it.

2.2. Bayesian Matching Pursuit

We showed in [9] that, under mild conditions, the solution of
the maximum a posteriori (MAP) estimation problem,

(x̂, ŝ) = arg max
x,s

log p(x, s|y), (5)

is equal to the solution of the standard SR problem (1). This
result led us to the design of a new family of Bayesian pursuit
algorithms. In particular, we recall hereafter the main expres-
sions of the Bayesian Matching Pursuit (BMP) algorithm.

BMP is an iterative procedure looking sequentially for
a solution of (5). It proceeds like its standard homologue
MP by modifying one unique couple (xi, si) at each iter-
ation, namely the one leading to the highest increase of
log p(x, s|y). At iteration n, the selected couple (xi, si) is
updated as

ŝ
(n)
i =

{
1 if 〈r(n−1) + x̂

(n−1)
i di,di〉2 > Ti,

0 otherwise,
(6)

x̂
(n)
i = ŝ

(n)
i

σ2
x

σ2
n + σ2

x

r
(n)T
i di, (7)

where r
(n)
i = y −

∑
j 6=i

ŝ
(n−1)
j x̂

(n−1)
j dj , (8)

and Ti is a threshold depending on the model parameters.

3. A NEW SR ALGORITHM BASED ON A
MEAN-FIELD APPROXIMATION

The equivalence between (5) and (1) motivates the use of
model (3)-(4) in SR problems and offers interesting perspec-
tives. We study in this paper the possibility of considering
some of the variables as hidden. In particular, we consider
the problem of making a decision on the SR support as

ŝ = arg max
s∈{0,1}M

log p(s|y), (9)

where p(s|y) =
∫
x
p(x, s|y)dx. Note that, as long as (3)-(4)

is the true generative model for the observations y, (9) is the

decision minimizing the probability of wrong decision on the
SR support. It is therefore optimal in that sense.

Unfortunately, problem (9) is intractable since it typically
requires to evaluate the cost function, log p(s|y), for all pos-
sible 2M sequences in {0, 1}M . In this paper, we propose to
simplify this optimization problem by considering a MF ap-
proximation of p(x, s|y).

Note that the combination of a BG model and MF approx-
imations to address the SR problem has already been consid-
ered in some contributions [7, 12]. However, the latter differ
from the proposed approach in several aspects. In [7], the au-
thors considered a tree-structured version of BG model which
was dedicated to a specific application (namely, the sparse
decomposition of an image in wavelet or DCT bases). More-
over, the authors considered a different MF approximation
than the one proposed here (see section 3.1). In [12], we ap-
plied MF approximations to a different BG model, which led
to different SR algorithms.

3.1. MF approximation p(x, s|y) '
∏
i q(xi, si)

A MF approximation of p(x, s|y) is a probability distribution
constrained to have a “suitable” factorization while minimiz-
ing the Kullback-Leibler distance with p(x, s|y). This esti-
mation problem can be solved by the so-called “variational
Bayes EM (VB-EM) algorithm”, which iteratively evaluates
the different elements of the factorization. We refer the reader
to [13] for a detailed description of the VB-EM algorithm.

In this paper, we consider the particular case where the
MF approximation of p(x, s|y), say q(x, s), is constrained to
have the following structure:

q(x, s) =
∏
i

q(xi, si) =
∏
i

q(xi|si) q(si). (10)

The VB-EM algorithm evaluates then the q(xi, si)’s by com-
puting at each iteration1:

q(xi|si) = N (m(si),Γ(si)), (11)

q(si) '
√

2πΓ(si) exp

(
1

2

m(si)
2

Γ(si)

)
p(si), (12)

where Γ(si) =
σ2
xσ

2
n

σ2
n + σ2

xsi
, (13)

m(si) = si
σ2
x

σ2
n + σ2

xsi
〈ri〉Tdi, (14)

〈ri〉 = y −
∑
j 6=i

q(sj = 1)m(sj = 1)dj . (15)

Note that the VB-EM algorithm is ensured to converge to
a saddle point or a (local or global) maximum of the problem.

At this point of the discussion, it can be interesting to
compare both the proposed algorithm and BMP:

1When clear from the context, we will drop the iteration indices in the
rest of the paper.



i) Although the nature of the update may appear quite dif-
ferent (BMP makes a hard decision on the (xi, si)’s whereas
the proposed algorithm rather updates probabilities on the lat-
ter), both algorithms share some similarities. In particular,
the mean of distribution q(xi|si) computed by the proposed
algorithm (14) has the same form as the coefficient update
performed by BMP (7). They rely however on different vari-
ables, namely the residual ri, (8), and its mean 〈ri〉, (15). This
fundamental difference between both algorithms leads to well
distinct approaches. In BMP, a hard decision (6) is made on
the SR support at each iteration, while in the proposed algo-
rithm, the contributions of the atoms are simply weighted by
q(sj = 1), i.e., the probability distributions of the sj’s. In a
similar way, the coefficients x̂(n−1)j ’s used in (8) are replaced
by their means m(sj = 1) in (15), taking into account the
uncertainties we have on the values of the xj’s.

ii) The complexity of one update step is similar in both al-
gorithms and equal to MP: the most expensive operation is the
update equation (15) which scales as O(NM). However, in
BMP one unique couple (xi, si) is involved at each iteration
while in the proposed algorithm all indices are updated one
after the other. To the extend of our experiments (see section
4), we could observe that the proposed algorithm converges in
a reasonable number of iterations, keeping it at a competitive
place beside state-of-the-art algorithms.

3.2. Simplification of the support decision problem

Coming back to the MAP problem (9), p(s|y) is simplified as
p(s|y) '

∫
x

∏
i q(xi, si) dx =

∏
i q(si). We finally obtain

ŝi = arg max
si∈{0,1}

log q(si) ∀i, (16)

which is solved by a simple thresholding: ŝi = 1 if q(si =
1) > 1/2 and ŝi = 0 otherwise.

3.3. Estimation of the noise variance

The estimation of unknown model parameters can easily be
embedded within the VB-EM procedure (10)-(15). In particu-
lar, we estimate the noise variance via the procedure described
in [14]. This leads to

σ̂2
n =

1

N

〈
‖y −

∑
i

sixidi‖2
〉

∏
i q(xi,si)

(17)

where 〈f(θ)〉q(θ) ,
∫
θ
f(θ) q(θ) dθ.

Note that although being in principle unnecessary when
the noise variance is known, we found that including the
noise-variance update (17) in the VB-EM iterations improves
the convergence. An intuitive explanation of this behavior
can be given by observing that, at a given iteration, σ̂2

n is a
measure of the (mean) discrepancies between the observation
and the sparse model.

A similar approach can be used to estimate the variance
of the SR coefficients σ2

x. We do not express it in this paper
due to space limitation.

4. SIMULATIONS

In this section, we study the performance of the proposed al-
gorithm by extensive computer simulations. In particular, we
assess its performance in terms of the reconstruction of the
SR support and the estimation of the nonzero coefficients. To
that end, we evaluate different figures of merit as a function
of the number of atoms used to generate the data, say K: the
ratio of the average number of false detections to K, the ra-
tio of the average number of missed detections to K and the
mean-square error (MSE) between the nonzero coefficients
and their estimates.

Using (16), we reconstruct the coefficients of a sparse rep-
resentation given its estimated support ŝ, say x̂ŝ, by

x̂ŝ = D+
ŝ y, (18)

where D+
ŝ is the Moore-Penrose pseudo-inverse of the matrix

made up of the di’s such that ŝi = 1. In the sequel, we will
refer to the procedure defined in (11)-(18) as Soft Bayesian
Pursuit (SoBaP) algorithm.

Observations are generated according to model (3)-(4).
We use the following parameters: N = 128, M = 256,
σ2
n = 10−3, σ2

x = 100. For the sake of fair comparisons with
standard algorithms, we consider the case where all atoms
have the same occurrence probability, i.e., pi = K/M , ∀i.
Finally the elements of the dictionary are i.i.d. realizations
of a zero-mean Gaussian distribution with variance N−1. For
each point of simulation, we run 1500 trials.

We evaluate and compare the performance of 8 different
algorithms: MP, IHT, BP, SP, BCS, VBSR1([12]), BMP and
SoBaP. We use algorithm implementations available on au-
thor’s webpages2. VBSR1 is run for 50 iterations. MP is run
until the `2-norm of the residual drops below

√
Nσ2

n, by ap-
plication of the law of large numbers to the noise (E[n2i ] =
1
N

∑N
i=1 n

2
i when N → +∞ with probability 1). The same

criterion is used for BP. SoBaP is run until the estimated noise
variance drops below 10−3.

Fig.1(a) shows the MSE on the nonzero coefficients ac-
cording to the number of nonzero coefficients, K, for each
considered algorithm. For K ≥ 40, we can observe that
SoBaP is dominated by VBSR1 but outperforms all other al-
gorithms. Below this bound, while VBSR1 presents a quite
bad performance with regard to IHT (up to K = 22), SP (up
to K = 38) and BMP (up to K = 20), SoBaP keeps a good
behavior beside these algorithms.

Fig.1(b) and Fig.1(c) represent the algorithm performance
for the reconstruction of the SR support. We can observe that

2resp. at http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html,
http://sites.google.com/site/igorcarron2/cscodes/,
http://www.acm.caltech.edu/l1magic/ (`1-magic)
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(a) MSE on nonzero coefficients (b) Average number of missed detections (c) Average number of false detections

Fig. 1. SR reconstruction performance versus number of nonzero coefficients K.

SoBaP succeeds in keeping both small missed detection and
false detection rates on a large range of sparsity levels. This
is not the case for the other algorithms. If some of them (IHT
and SP in Fig.1(b), BMP in Fig.1(c)) present better perfor-
mance for small values of K, the gains are very slight in
comparison to the large deficits observed for greater values.
Note finally that Fig.1(b) and Fig.1(c) explain to some extent
the singular behavior of VBSR1 observed in Fig.1(a). Below
K = 50, each atom selected by VBSR1 is a “good” one, i.e.,
has been used to generate the data, but this is performed at
the expense of the missed detection rate, which remains quite
high for small numbers of nonzero coefficients. This “thrifty”
strategy is also chosen by BP to a large extent.

5. CONCLUSION

In this paper, we consider the SR problem within a BG frame-
work. We propose a tractable solution by resorting to a MF
approximation and the VB-EM algorithm. The resulting algo-
rithm is shown to have good performance over a wide range of
sparsity levels, in comparison to state-of-the-art algorithms -
at least with our choice of parameters. This comes with a low
complexity per update step, similar to MP. Dealing with soft
decisions seems to be a promising way for SR problems, and
is de facto more and more considered in literature (e.g., [15]).
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