
EDOS deliverable WP2-D2.2: Report on Formal

Management of Software Dependencies

Roberto Di Cosmo

To cite this version:

Roberto Di Cosmo. EDOS deliverable WP2-D2.2: Report on Formal Management of Software
Dependencies. [Technical Report] 2006. <hal-00697468>

HAL Id: hal-00697468

https://hal.inria.fr/hal-00697468

Submitted on 15 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00697468

Deliverable WP2-D2.2

Report on Formal Management
of Software Dependencies

Project Acronym Edos
Project Full Title Environment for the Development and Distribution

of Open Source Software
Project number FP6-IST-004312
Contact Author Roberto Di Cosmo,roberto@dicosmo.org
Authors List WP2 Team
Workpackage number WP2
Deliverable number 2
Document Type Report
Version R.1269
Date April 21, 2006
Distribution Public

roberto@dicosmo.org

Authors list

Jaap BOENDER Universit́e Paris VII
Roberto DI COSMO Universit́e Paris VII
Berke DURAK INRIA
Xavier LEROY INRIA
Marc LIJOUR Edge-IT
Fabio MANCINELLI Universit́e Paris VII
Tova MILO Tel-Aviv University
Mario MORGADO Caixa Mágica
David PINHEIRO Caixa Mágica
Rafael SUAREZ Mandriva
Ralf TREINEN LSV Cachan
Paulo TREZENTOS Caixa Mágica
Jérôme VOUILLON Universit́e Paris VII
Tal ZUR Tel-Aviv University

2

Contents

1 Executive summary 7

2 Overview 11
2.1 WorkPackage 2’s activities in the big picture. 14
2.2 Task overview. 15

2.2.1 Task 1: upstream tracking. 15
2.2.2 Task 2: dependency management. 15
2.2.3 Task 3: automatic rebuilding. 16
2.2.4 Task 4: thinning . 17

3 Upstream tracking 19
3.1 WP2 - Task 1 . 19

3.1.1 Introduction. 19
3.1.2 Existing solutions. 20
3.1.3 Clustering-based event-notification system. 21
3.1.4 Dynamic clustering. 23
3.1.5 Simulations. 25
3.1.6 Ongoing and future work. 28

4 Thinning 29
4.1 Dependencies are not enough. 29
4.2 State of the art. 30

4.2.1 Linux From Scratch . 30
4.2.2 The debootstrap tool. 30
4.2.3 Rpmstrap tool. 30
4.2.4 Componentized Linux and PDK. 30
4.2.5 Catalyst tool . 31
4.2.6 Klik . 31

4.3 Current limitations . 31
4.4 Proposed approach. 32

4.4.1 The need for additional information. 32
4.4.2 A first solution . 32
4.4.3 Further optimizations. 34

3

EDOS Project: WP2D2 CONTENTS

5 Rebuilding from scratch 35
5.1 State of the art. 35

5.1.1 Expected issues. 36
5.1.2 Build systems. 38
5.1.3 Improvements. 44

5.2 Current limitations . 46
5.2.1 Rebuilding a single package from scratch. 47
5.2.2 Rebuilding the complete distribution from scratch. 48

5.3 Ongoing work. 49

6 Dependency management 51
6.1 Basic definitions. 51
6.2 Relevant desirable properties of a package repository. 55
6.3 Algorithmic considerations. 59

6.3.1 Encoding the Installability problem as a SAT problem. . 60
6.3.2 Encoding the Installability problem as a CP problem. . . 61

7 Package management meta-tools: survey and state of the art 63
7.1 Quick survey of known tools and formalizations. 64

7.1.1 Software providing NP-complete dependency management
logic . 64

7.1.2 Entities handling less-than-NP-complete dependency logic65
7.2 Analysis of some package management tools. 70

7.2.1 General analysis on a given testbench. 70
7.2.2 Further investigation. 73

7.3 APT . 73
7.3.1 Apt on the Car/Glass testbench. 73
7.3.2 Algorithm specification. 76
7.3.3 Apt’s surprising behavior.. 76
7.3.4 Conclusions on APT. 81
7.3.5 A sidenote: upgradeability in practice, and a suggestion for

the future . 81
7.4 Portage . 83

7.4.1 Conclusions on Portage. 86
7.5 SMART . 86

7.5.1 Smart on the Car/Glass testbench. 87
7.5.2 Smart Algorithm. 89
7.5.3 Combinatorial explosion. 89
7.5.4 Conclusions on Smart. 90

7.6 URPMI . 91
7.6.1 Algorithms used . 91
7.6.2 Upgradeability in practice. 91
7.6.3 Notes on implementation. 92
7.6.4 Examples. 92

4

CONTENTS EDOS Project: WP2D2

7.6.5 urpmi on the Car/Glass testbench. 92
7.6.6 Conclusions on Urpmi. 97

7.7 Conclusions. 98

8 Tools and software currently delivered by the WP2 project team. 99
8.1 The framework . 99
8.2 The toolchain. .100

8.2.1 Ceve .100
8.2.2 EDOSLib. 101
8.2.3 The EGraph package repository description format. . . . 101
8.2.4 ProblemGenerator. 102
8.2.5 EDOS Explorer. 103
8.2.6 EDOS Visualizer. 104
8.2.7 EDOS Statistics. 105
8.2.8 CP/Mozart solver. 106
8.2.9 SAT transcoder. 106
8.2.10 Naive solver . 107
8.2.11 The integrated checker:debcheck/rpmcheck 107
8.2.12 Thehistory tool: package timeline exploration. 108

8.3 Solvers, complexity analysis and benchmarks. 113
8.3.1 Experimental results. 113

9 Conclusions 119

A Package org.edosproject.model.util 125
A.1 Classes .126

A.1.1 CLASS PackageDependencyData. 126
A.1.2 CLASS PackageDependencyDataSet. 127
A.1.3 CLASS Type . 128
A.1.4 CLASS VertexColorLabeller 128
A.1.5 CLASS VertexColorLabeller.ColorType 129

B Package org.edosproject.model 131
B.1 Classes .133

B.1.1 CLASS AlternativeEdge 133
B.1.2 CLASS AlternativeVertex 133
B.1.3 CLASS DependencyEdge 134
B.1.4 CLASS DependencyGraph 135
B.1.5 CLASS DependencyType 139
B.1.6 CLASS DependencyVertex 140
B.1.7 CLASS Package . 140
B.1.8 CLASS PackageRepository 142
B.1.9 CLASS StandardDependencyEdge. 145
B.1.10 CLASS StandardUnitVertex 146

5

EDOS Project: WP2D2 CONTENTS

B.1.11 CLASS UnitVertex . 146
B.1.12 CLASS VersionOperator 147
B.1.13 CLASS VersionRelationship 148
B.1.14 CLASS VirtualPackageEdge 149
B.1.15 CLASS VirtualPackageVertex 149

C Package org.edosproject.io 151
C.1 Classes .152

C.1.1 CLASS EGraph . 152

D Contribution to the Workshop on Future Research Challenges for Soft-
ware and Services (FRCSS06) 155

E Contribution to the VII Workshop de Software Livre (WSL06) 173

6

Chapter 1

Executive summary

The stated goal of EDOS Workpackage 2 is

“to build new generation tools for managing large sets of software
packages, like those found in free software distributions, using formal
methods”

Our focus is mainly on the issues related to dependency management for large
sets of software packages, with a particular attention to what must be done to main-
tain consistency of a software distribution on the repository side, as opposed to
maintaining a set of packages on a client machine.

This choice is justified by the fact that maintaining the consistency of a distri-
bution of software packages is essential to make sure the current distributions will
scale up, yet it is also an invisible task, as the smooth working it will ensure on
the end user side will tend to be considered as normal and obvious as the smooth
working of routing on the Internet.

In other words, we are tackling an essential infrastructure problem, which is
perfectly suited for an European Community funded action.

Progress report

Over the first year and a half of its existence, the WorkPackage 2 team of the EDOS
project has done an extensive analysis of the whole set of problems that are in its
focus, ranging from upstream tracking, to thinning, rebuilding, and dependency
managements for F/OSS distributions.

Task 1 (upstream tracking)

The Tel Aviv team has made an extensive study of the event notification systems
that can be used to keep package maintainers up to date with software developers,

7

EDOS Project: WP2D2

and showed how tools corrently developed in WP4 are good candidates to solve
this problem efficiently and easily.

Task 2 (dependency management)

We have performed an extensive survey of package formats, package management
systems and dependency solvers w.r.t. our focus (dependency management, espe-
cially for binary packages), and retained only the most significant ones as far as
dependencies go, namely Debian packaging, RedHat-like packaging and Gentoo
(mostly source) packaging.

All of the commonly used dependency solvers turned out to be either incom-
plete (in the sense that they do not always find a solution to an installation problem
when it exists) or unacceptably inefficient for our applications (some of these tools
may take months of intensive computation to find a solution).

This is not really surprising, as we have already shown in D2.1 that the installa-
bility problem is NP-complete, and the existing dependency solvers try not only to
verify whether a package is installable, but also to find some sort of optimal solu-
tion, starting not from an empty set but from the set of packages actually installed
on the system. These problems are indeed more difficult.

As a consequence, we had to set out to develop our own tools and algorithms,
that are now available to the community through a set of industrial strength, formal
method-based tools.

Task 3 (rebuilding from scratch)

We have conducted a careful examination of the build process currently used in
Caixa Magica, ex-Conectiva, Debian and Mandriva and we looked at the automated
tools and their build system in general.

From this examination, we identified the best practices and the major issues to
be addressed have emerged. One is that the compilation environment (e.g. which
packages are considered already available at compilation time) can impact the func-
tionalities of the final binary package (e.g. which optional features of the software
are enabled by auto-configuration). The second is that the order in which packages
are recompiled is crucial and needs to be specified formally and in a way that can
be exploited by advanced tools (unlike the shell scripts currently used). The issues
with recompilation order are particularly apparent for the software composing the
core compilation environment, such as the C compiler and C library, which raise
“chicken-and-egg” problems known asbootstrappingproblems.

We also assessed the tools developed by the EDOS partners, such as Mandriva’s
iurt. The next step will be to finalize these tools and to integrate them in a Linux
distributor build system, for example Caixa Mágica and Mandriva’s.

8

EDOS Project: WP2D2

Task 4 (thinning)

We performed an analysis of the issues related to building custom distributions, as
far as dependency issues go, and we found out that the tools developed in Task 2
seem to be adequate to provide a preliminary approximate solution.

If one fixes more sophisticated goals, like minimizing the size or maximizing
the freshness of a custom-built distribution, then it might be necessary to look into
more advanced constraint solving and optimization techniques.

Tool development

For the dependency management problems, we performed a detailed review of
several solvers for various existing packaging systems, looking at the way they are
built and used, and assessing their fitness for use in the framework of the WP2
goals.

This has led to identifying a number of limitations in the current dependency
solvers that appear to be either incomplete (in the formal meaning of the term),
suboptimal, or inefficient.

For this reason, we have developed a whole set of industrial strength tools, that
are nowadays defining the state of the art, as far as single package installability is
concerned.

These tools have already been incorporated into the production chain of Caixa
Magica, and are in the process of being incorporated in the Mandriva one.

We plan to disseminate widely these tools and make them known to the other
communities, like the Debian one.

Formal methods at work

We want to particularly stress here the fact that the tools that have been built and
engineered by the team are really based on a theoretically sound formal foundation.
In particular, we have:

• formally defined the installability problem and all its related notions, like
dependency closure, subrepository etc., using Boolean logic

• formally provided and implemented encodings of the installability problem
into a Finite Domain Constraint Problem,

• proved its NP-completeness,

9

EDOS Project: WP2D2

• described and implemented transcodings between the installability problem
and SAT (in both directions),

• developed several independent implementations of the verification technique,
one fully integrated, in thedebcheck/rpmcheck tool, and one based on a
modularized toolchain, able to call either an Oz-based CP solver, or various
SAT solvers (one custom made, and one mainstream, thefgrasp solver de-
veloped in Portugal).

We did not do a machine-checked proof of correctness of these tools, which
is way beyond the scope of the current project, and would require substantial re-
sources. However comparisons between the results produced by our different im-
plementations and the solvers of the package management systems have permitted
us to to spot and repair various implementation mistakes and to clarify doubts and
ambiguities appearing in the DEB or RPM packaging semantics. As the results of
these independent implementation now agree, we are extremely confident in the
soundness and completeness of the results provided by our tools.

This is a huge step forward w.r.t. preexisting tools, and we believe to have
contributed to a significant advance in the state of the art.

10

Chapter 2

Overview

Managing large software systems has always been a stimulating challenge for the
research field in Computer Science known as Software Engineering. Many seminal
advances by the founding fathers of Comp. Sci. were prompted by this challenge
(see the book “Software Pioneers”, edited by M. Broy and E. Denert [11], for an
overview). Concepts such as structured programming, abstract data types, mod-
ularization, object orientation, design patterns or modeling languages (unified or
not) [26, 18], were all introduced with the clear objective of simplifying the task
not only of the programmer, but of the software engineer as well.

Nevertheless, in the recent years, two related phenomena, the explosion of In-
ternet connectivity and the mainstream adoption of free and open source software
(FOSS), have deeply changed the scenarii that today’s software engineers face.
The traditional organized and safe world where software is developed from spec-
ifications in a fully centralized way is no longer the only game in town. We see
more and more complex software systems that are assembled from loosely cou-
pled sources developed by programming teams not belonging to any single com-
pany, cooperating only through fast Internet connections. The availability of code
distributed under FOSS licences makes it possible to reuse such code without for-
mal agreements among companies, and without any form of central authority that
coordinates this burgeoning activity.

This has led to the appearance of the so-calleddistribution editors, who try to
offer some kind of reference viewpoint over the breathtaking variety of FOSS soft-
ware available today: they take care of packaging, integrating and distributing tens
of thousands of software packages, very few being developed in-house and almost
all coming from independent developers. We believe that the role of distribution
editors is deeply novel: no comparable task can be found in the traditional software
development and distribution model. While consulting companies have always had
the need to follow actively the development of competing software solutions, we
do believe that nothing similar to what a distribution editor does has ever happened
before.

This unique position of a FOSS distribution editor means that many of the

11

EDOS Project: WP2D2

standard, often unstated assumptions made for other complex software systems
no longer hold: there is no common programming language, no common object
model, no common component model, no central authority, neither technical nor
commercial1.

Consequently, most FOSS distributions today simply rely on the general no-
tion of softwarepackage, which is not to be mistaken for the software organiza-
tional unit present in many modern programming languages. A software package
is a bundle of files containing data, programs, and configuration information, with
some metadata attached. Most of the metadata information deals withdependen-
cies: the relationships with other packages that may be needed in order to run or
install a given package, or that conflict with its presence on the system.

We now give a general description of a typical FOSS process. In figure2.1we
have an imaginary project, calledfoo, handled by two developers, Alice Torvalds
and Bob Dupont, who use a common CVS or Subversion repository and associated
facilities such as mailing lists at a typical FOSS development site such as Source-
forge. Open source software is indeed developed asprojects, which may group one
or more developers. Projects can be characterized by a common goal and the use of
a common infrastructure, such as a common version control repository, bug track-
ing system, or mailing lists. For instance, the Firefox browser, the Linux kernel,
the KDE and Gnome desktop environments or the GNU C compiler are amongst
the largest FOSS projects and have their own infrastructures. Of course, even small
bits of software likesysstat consitute projects, even if they are developed by only
one author without the use of a version control system. A given project may lead to
one or moreproducts. For instance, the KDE project leads to many products, from
the konqueror browser to the desktop environment itself. Each FOSS product
may then be included in a distribution. In our example, the projectfoo delivers the
productsgfoo, kfoo andfoo-utils. A port is the inclusion of a product into a
distribution by one or moremaintainersof that distribution. The maintainers must:

• Import and regularly track the source code for the project into the distribu-
tion’s own version control or storage system (this is depicted in figure2.1by
a switch controlling the flow of information from the upstream to the version
control system of the distribution).

• Ensure that the dependencies of the product are already included in the dis-
tribution.

• Write or include patches to adapt the program to the distribution.

• Write installation, upgrading, configuration and removal scripts.

• Write metadata and control files.

1In the world of Windows-based personal computing, for example, the company controlling Win-
dows can actually impose to the independent software vendors the usage of its own API as well as
other rules.

12

EDOS Project: WP2D2

Figure 2.1: Major flow of information in a FOSS project.

13

EDOS Project: WP2D2 2.1. WORKPACKAGE 2’S ACTIVITIES IN THE BIG PICTURE

• Communicate with the upstream developers by forwarding them bug reports,
patches or feature requests.

We see that the job of maintainers is substantial. Attempts to automate some of
those tasks, for example by using dependency extraction tools [30, 27] or by get-
ting source code updates from developers [17] are no substitute. In our example,
we have a Debian-based distribution 1, with two maintainers forfoo, and an RPM-
based distribution 2 with one maintainer. A given product will be divided into one
or moreunits, which will be compiled for the differentarchitecturessupported by
the distribution (a given unit may not be available on all architectures) and bundled
aspackages. The metadata and control files specify how the product is divided into
units, how each unit is to be compiled and packaged and on which architectures,
as well as the dependency information, the textual description of the units, their
importance, and classification tags. These packages are then automatically down-
loaded (as well as their dependencies) by the package management software (for
instance,apt or urpmi) of the users of that distribution. Some users may prefer
to download directly the sources from the developers, in which case they will typi-
cally execute a sequence of commands such as./configure && make && make
install to compile and install that software. However, they then lose the many
benefits of a package management system, such as tracking of the files installed by
the package, automated installation of the dependencies, local modifications and
installation scripts.

2.1 WorkPackage 2’s activities in the big picture

We now turn to the problem of ensuring the quality of a distribution, to highlight
the focus of WorkPackage 2’s activities of the EDOS project.

This problem can be divided into three main subproblems:

Upstream tracking makes sure that the packages in the distribution closely fol-
lows the evolution of the software’s development. It is almost always carried
over by some team outside the control of the distributor (WP2 task1).

Testing and integration ensures that the programs perform as expected in com-
bination with other packages in the distribution. If not, bug reports need to
be forwarded to the upstream developers.

Dependency managementmakes sure that, in a distribution, packages can be in-
stalled and user installations can be upgraded when new versions of packages
are produced, while respecting the constraints imposed by the dependency
metadata (WP2 task 2). In this area also fall activities like building a custom
distribution with only a few packages (thinning, WP2 task 3), and making
sure that the binary and source packages distributed do match (rebuilding,
WP2 task 4).

14

2.2. TASK OVERVIEW EDOS Project: WP2D2

In this deliverable, we will mainly focus on the last subproblem: dependency
management. This task is surprisingly complex [30, 31], owing to the large number
of packages present in a typical distribution and to the complexity and richness of
their interdependencies.

More specifically, our focus is on the issues related to dependency management
for large sets of software packages, with a particular attention to what must be done
to maintain consistency of a software distributionon the repository side, as opposed
to maintaining a set of packages installedon a client machine.

This choice is justified by the following observation: maintaining the consis-
tency of a distribution of software packages isfundamentalfor ensuring the quality
and the scalability of current and future distributions; yet, it is also aninvisibletask,
since the smooth working it ensures on the end user side tends to be considered as
normal and obvious as the smooth working of packet routing on the Internet. In
other words, we are tackling an essentialinfrastructureproblem that has long been
ignored: while there are a wealth of client-side tools to maintain an user installa-
tion (apt, urpmi, smart and many others [24, 20, 22]), there is surprisingly little
literature and publically available tools that address distribution-side requirements.
We found very little significant prior work in this area, despite it being critical to
the success of FOSS in the long term.

2.2 Task overview

We give now a short summary overview of the main tasks that compose WP2’s
activity, with a report on their current status.

2.2.1 Task 1: upstream tracking

We believe that the main barrier to scalability in current approaches to upstream
tracking is due to the variety and diversity of methods currently used to commu-
nicate between developers and package maintainers. To find out about package
updates one needs to do one or more of the following: subscribe to relevant mail-
ing lists, follow web pages for announcements, look into CVS/SVN repositories,
track software forges, write to the software author, and the like.

Nevertheless, tracking upstream can be cleanly formulated as a simple pub-
lish/subscribe problem (as indeed suggested by projects such as Lula), that may
receive an adequate solution using the tools developed for WorkPackage 4. The
only changes are in the kind and size of user clusters. For this reason, our contribu-
tion to Task 1 is via a specific instantiation of WP4 tools, and advances in parallel
to the development of these tool in WP4.

2.2.2 Task 2: dependency management

This task turned out to be the most algorithmically challenging: we already proved
that a basic subproblem, the test for installability of a single package, is NP-

15

EDOS Project: WP2D2 2.2. TASK OVERVIEW

complete, so our main effort has been on studying actual examples of distributions
(Mandriva, Debian and CaixaMagica), and finding efficient heuristics to obtain us-
able tools.

As a result of this work, we have developed a wealth of tools, whose efficiency
is extremely satisfactory: in testing packagewise installability, they outperform
any preexisting tool we are aware of, and most of these tools are now either fully
integrated, or in the process of being integrated in the production process of Caixa-
Magica and Mandriva.

The next challenge, much more demanding, is to design tools able to track in-
stallability not of a single package, but of full package sets.

During the last semester of 2005, the arrival of Caixa Magica in the consortium
also brought to the attention of WP2 the issues related to downgrading (or rollback)
of a distribution, a typicalclient-sideproblem, that seems actually algorithmically
related to tracking installability of package sets, aserver-sideproblem at the center
of our investigation.

2.2.3 Task 3: automatic rebuilding

Most distributions install their software from binary packages compiled by the dis-
tribution editor. Building these binary packages from source files can be delicate.
Task 3 focuses on streamlining and automating this process, and enabling advanced
end-users (and not just the distribution editor) to perform their own rebuilding. The
latter can be required for use in high-security contexts, where users do not trust
binaries provided by the distribution editor and wish to rebuild their own from
sources that have passed a security review.

We have conducted a careful examination of the build process currently used in
Caixa Magica, ex-Conectiva, Debian and Mandriva and we looked at the automated
tools and their build system in general. From this examination, we identified the
best practices and the major issues to be addressed have emerged. One is that the
compilation environment (e.g. which packages are considered already available at
compilation time) can impact the functionalities of the final binary package (e.g.
which optional features of the software are enabled by auto-configuration). The
second is that the order in which packages are recompiled is crucial and needs to be
specified formally and in a way that can be exploited by advanced tools (unlike the
shell scripts currently used). The issues with recompilation order are particularly
apparent for the software composing the core compilation environment, such as
the C compiler and C library, which raise “chicken-and-egg” problems known as
bootstrappingproblems.

Finally, we re-assessed the tools developed by the EDOS partners, such as
Mandriva’siurt and our own WP2 toolkit presented in this document. The next

16

2.2. TASK OVERVIEW EDOS Project: WP2D2

step will be to finalize these tools and to integrate them in a Linux distributor build
system, for example Caixa Ḿagica and Mandriva’s.

2.2.4 Task 4: thinning

Thinning, i.e., the process of extracting a subset of packages from a distribution to
build a smaller, specialised custom distribution, is one of the popular businesses in
the FOSS world today.

There are some tricky issues here: indeed, the dependency information avail-
able in the package metadata is designed to handle installation of packages on an
already working distribution, not to install a distribution from scratch.

Hence, extracting a viable subdistribution is not just a matter of getting a
conflict-free, abundant component of the dependency graph. One usually resorts
to hints like theessential metadata field, therequired priority level and the
base specification in thesection metadata field that somewhat fuzzily define the
“base-system”category in Debian based distributions.

One can reuse the installability algorithms developed in task 2, to get an ap-
proximate solution to the problem, but if we want to fix goals like minimum disk
size, most up-to-date packages, or the like, some optimization techniques will need
to be deployed, and then new algorithmic challenges may arise, that will be similar
to the ones already faced, and not really solved, by client-side package manage-
ment meta-tools.

17

EDOS Project: WP2D2 2.2. TASK OVERVIEW

The following chapters present in detail the analysis and study of each of the
problems related to the tasks described above, with a particular focus on Task 2,
for which the companion deliverable 2.3 contains a wealth of industrial strength
tools developed by the WP2 team over the first half of the project time.

18

Chapter 3

Upstream tracking

3.1 WP2 - Task 1

3.1.1 Introduction

The goal of Task1 is to keep Linux distribution packages up-to-date with recent
source changes. This requires the design of a framework that enables Linux dis-
tribution editors (or other interested end users) to be notified automatically of the
release of new/updated software packages. Since 2001 there has been a significant
amount of research in the area of event-notification systems, leading to the devel-
opment of several implementations which can in principle serve the EDOS needs.
However, analogous to what we have seen already in WP4, the specific EDOS
context provides particular environment conditions where better solutions can be
developed.

Specifically, we have observed that the packages (that act here as thetopics on
interestin the event-notification framework) naturally divide intoclusterswhich
correspond to user interests. We have examined the possibility of exploiting such a
clustering for improving the performance of the event-notification mechanism, and
concluded that it can indeed reduce significantly the network traffic cost. Based on
this idea, we are developingTamara, a novel clustering-based event-notification
system, designed for topic-based publish/subscribe applications. Tamara can auto-
matically adjust itself to the changes in users interests and provides a self-tuning
P2P efficient solution to the package-updates notification problem in the context of
EDOS.

The remainder of this section is organized as follows. We start by a brief de-
scription of the main principles of existing event-notification systems, focusing on
topic-based systems. Then, we consider the particular EDOS setting which led to
the design of our novel clustering-based notification system Tamara. We describe it
and the research conducted thus far, and conclude with a summery of our ongoing
work.

19

EDOS Project: WP2D2 3.1. WP2 - TASK 1

Figure 3.1: Packages clustering.

3.1.2 Existing solutions

An event-notification system is essentially a publish/subscribe system where sub-
scribers are notified whenever data that matches their interests is published. These
systems are often classified as one of the following two types: (1) Topic-based sys-
tems (e.g. Scribe[13]) where users subscribe to predefined topics of interest, and
(2) Content-based systems(e.g. Gryphon[7], Siena[12]), where users declare their
interest via a query, and get notified of the publication of new data items whose
content satisfy the query predicates. In the context of EDOS, packages naturally
play the role of topics of interest. Since topic-based systems are typically easier to
manage we have decided to focus our attention here on topic-based systems.

As mentioned above, current topic-based publish/subscribe systems allow users
to declare their interest in a topic (or set of topics). The system subsequently no-
tifies the users of any updates or news generated by the topic publisher. Such an
update or news is termed anevent. The act of delivering it to all the subscribed
users is termednotification.

The common implementation of publish/subscribe systems relies on anevent-
notification serviceproviding (1) storage and management for subscriptions and (2)
efficient delivery of events. Such a service represents a neutral mediator between
publishers, acting as producers of events, and subscribers, acting as consumers of
events. Subscribers register their interest in topics by calling asubscribeopera-
tion, possibly without knowing the publishers of these topics (see Figure3.1). This
subscription information is recorded in the system and is not forwarded to pub-
lishers. To generate an event, a publisher calls apublishoperation and the system
disseminates the event to all subscribed users.

The design principles guiding the existing systems are the following.

• P2P decentralized solutions. Scalability is an essential criteria for the
rapidly growing Web community. As Server/Client architectures often fail to
achieve sufficient scaling, the P2P approach becomes a suitable alternative.

• Push-based solutions.Polling of information, even for topics that are fre-
quently updated, is often inefficient as it involves many active queries sent

20

3.1. WP2 - TASK 1 EDOS Project: WP2D2

by participating users, thereby increasing significantly the network traffic.
Polling also raises the delicate (and yet not answered) question ofhow often
should I ask for new updates?Push-based notification techniques provide a
cheaper, more efficient alternative. They minimizes the load on the network
and save the need to retransmit the same event again and again to different
users.

There are several existing systems with the above characteristics (e.g. Bayeux[25],
Gryphon[7], Siena[12] and Scribe[13]). As we will see below, the solution that
we propose for EDOS is generic in the sense that it can be built on top of any
of these existing systems. As a specific instance we have chosen to use Scribe
in our implementation and experimental evaluation. Scribe is a large-scale event-
notification infrastructure for topic-based publish-subscribe applications. It sup-
ports large numbers of topics, with a potentially large number of subscribers per
topic. Scribe is built on top of Pastry, a generic peer-to-peer object location and
routing substrate overlay on the Internet, and leverages Pastry’s reliability, self-
organization and locality properties. Pastry is used in Scribe to create topics and
to build an efficient multicast tree for the dissemination of events to the topics
subscribers.

We proceed by describing our solution. We first describe the particular proper-
ties of the EDOS environment and then explain how our solution fits this particular
context.

3.1.3 Clustering-based event-notification system

Our first observation was that in many cases topics of interests are not independent
one of another - a user that subscribes to a given topic often also subscribes to
related topics. This in particular is the case for EDOS. Dependencies between
packages translate here to dependencies between the topics corresponding to the
respective packages. Such dependencies have indeed already been exploited in
WP4 to cluster packages together and speed up their download time. Our thesis is
that they can be also used here to improve the notification of packages updates. To
understand this, let us first overview briefly our finding in WP4 and then explain
how they can be adapted to the needs of WP2.

WP4. In WP4 the goal is to speed up the delivery of Linux distributions to users.
In that context, the open source packages (e.g. Gnome, Gimp, Firefox) play the
role of topicsof interest. The Linux distributions (e.g. Mandriva, Debian, Caixa
Magica) and the developers themselves play the role ofpublishers. Finally, the
millions of end users are thesubscribers.

Our research showed that packages can be divided into clusters reflecting the
user interests (see Figure3.2). As explained above this is due to dependencies be-
tween packages (e.g. KDE uses QT) and to strong domain coherence (e.g. games,
communication utilities, graphics etc). Based on this clustering we devised in WP4

21

EDOS Project: WP2D2 3.1. WP2 - TASK 1

Figure 3.2: Package clustering.

Figure 3.3: Topic clustering.

methods to speed up the delivery of software by grouping packages according to
clusters, with the dissemination of each cluster being faster than that of the sum of
individual packages.

WP2. For WP2 the picture is similar. Here too the open source packages (e.g.
Gnome, Gimp, Firefox) play the role oftopics. The thousands of Linux developer
teams/programmers play here the role ofpublishers. The Linux distribution editors
(e.g. Mandriva, Debian, Caixa Magica), as well as any other interested users, play
the role ofsubscribers.

Here again the packages divide naturally into clusters that reflect that Linux
distributors interests and existing packages dependencies. The two main gains that
can be obtained by clustering, in the context of event-notification, are the following.

Less structure maintenance The aggregation of related topics under one com-
mon cluster can reduce the maintenance cost of the system’s underlying data struc-
tures. Instead of managing several structures, one per topic, clustering allows to
manage a single structure per cluster (see Figure3.3). When we have thousands
of available topics (as is the case for EDOS), this implies that we only need to
maintain a modest number of structures, instead of thousands.

22

3.1. WP2 - TASK 1 EDOS Project: WP2D2

Less overhead for users A common practice in P2P systems is for users to co-
operate and “help” each other. In the context of event-notification systems, users
(nodes in the P2P network) might be “recruited” to assist in the dissemination of
events for topics to which they are not subscribed. When each topic is disseminated
independently, users may be recruited to help with the dissemination of any such
topics. The aggregation of topics into clusters, reduces the number of dissemina-
tion missions and thereby the number of users required.

3.1.4 Dynamic clustering

As explained above, clustering of topics can improve the system performance.
However, since we are working in a dynamic environment where users may change
their interests, it is important to adjust the clustering dynamically to match the
changing environment. The challenge naturally is to do this in a decentralized P2P
manner, with maximal system throughput and minimal overhead. This is achieved
in Tamarausing the following two modules.

• Clusters managerThis module is responsible for the registration of users
to clusters and for the dissemination of events, generated by the the topic
members of the cluster, to the subscribers.

Implementation-wise, this module is built on top of an existing standard
event-notification system. Each network node holds an internal data struc-
ture and uses a system utility, called PMS (Package Mapping System), to get
its registration decisions. This is then coupled with a standard topic-based
notification system to execute the subscriptions and deliver the events of the
topics in the cluster its subscribers.

• Dynamic clustering managerThis module is responsible for tracking changes
in users interests, and adjusting the clustering accordingly. Since we operate
here in a distributed P2P environment, with no central complete knowledge
of the users interest, we employ a probabilistic model whose main goal is to
perform changes only when they have a high of improving the system’s state.
An important parameter in the decision process is the need to minimize the
overhead of the tuning process.

Tamara runs over a standard topic-based event-notification system and DHT. In
our implementation, we chose to use Scribe and Pastry[23], respectively, for these
functions. Figure3.4 provides a general picture of the system, when employed in
the EDOS context.

Part (a) of the figure depicts the general network structure, including the list of
available packages and created clusters whose information is stored in a distributed
P2P fashion (via DHT) among the participating nodes. Part (b) depicts the system
architecture, where Tamara uses both Scribe and Pastry as operational layers. Part
(c) draws a sketch of Tamara’s internal data structure and main system.

23

EDOS Project: WP2D2 3.1. WP2 - TASK 1

Figure 3.4: System Architecture.

24

3.1. WP2 - TASK 1 EDOS Project: WP2D2

3.1.5 Simulations

Before starting the implemention ofTamarawe wanted to validate our approach
and estimate the potential benefit it can bring in terms of reduction in communica-
tion overhead. We have built a system simulator and run a significant amount of
experiments on it. In these we measured the three main components which influ-
ence the system’s performance:

• Data structure maintenance cost. The dissemination of events, in each
topic/cluster, is supported by an underlying data structure (a multicast tree)
that is constantly maintained by the system. The size of the data structure
for each topic/cluster, and consequently its maintenance cost, is essentially
linear in the number of subscribers. The total maintenance cost is the sum of
these individual maintenance costs.

As we will see, clustering reduces the number of underlying data structures
that need to be managed. At the same time, due to the overlap between users
interest, the number of subscribers to each cluster is not much larger than
the number of subscribers to the original individual topics. Consequently we
observe significant savings in structure maintenance overheads.

• Event dissemination cost.The dissemination cost of a given event is pro-
portional to its number of receivers. In our experiments, the cost measured
for each topic/cluster reflects the frequency of events in this topic, the num-
ber of clusters to which this topic belongs to and the number of subscribers
to each such cluster.

Observe that, as clusters are not disjoint, the number of subsribers to which
events of a given topic are potentially disseminated can be larger with clus-
tering. We will see however that a good clustering entails that the number of
such additional messages is low since the users registered to a given cluster
are likely to be interested in most of its topics.

• Clusters maintenance cost.This measures the communication overhead
due to the maintenance of clusters and the corresponding adjustment to users
subscriptions.

We briefly report here a representative sample of the results where the sim-
ulation was run over synthetic data with 1500 users, 303 topics, and 8 clusters
(generated by the clustering algorithms developed in WP4). We compared the per-
formance of event-notification via standard Scribe to that of Tamara’s.

Experiment 1 To separate the cost of the event notifications themselves from the
underlying cost of data structures and clustering maintenance, our first experiment
simulates thirty days of asilentenvironment, where no events are disseminated. In
this experiment, each topic (in Scribe) and cluster (in Tamara) conducts a routine

25

EDOS Project: WP2D2 3.1. WP2 - TASK 1

Figure 3.5: Experiment 1(a)

Figure 3.6: Experiment 1(b)

structure maintenance process every three minutes. Every one hour we randomly
select one hundred users and change their topic interest.

This experiment aims to confirm our fundamental claim: maintenance of data
structure s has a significant effect on the total cost, hence its reduction via clustering
significantly reduces the communication overhead. Furthermore, performance is
improved by dynamically adjusting the structures to the users changing needs.

In figure 3.5 we can see the total cumulated traffic cost, and in figure3.6 we
see the data structure maintenance overhead, measured every three days.

Experiments 2 and 3 Here the simulations are performed in a similar environ-
ment, but every minute we generate and disseminate two random events (exper-
iment 2) or 120 random events (experiment 3). Figures3.7 and 3.8 depict the
results. (We omit here the data structure maintenance cost as in both cases it is
similar to that of experiment 1). The total network traffic cost here combines the
three cost components detailed above.

Figure3.9 summarizes the results of the three experiments, showing the per-
formance advantage of Tamara’s clustering-based approach.

26

3.1. WP2 - TASK 1 EDOS Project: WP2D2

Figure 3.7: Experiment 2

Figure 3.8: Experiment 3

Figure 3.9: Summary of results

27

EDOS Project: WP2D2 3.1. WP2 - TASK 1

3.1.6 Ongoing and future work

Encouraged by the experimental results, our work continues in several comple-
mentary directions. First, to further validate our thesis, we continue our simulation
experiments, this time using real Linux data (logs and statistics on package updates
and their frequencies) obtained from Mandriva. We also test different probabilistic
functions (that dictated, in our algorithms, the change policy to the clustering) to
optimize the proposed framework.

In parallel, the implementation of Tamara is ongoing. We are currently defining
the basic API functions of Tamara and use this specification to implement a first
Tamara prototype, running on top of Scribe and Pastry.

28

Chapter 4

Thinning

Thinning a distribution consists of building a custom distribution for a very spe-
cific purpose. Such a distribution is a self-contained set of packages with all the
dependencies satisfied, plus the necessary packages to get the system running. To-
day there is a very extensive market for custom distributions, such as set-top boxes
like TiVO, routers like LinkSys, LAMP servers (Linux Apache Mysql and PHP),
PDAs like Zaurus, POS, etc., all of which use tailored Linux distributions.

4.1 Dependencies are not enough

The problem is that it is not enough to simply compute the dependencies of the
package P of the customer, install them in a system and get it up and running.
There are a dozen or so other packages (kernel, binutils, initscripts,...) needed also
that are not explicitly included in the dependency closure.

This can be seen by simply executing

apt-cache show libc6

which gives

Depends: libdb1-compat

After investigating the result,

apt-cache show libdb1-compat

one will see that

Depends: libc6 (>= 2.2.5-13)

So, these two packages, which are the basis for any Linux distribution, depend on
each other and nothing else, in particular, not on a kernel or other essential package
for the system for that matter.

29

EDOS Project: WP2D2 4.2. STATE OF THE ART

4.2 State of the art

4.2.1 Linux From Scratch

Linux from Scratch is a set of documents and helper scripts that shows how to
create a Linux distribution. The entire system is compiled from scratch and due to
this fact it can be tailored to fit any need. This is the basis for any Linux distribution
[8].

4.2.2 The debootstrap tool

Debootstrap bootstraps a basic Debian system of any available flavor (eg, sarge,
etch, sid) into a target from any debian mirror. Debootstrap is used to install De-
bian in a system without using an installation disk but can also be used to run a
different Debian flavor in a chroot environment. This way a full (minimal) Debian
installation can be created, which can be used for testing purposes.

4.2.3 Rpmstrap tool

Rpmstrap is a tool for bootstrapping a basic RPM-based system. It is inspired by
debootstrap, and allows you to build chroots and basic systems from RPM sources.
At present rpmstrap can build basic Fedora Core 2, Fedora Core 3, Fedora Core 4,
Yellowdog 4, CentOS 3, CentOS 4, Mandriva and Scientific Linux systems. It also
has support for custom RPM-based systems managed by PDK.

4.2.4 Componentized Linux and PDK

Componentized Linux (CL) is a modular, highly customizable Linux distribution
that can be used to build customized versions of the Linux operating system.

Componentized Linux is based on the DCC Common Core, an LSB 3.0 com-
pliant, Debian 3.1 (”sarge”) based common core designed to serve as the basis for
custom Debian distributions.

Componentized Linux is accompanied by the Platform Development Kit (PDK),
a full suite of tools, best described as “version control for distributions”, for build-
ing and maintaining custom distributions using Componentized Linux. The combi-
nation is a platform for building custom distributions that provides developers with
a set of reusable building blocks, called components, that can be easily assembled
into a wide variety of configurations and customized as necessary.

A component is a collection of packages that is internally consistent, along with
associated metadata. “Internally consistent” means that all dependencies must be
satisfied within the component itself, or the component must explicitly depend on
some other component that provides them.

A component has both abstract and concrete representations. The abstract rep-
resentation is an XML file that specifies the packages in the component along with

30

4.3. CURRENT LIMITATIONS EDOS Project: WP2D2

metadata such as the component’s name. The concrete representation is an APT
repository and is automatically generated from the XML component specification.

4.2.5 Catalyst tool

Gentoo is a Linux distribution inspired by the FreeBSD ports system. Almost every
package in Gentoo is compiled by the end user before being installed. Keeping this
in mind, the Catalyst tool can be viewed as a tool that takes the LFS concept further.

The Catalyst tool is used to build official Gentoo stage tarballs, packages and
install CDs. It is also used in other Gentoo projects, such as GNAP and the up-
coming Gentoo GameCD project. The goal of the Catalyst project is to provide
a single multi-faceted tool that can reliably build all aspects of a Gentoo Linux
release: stage tarballs, GRP package sets, and install CDs.

4.2.6 Klik

Klik provides an easy way to download and use software for most major distri-
butions. The approach is to create a self-contained package that is able to run on
almost any Linux distribution. Klik is an application that is integrated within the
web browser. When a user follows a “klik” link, the software client contacts the
server and requests a “klik recipe”. The recipe is a file that tells the client what
packages to download, the location of these packages and how to install them in a
self contained package.

The self contained package is a compressed image file that contains the basic
system necessary for the application to run. After it is generated, it is mounted
on the loop device and a wrapper script is called that enables the execution of the
application.

4.3 Current limitations

The previously mentioned solutions do not easily allow one to build a custom dis-
tribution.

LFS allows one to fully tailor a solution for a specific need, but at the expense
of manually compiling each and every application from scratch with manual de-
pendency resolution.

Catalyst takes LFS a little bit further with automatic compiling and dependency
resolution using “portage” as its package manager, but it allows only the creation of
Gentoo releases, GRP package sets and install CDs. It is very specific for Gentoo.

Rpmstrap and debootstrap are two similar tools with the same goal: installing a
base system. Although the base system is smaller than a normal Linux installation,
the problem is that one has to manually specify which packages not to install from
a full list of hundreds of packages to get the system tailored to one’s needs.

Rpmstrap allows only the base installation of certain distributions that are pre-
configured into the tool. In order to extend the tool for other distributions, one

31

EDOS Project: WP2D2 4.4. PROPOSED APPROACH

would have to write specific install scripts for these distributions, for example
Caixa Magica.

Componentized Linux and PDK’s approach to customizing distributions is
quite interesting: they create components, which have a close relationship with
packages or sets of packages, and have full dependency closure. But with this
solution, one has the burden of maintaining both package metadata and the compo-
nent’s metadata, which in most cases are the same. Although the solution should
be a tool which is easier to use and maintain, this tool has many features that should
be taken into account.

On the other hand, Klik provides a self contained package with full dependency
closure and no external dependencies except a running kernel and possibly a run-
ning X server. Although Klik does not allow building a custom distribution, it lays
the foundations for tailoring a Linux distribution.

4.4 Proposed approach

4.4.1 The need for additional information

One needs to define a family of “minimal distribution virtual packages”, some-
times also called “patterns” in distributions like Suse, or “components” in Compo-
nentized Linux. Representative examples of such virtual packages includeB1 =
base workstation,B2 = simple server,B3 = headless firewall,B4 = router,
. . . Each virtual package points to the basic packages necessary for the system to
be bootable and usable. Moreover, these virtual packages are generic in the sense
that they do not specify exact package versions, but only the package names or the
required features. For example, they should contain a featurekernel , provided
by all actual kernel packages, but notkernel-2.6.15_3 which is too specific and
could later conflict with some other chosen package.

4.4.2 A first solution

Having these patterns at hand, building a custom distribution for packageP means
taking the dependency closure ofP + Bi for someBi, and getting an installation
candidate for all packages in this closure. This will mean, for example, that we will
have to find a real packagekernel-2.6-something to satisfy the installability of
the virtual packagekernel.

We now give an example using thehistory tool which integrates ourdebcheck
dependency solver. Let$need be a set of units that we want to include in our min-
imal distribution. For instance, take$need <- { ocaml, vim, ledit }. The
latest available versions of these units can be computed with

$latest_need <- latest($need)

which gives{ ledit’1.11-7, ocaml’3.09.1-3, vim’1:6.4-007+1 }. The
set of essential packages can be obtained

32

4.4. PROPOSED APPROACH EDOS Project: WP2D2

$essential_packages <- filter(packages, $p -> is_essential($p))

but it may contain multiple versions of a given unit. Hence

$essential_units <- unit($essential_packages)

gives the set of essential units. (At this point, it should be noted that a unit that
is essential in a given archive at a given date may not be essential later or in other
archives. In order to be rigorous, one should restrict the set of packages to the
contents of an archive on a given date.) This set is

{ base-files, base-passwd, bash, bsdutils, coreutils,
debianutils, diff, dpkg, e2fsprogs, findutils, grep, gzip,
hostname, login, mount, ncurses-base, ncurses-bin, perl-base,
sed, sysvinit, tar, util-linux }

Our set of target units is thus

> $target <- $essential_units | $need

We can now invoke the dependency solver:

$thinned <- install(latest($target), packages)

This gives a set of 72 packages:

{ base-files’3.1.11, base-passwd’3.5.11, bash’3.1-3,
binutils’2.16.1cvs20060117-1, bsdutils’1:2.12r-8,
coreutils’5.94-1, cpp’4:4.0.2-2, cpp-4.0’4.0.2-10,
debconf’1.4.71, debconf-english’1.4.71, debianutils’2.15.3,
diff’2.8.1-11, dpkg’1.13.16, e2fslibs’1.38+1.39-WIP-2005.12.31-1,
e2fsprogs’1.38+1.39-WIP-2005.12.31-1, findutils’4.2.27-1,
gawk’1:3.1.5-2, gcc’4:4.0.2-2, gcc-4.0’4.0.2-10,
gcc-4.0-base’4.0.2-10, grep’2.5.1.ds2-4, gzip’1.3.5-12,
hostname’2.92, initscripts’2.86.ds1-12, ledit’1.11-7,
libacl1’2.2.35-1, libattr1’2.4.31-1,
libblkid1’1.38+1.39-WIP-2005.12.31-1, libc6’2.3.6-3,
libc6-dev’2.3.6-3, libcap1’1:1.10-14,
libcomerr2’1.38+1.39-WIP-2005.12.31-1, libdb4.3’4.3.29-4.1,
libgcc1’1:4.0.2-10, libgdbm3’1.8.3-2, libgpmg1’1.19.6-22,
libncurses5’5.5-1, libncurses5-dev’5.5-1,
libpam-modules’0.79-3.1, libpam-runtime’0.79-3.1,
libpam0g’0.79-3.1, libselinux1’1.28-4, libsepol1’1.10-2,
libslang2’2.0.5-3, libss2’1.38+1.39-WIP-2005.12.31-1,
libuuid1’1.38+1.39-WIP-2005.12.31-1, libx11-6’6.9.0.dfsg.1-4,
linux-kernel-headers’2.6.13+0rc3-2, login’1:4.0.14-7,
lsb-base’3.0-15, mount’2.12r-8, ncurses-base’5.5-1,
ncurses-bin’5.5-1, ocaml’3.09.1-3, ocaml-base’3.09.1-3,

33

EDOS Project: WP2D2 4.4. PROPOSED APPROACH

ocaml-base-nox’3.09.1-3, ocaml-interp’3.09.1-3,
ocaml-nox’3.09.1-3, perl-base’5.8.8-2, sed’4.1.4-5,
sysv-rc’2.86.ds1-12, sysvinit’2.86.ds1-12, tar’1.15.1-4,
tcl8.4’8.4.12-1, tk8.4’8.4.12-1, util-linux’2.12r-8,
vim’1:6.4-007+1, vim-common’1:6.4-007+1, vim-runtime’1:6.4-007+1,
x11-common’6.9.0.dfsg.1-4, xlibs-data’6.9.0.dfsg.1-4,
zlib1g’1:1.2.3-10 }

By adding a bootloader and kernel, we can get a complete, minimal debian system
able to runvim, ocaml andledit.

4.4.3 Further optimizations

Nevertheless, the candidate built as explained above is not optimal, because we
want not just a solution, but a solution optimizing metrics such as total size, total
number of packages, freshness of versions, software maturity etc. Optimization
problems tend to be harder than constraint satisfaction problems, which themselves
are harder than purely boolean constraint satisfaction problems. The latter point
is illustrated by the problems encountered during our initial approach to solving
dependency problems with a general-purpose non-boolean constraint-satisfaction
language such as Oz. Severe performance problems can appear if one is not careful
when implementing optimization algorithms; see for instance the discussion on
Smart in chapter7.

34

Chapter 5

Rebuilding from scratch

Linux distributors such as Mandriva or Caixa Magica use their expertise to pro-
vide medias containing a self-installable Linux distribution. Like other operating
systems, this distribution generally comes in the form of a bootable CD or DVD.
When the user follows the indications after booting from this media, she ends up
with the newest version of her favorite operating system. But could she rebuild
the complete distribution using nothing but the binaries and the complete sources
provided with this media? Will the binaries produced by the distributor match with
the binaries coming from the user compilation? Will the distribution packaged by
the distributor be identical to the one produced by the user?

These questions are relevant in practice for the following two reasons. First,
any negative answer to the questions above indicates a potential problem with the
way the distribution was initially built by the distributor. Such problems could
hamper further evolutions of the distribution. Therefore, ensuring that a distribu-
tion can be rebuilt from scratch is an additional sanity check that distributors may
want to perform systematically. Second, some users have strong needs for build-
ing distributions from sources. For instance, as part of thinning a distribution for
use on a particular device, recompilation with compilation flags and optimizations
appropriate for the device can lead to a smaller or faster custom distribution. Also,
users with high security requirements may not trust binaries built by the distribu-
tor and elect to build their binaries from sources after performing a security code
review over the sources.

5.1 State of the art

This chapter is inter-related with Thinning which we addressed in chapter4, in
particular the state of the art. We are not going to duplicate it here.

Compiling and recompiling from sources is not a new problem in computer
science. Moreover, we are interested in rebuilding a Linux distribution from scratch
which poses new problems.

35

EDOS Project: WP2D2 5.1. STATE OF THE ART

5.1.1 Expected issues

Compiler bootstrapping

The issue of bootstrapping a compiler and its solution are well known. The com-
piler distributions address this problem which is not a Linux distributor one.

Package management bootstrapping

Depending on what tools are choosen to rebuild the distribution, the question of or-
dering becomes important. The Linux From Scratch documentation [8] chose the
lowest level approach, starting with the compiler and a few minimal tools, without
the help of a sophisticated package management system. However, a typical dis-
tributor will use special tools parts of their package management system such as
rpm-rebuilder for Mandriva or buildd for Debian and it automates the manual steps
we are going to explain below.

When starting from scratch with the point of view of the sources and of the
tools, some considerations must be taken. Let’s take the example of the RPM man-
agement system. According to the RPM HOWTO, the rpm tools (and consequently
all the tools relying on it such as Mandriva’s urpmi for example) rely on the exis-
tence of core programs to work. Building these tools is a multi-step process.

First, a number of programs need to be available in order to build RPM pack-
ages:

• install program from fileutils*.tar.gz

• patch*.tar.gz

• autoconf*.tar.gz

• automake*.tar.gz

• libtool*.tar.gz

• gcc*.tar.gz

Then follow the foundation rpms which are presented in the order of depen-
dency:

• fileutils*.rpm

• grep*.rpm

• gawk*.rpm

• sed*.rpm

• texinfo*.rpm

36

5.1. STATE OF THE ART EDOS Project: WP2D2

• zlib*.rpm and zlib-devel

• patch*.rpm

• setup*.rpm

• filesystem*.rpm (one may not want to install this if it affects the /proc direc-
tory)

• textutils*.rpm

• glibc-common*.rpm

• basesystem*.rpm

• mktemp*.rpm

• bash*.rpm

• m4*.rpm (autoconf needs this)

• autoconf

• bison

• binutils >= 2.9.1.0.25

• gas, as, ld which are in binutils

• shutils - for the ’id’ command

A second stage of foundation rpms are needed. After installing the foundation
rpms, the next most important rpm is gcc, the order of rpms needed is:

• glibc*.rpm

• binutils*.rpm

• kernel-headers*.rpm

• glibc-devel*.rpm

• gcc*.rpm

Finally, a third stage of rpm:

• popt*.rpm

• rpm*.rpm

• perl*.rpm

• And others, depending on the distribution....

37

EDOS Project: WP2D2 5.1. STATE OF THE ART

5.1.2 Build systems

As we mentioned above, a Linux distributor will look for high-level tools for re-
building its distribution from scratch. The package management toolkit is the first
place to look for such tools and someone could use it with an ad-hoc process to
rebuild a distribution manually. However, a Linux distributor is more interested in
a reproductible process which can scale with a number of developers working in
parallel, historical data, mass diffusion and short production cycles. This is why
the build system is strategically important, because it implements the process of
building (or rebuilding) a distribution as most efficiently as possible. We are going
to review a number of build systems. We don’t pretend to be exhaustive here, but
we looked on Debian and a little bit more on Mandriva which is cooperating with
EDOS and in the process of adopting a new build system. The reflection which
took place will guide the reader in this section.

Let’s first review the Debian building process.

Debian

Debian has developed an automated build system [1]. Thebuildd system is used
as a distributed, client-server build distribution system. It is usually used in con-
junction with auto-builders, which are ”slave” hosts which simply check out and
attempt to auto-build packages which need to be ported. There is also an email
interface to the system, which allows porters to ”check out” a source package (usu-
ally one which cannot yet be auto-built) and work on it.

A number of tools are described in Debian’s developers’ reference:

• wanna-build and buildd, for automated builders

• debootstrap

• pbuilder

• sbuild

Thedebootstrap package and script allows you to ”bootstrap” a Debian base
system into any part of your filesystem. By ”base system”, we mean the bare
minimum of packages required to operate and install the rest of the system. Having
a system like this can be useful in many ways. For instance, you can chroot into
it if you want to test your build dependencies. Or you can test how your package
behaves when installed into a bare base system. Chroot builders use this package;
see below.

pbuilder constructs a chrooted system, and builds a package inside the ch-
root. It is very useful for checking if a package’s build-dependencies are correct,
and for making sure that unnecessary and wrong build dependencies will not ex-
ist in the resulting package. A related package is pbuilder-uml, which goes even
further by doing the build within a User Mode Linux environment.

38

5.1. STATE OF THE ART EDOS Project: WP2D2

sbuild is another automated builder. It can use chrooted environments as well.
It can be used stand-alone, or as part of a networked, distributed build environment.
As the latter, it is part of the system used by porters to build binary packages for
all the available architectures. See buildd, Section 5.10.3.3 for more information,
and http://buildd.debian.org/ to see the system in action.

Caixa Mágica

Caixa Mágica drives a straight production process. When the tools are ready they
are packaged in RPMs and then included in the CD, the packaging process starts
by having the source code for the tools in the packaging server file system and the
SPECs in the SVN. The SPECs are written individually for each OSS package and
have information about how to compile, install and configure it (through pre and
post-install scripts). For each software tool that is included in the CD, a source and
binary RPM is produced from the SPEC file.

In parallel, outside players like individual contributors and organizations take
part in the process by assembling packages of their own. These packages are not
included in the official Linux distribution but included in parallel repositories. The
best of these packages can later be integrated into future versions of the official
branch.

Mandriva also has been looking for new ways to automate its building process.
In that perspective, a handful of build systems potentially useful for Mandriva have
been studied. We are going to review them now.

Conectiva

The Conectiva build system is centered on a database that stores source data and
metadata for revision control. Developers send packages to revision control and
submit them for building. The system retrieves the necessary data from the database,
builds a source RPM package, stamps it with a serial number (called ”stardate”) and
submits it to the autotest box. The autotester lints the specfile, builds the package
and installs it on its environment. Should any error occur, the package is rejected
and the developer notified. If it passes cleanly, it’s enqueued for buildmaster ap-
proval or modification on the final build machine, where it is rebuilt on a strict
controlled environment and stored in the binary package repository.

Multi-arch/multi-distro system has been used to build the Unitedlinux-based
distribution, the PPC port of Conectiva Linux, several custom distro branches and
maintenance of previous releases.

This system is based on the following premises:

• Official packages are to be built in a trusted environment by a trusted user.

• Only extensively tested binaries are to be released (i.e. no massive rebuild
prior to release).

39

EDOS Project: WP2D2 5.1. STATE OF THE ART

Figure 5.1: Debian build system

40

5.1. STATE OF THE ART EDOS Project: WP2D2

Figure 5.2: Caixa Ḿagica workflow

Figure 5.3: Conectiva build system

41

EDOS Project: WP2D2 5.1. STATE OF THE ART

Figure 5.4: Old Mandriva Linux cooker process

• Only policy compliant packages are allowed to enter the distribution.

• Packages must upgrade cleanly.

• Changes initiated from a compromised developer workstation can be audited
and rolled back.

Former Mandrivalinux

At Mandriva, the elaboration of a new distribution is an evolutive process happen-
ing in the so-calledcookerdistribution and it has been described earlier. Every
contributor is free to replace and to add new packages at any time. Traditionnally,
a developer works on the cluster to recompile and to test its RPM packages and
then she submits them via some scripts such as ftpcooker. After some time needed
to reproduce the hdlists, to generate logs and to relocate the packages, they become
available. Before the reflection started with EDOS this process could take from 25
to 40 minutes.

The ”Kenobi” architecture used in the Mandrakelinux buildsystem makes a
build host shell directly available to the developer. In the build host the developer
build the packages and uploads them to Cooker. There is no buildmaster as the

42

5.1. STATE OF THE ART EDOS Project: WP2D2

Figure 5.5: Old Mandriva Linux build system

developer-built binary and source packages are sent abroad after Rpmlint checks.
Specfiles are put into revision control when it passes Rpmlint.

Mandriva is in the process of moving from this old architecture to the new
one described above. Some improvements have already been incorporated. It is
expected that the EDOS toolkit will be part of this new system.

EDOS will bring improvement to this for the dependency problems.

LbD

The build environment at csc.warwick.ac.uk uses LbD for rebuilding packages. A
number of LbD hosts have been configured that can build packages for the architec-
tures they support (alpha: alpha, i586: i586, ultrasparc: sparc + sparc64, x8664:
i586 + x8664).

Complete information on LbD can be found on Mandriva’s Wiki:http://qa.
mandriva.com/twiki/bin/view/Main/LbD.

Its advantages:

• It’s already there;

• It rebuilds in a clean (basesystem + rpmbuild) and trusted environment;

• It’s a continuous process (unlike other run-once implementations);

• It scales over multiple hosts and architectures;

• It’s able to upload to different environments (local, mandriva, plf, etc);

• Outputs are available via web interface;

• Local rebuilding of src.rpms to get TRUE BuildRequires;

• Installation and de-installation of BuildRequires;

43

http://qa.mandriva.com/twiki/bin/view/Main/LbD
http://qa.mandriva.com/twiki/bin/view/Main/LbD

EDOS Project: WP2D2 5.1. STATE OF THE ART

• Works with apt, smart and urpmi;

• Compares resulting rpms with whats currently in the repository;

PLF

The PLF build system consist of a set of chroots on different architectures, where
maintainers have to build their package manually, then upload the result to the
central repository. There is a lead distribution/architecture (cooker/i586) where
uploading first is mandatory, and all other distributions/architecture are optional
only. Upload enforce a set of mandatory rules, whereas later QA processus scan a
broader array of checks.

All the tools used are developed as part of an independant project, Youri.
YOURI stands for ”Youri Offers an Upload and Repository Infrastucture”. It aims
to build tools making management of a coherent set of packages easier. Youri’s
project home page is available at http://youri.zarb.org/ .

5.1.3 Improvements

The production process is in constant evolution and the EDOS project is already
a source of improvements for the Linux distributors. Let’s take Mandriva as an
example to review some of the improvements which took place along the EDOS
reflection. Some of these enhancements are directly related to the objectives of
EDOS and some others are not directly related but induced by the ongoing reflec-
tion. Also some tools and prototypes are being developed by Mandriva’s staff, such
as iurt.

Overall enhancements

Some enhancements have already been performed such as the performance gain
obtained by delegating Input/Output operations to a new machine (Raoh) now in
charge of talking to the mirrors. Another improvement comes from the new in-
cremental hdlist generation, which avoids to recompile all the dependencies every
time. Finally, the process is now taking around 5 minutes only. After this time, the
cooker distribution is updated with the new packages.

Build system

Mandriva is implementing a totally new system. Instead of working manually on
Mandriva cluster the package maintainer will use a Subversion repository and she
will be able to commit packages remotely from this repository.

The new repository system is based on the original Conectiva’s package build-
ing and testing system. Current status of the Mandriva repository is TEST. The
KDE Mandriva team is the first group to have their packages on this repository.

44

5.1. STATE OF THE ART EDOS Project: WP2D2

Figure 5.6: Submitting a RPM package to Mandriva with the new build system

Not all infrastructure is available from the start, just the cooker/ tree is open. All
the information about how to use this repository is available online [5].

The submission will be made remotely, eventually from the developer’s home
machine, and with a single command. The diagram below shows how the submis-
sion process happens internally.

1. submit: the user issues the submit command via repsys. If authentication
and authorization is successful, the submit command is sent to the XML
RPC server;

2. svn checkout: the XML RPC server checks out the requested revision of the
package from SVN (the SVN layout is explained in RepositorySystem)

3. rpm -bs: the XML RPC server creates a .src.rpm file with the data checked
out from SVN. A generic script/program can optionally be called prior to
”rpm -bs” to, for example, change the release number in the spec file (we
call this ”rebrand”);

45

EDOS Project: WP2D2 5.2. CURRENT LIMITATIONS

4. send away: the XML RPC server stores or sends the .src.rpm file somewhere
to be picked up by the build daemon;

5. build: the build daemon/machine grabs the .src.rpm, builds it and tests it and
the resulting binaries;

6. markrelease: if the build succeeded, and the package passed all tests, then
the build daemon/machine creates a new entry in the ”release” directory in
SVN for this package;

7. ready: the .src.rpm file and the binaries just built are stored/sent somewhere,
ready to be, for example, signed and uploaded to a mirror.

iurt

Iurt is a recompilation bot which monitors lists of packages of different architec-
tures and recompiles them in a separated clean chroot each time it is needed.

Iurt is monitoring the source and binary packages from the various repositories
and media, and recompiles them if needed. There are four different usages:

• iurt --distro cooker --config_help to display current values from
config files, which will be used

• iurt --distro cooker --chroot --arch i586 to create or update the
tarball for the chroot

• iurt --distro cooker --rebuild i586 cooker /path/to/foo.src.rpm
to build the package foo in the chroot

• iurt --distro cooker --arch i586 --media bar to rebuild all non
up-to-date SRPMS for the media bar

Iurt first checks if another iurt is running, then scans the packages in the repos-
itory. After that it computes the list of packages which need to be recompiled,
create or verify the chroot tar which will be used to recompile the packages. It then
loops on the packages to compile, reinstalling a new chroot each time, then the
build dependencies, compiling the package, trying to install the resulting binaries,
and copying them to their final destination.

For running it, you’ll need at least: perl-File-NCopy perl-Data-Dump perl-
MIME-tools (you can use urpmi to install them). Non packaged script: install-
chroot-tar.sh (http://cvs.mandriva.com/cgi-bin/cvsweb.cgi/soft/rpm-rebuilder/)

5.2 Current limitations

We can identify two issues dealing with package rebuilding and they happen in
well-defined occurrences:

46

5.2. CURRENT LIMITATIONS EDOS Project: WP2D2

• when rebuilding, for a given distribution, a single package or a small set of
interdependent packages, typically while performing a security fix;

• when a user proceeds to rebuild the distribution from the sources provided,
using only the tools provided by the distribution, such as the binaries for the
compilergcc and the C librarylibc.

5.2.1 Rebuilding a single package from scratch

In order to make explicit the difficulties encountered by the distributors and the
maintainers, we are going to present some scenarios. Each one will showcase a
particular issue which we will discuss further. The first two scenarios deal with the
first problem, to rebuild for a given distribution a single package or a small set of
interdependent packages.

Case study 1: Compilation of Ekiga (the new gnomemeeting) Ekiga depends
on the H323 and SIP libraries. In order to build a new version of Ekiga, we need
the latest version of these libraries, and we need to compile these first. Then, we
can compile Ekiga. But a number of problems arise:

1. the order of compilation must be respected (this is solved as of right now by
a script);

2. the older versions of the libraries must be removed from the compilation
environment (if they were present);

3. new versions of the libraries are added to the compilation environment.

The first issue is easily solved by a script and there is no collateral effect. However,
the next two issues demonstrate a contamination of the compilation environment.
For example, if a developer wants to compile her package, she may be affected
by the missing libraries. But the most common situation appears when new li-
braries have been added to the compilation environment. Because the compilation
is automated, and it relies onconfigure scripts, some compilation options can in-
advertently be turned on, therefore introducing new effective dependencies which
were not accounted for, nor even anticipated.

The lesson from this case is that a developer needs to rely on acleancompi-
lation environment. Acleancompilation environment is to be understood as an
environment which is composed of the minimal or base set of packages for the
distribution (see the chapter on thinning).

Case study 2: Compilation of Curl Curl is a tool to transfer data from or to a
server providing the most commonly used protocols such as HTTP and FTP. This
case is similar to the previous one with one difference. The RPM packager can
decide to include the librarylibnet in the compilation environment or not. We
have two possible outcomes:

47

EDOS Project: WP2D2 5.2. CURRENT LIMITATIONS

1. If libnet is available in the compilation environment, theconfigure script
will detect it and Curl will compile with the extra ability to resolve domain
names, for example.

2. If, on the contrary,libnet is not available, Curl will not be compiled with
this extra feature.

The developer in charge of the package hopefully knows everything about this and
she will then include (or not) the appropriate dependency in the RPM meta-data.

Curl comes with a test suite, hence the developer can run some diagnostics on
the Curl binaries. However, the test suite is built with the same options as the main
Curl binary. Therefore, iflibnet is missing from the compilation environement
the tests for the functionalities depending onlibnet will not be compiled either.
This is not an error, but it shows that a developer can not rely on the test suite,
however complete it is, to guess back the compilation options which were activated
at compilation time.

5.2.2 Rebuilding the complete distribution from scratch

Compiling the whole distribution from scratch is more complex. In fact, the same
issues appear but also the ordering of packages for the compilation needs to be
defined. While some order is implicitely defined by the dependencies between
packages there are other dependencies such as the existence of a compiler or a set
of libraries.

To recompile the distribution rpm-rebuider can be used. A sample configura-
tion file (/.rpm-rebuilder) contains the following options:

DISTRIB=/home/cooker
RB_LABORATORY=$DISTRIB/rebuild/main
SRPMS_DIRS=$DISTRIB/SRPMS/main
RPM_TOP_DIR=$RB_LABORATORY/rpm
RPM_DEST_DIR=$DISTRIB/RPMS
RPM_DEBUG_DEST_DIR=$DISTRIB/debug
RPMS_DIRS=$RPM_DEST_DIR
INSTALL_RPMS=1
ORDERER=$HOME/bin/orderer.main

The use ofrpm-rebuilder to rebuild the distribution from scratch raises several
issues. First, the release number must be auto-incremented, otherwise the installa-
tion of the package will try to replace the current one — and this will fail, unless
forced. To compare the binaries, it is necessary to keep track of the different ver-
sions of the (same) packages, and also of the binaries they contain. Second, to
manage the boostraping it is necessary to use an orderer. compute-compile-order
generates the list, which needs to be cleaned up from time to time. Finally, the bina-
ries obtained by recompiling will sometimes always be different from the original

48

5.3. ONGOING WORK EDOS Project: WP2D2

binaries because the binaries include time stamps, for example as generated by C
macros such as__DATE__ and__TIME__.

5.3 Ongoing work

A tool (iurt) already exists but it does not solve the entire problem: some steps
still need to be performed manually. It should be evaluated in order to determine if
it can be improved or if a better solution exist.

Currently,iurt manages the compilation environment in the form of a tarball
which it unpacks, uses as chroot, and then removes, repeating this process for each
one of the packages to rebuild. An alternative algorithm is currently being explored
to gain time and resources. The newiurt will use unionfs to access the minimal
compilation environment without the need to unpack a compressed file.

In current practice, as we can see in case 1, the compilation order is specified
by scripts, hand-written and tailored to a specific package or set of packages. If
the process of determining the compilation order were to be automated, the algo-
rithm should be generic and the data related to the compilation order, for example,
should be extracted from the script and stored in another fashion. This data could
eventually be part of the spec file, for example.

The compilation robot must be able to retrieve the correct information on the
required compilation environment for a specific package in order to re-create it. But
it needs also the information about the compilation order when multiple packages
are involved.

49

EDOS Project: WP2D2 5.3. ONGOING WORK

50

Chapter 6

Dependency management

In this chapter, we introduce the terminology that will be used to describe the enti-
ties related to the server-side maintenance of package repositories, and we identify
and define the main server-side desirable properties that need to be checked when
maintaining a repository, as far as package dependencies are concerned.

The formal definition of these properties is essential to tackle properly the al-
gorithmic challenge that they pose.

6.1 Basic definitions

Every package management system [14, 6] takes into account the interrelationships
among packages (to different extents). We will call these relationshipsrequire-
ments. Several kinds of requirements can be considered. The most common one
is a dependencyrequirement: in order to install packageP1, it is necessary that
packageP2 is installed as well. Less often, we findconflictrequirements: package
P1 cannot coexist with package P2.

Some package management systems specialize these basic types of require-
ments by allowing to specify thetimeframeduring which the requirement must be
satisfied. For example, it is customary to be able to expresspre-dependencies, a
kind of dependency stating that a packageP1 needs packageP2 to be present on
the systembeforeP1 can be installed [14].

In the following, we assume the distribution and the architecture are fixed. We
will identify packages, which are archive files containing metadata and installation
scripts, with pairs of a unit and a version.

Definition 1 (Package, unit) A packageis a pair(u, v) whereu is a unit andv is a
version. Units are arbitrary strings, and we assume that versions are non-negative
integers.

While the ordering over version strings as used in common OSS distributions is not
discrete (i.e., for any two version stringsv1 andv2 such thatv1 < v2, there exists
v3 such thatv1 < v3 < v2), taking integers as version numbers is justified for two

51

EDOS Project: WP2D2 6.1. BASIC DEFINITIONS

reasons. First, any given repository will have a finite number of packages. Second,
only packages with the same unit will be compared.

For instance, if our Debian repository contains the versions2.15-6, 2.16.1-
cvs20051117-1 and2.16.1cvs20051206-1 of the unitbinutils, we may en-
code these versions respectively as0,1 and2, giving the packages(binutils, 0),
(binutils, 1), and(binutils, 2).

Definition 2 (Repository) A repositoryis a tupleR = (P,D,C) whereP is a set
of packages,D : P → P(P(P)) is the dependency function1, andC ⊆ P × P
is the conflict relation. The repository must satisfy the following conditions:

• The relationC is symmetric, i.e.,(π1, π2) ∈ C if and only if (π2, π1) ∈ C
for all π1, π2 ∈ P .

• Two packages with the same unit but different versions conflict2, that is, if
π1 = (u, v1) andπ2 = (u, v2) with v1 6= v2, then(π1, π2) ∈ C.

In a repositoryR = (P,D,C), the dependencies of each packagep are given
by D(p) = {d1, . . . , dk} which is a set of sets of packages, interpreted as follows.
If p is to be installed, then all itsk dependencies must be satisfied. Fordi to be
satisfied, at least one of the packages ofdi must be available. In particular, if one of
thedi is the empty set, it will never be satisfied, and the packagep is not installable.

Example 1 LetR = (P,D,C) be the repository given by

P = {a, b, c, d, e, f, g, h, i, j}
D(a) =

{
{b}, {c, d}, {d, e}, {d, f}

}
D(b) =

{
{g}

}
D(c) =

{
{g, h, i}

}
D(d) =

{
{h, i}

}
D(e) = D(f) =

{
{j}

}
C = {(c, e), (e, c), (e, i), (i, e), (g, h), (h, g)}

wherea = (ua, 0), b = (ub, 0), c = (uc, 0) and so on. The repositoryR is
represented in figure6.1. For the packagea to be installed, the following packages
must be installed:b, eitherc or d, eitherd or e, and eitherd or f . Packagesc and
e, e andi, andg andh cannot be installed at the same time.

In computer science, dependencies are usuallyconjunctive, that is they are of
the form

a → b1 ∧ b2 ∧ · · · ∧ bs

wherea is the target andb1, b2, . . . are its prerequisites. This is the case inmake
files, where all the dependencies of a target must be built before building the tar-
get. Such dependency information can be represented by a directed graph, and

1We writeP(X) for the set of subsets ofX.
2This requirement is present in some package management systems, notably Debian’s, but not

all. For instance, RPM-based distributions allow simultaneous installation of several versions of the
same unit, at least in principle.

52

6.1. BASIC DEFINITIONS EDOS Project: WP2D2

Figure 6.1: The repository of example1.

dependencies can be solved by the well-known topological sort algorithm. Our de-
pendencies are of a more complex kind, which we namedisjunctivedependencies.
Their general form is a conjunction of disjunctions:

a → (b1
1 ∨ · · · ∨ br1

1) ∧ · · · ∧ (b1
s ∨ · · · ∨ brs

s). (6.1)

For a to be installed, each term of the right-hand side of the implication6.1 must
be satisfied. In turn, the termb1

i ∨ · · · ∨ bri
i when1 ≤ i ≤ s is satisfied when at

least one of thebj
i with 1 ≤ j ≤ ri is satisfied. Ifa is a package in our repository,

we therefore have

D(a) = {{b1
1, . . . , b

r1
1 }, · · · , {b1

s, . . . , b
rs
s }}.

In particular, if one of the terms is empty (if∅ ∈ D(a)), thena cannot be satisfied.
This side-effect is useful for modeling repositories containing packages mentioning
another packageb that is not in that repository. Such a situation may occur because
of an error in the metadata, because the packageb has been removed, orb is in
another repository, maybe for licensing reasons.

Concerning the relationC, two packagesπ1 = (u1, v1), π2 = (u2, v2) ∈ P
conflict when(π1, π2) ∈ C. Since conflicts are a function of presence and not of
installation order, the relationC is symmetric.

Definition 3 (Installation) An installationof a repositoryR = (P,D,C) is a sub-
set ofP , giving the set of packages installed on a system. An installation ishealthy

53

EDOS Project: WP2D2 6.1. BASIC DEFINITIONS

when the following conditions hold:

• Abundance: Every package has what it needs. Formally, for everyπ ∈ I,
and for every dependencyd ∈ D(π) we haveI ∩ d 6= ∅.

• Peace:No two packages conflict. Formally,(I × I) ∩ C = ∅.

Definition 4 (Installability and co-installability) A packageπ of a repositoryR
is installableif there exists a healthy installationI such thatπ ∈ I. Similarly, a
set of packagesΠ of R is co-installableif there exists a healthy installationI such
thatΠ ⊆ I.

Note that because of conflicts, every member of a setX ⊆ P may be installable
without the setX being co-installable.

Example 2 Assumea depends onb, c depends ond, andc andd conflict. Then,
the set{a, b} is not co-installable, despite each ofa and b being installable and
not conflicting directly.

Definition 5 (Maximal co-installability) A setX of co-installable packages of a
repositoryR is maximal if there is no other co-installable subsetX ′ of R that
strictly containsX. We writemaxco(R) for the family of all maximal co-installable
subsets ofR.

Definition 6 (Dependency closure)Thedependency closure∆(Π) of a set of pack-
ageΠ of a repositoryR is the smallest set of packages included inR that contains
Π and is closed under theimmediate dependencyfunctionD : P(P) → P(P)
defined as

D(Π) =
⋃
π∈Π

d∈D(π)

d.

In simpler words,∆(Π) containsΠ, then all packages that appear as immediate
dependencies ofΠ, then all packages that appear as immediate dependencies of
immediate dependencies ofΠ, and so on. Since the domain ofD is a complete
lattice, andD is clearly a continuous function, we immediately get (by Tarski’s
theorem) that such a smallest set exists and can be actually computed as follows:

Proposition 1 The dependency closure∆(Π) of Π is:

∆(Π) =
⋃
n≥0

D
n(Π).

The notion of dependency closure is useful to extract the part of a repository
that pertains to a package or to a set of packages.

54

6.2. RELEVANT DESIRABLE PROPERTIES OF A PACKAGE REPOSITORY EDOS Project: WP2D2

Figure 6.2: The subrepository generated by packagec. The dependency closure is
{c, g, h, i}.

Definition 7 (Generated subrepository) Let R = (P,D,C) be a repository and
Π ⊆ P be a set of packages. Thesubrepository generated byΠ is the repository
R|Π = (P ′, D′, C ′) whose set of packages is the dependency closure ofΠ and
whose dependency and conflict relations are those ofR restricted to that set of
packages. More formally we haveP ′ = ∆(Π), D′ : P ′ → P(P(P ′)), π 7→
{d ∩ P ′ | d ∈ D(π)} andC ′ = C ∩ (P ′ × P ′).

Figure6.2 shows the subrepository generated by the packagec of example1.
The dependency closure ofc is the set of package nodes of that subrepository. A
larger, real-world example is shown in figure6.3.

We then have the following property, which allows to consider only the relevant
subrepositories when answering questions of installability.

Proposition 2 (Completeness of subrepositories)A packageπ is installable w.r.t.
R if and only if it is installable w.r.t.R|π. (Similarly for co-installability.)

The Dependency Closure definition actually corresponds to the definition of
Island of Packagesused in the context of WP5. AnIsland of Packages, in fact, is
defined as thedependency closure on a package or a set of packages, that includes
all the packages required to install them.

6.2 Relevant desirable properties of a package repository

The task of maintaining a package repository is difficult: the maintainance team
must monitor the evolution of thousand of packages over time, and address the
error reports coming from different sources (users, QA teams, developers, etc.).
It is desirable to automate as much of this work as possible. Our medium-term
goal is to build tools that help distribution maintainers track dependency-related
problems in package repositories. We detail here some of the desirable properties

55

EDOS Project: WP2D2 6.2. RELEVANT DESIRABLE PROPERTIES OF A PACKAGE REPOSITORY

AND

libc6

perl-base

AND

AND

AND

libtext-charwidth-perl

AND

libtext-iconv-perl

libtext-wrapi18n-perlliblocale-gettext-perl

slang1a-utf8

AND

debconf

AND NOR

NOR

debconf-i18n

AND

NOR

debconf-english AND

libnewt0.51libtextwrap1

libdebian-installer4

debconf-doc

OR

ANDNOR

cdebconf

libdb1-compat

OR

AND

sysstat

Figure 6.3: The subrepository generated by the packagesysstat in Debian stable
on 2005-12-13, viewed as a boolean graph. Version numbers have been omitted for
brevity.

56

6.2. RELEVANT DESIRABLE PROPERTIES OF A PACKAGE REPOSITORY EDOS Project: WP2D2

of a repository. The first ishistory-free, in that it applies to a given state of a
repository.

Being trimmed We say that a repositoryR is trimmedwhen every package ofR
is installable w.r.t.R. The intuition behind this terminology is that a non-trimmed
repository contains packages that cannot be installed in any configuration. We call
those packagesbroken. They behave as if they were not part of the repository. It
is obviously desirable that at any point in time, a repository is trimmed, that is,
contains no broken packages.

The next properties arehistory-sensitive, meaning that they take into account the
evolution of the repository over time. Due to this dependency on time, the precise
formulation of these properties is delicate. Just like history-free properties are
relevant to users who install a distribution from scratch, history-sensitive properties
are relevant to users who upgrade an existing installation.

Monotonicity Let Rt be the repository at timet and consider a coinstallable set
of packagesCt. Some users can actually have packagesCt installed simultaneously
on their system. These users have the possibility of installing additional packages
fromRt, resulting in a coinstallable set of packagesC ′

t. These users can reasonably
expect that they will be able to do so (extendCt into C ′

t) at any future timet′, using
the repositoryRt′ , which, beingnewer, is supposed to bebetterthan the oldRt.

Of course, users are ready to accept that inRt′ they will not get exactlyC ′
t,

but possiblyC ′
t′ , where some packages were updated to a greater version, and

some others have been replaced as the result of splitting into smaller packages or
grouping into larger ones. But, clearly, it is not acceptable to evolveRt into Rt′ if
Rt allows to install, say,apache together withsquid, while Rt′ does not.

We say that a repository history line ismonotoneif the freedomof a user to
install packages is a monotone function of time. WritingF (x,R) for the set of
possible package sets inR that are a possible replacement of packagex according
to the metadata, monotonicity can be formally expressed as

Mon(R) = ∀t < t′. ∀P ∈ Con(Rt). ∃Q ∈ Con(Rt′). ∀x ∈ P. Q∩F (x,Rt′) 6= ∅

Upgradeability Another reasonable expectation of the user is to be able to up-
grade a previously installed package to the most recent version (or even any more
recent version) of this package that was added to the repository since her latest
installation. She is ready to accept that this upgrade will force the installation of
some new packages, the upgrade of some other packages, and the replacement of
some sets of package by other sets of packages, as the result of the reorganization
of the structure of the packages. However, she cannot accept that the upgrade of
a package forces the complete removal of other previously installed packages that
she uses.

57

EDOS Project: WP2D2 6.2. RELEVANT DESIRABLE PROPERTIES OF A PACKAGE REPOSITORY

In other terms, the evolution of a repository respects the upgradeability prop-
erty if all upgrades of individual packages can be performed without loss of func-
tionality: all packages removed as part of such an upgrade must be compensated by
the installation of other packages of equivalent functionality. The notion of “equiv-
alent functionality” needs to be indicated in the metadata of the packages, such as
for instance the “Replaces” clauses in Debian’s package metadata.

We remark that these properties arenot interdefinable. We give here a proof
of this assertion by exhibiting example repositories showing this independence of
the properties. For the first two cases, consider three repositoriesR1, R2, R3

whose sets of packages areP1 = {(a, 1), (b, 1), (c, 1)}, P2 = {(a, 1), (b, 1)},
P3 = {(a, 1), (a, 2), (b, 1)} with no conflicts nor dependencies among the version
1 packages and a conflict among(a, 2) and(b, 1). Notice that at each momentt in
time,Rt is trimmed.

1. A repository that stays trimmed over a period of time is not necessarily
monotone, nor upgradeable. Since(c, 1) disappears between times1 and
2, this step in the evolution does not preserve monotonicity. Since(a, 2) has
a new conflict (namely with(b, 1)) in R3, the evolution fromR2 to R3 does
not preserve upgradeability.

2. A repository that stays trimmed over a period of time and evolves in a mono-
tone fashion is not necessarily upgradeable. The evolution fromR2 to R3

above is monotone, each ofR2 andR3 is trimmed, but we fail upgradeabil-
ity because there is no way of going from{(a, 1), (b, 1)} to {(a, 2), (b, 1)}
because of the conflict.

3. A repository that stays trimmed over a period of time and is upgradeable is
not necessarily monotone.

Consider repositoriesR1 andR2 with P1 = {(a, 1), (b, 1)} andP2 = {(a, 2), (b, 1)}.
Assume(a, 1) and(b, 1) are isolated packages, while(a, 2) conflicts with
(b, 1). Now, a user having installed all ofR1 and really willing to get(a, 2)
can do it, but at the price of giving up(b, 1). This evolution of the repository
is therefore upgradeable but not monotone.

4. A repository that evolves in a monotone and upgradeable fashion is not nec-
essarily trimmed at any time: indeed, the monotonicity and upgradeability
property only speak ofconsistentsubsets of a repository, that cannot contain,
by definition, any broken packages.

Consider for example repositoriesR1, R2 with P1 = {(a, 1)}, P2 = {(a, 1), (b, 1)}.
Assume(a, 1) and(b, 1) are broken because they depend on a missing pack-
age(c, 1). Here, the evolution ofR1 to R2 is trivially monotone and up-
gradeable, because there isno consistent subset ofR1 andR2, and bothR1

andR2 are not trimmed because they contain broken packages.

58

6.3. ALGORITHMIC CONSIDERATIONS EDOS Project: WP2D2

The examples above to prove that the three properties are actually indepen-
dent may seem contrived, but are simplifications of real-world scenarii. For in-
stance, example3 can actually happen in the evolution of real repositories, when
for some reason the new version of a set of interrelated packages is only partially
migrated to the repository. Many packages are split into several packages to iso-
late architecture-independent files, as in the Debian packagesswi-prolog and
swi-prolog-doc. When performing this split, it is quite natural to add a conflict
in swi-prolog-doc against old, non-splitted versions ofswi-prolog. If the new
version ofswi-prolog-doc slips into a real repository before the new, splitted
version ofswi-prolog, we are exactly in situation number3 above.

Package developers seem aware of some of these issues: they actually do their
best to ensure monotonicity and upgradeability by trying to reduce as much as
possible the usage of conflicts, and sometime resorting to naming conventions for
the packages when a radical change in the package happens, like in the case of
xserver-common vs. xserver-common-v3 in Debian, as can be seen in the de-
pendencies forxserver-common.

Package: xserver-common
Conflicts: xbase (<< 3.3.2.3a-2), xsun-utils, xbase-clients (<< 3.3.6-1),
suidmanager (<< 0.50), configlet (<= 0.9.22),
xserver-3dlabs (<< 3.3.6-35), xserver-8514 (<< 3.3.6-35),
xserver-agx (<< 3.3.6-35), xserver-common-v3 (<< 3.3.6-35),
xserver-fbdev (<< 3.3.6-35), xserver-i128 (<< 3.3.6-35),
xserver-mach32 (<< 3.3.6-35), xserver-mach64 (<< 3.3.6-35),
xserver-mach8 (<< 3.3.6-35), xserver-mono (<< 3.3.6-35),
xserver-p9000 (<< 3.3.6-35), xserver-s3(<< 3.3.6-35),
xserver-s3v (<< 3.3.6-35), xserver-svga (<< 3.3.6-35),
xserver-tga (<< 3.3.6-35), xserver-vga16 (<< 3.3.6-35),
xserver-w32 (<< 3.3.6-35), xserver-xsun (<< 3.3.6-35),
xserver-xsun-mono (<< 3.3.6-35), xserver-xsun24 (<< 3.3.6-35),
xserver-rage128, xserver-sis

6.3 Algorithmic considerations

Our research objective within the EDOS project is to formally define the desir-
able properties of repositories stated above (and possibly other properties that will
appear useful), and to develop efficient algorithms to check these properties auto-
matically.

It is really not evident that any of these problems are actually tractable in prac-
tice: due to the rich language allowed to describe package dependencies in the
mainstream FOSS distributions, even the simplest problems (checking installabil-
ity of a single package) may involve verifications over a large number of other
packages. During our first investigations of these problems, we have indeed al-
ready proven the following complexity result (see Deliverable D2.1).

59

EDOS Project: WP2D2 6.3. ALGORITHMIC CONSIDERATIONS

Theorem 1 (Package installability is an NP-complete problem)Checking whether
a single packageP can be installed, given a repositoryR, is NP-complete.

Nevertheless, this strong limiting result does not mean that we will not be able
to decide installability and the other problems in practice: the actual instances of
these problems, as found in real repositories, could be quite simple in the average.

In particular, the converse of the reduction used for the NP-completeness proof
leads to an effective way of deciding package installability, that we will detail in a
later chapter.

We are now focusing our attention on the two time-dependent desirable prop-
erties for the repositories, which are, algorithmically speaking, much harder.

6.3.1 Encoding the Installability problem as a SAT problem

The formalization of installability provided above leads quite naturally to an en-
coding as a boolean satisfiability problem. We define a propositional variableIv

u

for every package(u, v) in the repositoryR, indicating that unitu is installed in
versionv. We denote for unitu by Ru the set of versionsv such that(u, v) ∈ R.

We then build a boolean formulaRs stating that package(u, v) is installable as
a conjunction of the following boolean formulas:

At most one version per unit: For every unitu in the repository:

∧
v1,v2∈Ru

v1 6=v2

¬(Iv1
u ∧ Iv2

u)

Constraints: If R contains a dependency for(u, v) of the form

Depends : (u1
1 op1

1 v1
1 ∨ · · · ∨ ur1

1 opr1
1 vr1

1)
∧ · · · ∧ (u1

s op1
s v1

s ∨ · · · ∨ urs
s oprs

s vrs
s).

we introduce the formula

Iv
u ⇒ (

∨
w op1

1v1
1
Iw
u1
∨ · · · ∨

∨
w op

r1
1 v

r1
1

Iw
ur1

)
∧ . . . ∧ (

∨
w op1

sv1
s
Iw
us
∨ · · · ∨

∨
w oprs

s vrs
s

Iw
urs

)

If R contains a conflict for(u, v) of the form

Conflicts : (u1
1 op1

1 v1
1 ∨ · · · ∨ ur1

1 opr1
1 vr1

1)
∧ · · · ∧ (u1

s op1
s v1

s ∨ · · · ∨ urs
s oprs

s vrs
s).

we introduce the formula

Iv
u ⇒ (

∧
w op1

1v1
1
¬Iw

u1
∨ · · · ∨

∧
w op

r1
1 v

r1
1
¬Iw

ur1
)

∧ . . . ∧ (
∧

w op1
sv1

s
¬Iw

us
∨ · · · ∨

∧
w oprs

s vrs
s
¬Iw

urs
)

Proposition 3 A package(u, v) is installable in the repositoryR if and only if the
boolean formulaRs ∧ Iv

u is satisfiable.

Satisfiability of this formula can be checked by a SAT solver.

60

6.3. ALGORITHMIC CONSIDERATIONS EDOS Project: WP2D2

6.3.2 Encoding the Installability problem as a CP problem

We can also formulate the installability problem for a given package in a Debian
repositoryR as a CP problem over finite domains, but in this case we must start
from the repositorybeforeexpanding the version relationships.

To simplify the problem by getting rid of the inessential details related to ver-
sion comparison algorithms in DEB or RPM formats, we first preprocess the repos-
itory and replace version strings by integer as follows: for each unitu, collect all
of its mentioned version stringsv, and order them accordingly to the appropriate,
format specific, comparison algorithm; then replace each occurrence ofu op v by
u opnv, wherenv is the position ofv in the increasingly ordered sequence of ver-
sions ofu. In other terms, we simplyproject over an initial segment of the integers
starting at 1the order structure of the versions of each package. This does not
change the nature of the constaint problem, but reduces it to a problem over the
Integer domain, for which solvers are more easily available.

We then build a constraint satisfaction problem over a finite domain by con-
structing a set of constraintsRc out ofR as follows:

Variables and domains: For each unitu in the repositoryR, we introduce a finite
domain variable, with domain equal to the set of available versions of the unit
present in the repository, plus one special value0 denoting the fact that no
version of the unit is installed. We add the constraintXu ∈ {0, v1, . . . , vk}
to Rc.

Constraints We add constraints toRc that encode the dependency information
associated to each packageπ = (u, v) ∈ R as follows. If R contains a
dependency forπ = (u, v) of the form

Depends : (u1
1 op1

1 v1
1 ∨ · · · ∨ ur1

1 opr1
1 vr1

1)
∧ · · · ∧ (u1

s op1
s v1

s ∨ · · · ∨ urs
s oprs

s vrs
s).

we introduce the constraint

(Xu = v) ⇒ (Xu1
1

op1
1 v1

1 ∨ · · · ∨Xr1
u1

opr1
1 vr1

1)
∧ · · · ∧ (Xu1

s
op1

s v1
s ∨ · · · ∨Xurs

s
oprs

s vrs
s)

If R contains a conflict forπ = (u, v) of the form

Conflicts : (u1
1 op1

1 v1
1 ∨ · · · ∨ ur1

1 opr1
1 vr1

1)
∧ · · · ∧ (u1

s op1
s v1

s ∨ · · · ∨ urs
s oprs

s vrs
s).

we introduce the constraint

(Xu = v) ⇒
(Xu1

1
compl(op1

1) v1
1 ∧ · · · ∧Xr1

u1
compl(opr1

1) vr1
1)

∨ · · · ∧ (Xu1
s

compl(op1
s) v1

s ∧ · · · ∧Xurs
s

compl(oprs
s) vrs

s)

wherecompl(op) is the operation opposite toop (e.g.,compl(>>) is <=,
etc.)

61

EDOS Project: WP2D2 6.3. ALGORITHMIC CONSIDERATIONS

Notice that, in the encoding above, if we encounter a package name with no
version constraint (so we find justu instead ofu >> 3, for example), we simply
produceXu > 0 as the encoding. It is now possible to prove the following:

Proposition 4 A packageπ = (u, v) is installable in the repositoryR if and only
if the constraintXu == v is compatible withRc.

Hence, to check installability of a packageu, v in a repositoryR, we can pass
the constraint setRc to any CP solver and ask whetherXu = v is satisfiable. We
can also simply ask whether there exist a version of a unit that is installable, by
asking whetherXu > 0 is satisfiable.

62

Chapter 7

Package management meta-tools:
survey and state of the art

In this chapter, we will consider existing package management tools. These tools
perform functions such as storage management, distribution and dependency man-
agement.

• Storage managementincludes packing and unpacking packages, checking
their integrity, setting up configuration files.

• Distribution is the network transfer of package files.

• Dependency managementorchestrates the previous two tasks in order to in-
stall, remove or upgrade software packages while maintaining the health of
the system.

Major Linux distributions tend to use different tools for different tasks. Often a
low-level storage management tool such asdpkg for Debian-based systems orrpm
for RPM-based systems is controlled by a higher-level “meta” tool such as APT or
urpmi. Ports-based systems such as Gentoo may use a single tool (emerge).

We are mostly interested in the formal aspects of dependency modeling and in
the algorithmic aspects of dependency solving. Thus, low-level tools are out of our
scope, but it is generally difficult to distinguish these two different kinds of tools
without a close examination. We therefore begin by doing a quick survey of known
tools, open-source and commercial, that deal with package management – some of
which are programming language-specific.

Most of the many open-source and commercial package management projects
deal only with storage management or distribution. Most of the rest do not handle
complex requirements (namely, disjunctive dependencies with conflicts). Of the
handful of package management tools that have non-trivial dependency handling
logic we have the well-known and mainstreamapt, urpmi andsmart tools, on
which we will focus in the remaining sections, providing for each of these a de-
scription of their algorithms, particularities and limitations we found during our

63

EDOS Project: WP2D2 7.1. QUICK SURVEY OF KNOWN TOOLS AND FORMALIZATIONS

investigations. In particular, we report, for each dependency solver, our findings
concerning completeness, good formal properties (commutativity, declarativity),
and efficiency. We also tested whether, given a full solution, each depsolver is able
to simply verify that it is indeed a solution, and apply it directly.

We also describe some properties of the code (programming language used,
number of lines of code, overall structure, code quality).

Finally, we argue that neither of these tools can be used to correctly and effi-
ciently check the abundance and peace conditions for a repository.

7.1 Quick survey of known tools and formalizations

7.1.1 Software providing NP-complete dependency management logic

These are package management tools that handle a dependency system whose ex-
pressive power is at least equivalent to boolean logic and that have solvers which
should, bugs notwithstanding, be able to solve generic satisfiability problems.

The three major pieces of such a software (namely APT, URPMI and Smart),
that are often used by well-established Linux distributions, are studied extensively
in the following section. For completeness, we mention the following minor man-
agers that also have a comparable level of logic complexity:

• ipkg, also known asThe Itsy package management system. Although
it is proclaimed as a lightweightdpkg-replacement for iPaq PDAs, it has a
complete dependency resolution engine. It is written in C.

• swup A high-level package management tool, written in Python and used in
Trustix Linux, that is able to handle conflicts, disjunctive dependencies and
to install multiple versions (in fact, Gentoo-like slots) of a given unit. This
tool may have been taking a non-OSS path as its CVS repository and source
code seem to be no longer available.

• Mongoose Package Manager, also known asmpak, was aiming to be “a
kernel and architecture-independent package manager with support for de-
pendency tracking...”. Written in C++, it is largely unfinished and was last
updated in August 2004.

• slapt-get An APT-like system for Slackware package management writ-
ten in C which handles disjunctive dependencies, conflicts and suggestions,
but does not seem to do complete resolution.

Derivatives of the major package management tools:

• fink is a port of the Debian APT system to Darwin and Mac OS X.

64

7.1. QUICK SURVEY OF KNOWN TOOLS AND FORMALIZATIONS EDOS Project: WP2D2

7.1.2 Entities handling less-than-NP-complete dependency logic

Installation-on-demand

These tools attempt to provide automatic, on-demand and transparent installation
of software.

• klik This tool is described more in detail in Chapter4.

• ZeroInstall http://0install.net/ It is composed by two systems,
Filesystem and Injector allowing users to run software without needing nei-
ther installation nor superuser privileges.

Storage managers

The tools in this category do not compile packages. Their main task is to add
and remove packages. To add a package, the user obtains a package file (a binary
archive containing some metadata) manually and then invokes the tool. The tool
then checks the integrity of the package, unpacks it, calls contained installation
scripts, and registers the package in the system package database. To remove a
package, the user simply invokes the tool with the name of the package to remove.
The associated files, whose paths are stored in the package database, are removed,
unless they are configuration files modified by the user.

Classical storage-only managers The following storage-only managers do not
know anything about dependencies or conflicts.

• FreeBSD, NetBSD and OpenBSDpkg add, pkg remove tools that com-
plement the ports system.

• Slackware’spkgtool similar to the above BSD tools.

• UniPKG A modular package manager that natively handles various package
formats.

• gnupdate A universal package management system comprisinggpkg and
libpackman.

• libpackage (Open Package Library)

• Splack A port of Slackware to SPARC.

• UPMS is a simple package management system written in shell script with
simple dependency management, for Filesystem Hierarchy Standard (FHS)-
compliant Linux distributions.

• pkgutils are package management utilities for Linux, used by the CRUX
distribution. They are written in C++ and have no dependency management,
only storage management with file-based conflict detection.

65

http://0install.net/

EDOS Project: WP2D2 7.1. QUICK SURVEY OF KNOWN TOOLS AND FORMALIZATIONS

• tinypackage A lightweight package manager for UNIX systems.

Some storage managers know of dependencies and conflicts because they are
actually the backend of a suite of higher-level package management tools

• dpkg as used by Debian APT

• rpm as used either directly or aslibrpm by RPM-based distributions such
as Red Hat or Madriva.

• xpkg is the package manager of the OpenDarwin project handles complex
dependencies.

Symbolic link managers A particular and most primitive class of storage man-
agers is the class of symbolic link managers. Assume software packages come as
simpletar archives that can be extracted anywhere. Extending all search paths (for
executables, libraries, manual pages...) for each piece of new software is cumber-
some (one would get very long path variables) requires users to restart their session
to take fully effect. As for extracting an archive directly into the root filesystem, not
only is it very dangerous (as vital system files, such as/etc/passwd may get, er-
roneously or maliciously, overwritten), it is also impossible to undo. Indeed, even
if no file is overwritten, one still needs the original archive to know which files
to delete. The idea of symbolic link managers is to have each piece of software
in its own directory, at a known place, for instance under/opt or /usr/depot,
to confine software to their own directories, thus allowing easy removal and pre-
venting modification of important system files. Links are then established from
standard points in the filesystem to that directory. For instance,vim would be un-
packed in/opt/vim/, and a symbolic link would be created by the manager from
/usr/bin/vim to /opt/vim/bin/vim. Removing packages is as easy as remov-
ing the/opt/vim directory and its contents while removing associated symbolic
links. This scheme has the advantage of extreme simplicity. On modern systems,
the overhead of symbolic links should be negligible. Thedepot tool is the most
well-known symbolic link manager which has inspired a number of others.

• depot

• GNU stow and derivatives likestowES, XStow, reflect

• graft

• swpkg

• encap, epkg, sencap

• slashpackage

• spill

• It package manager

66

7.1. QUICK SURVEY OF KNOWN TOOLS AND FORMALIZATIONS EDOS Project: WP2D2

Classical storage and download managers

Augmenting storage managers with simple (non-disjunctive, non-conflictual) de-
pendency information and automatic retrieval capabilities gives a class of tools for
which the linear-time topological sorting algorithm is adequate for solving depen-
dency problems. Unfortunately, disjunctions and conflicts can only be disposed of
in an ideal world.

• aduva

• uludag

• spkg A package management utility for Slackware that can do upgrades.

• openbechede An OpenBSD packages tool

Package managers for programming languages

Modern programming languages have built-in modularity and therefore are ideally
suited for software component management techniques. However this also means
that conflicts and disjunctions are not common, and component managers seldom
handle them.

• Godi for Ocaml features dependency and conflict resolution, compilation
options and automated downloading and compiling.

• Ruby gems

• libneedle for Ruby

• CPAN, theComprehensive Perl Archive Network, contains package installa-
tion tools that try to automate the download and installation ofPerl modules

• OSGi bundles are Java archive files that contain some installation and con-
figuration classes and some static dependency information.

Recompilation frameworks

In their basic implementation, these systems can be described as a structured ver-
sion control repository. Units exist as subdirectories of the repository. Each sub-
directory contains a Makefile and associated scripts. Users of the system will first
checkoutthe latest version of the repository. They will then place themselves in
the directory of a unit they wish to install. An invocation ofmake will then auto-
matically download the sources, configure and compile them, and install the unit.
If the unit depends on other units, a recursive invocation of make on the associ-
ated directory will download and build it. The typical representative of this class
of systems the BSD ports system, as used by FreeBSD, NetBSD and OpenBSD.
These use standard tools (CVS, make, fetch) and shell scripts. While simple and

67

EDOS Project: WP2D2 7.1. QUICK SURVEY OF KNOWN TOOLS AND FORMALIZATIONS

elegant, the repositories being very large, performance issues arise when doing up-
dates with CVS or Subversion (SVN). Also, the lack of logical expressiveness of
make prohibits circular or disjunctive dependencies and conflicts.

Gentoo Linux significantly improves the ports system by replacing make with a
more intelligent tool calledemerge. This tool has finer-grained control over com-
pilation options and can handle disjunctive dependencies. The general architecture
and the “slotting” system reduce the number of conflicts. However, conflicts can
arise due to incompatible requested version ranges, especially if subdistributions
of different stability are mixed in the same system. Conflicts and circular depen-
dencies, although rare, are not well-handled byemerge.

Version control system-based:

• BSD ports, the classical CVS and make-based ports system

• Gentoo portage is basically BSD ports with enhanced logic

• mpkg A FreeBSD-like ports collection for DEC OSF/1, Linux, Solaris.

• Darwinpkg is a port of the FreeBSD software package system to the Darwin
OS.

• TheScrudgeware tools are a combination of Encap and of the BSD ports
system.

• Emerde is a port of Gentoo’s Portage system for other distributions.

• Conary is an interesting package management system that is based on an en-
hanced source version control system including local changesets (describing
local modifications to configuration files) and shadows (which allows cre-
ation of a branch in the source control system that follows the evolutions of
its parents). It is used in rPath linux.

Recompilation-only:

• toast is a simple source-and-symlinks, recompiling package manager for
both root and non-root users.

Testing tools

Piuparts (acronym forpackageinstallation,upgrading, andremovaltestingsuite)
is a tool to test the installation and upgrade of a debian package relative to a given
debian distribution. Furthermore, it checks that removal of a package using the
standard debian mechanism leaves no files behind. More precisely, the tool per-
mits to perform three kinds of tests:

1. test whether a package can be properly installed and removed relative to a
given distribution,

68

7.1. QUICK SURVEY OF KNOWN TOOLS AND FORMALIZATIONS EDOS Project: WP2D2

2. test whether a package can be upgraded to a specific new version relative to
a given distribution,

3. test whether a first given distribution can be upgraded to a second given
distribution.

The tests of installation and upgrade are performed using the debian standard com-
mandsapt-get install in case of testing installation or upgrade of a single
package, andapt-get dist-upgrade in case of testing upgrade of a distribu-
tion. These installation operations are done in a fresh debian installation of the
chosen base distribution. An important point here is that all this tool does istest-
ing, no formal verification is done. As a consequence, this tool is subject to the
same limitations asapt itself, but this is deliberate since the purpose of this tool is
exactly to test installation and upgrade using the standard debian tools.

Metadata formats or ontologies

Modular programming is not something new and formalization of interdependen-
cies between software components is as old as dependency graphs and themake
tool. Of course such crude modeling is grossly insufficient for today’s highly
complex relationships between packages. Heterogeneous software environments
mandate, because of binary compatibility and linking issues, the use of version
numbers, dependencies with upper- and lower-bounded ranges, disjunctive depen-
dencies and therefore conflicts. There is a limit on what can be done with dynamic
linking, hence many important aspects of a software product, such as the graphi-
cal toolkit it uses or the optimized numerical algorithm library it relies on must be
known as a compile time. As a result, the number of units a software product can
give grows as the product of the number of variants of components that must be
statically linked. Assume we have a video player with GTK, KDE or command-
line interfaces whose codecs must for some reason be statically linked (perhaps
due to the language used), with available unoptimized codecs, optimized for AMD
and Intel, 32- and 64-bit versions. This gives a total of3 × 2 × 2 = 12 units.
Add two units for common architecture-independent files such as documentation
and GUI skin files. This gives14 units. On the other hand, if we make the product
into a library with its own documentation and development version, then we have
4 library units,2 development units,2 architecture-independant units and3 main
units with different interfaces, which saves us one unit.

• Troveis a somewhat old proposal by Eric S. Raymond focused on software
archive maintenance issues. It proposes to use the same dependency fields
as in Debian, but does not delve deeper into the associated combinatorial
problems.

• The Dublin Core Metadata Initiativeis a large and ambitious initiative that
aims to create interoperable metadata standards for describing all kinds of

69

EDOS Project: WP2D2 7.2. ANALYSIS OF SOME PACKAGE MANAGEMENT TOOLS

information resources. Its overly broad scope and fuzzy semantics are not
suitable for package management.

• RPM metadatais an XML format proposal by Duke University for describ-
ing package metadata. From a dependency viewpoint, their DTD is based on
the RPM format and provides sufficiently expressive fields.

• TheInstallable Unit Package Format Specificationis a W3C proposal devel-
oped by the OASIS consortium for standardizing packaging formats, notably
for commercial software to be distributed on removable media, in order to
create interoperable installers, notably for operating systems that lack pack-
aging functions, such as Microsoft Windows, as can be deduced from the
participation of InstallShield Softwarea Corp.

• Not to be confused with Fink,Flink aims for formalize various knowledge
about the Linux system. This includes formalizing package interrelation-
ships. They provide an Owl ontology modeled on the Debian policy manual.

7.2 Analysis of some package management tools

In the following sections we perform and in-depth analysis and description of four
mainstream package management meta-tools: Apt, Portage, Smart and Urpmi.

We are particularly interested in determining their fitness for being used as in-
stallability verifiers, i.e. tools to check server-side repository consistency, which is
one of the main goals of our workpackage.

7.2.1 General analysis on a given testbench

For each of these tools, we performed the very same tests on a specially built
package base, shown in figure7.1, designed in order to verify completeness of the
dependency solving algorithm (crucial forour goals), but also the quality of the
solution found, which is crucial for the stated goals of these tools, which is main-
taining an up-to-date installation on a user machine.

This fake repository contains a deeply nested conflict among glass version 2
and tyre version 2, and has one “optimum” solution (figure7.2), in terms of number
of freshest installed packages, which is given by taking tyre=1, and the most recent
version for all other packages.

For information, the WP2 toolchain statistics on this fake repository are avail-
able online at the following URL: http://www.edos-project.org/xwiki/stats/car.html.
See also figure7.3.

The analysis show that no system is able to find the best solution but urpmi
under certain conditions, and all but Smart do fail in being complete.

70

7.2. ANALYSIS OF SOME PACKAGE MANAGEMENT TOOLS EDOS Project: WP2D2

car

door

engine

11

2

1

2

2

3

turbo

tyre

window

1

2

2

1

0
2

1
glass

glass

conflictswheel

Figure 7.1: Graph of car dependencies and conflicts.

Figure 7.2: Car/Glass: optimum solution (maximum number of latest versions).

71

EDOS Project: WP2D2 7.2. ANALYSIS OF SOME PACKAGE MANAGEMENT TOOLS

Figure 7.3: Car/Glass: graphical representation of the dependency generated with
the EDOS toolchain

72

7.3. APT EDOS Project: WP2D2

7.2.2 Further investigation

For the Apt and Smart tool, we also investigate much more in depth the inner
working of the system, finding a very surprising behavior for Apt, and exposing
the potentially explosive computational behavior of Smart.

For all these reasons, we conclude that not a single one of these tools can be
used to perform installability checking, and that we need to develop our own.

7.3 APT

The APT tool has been for a long time a key element of the success of the Debian
distribution. It was indeed one of the first meta-package management tools incor-
porating dependency solving and package retrieving algorithms that gave the user
the feel of a system able to automatically fetch and install the best set of packages
suited for her needs.

The problem that APT tries to solve is quite tricky: maintain a distribution
consistent, while upgrading to the most recent version of the packages that a user
may require, which, as we have said before, is a more complex problem than mere
installability, known now to be NP-complete.

As a result, in order to get answers in acceptable time, APT is forced to incor-
porate heuristics and stategies that turn out, when properly analysed, to be incom-
plete, inconsistent and to exhibit a surprising behavior (for a user).

For these reasons, APT is not an acceptable tool if one only needs to check
for installability of a package (and it should not be used in the Debian production
process to check whether a package may or not be migrated from one release to
another, like fromunstable to testing).

We report here our findings, that seem not widely known.
Let’s start by testing APT’s dependency solver on the Car/Glass example.

7.3.1 Apt on the Car/Glass testbench

If apt-get was optimal, it should install the marked packages in the figure7.2.
Or, an acceptable alternative would be the packages marked in figure7.4.
However, apt-get doesn’t find any of these solutions1:

1The tests reported here were performed on CaixaMagica premises using apt for rpm, which uses
the very same dependency solver as apt, so the results are transferable to apt in general, but w.r.t.
rpm repositories.

73

EDOS Project: WP2D2 7.3. APT

car

door

engine

11

2

1

2

2

3

turbo

tyre

window

1

2

2

1

0
2

1
conflicts

glass

glass

wheel

Figure 7.4: Car/Glass: suboptimal solution

sclara:/etc/apt/sources.list.d # apt-get install car
Reading Package Lists... Done
Building Dependency Tree... Done
[...]

The following packages have unmet dependencies:
car: Depends: wheel (>= 2) but it is not going to be installed

E: Broken packages

This comes from Apt’s choice of always installing the greatest version of a
package, that lead it to the following steps

1. Installed “engine = 2”

2. Installed “wheel = 3” and for that installed its dependency “tyre = 2”

3. Tried to install “door”, but before tried to install its dependency “window =
2” but even before tried to install window dependency’s “glass = 2”. Since
this last one failed, they all failed.

Quite evidently, Apt does not backtrack to look for one of the two possible
solutions.

Scenario 1 - fix “wheel = 3”

Let’s investigate more why apt does not backtrack: we manually install wheel and
then door, in this order:

1. Installed wheel (and apt-get installed well version 3 and tyre = 2)

2. Tried to install door but apt-get suggest to remove wheel and tyre, before
install door + windows + glass (see next output)

74

7.3. APT EDOS Project: WP2D2

The install operation of “door.rpm” asks permission for removing the previous
installed packages:

sclara:/etc/apt/sources.list.d # apt-get install door
[...]
The following packages will be REMOVED:

tyre wheel
The following NEW packages will be installed:

door glass window

Why apt-get had not tried to install window = 1 and glass = 1?

Scenario 2 - fix “window = 1”

Notice that the installation of the package “window = 1” alone succeds (and it
installs also its dependency “glass = 1”), and then we can install door without
problems:

sclara:/etc/apt/sources.list.d # apt-get install door
[..,]
Committing changes...
Preparing... ############################ [100%]

1:door ############################ [100%]
Done.

Scenario 3 - fix “wheel = 2”

Let’s explore the other possibility: fix “wheel = 2” by directly installing wheel = 2.
This operation succeeds and then we can install “car.rpm” and its dependencies:

Reading Package Lists... Done
Building Dependency Tree... Done
[...]
Do you want to continue? [Y/n] Y
Committing changes...
Preparing... ############################ [100%]

1:engine ############################ [20%]
2:glass ############################ [40%]
3:window ############################ [60%]
4:door ############################ [80%]
5:car ############################ [100%]

Done.

75

EDOS Project: WP2D2 7.3. APT

7.3.2 Algorithm specification

The previous tests highlight the following behavior of the Apt:

1. Check the dependencies of a package

2. Try to install dependencies one-by-one in the order they are presented in the
RPM.

3. For each dependency, try to install its sub-dependencies by the greater ver-
sion presented.

4. If one subdependency fail by conflict with a package that will be installed
(tyre=2 conflicted with glass=2), then the install operation aborts. It does
not try to backtrack and check lesser versions (tyre = 1, for instance, or even
window = 1).

5. If one subdependency fail by conflict with a package that is already installed
(case where wheel and tyre were installed), then the install prompts for re-
moval of the installed package. It does not try to see if there is alternatives
for the conflict package.

This heuristic tends to work well with well-behaviored repositories such as the
ones centralized by a commercial distribution. It sacrifies the quality of the solution
for the speed of the analysis.

7.3.3 Apt’s surprising behavior.

We have also tested Apt’s behavior on a snapshot of the Debian pool taken in the
middle of 2005, and available in the EDOS subversion repository as
Data/Sources/Packages-pool.gz. Of the many tests performed, we retain the
following three, which clearly exhibit some of Apt’s limitations.

• apt-get install abiword-gnome=2.2.7-3 fails

• apt-get install abiword-gnome=2.2.7-3 abiword-common=2.2.7-3
succeeds

• apt-get install abiword-common=2.2.7-3 abiword-gnome=2.2.7-3
succeeds, but installs one more package!

First test, failure for abiword-gnome=2.2.7-3

Running apt using fake directory structure /extended/tmp/apt
Populating ...done.
Creating fake configuration file
Creating fake source list file
Updating debian-pool cache

76

7.3. APT EDOS Project: WP2D2

Atteint http://www.pps.jussieu.fr unstable/main Packages
Ign http://www.pps.jussieu.fr unstable/main Release
Lecture des listes de paquets...
Trying to install abiword-gnome=2.2.7-3
Lecture des listes de paquets...
Construction de l’arbre des dépendances...
Certains paquets ne peuvent être installés. Ceci peut signifier
que vous avez demandé l’impossible, ou bien, si vous utilisez
la distribution unstable, que certains paquets n’ont pas encore
été créés ou ne sont pas sortis d’Incoming.

Puisque vous n’avez demandé qu’une seule opération, le paquet n’est
probablement pas installable et vous devriez envoyer un rapport de bogue.
L’information suivante devrait vous aider à résoudre la situation:

Les paquets suivants contiennent des dépendances non satisfaites:
abiword-gnome: Dépend: abiword-common (= 2.2.7-3) mais 2.2.9-1
devra être installé

Second test, success for abiword-gnome=2.2.7-3 abiword-common=2.2.7-3

Running apt using fake directory structure /extended/tmp/apt
Populating ...done.
Creating fake configuration file
Creating fake source list file
Updating debian-pool cache
Atteint http://www.pps.jussieu.fr unstable/main Packages
Ign http://www.pps.jussieu.fr unstable/main Release
Reading Package Lists... Done
Trying to install abiword-gnome=2.2.7-3 abiword-common=2.2.7-3
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
abiword-common abiword-gnome adduser coreutils cpp cpp-4.0 dbus-1
dbus-glib-1 debconf debconf-i18n debianutils defoma esound-common file
fontconfig gcc-3.3-base gcc-4.0-base gconf2 gnome-keyring gnome-mime-data
gsfonts libacl1 libart-2.0-2 libaspell15 libatk1.0-0 libattr1 libaudiofile0
libbonobo2-0 libbonobo2-common libbonoboui2-0 libbonoboui2-common libbz2-1.0
libc6 libcap1 libcdparanoia0 libcomerr2 libcupsys2-gnutls10 libdb3
libdb4.2 libenchant1 libesd0 libexpat1 libfam0c102 libfontconfig1
libfreetype6 libfribidi0 libgcc1 libgconf2-4 libgcrypt11 libgdbm3
libglade2-0 libglib2.0-0 libgnome-keyring0 libgnome2-0
libgnome2-common libgnomecanvas2-0 libgnomecanvas2-common
libgnomecups1.0-1 libgnomeprint2.2-0 libgnomeprint2.2-data
libgnomeprintui2.2-0 libgnomeprintui2.2-common libgtk2.0-common
libgnomeui-0 libgnomeui-common libgnomevfs2-0 libgnomevfs2-common
libgnutls11 libgpg-error0 libgtk2.0-0 libgtk2.0-bin libmyspell3
libgucharmap4 libhal-storage0 libhal0 libice6 libidl0 libjpeg62

77

EDOS Project: WP2D2 7.3. APT

libkrb53 libldap2 liblocale-gettext-perl liblzo1 libmagic1
libncurses5 libnewt0.51 libopencdk8 liborbit2 libpam-modules
libpam-runtime libpam0g libpango1.0-0 libpango1.0-common
libperl5.8 libpng12-0 libpopt0 libsasl2 libslang2 libsm6
libsmbclient libstdc++5 libstdc++6 libtasn1-2
libtext-charwidth-perl libtext-iconv-perl libtext-wrapi18n-perl
libtiff4 libx11-6 libxcursor1 libxext6 libxft2 libxi6 libxinerama1
libxml2 libxrandr2 libxrender1 login lsb-base ncurses-bin
passwd perl perl-base perl-modules sed shared-mime-info
ttf-bitstream-vera ucf whiptail x11-common xlibs-data zlib1g

Suggested packages:
abiword-plugins abiword-plugins-gnome abiword-doc xfs cpp-doc
cpp-2.95-doc gcc-4.0-locales debconf-doc debconf-utils
libterm-readline-gnu-perl libgnome2-perl libqt-perl
libnet-ldap-perl libgnome-perl defoma-doc psfontmgr
dfontmgr aspell aspell-bin libbz2-dev bzip2 glibc-doc esound
libfreetype6-dev rng-tools gnome-icon-theme gnutls-bin krb5-doc
krb5-user libpam-doc ttf-kochi-gothic ttf-kochi-mincho
ttf-thryomanes ttf-baekmuk ttf-arphic-gbsn00lp ttf-arphic-bsmi00lp
ttf-arphic-gkai00mp ttf-arphic-bkai00mp libterm-readline-perl-perl
x-window-system-core x-window-system

Recommended packages:
abiword-help aspell-en aspell6-dictionary abiword-gtk xfonts-abi
x-ttcidfont-conf apt-utils libft-perl libatk1.0-data
esound-clients python-xmlbase libglib2.0-data gamin
hicolor-icon-theme myspell-en-us myspell-dictionary libgpmg1
libsasl2-modules xml-core perl-doc fam

The following NEW packages will be installed:
abiword-common abiword-gnome adduser coreutils cpp cpp-4.0 dbus-1
dbus-glib-1 debconf debconf-i18n debianutils defoma esound-common
file fontconfig gcc-3.3-base gcc-4.0-base gconf2 gnome-keyring
gnome-mime-data gsfonts libacl1 libart-2.0-2 libaspell15 libatk1.0-0
libattr1 libaudiofile0 libbonobo2-0 libbonobo2-common libbonoboui2-0
libbonoboui2-common libbz2-1.0 libc6 libcap1 libcdparanoia0
libcupsys2-gnutls10 libdb3 libdb4.2 libenchant1 libesd0 libexpat1
libfam0c102 libfontconfig1 libfreetype6 libfribidi0 libgcc1
libgconf2-4 libgcrypt11 libgdbm3 libglade2-0 libglib2.0-0 libcomerr2
libgnome-keyring0 libgnome2-0 libgnome2-common libgnomecanvas2-0
libgnomecanvas2-common libgnomecups1.0-1 libgnomeprint2.2-0
libgnomeprint2.2-data libgnomeprintui2.2-0 libgnomeprintui2.2-common
libgnomeui-0 libgnomeui-common libgnomevfs2-0 libgnomevfs2-common
libgnutls11 libgpg-error0 libgtk2.0-0 libgtk2.0-bin libgtk2.0-common
libgucharmap4 libhal-storage0 libhal0 libice6 libidl0 libjpeg62
libkrb53 libldap2 liblocale-gettext-perl liblzo1 libmagic1 libmyspell3
libncurses5 libnewt0.51 libopencdk8 liborbit2 libpam-modules
libpam-runtime libpam0g libpango1.0-0 libpango1.0-common libperl5.8

78

7.3. APT EDOS Project: WP2D2

libpng12-0 libpopt0 libsasl2 libslang2 libsm6 libsmbclient libstdc++5
libstdc++6 libtasn1-2 libtext-charwidth-perl libtext-iconv-perl
libtext-wrapi18n-perl libtiff4 libx11-6 libxcursor1
libxext6 libxft2 libxi6 libxinerama1 libxml2 libxrandr2 libxrender1 login
lsb-base ncurses-bin passwd perl perl-base perl-modules sed shared-mime-info
ttf-bitstream-vera ucf whiptail x11-common xlibs-data zlib1g

0 packages upgraded, 130 newly installed, 0 to remove and 0 not upgraded.

Third test, different success for abiword-common=2.2.7-3 abiword-gnome=2.2.7-
3

In this case, Apt will install alsolibaspell15c2, which is not proposed in the
previous example, despite the fact that the commands given by the users differ in
the ordering of the arguments.

Running apt using fake directory structure /extended/tmp/apt
Populating ...done.
Creating fake configuration file
Creating fake source list file
Updating debian-pool cache
Atteint http://www.pps.jussieu.fr unstable/main Packages
Ign http://www.pps.jussieu.fr unstable/main Release
Reading Package Lists... Done
Trying to install abiword-common=2.2.7-3 abiword-gnome=2.2.7-3
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
abiword-common abiword-gnome adduser coreutils cpp cpp-4.0 dbus-1 dbus-glib-1
debconf debconf-i18n debianutils defoma esound-common file fontconfig
gcc-3.3-base gcc-4.0-base gconf2 gnome-keyring gnome-mime-data gsfonts
libacl1 libart-2.0-2 libaspell15 libaspell15c2 libatk1.0-0 libattr1
libaudiofile0 libbonobo2-0 libbonobo2-common libbonoboui2-0
libbonoboui2-common libbz2-1.0 libc6 libcap1 libcdparanoia0 libcomerr2
libcupsys2-gnutls10 libdb3 libdb4.2 libenchant1 libesd0 libexpat1 libfam0c102
libfontconfig1 libfreetype6 libfribidi0 libgcc1 libgconf2-4 libgcrypt11
libgdbm3 libglade2-0 libglib2.0-0 libgnome-keyring0 libgnome2-0
libgnome2-common libgnomecanvas2-0 libgnomecanvas2-common libgnomecups1.0-1
libgnomeprint2.2-0 libgnomeprint2.2-data libgnomeprintui2.2-0
libgnomeprintui2.2-common libgnomeui-0 libgnomeui-common libgnomevfs2-0
libgnomevfs2-common libgnutls11 libgpg-error0 libgtk2.0-0
libgtk2.0-bin libgtk2.0-common libgucharmap4 libhal-storage0 libhal0
libice6 libidl0 libjpeg62 libkrb53 libldap2 liblocale-gettext-perl
liblzo1 libmagic1 libmyspell3 libncurses5 libnewt0.51 libopencdk8
liborbit2 libpam-modules libpam-runtime libpam0g libpango1.0-0
libpango1.0-common libperl5.8 libpng12-0 libpopt0 libsasl2 libslang2
libsm6 libsmbclient libstdc++5 libstdc++6 libtasn1-2
libtext-charwidth-perl libtext-iconv-perl libtext-wrapi18n-perl
libtiff4 libx11-6 libxcursor1 libxext6 libxft2 libxi6
libxinerama1 libxml2 libxrandr2 libxrender1 login lsb-base

79

EDOS Project: WP2D2 7.3. APT

ncurses-bin passwd perl perl-base perl-modules sed shared-mime-info
ttf-bitstream-vera ucf whiptail x11-common xlibs-data zlib1g

Suggested packages:
abiword-plugins abiword-plugins-gnome abiword-doc xfs cpp-doc
cpp-2.95-doc gcc-4.0-locales debconf-doc debconf-utils
libterm-readline-gnu-perl libgnome2-perl libqt-perl libnet-ldap-perl
libgnome-perl defoma-doc psfontmgr dfontmgr aspell aspell-bin
libbz2-dev bzip2 glibc-doc esound libfreetype6-dev rng-tools
gnome-icon-theme gnutls-bin krb5-doc krb5-user libpam-doc
ttf-kochi-gothic ttf-kochi-mincho ttf-thryomanes ttf-baekmuk
ttf-arphic-gbsn00lp ttf-arphic-bsmi00lp ttf-arphic-gkai00mp
ttf-arphic-bkai00mp libterm-readline-perl-perl x-window-system-core
x-window-system

Recommended packages:
abiword-help aspell-en aspell6-dictionary abiword-gtk xfonts-abi fam
x-ttcidfont-conf apt-utils libft-perl libatk1.0-data esound-clients
python-xmlbase libglib2.0-data gamin hicolor-icon-theme myspell-en-us
myspell-dictionary libgpmg1 libsasl2-modules xml-core perl-doc

The following NEW packages will be installed:
abiword-common abiword-gnome adduser coreutils cpp cpp-4.0 dbus-1
debconf debconf-i18n debianutils defoma esound-common file fontconfig
gcc-3.3-base gcc-4.0-base gconf2 gnome-keyring gnome-mime-data gsfonts
libacl1 libart-2.0-2 libaspell15 libaspell15c2 libatk1.0-0 libattr1
libaudiofile0 libbonobo2-0 libbonobo2-common libbonoboui2-0 dbus-glib-1
libbonoboui2-common libbz2-1.0 libc6 libcap1 libcdparanoia0 libcomerr2
libcupsys2-gnutls10 libdb3 libdb4.2 libenchant1 libesd0 libexpat1
libfontconfig1 libfreetype6 libfribidi0 libgcc1 libgconf2-4 libgcrypt11
libgdbm3 libglade2-0 libglib2.0-0 libgnome-keyring0 libgnome2-0
libgnome2-common libgnomecanvas2-0 libgnomecanvas2-common libgnomecups1.0-1
libgnomeprint2.2-0 libgnomeprint2.2-data libgnomeprintui2.2-0 libfam0c102
libgnomeprintui2.2-common libgnomeui-0 libgnomeui-common libgnomevfs2-0
libgnomevfs2-common libgnutls11 libgpg-error0 libgtk2.0-0 libgtk2.0-bin
libgtk2.0-common libgucharmap4 libhal-storage0 libhal0 libice6 libidl0
libjpeg62 libkrb53 libldap2 liblocale-gettext-perl liblzo1 libmagic1
libmyspell3 libncurses5 libnewt0.51 libopencdk8 liborbit2 libpam-modules
libpam-runtime libpam0g libpango1.0-0 libpango1.0-common libperl5.8
libpng12-0 libpopt0 libsasl2 libslang2 libsm6 libsmbclient libstdc++5
libstdc++6 libtasn1-2 libtext-charwidth-perl libtext-iconv-perl
libtext-wrapi18n-perl libtiff4 libx11-6 libxcursor1 libxext6 libxft2 libxi6
libxinerama1 libxml2 libxrandr2 libxrender1 login lsb-base ncurses-bin
passwd perl perl-base perl-modules sed shared-mime-info ttf-bitstream-vera
ucf whiptail x11-common xlibs-data zlib1g

0 packages upgraded, 131 newly installed, 0 to remove and 0 not upgraded.

80

7.3. APT EDOS Project: WP2D2

7.3.4 Conclusions on APT

It is quite clear now that

Apt is not complete : the first test shows that it does not find a solution for in-
stallingabiword-gnome=2.2.7-3, while there are many such solutions.
This is enough to rule out it as a candidate tool for checking installability.

Apt solutions are order-dependent : the second and third test only differ in the
order of the parameters, not their value, yet the solutions found are different.
This show that the solution set is order dependent, which is not stated in the
documentaiton, and is quite surprising for a user.
Nevertheless, this is perfectly consistent with the fact that the depsolver in
APT examines dependencies in a left-to-right order.
This is actually usedon purposeby many packagers to specify dependencies
in a preferred order, like in cases where one finds

apache|tomcat5|httpd

which is totally silly in a declarative world, as apache and tomcat5 both
provide httpd, but makes perfect sense if order matters, as the maintainer is
saying that she prefer apache over tomcat5 and tomcat5 over all other httpd
servers.

7.3.5 A sidenote: upgradeability in practice, and a suggestion for the
future

Another point we want to stress is the extreme user-unfriendliness of the APT tool
in the rare occasions when upgrading or installing one package ends up into a major
overhaul of the user installation. . . Here follows a real-world example recorded by
one of the authors of this report during his daily running of his beloved Debian-
based machine.

sudo apt-get install debhelper
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
armagetron armagetron-common autoconf bonobo-activation codebreaker
debconf debconf-i18n debconf-utils dialog esound-common fb-music-high
fontconfig frozen-bubble-data grepmail gv intltool-debian
libaiksaurus-data libaiksaurus0c102 libatk1.0-0 libatk1.0-dev
libbonobo-activation4 libbonobo2-0 libbonobo2-common libdb3
libdbd-mysql-perl libdbi-perl libeel2-data libesd0
libfilehandle-unget-perl libfontconfig1 libforms1 libfreetype6
libfreetype6-dev libgcc1 libgcrypt1 libgdbm3 libgladexml-perl
libglib2.0-0 libglib2.0-dev libgnome-perl libgnutls7 libgsf-1

81

EDOS Project: WP2D2 7.3. APT

libgtk-imlib-perl libgtk-perl libgtk1.2 libgtk1.2-common libgtk1.2-dbg
libhtml-parser-perl libice-dev libice6 libidl0 liblinc1
liblocale-gettext-perl liblzo1 libmagick5.5.7
libmail-mbox-messageparser-perl libmysqlclient12 libncurses5
libncurses5-dev libncursesw5 libnet-daemon-perl libnet-perl libnewt0.51
libogg-dev libogg0 liborbit2 libpaper1 libplrpc-perl libpng12-0
libpopt-dev libpopt0 libsdl-console libsdl-gfx1.2 libsdl-image1.2
libsdl-ttf1.2 libsdl-ttf2.0-0 libsdl1.2debian libsdl1.2debian-oss
libsm-dev libsm6 libsmpeg0 libssl0.9.7 libstartup-notification0
libstdc++5 libt1-5 libtext-charwidth-perl libtext-iconv-perl
libtext-wrapi18n-perl libtiff-tools libwmf0.2-7 libwww-perl libx11-6
libx11-dev libxaw7 libxaw7-dev libxcursor1 libxext-dev libxext6
libxft1 libxft2 libxi-dev libxi6 libxml-parser-perl libxml2 libxmu-dev
libxmu6 libxmuu-dev libxmuu1 libxp-dev libxp6 libxpm-dev libxpm4
libxrandr-dev libxrandr2 libxrender-dev libxrender1 libxt-dev libxt6
libxtrap-dev libxtrap6 libxtst-dev libxtst6 libxv-dev libxv1 lyx
lyx-common lyx-xforms perl perl-base perl-modules perlmagick pkg-config
pm-dev po-debconf render-dev tcl8.4 tcl8.4-dev tktable transfig ucf
whiptail x-dev xaw3dg xbase-clients xfig xfree86-common xlibmesa-dri
xlibmesa-gl xlibmesa-gl-dev xlibosmesa-dev xlibosmesa4 xlibs xlibs-data
xpdf-common

The following packages will be REMOVED:
autoconf2.13 frozen-bubble frozen-bubble-lib gconf2 gnomemeeting
itk3.1-dev libbonoboui2-0 libbonoboui2-common libdigest-md5-perl
libforms0.89 libgconf2-4 libgnome2-0 libgnome2-common libgnomeui-0
libgnomevfs2-0 libgnomevfs2-common libgtk1.2-dev libgtk2.0-0png3
libgtk2.0-dev libmime-base64-perl libpango1.0-dev libsdl-mixer1.2-dev
libsdl-perl libsdl-ttf1.2-dev libsdl1.2-dev libsmpeg-dev
libstorable-perl nautilus tk8.3-dev tktable-dev x-window-system
x-window-system-core xaw3dg-dev xlib6g xlib6g-dev xlibmesa-dev
xlibmesa3 xlibosmesa3 xlibs-dev xlibs-pic xpdf xpdf-reader

The following NEW packages will be installed:
armagetron-common debconf-i18n fb-music-high fontconfig intltool-debian
libaiksaurus-data libaiksaurus0c102 libeel2-data libfilehandle-unget-perl
libfontconfig1 libforms1 libgdbm3 libgnutls7 libgsf-1 libice-dev libice6
libidl0 liblzo1 libmagick5.5.7 libmail-mbox-messageparser-perl
libmysqlclient12 libncursesw5 libnet-daemon-perl libnewt0.51 libpaper1
libplrpc-perl libsdl-console libsdl-gfx1.2 libsdl-ttf2.0-0 libsm-dev
libsm6 libssl0.9.7 libstartup-notification0 libt1-5 libtext-charwidth-perl
libtext-wrapi18n-perl libtiff-tools libwmf0.2-7 libx11-6 libx11-dev
libxcursor1 libxext-dev libxext6 libxft1 libxft2 libxi-dev libxi6 libxmu-dev
libxmu6 libxmuu-dev libxmuu1 libxp-dev libxp6 libxpm-dev libxpm4 libxrandr-dev
libxrandr2 libxrender-dev libxrender1 libxt-dev libxt6 libxtrap-dev libxtrap6
libxtst-dev libxtst6 libxv-dev libxv1 lyx-common lyx-xforms pm-dev po-debconf
render-dev tcl8.4 tcl8.4-dev ucf x-dev xlibmesa-dri xlibmesa-gl
xlibmesa-gl-dev xlibs-data

75 packages upgraded, 80 newly installed, 42 to remove and 858 not upgraded.

82

7.4. PORTAGE EDOS Project: WP2D2

Need to get 67.1MB of archives. After unpacking 26.9MB will be used.
Do you want to continue? [Y/n] n
Abort.

It is quite clear that a careful user is not going to let such an upgade go through
unless some hint is given by the system that core functionalities like those sug-
gested byx-window-system andx-window-system-core, which the tool wants
to remove, will not disappear, but will be properly replaced by some of the 80 new
packages whose installation is suggested.

In other terms, next generation depsolvers will need toexplainin a reasonable
human-readable form the solution they found to the installation or upgrade prob-
lem, in order for the user to take an informed action about what they propose to
do. This comment is clearlynot limited to the APT tool, but extends to all tools we
have tested insofar.

7.4 Portage

This tool is different from other Linux distributions since it is inspired in BSD ports
system. In this last case, we download the source code, unpack in a directory (e.g.
/usr/port) and compile it. Portage allow you to update your package tree over the
internet withemerge -u worldcommand. Or you can download only the packages
with emerge –sync.

But Portage is also a package building and installation system. We can compile
and install and application with the commandemerge package.

When tested on the Car/Glass package tree2, Portage fails to install the pack-
ages and blocks on the following conflicts:

z10n cm-test # emerge -pv --tree cm-test/car

These are the packages that I would merge, in reverse order:

Calculating dependencies ...done!
[blocks B] =cm-test/tyre-2 (is blocking cm-test/glass-2)
[ebuild N] cm-test/car-1 0 kB [1]
[ebuild N] cm-test/door-2 0 kB [1]
[ebuild N] cm-test/window-2 0 kB [1]
[ebuild N] cm-test/glass-2 0 kB [1]
[ebuild N] cm-test/wheel-3 0 kB [1]
[ebuild N] cm-test/tyre-2 0 kB [1]
[ebuild N] cm-test/engine-2 0 kB [1]

Total size of downloads: 0 kB
2Package build and tests for Portage had been done by Mário Morgado from Caixa Ḿagica team.

83

EDOS Project: WP2D2 7.4. PORTAGE

car

door

engine

11

2

1

2

2

3

turbo

tyre

window

1

2

2

1

0
2

1
conflicts

glass

wheel

glass

Figure 7.5: Graph of wheel-3 installed

Scenario 1 - fix “wheel = 3”

We can then try to help Protage by installingwheel-3before installing the door
package.

z10n ~ # emerge -pv cm-test/wheel

These are the packages that I would merge, in order:

Calculating dependencies ...done!
[ebuild N] cm-test/tyre-2 0 kB [1]
[ebuild N] cm-test/wheel-3 0 kB [1]

The marked packages are now installed (figure7.5).
If we try to install the door package:

z10n ~ # emerge -pv cm-test/door

These are the packages that I would merge, in order:

Calculating dependencies ...done!
[blocks B] =cm-test/tyre-2 (is blocking cm-test/glass-2)
[ebuild N] cm-test/glass-2 0 kB [1]
[ebuild N] cm-test/window-2 0 kB [1]
[ebuild N] cm-test/door-2 0 kB [1]

Total size of downloads: 0 k

Portage fails again to find a solution because it does not solve the glass-2 vs
tyre-2 conflict.

84

7.4. PORTAGE EDOS Project: WP2D2

car

door

engine

11

2

1

2

2

3

turbo

tyre

window

1

2

2

1

0
2

1
conflicts

glass

glass

wheel

Figure 7.6: Graph of glass-1 and window-1 installed

Scenario 1 - fix “window = 1”

Let’s install window-1 before the other packages:

z10n ~ # emerge -pv =cm-test/window-1

These are the packages that I would merge, in order:
Calculating dependencies ...done!
[ebuild N] cm-test/glass-1 0 kB [1]
[ebuild N] cm-test/window-1 0 kB [1]
Total size of downloads: 0 kB

Glass-1 and window-1 are installed (figure7.6).
We can then install door:

z10n ~ # emerge -pv cm-test/door
These are the packages that I would merge, in order:

Calculating dependencies ...done!
[ebuild U] cm-test/glass-2 [1] 0 kB [1]
[ebuild U] cm-test/window-2 [1] 0 kB [1]
[ebuild N] cm-test/door-2 0 kB [1]

Total size of downloads: 0 kB

The instalation occurs without problems, and an upgrade of the dependencies
(glass and window) is performed. This is different from theAptalgorithm behavior.

Installation of car would fail as in the first step since it would conflict with
tyre-2.

85

EDOS Project: WP2D2 7.5. SMART

Scenario 1 - fix “wheel = 2”

This scenario is not worth testing since in last section we discover that all the
dependencies are updated as well. The instalation of car will always lead to an
update to wheel-3 and the conflict would remain.

7.4.1 Conclusions on Portage

Even without looking at the source code, it is quite clear that the Portage algorithm
for finding a solution in an installation problem goes along the following lines:

1. List the dependencies of a package

2. Try to install dependencies one-by-one in the order they are presented in the
ebuild package .If the dependency has an update, update it.

3. For each dependency, try to install its sub-dependencies by the greater ver-
sion presented.

4. If one subdependency fail by conflict with a package that will be installed
(tyre=2 conflicted with glass=2), then the install operation aborts. It does
not try to backtrack and check lesser versions (tyre = 1, for instance, or even
window = 1).

5. If one subdependency fail by conflict with a package that is already installed
(case where wheel and tyre were installed), then the install exit with a failure
message.

It is clear that Portage’s solver is not complete.

7.5 SMART

Smart is a package management system meta tool that offers some advanced fea-
ture with respect to package dependency management and installation.

Smart does not depend on any particular package management system but it
uses aplugin system for definingbackendsthat will take care of using a particular
package storage management system in order to perform package-related opera-
tions. Everybackendcan use one or severalchannelsin order to retrieve the needed
packages.Channelscan be of different types (e.g., HTTP, FTP or local reposito-
ries) and abstract the differences among the packages retrieval mechanisms.

Smart uses the notion oftransactionin order to compute a particular set of op-
erations necessary to perform an operation (e.g., installation or upgrade) on a given
set of packages. Differently to many other package management meta system that
do not make any effort to explore, even partially, the space of the possible solutions

86

7.5. SMART EDOS Project: WP2D2

with respect to a given target operation, Smart tries to do so and tries to pick the
“best” possible solution in that space.

The notion of“best” solution is given by apolicy that weights the found solu-
tions and allows Smart to choose the most suitable one with respect to the chosen
policy. There are several predefinedpoliciessuch as “remove the least number of
packages” or “upgrade the most number of packages with the less impact”, etc.
Other policies can be plugged in Smart by extending the relevant classes.

Smart has been proven to been an effective tools that is able to gracefully han-
dle package operations on client installed distributions.

By trying to obtain anoptimal solution, Smart explores the solution space
which is potentially huge, using some heuristics to avoid getting lost in such ex-
ploration.

7.5.1 Smart on the Car/Glass testbench

We use again the RPM repository with the Car/Glass packages, and create a Smart
in order to perform the tests.

Updating cache... #### [100%]

Fetching information for ’Repositorio Local’...
-> http://localhost/testRPMs/base/release
release #### [33%]
-> http://localhost/testRPMs/base/release.car
-> http://localhost/testRPMs/base/pkglist.car.bz2
pkglist.car.bz2 #### [66%]
release.car #### [100%]
Updating cache... #### [100%]

Channels have 9 new packages:
door-1-0@i586
engine-1-0@i586
glass-1-0@i586
turbo-1-0@i586
tyre-1-0@i586
tyre-2-0@i586
wheel-3-0@i586
window-0-0@i586
window-1-0@i586

87

EDOS Project: WP2D2 7.5. SMART

car

door

engine

11

2

1

2

2

3

turbo

tyre

window

1

2

2

1

0
2

1
conflicts

glass

glass

wheel

Figure 7.7: Graph of packages installed by Smart forcar.

Saving cache...

The result of the commandsmart install car is:

Computing transaction...
Installed packages (4):

car-2-0@i586 door-1-0@i586 engine-2-0@i586 wheel-2-0@i586
7.8kB of package files are needed.

Smart solve the conflicts and installedcar package in the first attempt. The
chosen packages for instalation are a interesting set as we can see in the picture
7.7. Every “branch” that had a conflic with other branch was excluded and a older
version of the package was used.

The wheel-3package was not installed andwheel-2was prefered. The same
for door-1.

The solution was not optimal because a newer version of wheel (version 3)
could be installed without conflict. Or in alternative, “door-2” could be installed.

Let’s check some other scenarii.

Scenario 1 - fix “wheel = 3”

In this scenario we will install first thewheel-3. This will freeze that branch.
Smart installed the newer versions since no conflict was present:

Computing transaction...
Installed packages (2):

tyre-2-0@i586 wheel-3-0@i586

88

7.5. SMART EDOS Project: WP2D2

We then tryed to install thecar package:

Computing transaction...
Installed packages (3):

car-2-0@i586 door-1-0@i586 engine-2-0@i586
5.8kB of package files are needed.

Smart installed the package by guessing well that the only version possible was
door-2.

Scenario 2 - fix “window = 1”

Now we forced the instalation of window-1 and Smart installed it and its depen-
dency, glass-1.

Now we try to install car. The expected behaviour was the instalation ofwheel-
3 since no conflict was expected. Smart had a strange behaviour here and installed
wheel-2. It was not necessary.

Scenario 3 - fix “wheel = 2”

Starting by installing wheel-2 Smart could installdoor-2but it had not.
It just installeddoor-1like it had detected that door-2 had a “possible” conflict.

7.5.2 Smart Algorithm

These tests already highlight part of the behevior of Smart’s algorithm:

1. check the dependencies of a package

2. try to install dependencies one-by-one

3. for each dependency, try to install its sub-dependencies by the greater version
presented. If the greater version has a conflict with a known package (even if
the version with the conflict will not be installed) than try to install an older
version of the dependency.

Unlike the previous tools, Smarts does try to backtrack and choose older ver-
sions of a package when a conflict is found during the state-space exploration.
Nevertheless, the backtracking system is not guarantee to find an optimal solution,
as we have seem in the previous examples.

7.5.3 Combinatorial explosion

Unfortunately, when performing server-side operations, such as checking the con-
sistency of package bases at the distribution source, the solution space is much
bigger than in the average use-case on a client installation, and Smart is unable to

89

EDOS Project: WP2D2 7.5. SMART

find a solution in an acceptable (or even practically finite) time for a significant
number of packages.

We verified this limitation by setting up a package base that comprises the
whole Debian Pool, and asking Smart to install a given package starting on an
empty system. Here are two examples

23576s = 6h30 to check installability of php3

/usr/bin/time smart --data-dir=/ext/tmp/smart install
--urls php3

Loading cache...
Updating cache... ##################### [100%]
Computing transaction...
/pool/main/libg/libgcrypt11/libgcrypt11 1.2.1-4 i386.deb
/pool/main/a/apache/apache-common 1.3.33-7 i386.deb
/pool/main/o/openssl/libssl0.9.7 0.9.7g-1 i386.deb
...
23576.80user 6h30 8.71system 13:09:13elapsed 49%CPU

Two months are not enough to check installability of achims-guestbook

/usr/bin/time smart --data-dir=/ext/tmp/smart install
--urls achims-guestbook

Loading cache...
Updating cache... ##################### [100%]
Computing transaction...
^C

This computation has been stopped two months after being started, without
ever returning a solution.

7.5.4 Conclusions on Smart

Smart is up to now the best tool in terms of completeness among the one analysed,
even if we have shown that the solutions provided by this tool are not necessarily
optimal from a user point of view.

We cannot say anything conclusive about completeness or soundness either: on
one side, the depsolver algorithm, using the predefined policies, is only available
as Python source code, and not formally described, so we could not really check its
correctness; on the other side its explosive behavior has prevented us from being

90

7.6. URPMI EDOS Project: WP2D2

able to collect experimental evidence of its completeness (or incompleteness).

Nevertheless, the combinatorial explosion exposed by the two tests above is ev-
idently largely enough to rule out Smart as a possible candidate tool for checking
installability: our tool must handle dozens of thousands of packages, and cannot
spend an unbounded amount of time on checking installability for just one of them.

7.6 URPMI

Urpmi is the depsolver used in the Mandriva distribution; this section contains a
description of its inner working as presented by the maintainer of Urpmi himself.

7.6.1 Algorithms used

Basically urpmi constructs a dependency tree from a set of demanded modules.
It begins to load the dependency tree for the known set of packages available in
its repositories; then a simple tree-walk algorithm is used to gather all required
packages. urpmi being an interactive tool, it is able to propose different sets of
packages than can solve the set of requirements for the demanded modules. For
example, to solve a dependency on ”webfetch” urpmi can use the ”curl” or the
”wget” package, so it will ask the user for it.

The dependencies can be versioned, so urpmi maintains a range of accept-
able versions for each dependency, narrowing them down when the tree walk pro-
gresses.

When urpmi encounters a conflict (either because it is a conflict explicitly
marked in the package, or because two packages A and B require another package
C with non-overlapping version requirements), it backtracks in the dependency tree
and tries another path.

7.6.2 Upgradeability in practice

Given a list of arguments (packages to be installed or upgraded), urpmi produces
deterministic results.

urpmi will never downgrade a package. So, if asked to install a package A that
requires an older package B than the B currently installed on the system, it will
abort.

Some rare situations can make urpmi hang in an infinite loop.

urpme, a counterpart to urpmi, is used to remove packages, and all packages
that depend on them recursively.

91

EDOS Project: WP2D2 7.6. URPMI

7.6.3 Notes on implementation

urpmi is written mostly in Perl 5 (about 10,000 lines of code), with a small part in
C, used to bind it to the API of the RPM library.

7.6.4 Examples

Here’s a simple example of urpmi installing a new package, taking care of conflicts
and broken dependencies:

sudo urpmi libdb4.2-static-devel
The following packages have to be removed for others

to be upgraded:
libdb4.1-devel-4.1.25-9mdk.i586
(due to conflicts with libdb4.2-devel)

libdb4.1-static-devel-4.1.25-9mdk.i586
(due to unsatisfied db4.1-devel == 4.1.25-9mdk) (y/N) y

To satisfy dependencies, the following packages are going
to be installed:

libdb4.2-devel-4.2.52-9mdk.i586
libdb4.2-static-devel-4.2.52-9mdk.i586
Proceed with the installation of the 2 packages?

(43 MB) (Y/n) y
installing libdb4.2-static-devel-4.2.52-9mdk.i586.rpm

libdb4.2-devel-4.2.52-9mdk.i586.rpm
from /var/cache/urpmi/rpms

removing libdb4.1-static-devel-4.1.25-9mdk.i586
libdb4.1-devel-4.1.25-9mdk.i586

Preparing... ####################
1/2: libdb4.2-devel ####################
2/2: libdb4.2-static-devel ####################

7.6.5 urpmi on the Car/Glass testbench

We use the same RPM repository as before to perform the tests. A naive approach
is to tell urpmi to install all the packages in this repository.

Passing all the rpm as arguments

urpmi *.rpm
Some package requested cannot be installed:
door-2-0.i586 (due to missing window-2-0.i586)
engine-1-0.i586
glass-2-0.i586
tyre-1-0.i586

92

7.6. URPMI EDOS Project: WP2D2

Figure 7.8: Car/Glass: Graph of the packages installed when passed as arguments
to urpmi.

wheel-3-0.i586
window-0-0.i586
window-2-0.i586 (due to unsatisfied glass[== 2])
Continue? (Y/n)
installing glass-1-0.i586.rpm window-1-0.i586.rpm wheel-2-0.i586.rpm
engine-2-0.i586.rpm tyre-2-0.i586.rpm car-2-0.i586.rpm door-1-0.i586.rpm
turbo-1-0.i586.rpm
Preparing...

1/8: door warning: user prrt does not exist - using root
2/8: engine warning: user prrt does not exist - using root
3/8: wheel warning: user prrt does not exist - using root
4/8: glass warning: user prrt does not exist - using root
5/8: window warning: user prrt does not exist - using root
6/8: tyre warning: user prrt does not exist - using root
7/8: car warning: user prrt does not exist - using root
8/8: turbo warning: user prrt does not exist - using root

The result is basically the same as the one we obtained previously with smart
when installing the car from the repository. urpmi solves the conflicts and installs
car at the first attempt. However, it does not find the optimum solution. It discarded
wheel-3 and also door-2 which are the only 2 branches leading with a potential
conflict (figure??).

However, this test is far from being representative of a package installation in
the real world. To be fair, a RPM repository must be created with a hdlist for urpmi.
This is what we are doing in the next section.

93

EDOS Project: WP2D2 7.6. URPMI

Using a repository

First we need to create the repository before we can use it. Then we will try to
install car without giving any more clue to urpmi to see what it can find by itself.

genhdlist
urpmi.addmedia wp2d2-car_test . with hdlist.cz
added medium wp2d2-car_test
wrote config file [/etc/urpmi/urpmi.cfg]
examining synthesis file [/var/lib/urpmi/synthesis.hdlist.The Ultimate Linux
Desktop DVD (Mandriva 2006 Powerpack (local) 1).cz]
copying source hdlist (or synthesis) of "wp2d2-car_test"?
...copying done
/bin/cp: cannot stat ‘/home/EDOS/RPMS.car/pubkey’: No such file or directory
...copying failed
examining hdlist file [/var/cache/urpmi/partial/hdlist.wp2d2-car_test.cz]
writing list file for medium "wp2d2-car_test"
(...)
built hdlist synthesis file for medium "wp2d2-car_test"
found 0 headers in cache
removing 0 obsolete headers in cache
wrote config file [/etc/urpmi/urpmi.cfg]

The repository is built and registered with the client (eg. the user laptop) with
no particular problem except that urpmi.addmedia complains about a file we did
not provide but which is not relevant for this experiment (a pgp key for security
checking).

Now, let’s try to install the car package.

urpmi car
To satisfy dependencies, the following 7 packages are going to be
installed (0 MB):
car-2-0.i586
door-2-0.i586
engine-2-0.i586
glass-2-0.i586
tyre-2-0.i586
wheel-3-0.i586
window-2-0.i586
Is this OK? (Y/n)
installing tyre-2-0.i586.rpm wheel-3-0.i586.rpm door-2-0.i586.rpm glass-2-0.i586.rpm
window-2-0.i586.rpm engine-2-0.i586.rpm car-2-0.i586.rpm from /home/EDOS/RPMS.car/.
Installation failed:

tyre = 2 conflicts with glass-2-0.i586

94

7.6. URPMI EDOS Project: WP2D2

Now urpmi is selecting correctly wheel-3 and door-2 but it is failling to install
them altogether with the car because it detected the conflict between tyre-2 and
glass-2. It appears that urpmi selects always all the freshest versions and it does
not backtrack for example to choose tyre-1 instead of tyre-2.

urpmi fails in installing the car directly. Let’s try to find alternative scenarios
to remedy this situation. That will also let us see how urpmi behaves with different
pre-existing installations.

Scenario 1 - Trying to install tyre-1 first

Knowing the best solution in advance, let’s start by installing tyre-1 and see if it
helps urpmi to find this optimum installation.

urpmi tyre-1
installing tyre-1-0.i586.rpm from /home/EDOS/RPMS.car/.
Preparing...

1/1: tyre warning: user prrt does not exist - using root
urpmi car
To satisfy dependencies, the following 7 packages are going to be installed (0 MB):
car-2-0.i586
door-2-0.i586
engine-2-0.i586
glass-2-0.i586
tyre-2-0.i586
wheel-3-0.i586
window-2-0.i586
Is this OK? (Y/n)
installing tyre-2-0.i586.rpm wheel-3-0.i586.rpm door-2-0.i586.rpm glass-2-0.i586.rpm
window-2-0.i586.rpm engine-2-0.i586.rpm car-2-0.i586.rpm from /home/EDOS/RPMS.car/.
Installation failed:

tyre = 2 conflicts with glass-2-0.i586

It does not solve the problem at all, because urpmi tries to be too smart by
upgrading tyre to the latest version, and this is just what we intended to avoid.
Unfortunately, it does try to upgrade tyre here and it fails to install again, for the
same reason as before.

Scenario 2 - Trying to install window-1 first

urpmi did not use our clue when we installed tyre-1 first, let’s see what it does
when we try to install window-1 first, and then the car.

urpmi window-1
To satisfy dependencies, the following 2 packages are going to be
installed (0 MB):

95

EDOS Project: WP2D2 7.6. URPMI

glass-1-0.i586
window-1-0.i586
Is this OK? (Y/n)
installing glass-1-0.i586.rpm window-1-0.i586.rpm from /home/EDOS/RPMS.car/.
Preparing...

1/2: glass warning: user prrt does not exist - using root
2/2: window warning: user prrt does not exist - using root

urpmi car
To satisfy dependencies, the following 5 packages are going to be installed
(0 MB):
car-2-0.i586
door-2-0.i586
engine-2-0.i586
tyre-2-0.i586
wheel-3-0.i586
Is this OK? (Y/n)
installing tyre-2-0.i586.rpm wheel-3-0.i586.rpm door-2-0.i586.rpm
engine-2-0.i586.rpm car-2-0.i586.rpm from /home/EDOS/RPMS.car/.
Preparing...

1/5: engine warning: user prrt does not exist - using root
2/5: door warning: user prrt does not exist - using root
3/5: tyre warning: user prrt does not exist - using root
4/5: wheel warning: user prrt does not exist - using root
5/5: car warning: user prrt does not exist - using root

Success! This time urpmi installs everything and it reaches the optimum instal-
lation (figure??). With reason it did not try to upgrade the window.

Scenario 3 - Trying to install wheel-2 first

Let’s repeat the experiment, this time by installing wheel-2 first.

urpmi wheel-2
installing wheel-2-0.i586.rpm from /home/EDOS/RPMS.car/.
Preparing...

1/1: wheel warning: user prrt does not exist - using root
urpmi car
To satisfy dependencies, the following 5 packages are going to be installed (0 MB):
car-2-0.i586
door-2-0.i586
engine-2-0.i586
glass-2-0.i586
window-2-0.i586
Is this OK? (Y/n)

96

7.6. URPMI EDOS Project: WP2D2

Figure 7.9: Car/Glass: Graph of the installation obtained by urpmi with Scenario
3.

installing door-2-0.i586.rpm glass-2-0.i586.rpm window-2-0.i586.rpm engine-2-0.i586.rpm
car-2-0.i586.rpm from /home/EDOS/RPMS.car/.
Preparing...

1/5: engine warning: user prrt does not exist - using root
2/5: glass warning: user prrt does not exist - using root
3/5: window warning: user prrt does not exist - using root
4/5: door warning: user prrt does not exist - using root
5/5: car warning: user prrt does not exist - using root

Another success, but this time urpmi did not reach the optimum installation as
shown in figure??. It detected a conflict with the wheel-3 and tyre-2 and it did not
backtrack to find a better solution with tyre-1 instead.

7.6.6 Conclusions on Urpmi

urpmi finds the same solutions as smart in the first attempt when it is given the
complete list of RPM packages as command line parameters. However, it fails
when relying on the repository hdlist only. When starting with a partially installed
environment in Scenarii 2 and 3, it has a good solution comparable to smart.

For the overall problem, urpmi seems to have the same performance of apt. It
can not backtrack and solve the conflict problem.

Interestingly, in the alternative scenarios explored with different pre-existing
installations, urpmi out-performs smart, however it does only find the optimum
solution once out of 3, and it fails in one situation.

As it is evident in this presentation, Urpmi does not try to be complete, as a
depsolver, and for this reason it cannot be used for maintaining distributions on the
server side, where we need to check installability of every single package.

97

EDOS Project: WP2D2 7.7. CONCLUSIONS

7.7 Conclusions

The problem of finding an optimal installation candidate, w.r.t. some criteria, is
computationally hard and is treated differently by different tools.

Some rely on special heuristics, like Apt, Portage and Urpmi, that perform
reasonably well on well-behaved repositories, and ensure that an answer will be
reported in a limited time, but at the price of giving up completeness, which means
failing to find an installation candidate when it is located too far from the solution
suggested by the heuristics.

Others, like Smart, strive to be complete, and really try to explore the solution
space, using some special heuristic to try and limit the effect of the combinatorial
explosion of the solution space, but at the price of having unacceptably high com-
putation times on some cases; as we have seen, the solution found is not necessarily
always optimal either.

We conclude that none of these tool is adapted to checking installability on the
server-side, to guarantee quality of a distribution, either because of incompleteness
(Apt, Portage, Urpmi), or because of complexity (Smart), and we have hence built
our own tools, which are soundly based on formal methods, are complete and per-
form extremely well on the real-world cases.

The content of this chapter should in no way be construed as a criticism of
the tools we analysed: they do try to solve a much harder problem than ours, and
they really try their best at it, handling all the added complexity of the extra bits of
metadata associated to package management: we know of no satisfactory solution
for this problem up to now, and our tools arenot a replacement for Apt, Protage,
Urpmi, Smart and the like.

Nevertheless, we do hope that the detailed analysis presented here will help the
designers of future generation client-side package management meta-tools in their
quest of the best tradeoff between efficiency and completeness.

98

Chapter 8

Tools and software currently
delivered by the WP2 project
team.

As we have clearly demonstrated in the previous chapter, no mainstream existing
tool we are aware of can be satisfactorily employed to efficiently perform the static
analysis of large package repositories that we set out to do.

In this chapter, we present the tools and the algorithms we have developed,
to perform the analysis and the result of some benchmarks, which are extremely
satisfactory.

Figure 8.1: The framework

8.1 The framework

We have built a framework that can be used by adistribution editorto asses the
quality of its distribution and to track problems concerning the underlying pack-
age repository (i.e., broken packages in non trimmed repositories). Actually we
have two distinct sets of tools (Figure8.1): a set of independent elements (i.e.,the

99

EDOS Project: WP2D2 8.2. THE TOOLCHAIN

toolchain) that executes the analysis by incrementally processing the data collected
from a repository; and a very specialized tool that does the analysis in one step.

The rationale for having these two sets of tools is that we want to be able to
use the data for other kind of analyses as well. Having a modularized toolchain
enables us to reuse part of it even for other purposes. On the other hand, having a
specialized, small and efficient tool that performs this particular kind of analysis is
good for thosedistribution editorsthat do not need other kind of features.

Moreover, having plenty of independent tools that execute the same kind of
analysis allowed us to validate the whole approach by comparing the results ob-
tained from these different sources.

8.2 The toolchain

In this section we detail the utilities that comprise the toolchain part of the frame-
work. Table8.2lists these, along with their kind (CLI for tools with command-line
interfaces, LIB for software libraries, and GUI for tools with graphical user inter-
faces), programming language, code size (in number of words as reported bywc
-w) and license.

Tool Kind Language Source size (words) License
ceve CLI Ocaml 15k GPL
EDOSLib LIB Java 12k LGPL
ProblemGenerator CLI Java 5k GPL
EDOS Explorer CLI Java 3k GPL
EDOS Visualizer GUI Java 4k GPL
EDOS Statistics CLI Java 1k GPL
CP/Mozart-Oz Solver CLI Mozart-Oz 2k GPL
SAT transcoder CLI Ocaml 6k GPL
Naive CLI Ocaml 5k GPL
debcheck CLI Ocaml 20k GPL
history CLI Ocaml 35k GPL

Table 8.1: Utilities of the EDOS toolchain.

8.2.1 Ceve

Ceve, the first element of the toolchain, is a generalized package parser. It can read
several package formats (most importantly RPM and DEB packages and distribu-
tions), but also the XML rpm-metadata format [29]), and output their metadata in
several different formats, of which the most important is the EGraph format de-
scribed in the next section. Ceve is written in OCaml, and it uses the CDuce [28]
language for XML input and output.

The full range of output formats that Ceve can produce is:

100

8.2. THE TOOLCHAIN EDOS Project: WP2D2

• The EGraph format;

• The rpm-metadata format;

• A pretty-printing format (a list of all metadata, mostly useful for debugging);

• A dependency graph in the graphviz format;

• A conjunctive normal form format that can be read by the FGrasp solver;

• The SQL format used by rpmfind.

The function of Ceve in the toolchain is that of parsing package metadata from
all sorts of formats into one common format (the EGraph format). Since there are
many differences between the various package formats, Ceve cannot simply read
metadata and output them; the data has to be manipulated. The most notable ex-
ample of this is RPM dependencies; RPM cannot declare dependencies on other
packages directly, but only by way of features. Ceve can resolve these indirect de-
pendencies, so that if packageA declares a dependency on featureF , and feature
F is provided by packagesB andC, in the output packageA will need either pack-
ageB or packageC. Also, packages that install different files in the same location
conflict with each other, but this is not explicitly declared; Ceve can explicitly add
these conflicts to the output.

8.2.2 EDOSLib

EDOSLibis a Java library that provides the foundation for some of the tools that
are used in the framework. In particularEDOSLibimplements: an object model
for representing package repositories information and their structure; a set of func-
tionalities to explore manage the package repository struture (e.g., extracting sub-
repositories and dependency closures);EGraphinput/output functionalities.

The EDOSLibis a concrete implementation of the abstraction that have been
presented in the formalization given in Section6.1.

A reference and the documentation of theEDOSLibcan be found in the Ap-
pendices of this document.

8.2.3 The EGraph package repository description format

The EGraphfile format is a package-format-agnostic representation of the infor-
mation that is encoded in the packages stored in a repository. It is based on the
XML [10] language and in particular it complies with theGraphML [9] specifica-
tion. This intermediate format has been conceived in order to have a common and
uniform representation of the metadata that can be used as input by all the tools of
our framework, without having to develop a filter for each package format.

TheGraphMLformat is well suited for this purpose because the dependency re-
lationships among packages are easily represented by using graphs and, moreover,

101

EDOS Project: WP2D2 8.2. THE TOOLCHAIN

it can be extended in order to accommodate other significant metadata. Figure8.2
shows an excerpt of the EGraph format.node tags specify units (Definition1) and
the associateddata explicit the available versions, thus the actual packages and,
for each version, theprovided virtual packages.

Dependencies are specified usingedge tags. source andtarget attributes
defines the units between the dependency is established, while thetype attribute
defines the dependency type (i.e.,run orconflict). A version tag specialize the
information by giving, in case, version constraints on the dependency requirement.

<node package="aewm" id="aewm">...
<version number="1.2.0-1"/>
<provides version="1.2.0-1"

target="x-window-manager"/>...

<edge source="aewm" target="libc6"
type="run">...

<version source="1.2.0-1" operator="ge"
target="2.2.4-4"/>...

Figure 8.2: Excerpt of an EGraph file

TheEGraphformat is an effort for proposing a new metadata format that can
complement and extend the existing metadata specified at the package level in order
to perform more complicated and effective checking on package repositories, as
described in the previous deliverable [15].

8.2.4 ProblemGenerator

ProblemGeneratoris anEDOSLib-based preprocessor that takes as input theEGraph
format representing a package repository and gives an encoding of the installabil-
ity problem in order to verify if the repository is trimmed or not. In particular
ProblemGeneratorperforms three steps:

• Extract the package subrepository underlying the dependency closure for
each package that has to be analyzed.

• Map the standard package version numbers to integers, as mentioned in Sec-
tion 6.1; This mapping is necessary in order to reason on dependency rela-
tionships with integer-specified-constraints.

Moreover, while generating CP problems we must take care of a problem that
may occur when dealing with Virtual Packages or Feautres (i.e., package infor-
mation specified through a<provides> tag). In some package repositories (De-
bian’s above all) it is allowed for a virtual package to have the same name of a

102

8.2. THE TOOLCHAIN EDOS Project: WP2D2

standard package. Usually this happens to “semantically-related” packages. For
examplemailx, which is a mail user agent package is also provided as a virtual
package bymailutils which happens to be the GNU version of themailx user
agent1. This poses some problems when setting up CP problems because if not
properly handled can lead to inaccurate and confusing constraint (due by the inher-
ent ambiguity of a given identifier, is it a standard or a virtual package?) In order
to do so, before generating the CP problem the Problem Generator:

• Expands all the virtual package references which appear in some dependency
list of some package to a list of alternatives, made of all the packages (and
their associated versions) which provides that virtual package.

• Processes in a different way the generation of those expansions:

– If the virtual package reference appears in adependrelationship we
generate an “or” dependency list.

– If the virtual package reference appears in aconflict relationship, we
generate an “and” dependency list. This is done because an alternative
conflict doesn’t make sense.

• Takes care of removing, from a dependency list, any reference to the package
associated with the name of the one the list belongs to. This is necessary
because of possible name clashes between the standard and virtual packages.
For example a packageP providingVP might have a referenceVP inside one
of its dependency lists2. After the virtual package references expansion, this
will generate self dependencies which can be problematic. For example in a
conflict list where the packageP providingVP conflicts withVP the package
would conflict with itself.

The output is in the format suitable to be processed by the solvers that will
perform the actual verification.

8.2.5 EDOS Explorer

The EDOS Exploreris an EDOSLib-based command line utility that allows the
user to effectively navigate in a package repository and to perform operations on it.
Actually EDOS Exploreris a command line shell that exposes the functionalities
of theEDOSLib.

EDOS Explorersupports the handling of several package repositories at the
same time, with the possibility of switching among them in order to perform dif-
ferent operations. The supported command are summarized in the following table:

1There are more than 400 clashing packages in the whole Debian Pool.
2Actually this could and should happen only in conflict lists. In fact, a packageP providingVP

and depending onVP doesn’t make too much sense

103

EDOS Project: WP2D2 8.2. THE TOOLCHAIN

Command Description
load Load a package repository
save Save the current package repository
list List the available package repositories
listpackages List all the packages in the current package repository
info Show information about a given package
whatprovides Show the provided features of a given package
whoprovides Show the packages providing the given feature
getrelations Show the dependency relationships of a given package
showunmet Show the unmet dependencies in the package repositories
extract Extract the package cone with respect a given package
diff Show the differences between the current and the

given package repository

8.2.6 EDOS Visualizer

TheEDOS Visualizeris anotherEDOSLib-based utility that allows the user to ex-
plore in a graphical way a package repository and visually represent its complexity
through the representation of the inter-dependencies among packages.

Figure 8.3: The EDOS Visualizer utility

Figure8.3shows TheEDOS Visualizerwindow. Multiple package repositories
can be loaded and managed in different tabs. The left part of each tab shows in
a tree-oriented representation all the units present in the repository and, for every
unit all the packages belonging to that unit.

104

8.2. THE TOOLCHAIN EDOS Project: WP2D2

By expanding the tree nodes it is possible to obtain all the information regard-
ing the selected package: its provided features and its dependency requirements.

The right part of the tab, on the other hand, shows the graphical representation
of the dependency graph. Units are represented by graph vertices and relationships
among packages in the different units are represented by graph edges.

The Different colors of the graph elements represent the different kinds of ele-
ments in the package repository:

Graph element Color Package repository element
Vertex Red Unit
Vertex Blue Virtual package
Vertex Green A dummy vertex used to model alternative

dependency relationships
Edge Black Standard dependency (RUN or INSTALL)
Edge Blue Provided by relationship
Edge Red Conflict dependency
Edge Gray Unmet dependency

TheEDOS Visualizerallows to access to all the functionalities of theEDOSLib, in
particular package repositories loading, saving and cone extraction. The extracted
cone are presented as new package repositories in new tabs.

Moreover theEDOS Visualizerprovides some “highlighting” functionalities
that allows the user to better visualize the structure of the package repository de-
pendency graph:

• Selected vertices highlighting

• Neighborhood highlighting (i.e., the immediate connected units with a de-
pendency relationship). By iterating this kind of highlighting several times
it is possible to incrementally show the package cone at a given depth.

• Standard dependency highlighting.

• Conflict highlighting.

• Package cone highlighting.

TheEDOS Visualizer, finally, allows the user to interact with the dependency
graph visualization by performing several operation on it, such as zooming, rota-
tion, vertex selection and displacement.

8.2.7 EDOS Statistics

EDOS Statisticsuses theEDOSLibin order to create some useful statistics about
the structure of a given package repository. In particular, given a package repos-

105

EDOS Project: WP2D2 8.2. THE TOOLCHAIN

itory and its dependency graph,EDOS Statisticscomputes the following parame-
ters:

• Total number of vertices (i.e., units and virtual packages)

• Total number of units

• Total number of virtual packages

• Total number of edges (i.e., dependency and provided by relationships)

• For each relationship type, the total number of dependency edges of that type
(i.e., the total number of the relationships of a given type among packages)

• Total number of unmet dependencies

• For each relationship type and for each unit, the in-degree for a given edge
type (i.e., the number of relationships of a given type having as target a
package with in a given unit)

• For each relationship type and for each unit, the out-degree for a given edge
type (i.e., the number of relationships of a given type having as source a
package with in a given unit)

The statistics are stored in a text file and can be post-processed by using text
oriented tools.

8.2.8 CP/Mozart solver

TheCP/Mozart-Oz Solvertranslates the output ofProblemGeneratorto a CP prob-
lem as described in section6.3.2, then solves it using a solver written in the Mozart-
Oz language [4] . The solver uses a custom branch-and-bound strategy programmed
in Oz itself. While effective on small to medium-sized installability problems, the
solver tends to exhibit exponential divergence on large problems.

8.2.9 SAT transcoder

In a first prototyping phase, we converted Oz encodings obtained from the toolchain
into DIMACS SAT format (a standard and simple CNF format for SAT solvers) and
solved these using external solvers. TheSATtranscoder takes as input the encoding
of an installability problem as produced byProblemGeneratorand translates it to
a boolean formula as outlined in section6.3.1and outputs that formula to a file in
conjunctive normal form in the industry-standard DIMACS format. This file can
then be fed to a standard SAT solver. These solvers return a minimal set of assign-
ments that satisfy the formula, which the transcoder translates back into minimal
lists of packages that are required to enable the installation of the initial package.
We only tried two solvers, as there are not many free SAT solvers available. We

106

8.2. THE TOOLCHAIN EDOS Project: WP2D2

first used the GRASP solver before writing thenaive solver and then switching
to the integrateddebcheck solver. GRASP (an acronym of Generic seaRch Al-
gorithm for the Satisfiability Problem) [21] from T. U. Lisbon seemed to be an
adequate first candidate.

8.2.10 Naive solver

After validating the basic encoding concept with Grasp, we implemented a simple
solver in Ocaml. Thenaive solver is a straightforward, unoptimized implemen-
tation (by the WP2 team) of the well-known Davis-Putnam SAT resolution algo-
rithm. It was written to assess the degree of sophistication needed for a SAT-solver
to handle the dependency problems.

8.2.11 The integrated checker:debcheck/rpmcheck

One important problem was remaining. When a packagep is found to be in-
stallable, a set of co-installable packages containingp is furnished by the SAT-
solvers. The co-installability can be easily verified (as this is the essence of NP-
completeness). However, when a package is foundnot to be installable, these two
solvers do not give a satisfying, human-readable explanation.

The most efficient checker in the suite integrates parsing, encoding, solving
and displaying in one tool, that comes in two flavors,debcheck for Debian-style
repositories, andrpmcheck for RPM-based repositories.

This tool parses aPackages-pool, or ahdlist and checks their conformance
to the specifications of the package formats. It then checks the installability of
every package. It can give, for each package, either a set of sufficient and non-
conflicting packages with which it can be installed, or, if the package is not in-
stallable, it can concisely explain each failure by presenting a small unsatisfiable
subset of the problem. For instance, when a package is found to be uninstallable,
the conflict-driven solver can exhibit a small number of “reasons” explaining why
the package is not installable, like the following:

The package kino-dvtitler 0.2.0-1.1 is not installable
for the following reasons:

* kino-dvtitler 0.2.0-1.1 depends on kino 0.80-2
* kino 0.80-2 conflicts with kino-dvtitler 0.2.0-1.1

This solver is also extremely efficient (see section8.3.1).
The tool reads a package control file its standard input. The names (for in-

stance,emacsen) of the packages to be tested should be given on the command
line. A specific version of a package can be selected by following the package
name with an equals sign and the version of the package to test (for instance,
xemacs21=21.4.17-1). When no package name is provided, all packages in the
control file are tested. Command-line options are:

107

EDOS Project: WP2D2 8.2. THE TOOLCHAIN

-check Double-check the results, that is, verify the abun-
dance and peace conditions on the sets computed by
the solver.

-explain Explain the results
-rules Print generated rules, that is, display the boolean for-

mula solved.
-failures Only show packages that fail to install.
-successes Only show packages that can be installed.
-help Display the list of options.

8.2.12 Thehistory tool: package timeline exploration

Overview

The set of Debian packages is divided by architecture (for instance,i386 or
powerpc), by “distribution” (stable, unstable, testing or experimental), and also by
component (main, contrib or non-free). This structure is a necessary consequence
of technical, maintenance process and legal requirements. That different architec-
tures may require different binaries is obvious. Contrary to claims by some large
software vendors, proprietary and open-source software can coexist and packaging
non-OSS is a benefit both to OSS users and proprietary software vendors : there are
still many areas where the use of non-free software is mandated, for instance by
hardware (think of 3D acceleration). The contrib component contains OSS soft-
ware that supports or depends on non-OSS software in the non-free component.
Finally, in the Debian process, packages created or updated by maintainers first en-
ter the testing distribution (after a preliminary check of a few days). If they compile
well and create no obvious dependency problems, they migrate after a fixed period
of ten days into the unstable distribution. As is well known, every year or so, a
new stable distribution is made by selecting packages from unstable. Hence we
have multiple sets of package that evolve over time. If we fix the architecture, we
may define apackageas a couple(u, v) whereu is a unit name andv is a version
number. For instance,(aspell− tl, 0.02− 5) is a package. Anarchiveis then a
function that maps time to sets of packages3

The query language

Thehistory tool allows command-line exploration of the Debian metadata using
an algebraic query language. Daily metadata is extracted from the archives on
snapshot.debian.net and stored in a MySQL database. The tool then works as
a classic read-evaluate-print loop, that is, expressions or directives are entered by
the user and their results printed or saved.

3It should be noted that, for consistency reasons, once created, the metadata of a package cannot
be changed. If there is any problem with the metadata, a new package must be created, that is, a new
version number must be used.

108

8.2. THE TOOLCHAIN EDOS Project: WP2D2

Implementation issues Despite the data being stored in a structured manner and
being appropriately indexed, performance of even simple SQL queries (such as
finding the set of immediate potential dependencies of a set of packages) is poor.
This is partly due to the complex nature of metadata, which is, due to disjunc-
tive dependencies, not a graph but a a hypergraph, whose relational representation
requires multiple levels of indirection. Also, it is well-known that standard SQL
cannot handle transitive closures. Hence we have opted for using the SQL database
only as an off-line storage engine;history loads the whole database into RAM,
and can then answer complex queries efficiently. Because of advances in the per-
formances of filesystems such as ReiserFS, we are planning to drop the SQL back-
end and use a simple file-based approach for storage. We now give a very short
introduction to the query language. Table8.2 gives an overview of the available
operators.

Datatypes The basic Data types handled byhistory are units, packages, sources,
sets of the above, dates, integers and booleans. Care has been taken to provide con-
cise notation for describing these. The basic features of a functional language with
strict evaluation are provided. Hence unit names can be written without any quot-
ing, and packages are written asunit’version. Thusaspell-tl’0.02-5 is a
package whereaspell-tl is the unit name. Source packages are similarly written
but with a backquote. More complex data types include lists, arrays and functions
– functions are written asx -> expr.

Variables, assignment and binding Variable names start with a ’$’ and can be
assigned with an expression like$name <- expression. Local binding is possi-
ble with constructions of the formlet $name = expression1inexpression2.

Representation of historical data We remind the reader that to avoid inconsis-
tencies in metadata, all packaging systems require that the metadata for a given
package, that is for a given (unit, version) pair, be a constant. Hence we can rep-
resent the evolution of the repositories as functions that map maps dates to sets
of packages. As such, archive contents are accessed inhistory by applying the
archive ID (an integer that can be obtained with the#list archives directive)
and a date to the pre-defined$archives function. For instance,$archives 3
2005-11-02 returns the set of packages contained in
debian/stable/main/binary-i386 on November the 2nd, 2005.

Operations on sets The usual Boolean operations on sets (intersection&, union
| and difference\) are allowed. Sets can be filtered by regular expressions or user-
defined functions. With operators such asexists andfor all, this effectively
provides first-order quantified queries. Besides directives that print the metadata in
human-readable form, various operators are provided so that the metadata can be
used in complex expressions. For instance, ifp is a package,provides(p) is the set

109

EDOS Project: WP2D2 8.2. THE TOOLCHAIN

of units provided byp, and ifs is a set of packages,closure(s) is the dependency
closure ofs : all packages that packages ofs might need to run are contained ins
– but due to disjunctive dependencies,s will usually contain extraneous packages,
and due to conflicts, it might not be possible to install all packages ofs.

Integration of the dependency solver The dependency solver ofdebcheck and
rpmcheck has been integrated intohistory as an operatorinstall(p1, p2) which
computes a setp of co-installable packages such thatp1 ⊆ p ⊆ p2.

Example session We first invoke history. It is assumed that the database server
is properly configured.

% history -interactive
Total 22172 units in 9 archives.
>

We may then list the archives known to the system.

> #list_archives
1 debian stable main binary-i386
2 debian stable contrib binary-i386
3 debian stable non-free binary-i386
4 debian testing main binary-i386
5 debian testing contrib binary-i386
6 debian testing non-free binary-i386
7 debian unstable main binary-i386
8 debian unstable contrib binary-i386
9 debian unstable non-free binary-i386

We are interested in the unstable/main archive which has number 7. Let’s see what
packages are available in that archive on February first, 2006.

> $archives 7 2006-02-01
{ 3dchess’0.8.1-11.1, 3ddesktop’0.2.9-5.1,

44bsd-rdist’20001111-6, 6tunnel’0.11rc1-1, 915resolution’0.5-1,
9base’2-1, 9menu’1.8-1.1, 9wm’1.2-7, a2ps’1:4.13b.dfsg.1-0.1,
a2ps-perl-ja’1.45-4, aa3d’1.0-4, aap’1.072-1, aap-doc’1.072-1,
aatv’0.3-2, abakus’0.90-6, abc2ps’1.3.3-3, abcde’2.3.99.3-1,
abcm2ps’4.11.8-1, abcmidi’20051010-1, ... } : set of package as

int set

As there are thousands of packages in that set of packages, we may first assign the
set to a variaible, and then count its cardinality.

> $x <- $archives 7 2006-02-01
> count($x)
17203 : int as int 17203

110

8.2. THE TOOLCHAIN EDOS Project: WP2D2

Let’s see what are the packages of$x whose unit name start withocaml by filtering
it with a regular expression.

> $x ~ /^ocaml/
{ ocaml’3.09.1-2, ocaml-base’3.09.1-2, ocaml-base-nox’3.09.1-2,

ocaml-compiler-libs’3.09.1-2, ocaml-core’3.08.0.2,
ocaml-dbforge’1.9.9.cvs20051129-2+b2, ocaml-findlib’1.1.1-2,
ocaml-interp’3.09.1-2, ocaml-libs’3.08.0.2, ocaml-mode’3.09.1-2,
ocaml-native-compilers’3.09.1-2, ocaml-nox’3.09.1-2,
ocaml-report’1.9.9.cvs20051129-2+b2, ocaml-source’3.09.1-2,
ocaml-tools’2005.29.04-5, ocaml-ulex’0.8-2,
ocamlcvs’1.9.9.cvs20051129-2+b2, ocamldsort’0.14.3-1.2,
ocamlweb’1.37-2 } : set of package as int set

Assume we want a very basic Ocaml development system. We will need the
ocaml’3.09.1-2 package and a line editor, such asledit. Let’s see which ver-
sions ofledit are available:

> versions(ledit)
{ ledit’1.11-4, ledit’1.11-6, ledit’1.11-7 } : set of package as int set

These are all the versions that are known by the system. To find those that are
inside the set$x, we can intersect those two sets:

> $x & versions(ledit)
{ ledit’1.11-7 } : set of package as int set

The dependency closure of a set of packagesx is an upper bound on the sety of
packages needed to installx. It is obtained by recursively following theDepends:
andPre-depends: fields.

> $y <- closure({ ocaml’3.09.1-2, ledit’1.11-7 })
> count($y)
313 : int as int 313

The set$y should satisfy the abundance condition (see section6.1)

> #abundance $y
Abundance condition satisfied.

However the set$y is not co-installable because of conflicts:

> count(conflicts($y) & $y)
299 : int as int 299

Hence we need to invoke the solver to find an installation ofocaml andledit:

> $i <- install({ ocaml’3.09.1-2, ledit’1.11-7 }, $y)
> count($i)
36 : int as int 36

111

EDOS Project: WP2D2 8.2. THE TOOLCHAIN

A 36-package installation is adequate. We can output the solution to a file in a
suitable one-entry-per-line format:

> #dump "/tmp/installation" $i

The content of that file is:

% cat /tmp/installation
binutils’2.16.1cvs20060117-1
coreutils’5.94-1
cpp’4:4.0.2-2
cpp-4.0’4.0.2-10
debconf’1.4.71
debconf-english’1.4.71
debianutils’2.15.3
gcc’4:4.0.2-2
gcc-4.0’4.0.2-10
gcc-4.0-base’4.0.2-10
ledit’1.11-7
libacl1’2.2.35-1
libattr1’2.4.31-1
libc6’2.3.6-3
libc6-dev’2.3.6-3
libgcc1’1:4.0.2-10
libgdbm3’1.8.3-2
libncurses5’5.5-1
libncurses5-dev’5.5-1
libselinux1’1.28-4
libsepol1’1.10-2
libx11-6’6.9.0.dfsg.1-4
linux-kernel-headers’2.6.13+0rc3-2
lsb-base’3.0-15
ncurses-bin’5.5-1
ocaml’3.09.1-2
ocaml-base’3.09.1-2
ocaml-base-nox’3.09.1-3
ocaml-interp’3.09.1-3
ocaml-nox’3.09.1-3
perl-base’5.8.8-2
sed’4.1.4-5
tcl8.4’8.4.12-1
tk8.4’8.4.12-1
x11-common’6.9.0.dfsg.1-4
xlibs-data’6.9.0.dfsg.1-4

112

8.3. SOLVERS, COMPLEXITY ANALYSIS AND BENCHMARKS EDOS Project: WP2D2

Operator Meaning
s&t, s|t, s \ t Boolean set intersection, union and difference
provides(p) Set of units provided by a package
conflicts(p) Set of packages that conflict with a package
closure(p) Dependency closure of a package
source(p) Source of a package
unit(p) Unit of a package
latest(u) Latest version of a unit
versions(u) All the versions of a unit
what provides(u) The set of packages that provide a unit
replaces(p) The set of packages replaced by a package
install(p, q) Returns an installation of the set of packagesp inside the setq
member(x, s) True when the elementx is a member of the sets
filter(s, f) Return the elements ofs for whichf(s) is true.
exists(s, f) True whenf(s) is true for one element ofs
for all(s, f) True whenf(s) is true for all elements ofs
treat(s, f) Create an array of values obtained by applyingf to elements ofs

Table 8.2: Operators. Most operators are overloaded to work on sets. Functions
are first-class values with lexical scoping that can be defined anonymously.

8.3 Solvers, complexity analysis and benchmarks

It is really not evident that even the first static analysis of the individual installa-
bility of a package in a repository is actually tractable in practice: due to the rich
language allowed to describe package dependencies in the mainstream FOSS dis-
tributions, even the simplest problems (checking installability of a single package)
may involve verifications over a large number of other packages. During our first
investigations of these problems, reported in Deliverable D2.1, we have indeed
already proven the following complexity result.

Theorem 2 (Package installability is an NP-complete problem)Checking whether
a single packageP can be installed, given a repositoryR, is NP-complete.

Nevertheless, this strong limiting result does not mean that we will not be able
to decide installability and the other problems in practice: the actual instances of
these problems, as found in real repositories, can be quite simple in the average
when encoded as instances of the boolean satisfiability problem in the conjunctive
normal form (see section6.3.1 for details on the encoding). Our tools perform
extremely well on the real-world sized problems on which we have run our tests.

8.3.1 Experimental results

In this section we show some experimental results that we have gathered by analyz-
ing with our tools two of the most famousGNU/Linux-based distributions: Debian

113

EDOS Project: WP2D2 8.3. SOLVERS, COMPLEXITY ANALYSIS AND BENCHMARKS

GNU/Linux [2] and Mandriva Linux [3]. These experimental results include statis-
tics pertaining to the hardness of the SAT instances related to installability prob-
lems, performance measurements of different SAT-solvers and statistics on broken
packages.

Size and hardness of SAT instances

Figure 8.4 gives a histogram showing the number of packages as a function of
the size of the dependency closure, from the Debian stable, unstable and testing
pools on 2005-12-13, which has 31149 packages. The average closure size is 158;
50% of the packages have a closure size of 71 or less, 90% of 372 or less, and
99% of 1077 or less. These numbers show that naive combinatorial algorithms,
exponential in the size of the dependency closure, are clearly out of the question.

However there exists an easy to compute indicator of the hardness of a boolean
satisfiability problem that is more precise than mere formula size. Any boolean for-
mula can be efficiently converted to a formula in conjunctive normal form with no
more than three literals per clause. Such formulae are said to be in 3SAT form. The
“temperature”T of a 3SAT formula is defined asT = m/n wherem is the number
of clauses andn the number of variables and there is strong, widely accepted the-
oretical and practical evidence that hard SAT problems (once converted to 3SAT)
tend to have a temperature close to the “transition temperature” whish is 4.2, while
SAT problems with temperatures well below or above that limit are easier to solve.
Figure8.5gives an historgram of the temperatures of the Boolean formulae gener-
ated by our encoding of the installability problems. Their temperatures range from
0.75 to 1.49, well below the transition temperature. This result confirms that we
are dealing with relatively easy satisfiability problems, maybe owing to the small-
world nature of the dependency graphs This provides additional strong evidence of
the fact that the instances of the NP-complete SAT problem that are important to
us are easy.

Performance issues and development of SAT solvers

The performance of GRASP was very good, no package needed more than one
second of computation time (on a 3.0GHz Xeon). In figure8.6(a), the execution
time of GRASP, measured in seconds, is plotted against the size of the input Oz file
encoding the installability of a package. Please note that the Y axis is logarithmic.
The data suggests a quadratic relationship between execution time and input size,
and a quadratic curve indeed gives a good fit.

Thenaive solver was only about ten times slower than GRASP. This shows
that dependency problems do not need very sophisticated SAT-solving techniques.
It also exhibited a quadratic behaviour similar to GRASP: the execution times did
not exceed ten seconds per package. At this point we were convinced of the practi-
cality of using standard SAT-solving techniques for doing static installability anal-
ysis.

114

8.3. SOLVERS, COMPLEXITY ANALYSIS AND BENCHMARKS EDOS Project: WP2D2

Figure 8.4: Number of packages as a function of the size of their dependency
closures.

Figure 8.5: Number of packages as a function of the “temperature” of the SAT
problems corresponding to their installability problems.

115

EDOS Project: WP2D2 8.3. SOLVERS, COMPLEXITY ANALYSIS AND BENCHMARKS

We have searched the literature on SAT-solving for an algorithm that provides
some explanation capabilities while being reasonably simple but efficient. In other
words, we were looking for a state-of-the-art “simple” SAT solver giving expla-
nations. Thedebcheck/rpmcheck solver is based on two papers describing such
algorithms [16, 19]. An important aspect of this tool is that works by loading the
whole metadata for a pool, computing a giant boolean formula encoding the in-
stallability of all the packages, and then testing the satisfiability of the individual
packages. While solving the installability of a package, the solver can discover the
installability of dependent packages; time is saved by not checking their installa-
bility again. This gives an extremely fast solver that can check whole repositories
in minutes (compared to the hours that would be required by the other approach),
as can be seen in table8.3.1. This is an indication of how long it takes to com-
plete some operations on our project server, which is a single-processor Intel Xeon
3.4 GHz machine running Mandriva Linux. The figures for rpmcheck/debcheck
include time for parsing, the figures for SAT do not.

Operation User time
Parsing
Mandriva 2006 13s
Debian snapshot 30s
Cone extraction
Mandriva 2006 4m06s
Debian snapshot 27m40s
Installability checks
Mandriva 2006 with GRASP 55s
Mandriva 2006 with rpmcheck 8s
Debian snapshot with GRASP 18m13s
Mandriva 2006 with debcheck 43s

Table 8.3: Performance ofdebcheck andrpmcheck.

Figure8.6(b)gives an estimate of the computational cost of this solver against
the size of CNF formulae measured in number of literals. Asdebcheck was work-
ing too fast, it was not possible to use system timers to get a sufficiently precise
measurement of its execution times. We therefore counted the number of function
calls (for an adequate subset of the available functions), which should roughly be
proportional to execution times. Although the execution time of the solver is quite
irregular, it is roughly linear in the formula size for these instances.

Broken packages

The reference package repositories are a snapshot of the complete Debian pool
located athttp://ftp.debian.org/pool and the packages distributed with the
Mandriva 2006 Edition.

116

http://ftp.debian.org/pool

8.3. SOLVERS, COMPLEXITY ANALYSIS AND BENCHMARKS EDOS Project: WP2D2

0 1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

Problem size (bytes)

0.001

0.01

0.1

1

10

100

1000

R
es

ol
ut

io
n

tim
e

(s
)

SAT-Grasp
Naive
Quadratic fit for Naive
Quadratic fit for SAT-Grasp

(a) Performances ofnaive vs. Grasp as seconds vs. bytes.

500 1000 1500 2000 2500 3000
Formula size (literals)

10
3

10
4

10
5

C
om

pu
ta

tio
na

l c
os

t (
A

U
)

(b) Performance ofdebcheck arbitrary units vs. litterals.

Figure 8.6: Performance of various solvers on the Debian pool. In figure8.6(a),
execution time, measured in seconds, is plotted against the size, in bytes, of the
Oz code fragment generated with the toolchain and encoding the installability of
packages.

117

EDOS Project: WP2D2 8.3. SOLVERS, COMPLEXITY ANALYSIS AND BENCHMARKS

Out of the 4211 packages in the main part of the Mandriva 2006 distribution, 42
are not installable. In 38 cases, this is due to a dependency that is not available; in
the case of four packages,mozilla-thunderbird-enigmail-{de,es,fr,it},
the problem is a simultaneous dependency and conflict with the package
mozilla-thunderbird-enigmail.

The Debian snapshot contains 34701 packages, of which 123 are not instal-
lable. Here, 111 cases are due to an unavailable dependency, and 12 packages have
an inherent conflict (for example, the packagecacti-cactid version 0.8.6e-2 de-
pends onlibsnmp5, version 5.2.1.2 or greater; but the only appropriate version of
libsnmp5 in the pool, 5.2.1.2-2, conflicts with all versions ofcacti-cactid up
to and including 0.8.6e-2).

118

Chapter 9

Conclusions

We have done an extensive analysis of the whole set of problems that are in the
focus of WorkPackage 2, ranging from upstream tracking, to thinning, rebuilding,
and dependency managements for F/OSS distributions.

For the dependency management problems, we have also provided a whole set
of industry-strength tools that have already been incorporated into the production
chain of Caixa Magica, and are in the process of being incorporated in the Man-
driva one.

We plan to disseminate widely these tools and make them known to the Debian
community too.

Formal methods at work

We want to particularly stress here the fact that the tools that have been built and
engineered by the team are really based on a sound formal theoretical foundations.
In particular, we have

• formally defined the installability problem and all its related notions, like
dependency closure, subrepository etc.

• formally proved its NP-completeness

• formally provided an encoding of the installability problem both into a Finite
Domain Constraint Problem, and into a SAT problem

• developed several independent implementations of the verification technique,
one fully integrated, in thedebcheck/rpmcheck tool, and one based on a

119

EDOS Project: WP2D2

modularized toolchain, able to call either an Oz-based CP solver, or various
SAT solver (one custom made, and one mainstream, thefgrasp solver de-
veloped in Portugal).
All of these different tools produce now the very same results, and the avail-
ability of each of them has been essential, as by comparing the results of the
earlier versions it has been possible to spot and repair various implementa-
tion mistakes, and to clarify doubts and ambiguity appearing in the DEB or
RPM package formats.

While we did not do a machine-checked proof of correctness of these tools,
which is way beyond the scope of the current project, and would require far more
resources, we are now extremely confident in the soundness and completeness of
the results provided by our tools.

This is a huge step forward w.r.t. preexisting tools, and we believe to have
contributed to a significant advance in the state of the art.

Ongoing work

A significant amount of work has been done, but we discovered a wide area for
future investigation, and development. It is clear that the research area pioneered
by this project has opened up new perspectives, and we will need years of study
and dissemination to explore them.

120

Bibliography

[1] Debian autobuilder.http://buildd.debian.org.

[2] Debian GNU/Linux.http://www.debian.org.

[3] Mandriva Linux.http://www.mandriva.com.

[4] The Mozart programming system.http://www.mozart-oz.org.

[5] The new mandriva build system.http://qa.mandriva.com/twiki/bin/
view/Main/RepositorySystem.

[6] E. C. Bailey. Maximum RPM, taking the Red Hat package manager to the
limit. http://rikers.org/rpmbook/,http://www.rpm.org, 1997.

[7] G. Banavar, M. Kaplan, K. Shaw, R. Strom, D. Sturman, and W. Tao. In-
formation flow based event distribution middleware.ICDCS Workshop on
Electronic Commerce and Web-based Applications/Middleware, pages 114–
121, 1999.

[8] G. Beekmans. Linux From Scratch.http://www.linuxfromscratch.
org.

[9] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall.
Graphml specification, 2002. http://graphml.graphdrawing.org/
specification.html.

[10] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. M. F. Yergeau. Extensible
markup language (xml) 1.0 (third edition), 2004.http://www.w3.org/TR/
REC-xml.

[11] M. Broy and E. Denert.Software Pioneers: Contributions to Software Engi-
neering. Springer-Verlag, 2002.

[12] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service.ACM Transactions on Computer Systems
19(3), pages 332–383, 2001.

121

http://buildd.debian.org
http://www.debian.org
http://www.mandriva.com
http://www.mozart-oz.org
http://qa.mandriva.com/twiki/bin/view/Main/RepositorySystem
http://qa.mandriva.com/twiki/bin/view/Main/RepositorySystem
http://www.linuxfromscratch.org
http://www.linuxfromscratch.org
http://graphml.graphdrawing.org/specification.html
http://graphml.graphdrawing.org/specification.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

EDOS Project: WP2D2 BIBLIOGRAPHY

[13] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A
large-scale and decentralized application-level multicast infrastructure.IEEE
JSAC, 20(8), October 2002.

[14] Debian Group. Debian policy manual. http://www.debian.org/doc/debian-
policy/, 1996–1998.

[15] EDOS Project Workpackage 2 Team. Deliverable 1, 2005.http://www.
edos-project.org/xwiki/bin/Main/Deliverables.

[16] N. Eén and N. S̈orensson. An extensible SAT-solver. In Giunchiglia and
Tacchella [19], pages 502–518.

[17] D. Eklund. The lib update/autoupdate suite. http://luau.sourceforge.net/,
2003–2005.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[19] E. Giunchiglia and A. Tacchella, editors.Theory and Applications of Satis-
fiability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 ofLecture
Notes in Computer Science. Springer, 2004.

[20] Mandriva. URPMI.http://www.urpmi.org, 2005.

[21] J. P. Marques-Silva and K. A. Sakallah. Grasp: A search algorithm for propo-
sitional satisfiability.IEEE Transactions on Computers, 48:5:506–521, 1999.

[22] G. Niemeyer. Smart package manager.http://labix.org/smart, 2005.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems.Middleware’01, 2001.

[24] G. N. Silva. Apt-howto. http://www.debian.org/doc/manuals/
apt-howto, 2004.

[25] S.Zhuang, B.Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An
architecture for scalable and fault-tolerant wide-area data dissemination.In
NOSSDAV.2001, June 2001.

[26] C. Szyperski.Component Software: Beyond Object-Oriented Programming.
Addison Wesley Professional, 1997.

[27] L. Taylor and L. Tuura. Ignominy: a tool for software dependency and met-
ric analysis with examples from large HEP packages. InProceedings of
CHEP’01, 2001.

[28] The CDuce Team. Cduce.http://www.cduce.org.

122

http://www.edos-project.org/xwiki/bin/Main/Deliverables
http://www.edos-project.org/xwiki/bin/Main/Deliverables
http://www.urpmi.org
http://labix.org/smart
http://www.debian.org/doc/manuals/apt-howto
http://www.debian.org/doc/manuals/apt-howto
http://www.cduce.org

– 123

[29] The RPM-Metadata Project. Xml package metadata.http://linux.duke.
edu/projects/metadata.

[30] L. A. Tuura. Ignominy: tool for analysing software dependencies and for
reducing complexity in large software systems. InProceedings of the VIII
International Workshop on Advanced Computing and Analysis Techniques in
Physics Research, volume 502, pages 684–686, 2003.

[31] T. van der Storm. Variability and component composition. InProceedings of
the Eighth International Conference on Software Reuse (ICSR-8), 2004.

http://linux.duke.edu/projects/metadata
http://linux.duke.edu/projects/metadata

124 org.edos project.model.util–

Appendix A

Package
org.edosproject.model.util
Package Contents Page

Classes
PackageDependencyData. .126

A data bundle containing all the information for building a dependency relationship
PackageDependencyDataSet. .127

A data bundle containing all the information needed to build an alternative depen-
dency

Type .128
Utility class to check the type of dependency graph elements

VertexColorLabeller .128
Utility class used for extracting package cones.

VertexColorLabeller.ColorType .129

125

126 org.edos project.model.util– PackageDependencyData

A.1 Classes

A.1.1 CLASS PackageDependencyData

A data bundle containing all the information for building a dependency relationship

DECLARATION

public class PackageDependencyData
extendsjava.lang.Object

CONSTRUCTORS

• PackageDependencyData
public PackageDependencyData(
org.edos project.model.DependencyType dependencyType)

• PackageDependencyData
public PackageDependencyData(
org.edos project.model.DependencyType dependencyType,
org.edos project.model.VersionRelationship
versionRelationship)

• PackageDependencyData
public PackageDependencyData(java.lang.String
dependencyTypeString)

METHODS

• getDependencyType
public DependencyType getDependencyType()

• getOperator
public VersionOperator getOperator()

• getSourcePackageUnit
public String getSourcePackageUnit()

• getSourcePackageVersion
public String getSourcePackageVersion()

• getTargetPackageUnit
public String getTargetPackageUnit()

• getTargetPackageVersion
public String getTargetPackageVersion()

• setOperator
public void setOperator(java.lang.String operatorString)

org.edos project.model.util– Type 127

• setOperator
public void setOperator(
org.edos project.model.VersionOperator operator)

• setSourcePackageUnit
public void setSourcePackageUnit(java.lang.String
sourcePackageUnit)

• setSourcePackageVersion
public void setSourcePackageVersion(java.lang.String
sourcePackageVersion)

• setTargetPackageUnit
public void setTargetPackageUnit(java.lang.String
targetPackageUnit)

• setTargetPackageVersion
public void setTargetPackageVersion(java.lang.String
targetPackageVersion)

A.1.2 CLASS PackageDependencyDataSet

A data bundle containing all the information needed to build an alternative dependency

DECLARATION

public class PackageDependencyDataSet
extendsjava.util.HashSet

SERIALIZABLE FIELDS

• private DependencyType dependencyType

–

CONSTRUCTORS

• PackageDependencyDataSet
public PackageDependencyDataSet(
org.edos project.model.DependencyType dependencyType)

METHODS

• add
public boolean add(
org.edos project.model.util.PackageDependencyData
packageDependencyData)

• getDependencyType
public DependencyType getDependencyType()

128 org.edos project.model.util– VertexColorLabeller

A.1.3 CLASS Type

Utility class to check the type of dependency graph elements

DECLARATION

public class Type
extendsjava.lang.Object

CONSTRUCTORS

• Type
public Type()

METHODS

• isAlternativeEdge
public static boolean isAlternativeEdge(java.lang.Object
obj)

• isAlternativeVertex
public static boolean isAlternativeVertex(java.lang.Object
obj)

• isStandardPackageEdge
public static boolean isStandardPackageEdge(
java.lang.Object obj)

• isStandardUnitVertex
public static boolean isStandardUnitVertex(java.lang.Object
obj)

• isVirtualPackageEdge
public static boolean isVirtualPackageEdge(
java.lang.Object obj)

• isVirtualPackageVertex
public static boolean isVirtualPackageVertex(
java.lang.Object obj)

A.1.4 CLASS VertexColorLabeller

Utility class used for extracting package cones.

DECLARATION

public class VertexColorLabeller
extendsjava.lang.Object

org.edos project.model.util– VertexColorLabeller.ColorType 129

FIELDS

• public static final String DEFAULTKEY

–

CONSTRUCTORS

• VertexColorLabeller
public VertexColorLabeller(Graph graph)

• VertexColorLabeller
protected VertexColorLabeller(Graph graph,
java.lang.Object key)

METHODS

• clear
public void clear()

• getColor
public VertexColorLabeller.ColorType getColor(Vertex v)

• getColorLabeller
public static VertexColorLabeller getColorLabeller(Graph
graph)

• getColorLabeller
public static VertexColorLabeller getColorLabeller(Graph
graph, java.lang.Object key)

• getGraph
public Graph getGraph()

• hasColorLabeller
public static boolean hasColorLabeller(Graph graph)

• hasColorLabeller
public static boolean hasColorLabeller(Graph graph,
java.lang.Object key)

• setColor
public void setColor(Vertex v,
org.edos project.model.util.VertexColorLabeller.ColorType
color)

A.1.5 CLASS VertexColorLabeller.ColorType

130 org.edos project.model.util– VertexColorLabeller.ColorType

DECLARATION

public static final class VertexColorLabeller.ColorType
extendsjava.lang.Enum

FIELDS

• public static final VertexColorLabeller.ColorType GRAY

–

• public static final VertexColorLabeller.ColorType BLACK

–

METHODS

• valueOf
public static VertexColorLabeller.ColorType valueOf(
java.lang.String name)

• values
public static final VertexColorLabeller.ColorType values(
)

Appendix B

Package org.edosproject.model
Package Contents Page

Classes
AlternativeEdge .133

An alternative edge models one of the requirements of an alternative dependency
of the type D1 — D2 — D3.

AlternativeVertex .133
An alternative vertex is a fictious vertex that is used to simulate hyperedges (i.e.,
one-to-many relationships).

DependencyEdge. .134
A dependency edge models a dependency between packages represented by pack-
age vertices.

DependencyGraph. .135
The dependency graph contains all the dependencies of a package repository

DependencyType. .139
An enumeration for the valid dependency types

DependencyVertex. .140
The base class for every vertex in a dependency graph

Package. .140
The class modeling a Package

PackageRepository. .142
This class models a package repository

StandardDependencyEdge. .145
Models a standard dependency edge

StandardUnitVertex .146
Model a standard unit vertex

UnitVertex .146
Base class for all the vertices in the dependency graph

VersionOperator .147
An enumeration for the valid dependency operators

VersionRelationship. .148
A class modeling a relationship between packages

VirtualPackageEdge. .149
This class models a provides relationship and links a standard unit vertex to the
virtual package vertex whose name is the name of a virtual package provided by
some package associated with the unit vertex.

VirtualPackageVertex .149

131

132 org.edos project.model– VertexColorLabeller.ColorType

This class models a virtual package vertex

org.edos project.model– AlternativeVertex 133

B.1 Classes

B.1.1 CLASS AlternativeEdge

An alternative edge models one of the requirements of an alternative dependency of the
type D1 — D2 — D3.<p/>An alternative edge connects standard package vertices to
alternative vertices that are used to simulate hyperedges (i.e., one-to-many relationships)

DECLARATION

public class AlternativeEdge
extendsorg.edosproject.model.DependencyEdge

CONSTRUCTORS

• AlternativeEdge
public AlternativeEdge(
org.edos project.model.DependencyType dependencyType,
org.edos project.model.StandardUnitVertex source,
org.edos project.model.AlternativeVertex target)

– Usage

∗ Initialize the alternative edge

– Parameters

∗ dependencyType - The dependency type
∗ source - The source vertex (must be a StandardUnitVertex)
∗ target - The target vertex (must be an AlternativeVertex)

B.1.2 CLASS AlternativeVertex

An alternative vertex is a fictious vertex that is used to simulate hyperedges (i.e.,
one-to-many relationships). An alternative vertex has one in-edge coming from a standard
package vertex and several out-edges, each one for every alternative.<p/>So if there is a
dependency from package A towards packages D1 — D2 — D3 this will be modeled by
an edge from the package vertex A to an alternative vertex K and three edges from K to
package vertices D1, D2 and D3.

DECLARATION

public class AlternativeVertex
extendsorg.edosproject.model.DependencyVertex

134 org.edos project.model– DependencyGraph

CONSTRUCTORS

• AlternativeVertex
public AlternativeVertex()

METHODS

• getStandardDependencyEdges
public Set getStandardDependencyEdges()

– Usage

∗ Get all the alternatives associated to this alternative vertex

– Returns - A set with all the alternative edges starting from this edge

• toString
public String toString()

B.1.3 CLASS DependencyEdge

A dependency edge models a dependency between packages represented by package
vertices.

DECLARATION

public abstract class DependencyEdge
extendsDirectedSparseEdge

CONSTRUCTORS

• DependencyEdge
public DependencyEdge(
org.edos project.model.DependencyType dependencyType,
org.edos project.model.DependencyVertex source,
org.edos project.model.DependencyVertex target)

– Usage

∗ Constructor

– Parameters

∗ dependencyType - The dependency type
∗ source - The source package vertex
∗ target - The target package vertex

org.edos project.model– DependencyGraph 135

METHODS

• getDependencyType
public DependencyType getDependencyType()

– Returns - The dependency type for this edge

B.1.4 CLASS DependencyGraph

The dependency graph contains all the dependencies of a package repository

DECLARATION

public class DependencyGraph
extendsSparseGraph

FIELDS

• public static final String UNMETVERTEX NAME

–

CONSTRUCTORS

• DependencyGraph
public DependencyGraph(
org.edos project.model.PackageRepository packageRepository
)

– Usage
∗ Constructor

– Parameters
∗ packageRepository - The package repository associated with

this dependency graph

METHODS

• addEdge
public void addEdge(
org.edos project.model.util.PackageDependencyData pdd)

– Usage
∗ Create a dependency edge

– Parameters
∗ pdd - The data bundle containing dependency information

136 org.edos project.model– DependencyGraph

• addEdge
public void addEdge(
org.edos project.model.util.PackageDependencyDataSet
pddSet)

– Usage
∗ Create an alternative edge

– Parameters
∗ pddSet - The data bundle containing the dependency alternatives

information

• addStandardUnitVertex
public StandardUnitVertex addStandardUnitVertex(
java.lang.String name)

– Usage
∗ Add a standard unit vertex

– Parameters
∗ name - The name of the package unit

– Returns - The newly created standard unit vertex

• addVirtualPackageVertex
public VirtualPackageVertex addVirtualPackageVertex(
java.lang.String name)

– Usage
∗ Add a virtual package vertex

– Parameters
∗ name - The virtual package name

– Returns - The newly created virtual package vertex

• findStandardUnitVertexByName
public StandardUnitVertex findStandardUnitVertexByName(
java.lang.String name)

– Usage
∗ Find a standard unit vertex

– Parameters
∗ name - The unit name

– Returns - The standard unit vertex or null if not found

• findVertexByName
public UnitVertex findVertexByName(java.lang.String
name)

– Usage
∗ Find a vertex by name looking up first virtual package vertices

and then standard unit vertices.

– Parameters

org.edos project.model– DependencyGraph 137

∗ name - The name to look for

– Returns - The found vertex or null if nothing has been found

• findVirtualPackageVertexByName
public VirtualPackageVertex findVirtualPackageVertexByName(
java.lang.String name)

– Usage
∗ Find a virtual package vertex

– Parameters
∗ name - The virtual package name

– Returns - The virtual package vertex or null if not found

• getUnmetDependencyVersionRelations
public Set getUnmetDependencyVersionRelations()

– Usage
∗ Get all the relationships that are unmet in this dependency graph

– Returns - The unmet relationships set

• numAlternativeEdges
public int numAlternativeEdges(
org.edos project.model.DependencyType dt)

– Usage
∗ Calculates the number of alternative edges

– Returns - The number of alternative edges

• numAlternativeVertices
public int numAlternativeVertices()

– Usage
∗ Calculates the number of alternative vertices

– Returns - The number of alternative vertices

• numDependenciesInDegree
public int numDependenciesInDegree(java.lang.String
unitName, org.edos project.model.DependencyType dt)

– Usage
∗ Calculates the number of dependency edges targeting a given unit

vertex

– Parameters
∗ unitName - The unit name
∗ dt - The dependency type

– Returns - the number of dependency edges targeting the given unit
vertex

• numDependenciesOutDegree
public int numDependenciesOutDegree(java.lang.String
unitName, org.edos project.model.DependencyType dt)

138 org.edos project.model– DependencyGraph

– Usage
∗ Calculates the number of dependency edges starting from a given

unit vertex

– Parameters
∗ unitName - The unit name
∗ dt - The dependency type

– Returns - the number of dependency edges targeting the given unit
vertex

• numPackageVertices
public int numPackageVertices()

– Usage
∗ Calculates the number of unit vertices

– Returns - The number of unit vertices

• numStandardDependencyEdges
public int numStandardDependencyEdges(
org.edos project.model.DependencyType dt)

– Usage
∗ Calculates the number of standard dependency edges of a given

type

– Parameters
∗ dt - The dependency type

– Returns - The number of standard dependency edges

• numUnmetDependencies
public int numUnmetDependencies()

– Usage
∗ Calculates the number of unmet dependency edges

– Returns - The number of unmet dependency edges

• numUnmetDependenciesFromAlternatives
public int numUnmetDependenciesFromAlternatives()

– Usage
∗ Calculates the number of unmet dependency edges starting from

an alternative edge

– Returns - The number of unmet dependency edges starting from an
alternative edge

• numVirtualPackageEdges
public int numVirtualPackageEdges()

– Usage
∗ Calculates the number of virtual package edges

– Returns - The number of virtual package edges

org.edos project.model– DependencyType 139

• numVirtualPackageVertices
public int numVirtualPackageVertices()

– Usage
∗ Calculates the number of virtual package vertices

– Returns - The number of virtual package vertices

B.1.5 CLASS DependencyType

An enumeration for the valid dependency types

DECLARATION

public final class DependencyType
extendsjava.lang.Enum

FIELDS

• public static final DependencyType RUN

–

• public static final DependencyType INSTALL

–

• public static final DependencyType CONFLICT

–

• public static final DependencyType REPLACE

–

• public static final DependencyType PROVIDES

–

METHODS

• getFromString
public static DependencyType getFromString(
java.lang.String typeString)

– Usage
∗ Convert a string to the corresponding enumerated dependency

type

– Parameters
∗ typeString - The string representing the dependency type

– Returns - The corresponding dependency type

140 org.edos project.model– Package

• valueOf
public static DependencyType valueOf(java.lang.String
name)

• values
public static final DependencyType values()

B.1.6 CLASS DependencyVertex

The base class for every vertex in a dependency graph

DECLARATION

public class DependencyVertex
extendsDirectedSparseVertex

CONSTRUCTORS

• DependencyVertex
public DependencyVertex()

B.1.7 CLASS Package

The class modeling a Package

DECLARATION

public class Package
extendsjava.lang.Object

CONSTRUCTORS

• Package
public Package(java.lang.String unit, java.lang.String
version)

– Usage

∗ Constructor

– Parameters

∗ unit - The unit name
∗ version - The package version

org.edos project.model– PackageRepository 141

• Package
public Package(java.lang.String unit, java.lang.String
version, java.lang.String file)

– Usage

∗ Constructor

– Parameters

∗ unit - The unit name
∗ version - The package version
∗ file - The package file name

METHODS

• addVirtualName
public void addVirtualName(java.lang.String name)

– Usage

∗ Add a virtual package name to the package

– Parameters

∗ name - The virtual package name

• equals
public boolean equals(java.lang.Object obj)

• getFile
public String getFile()

• getUnit
public String getUnit()

• getVersion
public String getVersion()

• getVirtualNames
public Set getVirtualNames()

• hashCode
public int hashCode()

• provides
public boolean provides(java.lang.String
virtualPackageName)

– Usage

∗ Check if a package provides a virtual package name

– Parameters

∗ virtualPackageName - The virtual package name

– Returns - true if virtualPackageName is provided, false otherwise

• toString
public String toString()

142 org.edos project.model– PackageRepository

B.1.8 CLASS PackageRepository

This class models a package repository

DECLARATION

public class PackageRepository
extendsjava.util.HashSet

SERIALIZABLE FIELDS

• private Map packageNameMap

–

• private Map virtualPackageNameMap

–

• private DependencyGraph dependencyGraph

–

CONSTRUCTORS

• PackageRepository
public PackageRepository()

METHODS

• add
public boolean add(org.edos project.model.Package pkg)

– Usage
∗ Add a package to the repository

– Parameters
∗ pkg - The package to add

– Returns - true if the package has been succesfully added

• addAlternativeDependency
public void addAlternativeDependency(
org.edos project.model.util.PackageDependencyDataSet
pddSet)

– Usage
∗ Add an alternative dependency between packages

– Parameters

org.edos project.model– PackageRepository 143

∗ pddSet - The dependency data bundle set

• addDependency
public void addDependency(
org.edos project.model.util.PackageDependencyData pdd)

– Usage
∗ Add a dependency between packages

– Parameters
∗ pdd - The dependency data bundle

• extract
public PackageRepository extract(java.lang.String
unitName)

– Usage
∗ Extract the packages cone

– Parameters
∗ unitName - The unit name

– Returns - A new package repository representing the extracted cone

• findPackage
public Package findPackage(java.lang.String unitName,
java.lang.String packageVersion)

– Usage
∗ Find a package

– Parameters
∗ unitName - The unit name
∗ packageVersion - The version name

– Returns - The found package or null if not found

• findPackages
public Set findPackages(java.lang.String unitName)

– Usage
∗ Find all the packages with a given unit name

– Parameters
∗ unitName - The unit name

– Returns - The set of found packages

• findVirtualPackage
public Set findVirtualPackage(java.lang.String
virtualPackageName)

– Usage
∗ Find all the packages that provide a given virtual package name

– Parameters
∗ virtualPackageName - The virtual package name

– Returns - The set of found packages

144 org.edos project.model– PackageRepository

• getDependencyGraph
public DependencyGraph getDependencyGraph()

• getPackageAlternativeDependencyRelations
public Set getPackageAlternativeDependencyRelations(
org.edos project.model.Package pkg,
org.edos project.model.DependencyType dt)

– Usage
∗ Get all the package alternative dependencies of a given type

– Parameters
∗ pkg - The package
∗ dt - The dependency type

– Returns - The set of all the alternative dependency relationships for
the package

• getPackageDependencyRelations
public Set getPackageDependencyRelations(
org.edos project.model.Package pkg,
org.edos project.model.DependencyType dt)

– Usage
∗ Get all the package dependencies of a given type

– Parameters
∗ pkg - The package
∗ dt - The dependency type

– Returns - The set of all the dependency relationships for the package

• getPurgedDependencyGraph
public DependencyGraph getPurgedDependencyGraph()

– Usage
∗ Get the dependency graph without isolated vertices

– Returns - The dependency graph without isolated vertices

• getUnitNames
public Set getUnitNames()

– Usage
∗ Get all the package unit names in the repository

– Returns - The set of unit names

• getVirtualPackageNames
public Set getVirtualPackageNames()

– Usage
∗ Get all the virtual package names provided by the packages in the

repository

– Returns - The set of virtual package names

org.edos project.model– StandardUnitVertex 145

• linkVirtualPackages
public void linkVirtualPackages()

– Usage
∗ Add a link from each virtual package A to the standard package

A if they both exist

B.1.9 CLASS StandardDependencyEdge

Models a standard dependency edge

DECLARATION

public class StandardDependencyEdge
extendsorg.edosproject.model.DependencyEdge

CONSTRUCTORS

• StandardDependencyEdge
public StandardDependencyEdge(
org.edos project.model.DependencyType dependencyType,
org.edos project.model.DependencyVertex source,
org.edos project.model.UnitVertex target,
org.edos project.model.VersionRelationship
versionRelationship)

– Usage
∗ Constructor

– Parameters
∗ dependencyType - The dependency type
∗ source - The source vertex
∗ target - The target unit vertex
∗ versionRelationship - A version relation specifying the

dependency data

METHODS

• getVersionRelation
public VersionRelationship getVersionRelation()

• hashCode
public int hashCode()

• isAlternative
public boolean isAlternative()

– Returns - true if the dependency edge is an alternative edge

• toString
public String toString()

146 org.edos project.model– UnitVertex

B.1.10 CLASS StandardUnitVertex

Model a standard unit vertex

DECLARATION

public class StandardUnitVertex
extendsorg.edosproject.model.UnitVertex

CONSTRUCTORS

• StandardUnitVertex
public StandardUnitVertex(java.lang.String unitName)

METHODS

• hashCode
public int hashCode()

• toString
public String toString()

B.1.11 CLASS UnitVertex

Base class for all the vertices in the dependency graph

DECLARATION

public abstract class UnitVertex
extendsorg.edosproject.model.DependencyVertex

CONSTRUCTORS

• UnitVertex
public UnitVertex(java.lang.String name)

METHODS

• addPackage
public void addPackage(org.edos project.model.Package
pkg)

– Usage

org.edos project.model– VersionOperator 147

∗ Associate a package to this vertex

– Parameters

∗ pkg - The package

• getName
public String getName()

– Returns - The unit vertex name

• getPackages
public Set getPackages()

– Returns - All the packages associated with this vertex

B.1.12 CLASS VersionOperator

An enumeration for the valid dependency operators

DECLARATION

public final class VersionOperator
extendsjava.lang.Enum

FIELDS

• public static final VersionOperator LT

–

• public static final VersionOperator LE

–

• public static final VersionOperator EQ

–

• public static final VersionOperator GE

–

• public static final VersionOperator GT

–

• public static final VersionOperator ALL

–

148 org.edos project.model– VersionRelationship

METHODS

• getFromString
public static VersionOperator getFromString(
java.lang.String operatorString)

– Usage

∗ Convert a string to the corresponding enumerated operator type

– Parameters

∗ operatorString - The string representing the operator type

– Returns - The corresponding operator type

• valueOf
public static VersionOperator valueOf(java.lang.String
name)

• values
public static final VersionOperator values()

B.1.13 CLASS VersionRelationship

A class modeling a relationship between packages

DECLARATION

public class VersionRelationship
extendsjava.lang.Object

CONSTRUCTORS

• VersionRelationship
public VersionRelationship(org.edos project.model.Package
sourcePackage, org.edos project.model.VersionOperator
operator, java.lang.String targetPackageUnit,
java.lang.String targetPackageVersion)

– Usage

∗ Constructor

– Parameters

∗ sourcePackage - The source package
∗ operator - The relationship operator
∗ targetPackageUnit - The target package unit
∗ targetPackageVersion - The target package name

org.edos project.model– VirtualPackageVertex 149

METHODS

• equals
public boolean equals(java.lang.Object obj)

• getOperator
public VersionOperator getOperator()

• getSourcePackage
public Package getSourcePackage()

• getTargetPackageUnit
public String getTargetPackageUnit()

• getTargetPackageVersion
public String getTargetPackageVersion()

• hashCode
public int hashCode()

• toString
public String toString()

B.1.14 CLASS VirtualPackageEdge

This class models a provides relationship and links a standard unit vertex to the virtual
package vertex whose name is the name of a virtual package provided by some package
associated with the unit vertex.

DECLARATION

public class VirtualPackageEdge
extendsorg.edosproject.model.DependencyEdge

CONSTRUCTORS

• VirtualPackageEdge
public VirtualPackageEdge(
org.edos project.model.VirtualPackageVertex source,
org.edos project.model.StandardUnitVertex target)

B.1.15 CLASS VirtualPackageVertex

This class models a virtual package vertex

150 org.edos project.model– VirtualPackageVertex

DECLARATION

public class VirtualPackageVertex
extendsorg.edosproject.model.UnitVertex

CONSTRUCTORS

• VirtualPackageVertex
public VirtualPackageVertex(java.lang.String name)

METHODS

• toString
public String toString()

Appendix C

Package org.edosproject.io
Package Contents Page

Classes
EGraph .152

This class encapsulates all the behavior for handling EGraph files.

151

152 org.edos project.io– EGraph

C.1 Classes

C.1.1 CLASS EGraph

This class encapsulates all the behavior for handling EGraph files.

DECLARATION

public class EGraph
extendsjava.lang.Object

CONSTRUCTORS

• EGraph
public EGraph()

METHODS

• load
public static PackageRepository load(java.io.File file)

– Usage

∗ Load a package repository from EGraph file

– Parameters

∗ file - The file to load the package repository from

– Returns - The loaded package repository

– Exceptions
∗ javax.xml.parsers.ParserConfigurationException -
∗ org.xml.sax.SAXException -
∗ java.io.IOException -

• load
public static PackageRepository load(java.lang.String
fileName)

– Usage

∗ Load a package repository from EGraph file

– Parameters

∗ fileName - The file name to load the package repository from

– Returns - The loaded package repository

– Exceptions
∗ javax.xml.parsers.ParserConfigurationException -
∗ org.xml.sax.SAXException -
∗ java.io.IOException -

org.edos project.io– EGraph 153

• save
public static void save(
org.edos project.model.PackageRepository
packageRepository, java.io.File file)

– Usage
∗ Save a package repository to an EGraph file

– Parameters
∗ packageRepository - The package repository to save
∗ file - The EGraph file

– Exceptions
∗ java.io.IOException -

• save
public static void save(
org.edos project.model.PackageRepository
packageRepository, java.lang.String fileName)

– Usage
∗ Save a package repository to an EGraph file

– Parameters
∗ packageRepository - The package repository to save
∗ fileName - The EGraph file name

– Exceptions
∗ java.io.IOException -

• saveNew
public static void saveNew(
org.edos project.model.PackageRepository
packageRepository, java.io.File file)

– Usage
∗ Save a package repository to an new XML file format

– Parameters
∗ packageRepository - The package repository to save
∗ file - The output file

– Exceptions
∗ java.io.IOException -

• saveNew
public static void saveNew(
org.edos project.model.PackageRepository
packageRepository, java.lang.String fileName)

– Usage
∗ Save a package repository to an new XML file format

– Parameters
∗ packageRepository - The package repository to save
∗ fileName - The output file name

– Exceptions
∗ java.io.IOException -

154 org.edos project.io– EGraph

Appendix D

Contribution to the Workshop on
Future Research Challenges for
Software and Services (FRCSS06)

The following is the contribution of the WorkPackage2 Team to the Workshop on
Future Research Challenges for Software and Services (FRCSS06)

155

Maintaining large software distributions:
new challenges from the FOSS era?

Roberto Di Cosmo1, Berke Durak2, Xavier Leroy2, Fabio Mancinelli1, and
Jérôme Vouillon1

1 PPS, University of Paris 7, Firstname.Lastname@pps.jussieu.fr
2 INRIA Rocquencourt, Firstname.Lastname@inria.fr

Abstract. In the mainstream adoption of free and open source software
(FOSS), distribution editors play a crucial role: they package, integrate
and distribute a wide variety of software, written in a variety of lan-
guages, for a variety of purposes of unprecedented breadth.

Ensuring the quality of a FOSS distribution is a technical and engineering
challenge, owing to the size and complexity of these distributions (tens of
thousands of software packages). A number of original topics for research
arise from this challenge. This paper is a gentle introduction to this new
research area, and strives to clearly and formally identify many of the
desirable properties that must be enjoyed by these distributions to ensure
an acceptable quality level.

1 Introduction

Managing large software systems has always been a stimulating challenge for the
research field in Computer Science known as Software Engineering. Many semi-
nal advances by founding fathers of Comp. Sci. were prompted by this challenge
(see the book “Software Pioneers”, edited by M. Broy and E. Denert [1], for an
overview). Concepts such as structured programming, abstract data types, mod-
ularization, object orientation, design patterns or modeling languages (unified
or not) [2, 3], were all introduced with the clear objective of simplifying the task
not only of the programmer, but of the software engineer as well.

Nevertheless, in the recent years, two related phenomena: the explosion of
Internet connectivity and the mainstream adoption of free and open source soft-
ware (FOSS), have deeply changed the scenarii that today’s software engineers
face. The traditional organized, safe world where software is developed from
specifications in a fully centralized way is no longer the only game in town. We
see more and more complex software systems that are assembled from loosely
coupled sources developed by programming teams not belonging to any single
company, cooperating only through fast Internet connections. The availability
of code distributed under FOSS licences makes it possible to reuse such code

? This work was supported by the EDOS Specific Targeted Research Project of the
6th European Union Framework Programme.

without formal agreements among companies, and without any form of central
authority that coordinates this burgeoning activity.

This has led to the appearance of the so-called distribution editors, who
try to offer some kind of reference viewpoint over the breathtaking variety of
FOSS software available today: they take care of packaging, integrating and
distributing tens of thousands of software packages, very few being developed
in-house and almost all coming from independent developers. We believe that
the role of distribution editors is deeply novel: no comparable task can be found
in the traditional software development and distribution model.

This unique position of a FOSS distribution editor means that many of the
standard, often unstated assumptions made for other complex software systems
no longer hold: there is no common programming language, no common object
model, no common component model, no central authority, neither technical nor
commercial3.

Consequently, most FOSS distribution today simply rely on the general no-
tion of software package4: a bundle of files containing data, programs, and con-
figuration information, with some metadata attached. Most of the metadata
information deals with dependencies: the relationships with other packages that
may be needed in order to run or install a given package, or that conflict with
its presence on the system.

We now give a general description of a typical FOSS process. In figure 1
we have an imaginary project, called foo, handled by two developers, Alice
Torvalds and Bob Dupont, who use a common CVS or Subversion repository
and associated facilities such as mailing lists at a typical FOSS development
site such as Sourceforge. Open source software is indeed developed as projects,
which may group one or more developers. Projects can be characterized by a
common goal and the use of a common infrastructure, such as a common version
control repository, bug tracking system, or mailing lists. For instance, the Firefox
browser, the Linux kernel, the KDE and Gnome desktop environments or the
GNU C compiler are amongst the largest FOSS projects and have their own
infrastructures. Of course, even small bits of software like sysstat consitute
projects, even if they are developed by only one author without the use of a
version control system. A given project may lead to one or more products. For
instance, the KDE project leads to many products, from the konqueror browser
to the desktop environment itself. Each FOSS product may then be included in
a distribution. In our example, the project foo delivers the products gfoo, kfoo
and foo-utils. A port is the inclusion of a product into a distribution by one
or more maintainers of that distribution. The maintainers must:

– Import and regularly track the source code for the project into the distribu-
tion’s own version control or storage system (this is depicted in figure 1 by a

3 In the world of Windows-based personal computing, for example, the company con-
trolling Windows can actually impose to the ISV the usage of its API and other
rules.

4 Not to be mistaken for the software organizational unit present in many modern
programming languages.

Fig. 1. Major flow of information in a FOSS project.

switch controlling the flow of information from the upstream to the version
control system of the distribution).

– Ensure that the dependencies of the product are already included in the
distribution.

– Write or include patches to adapt the program to the distribution.
– Write installation, upgrading, configuration and removal scripts.
– Write metadata and control files.
– Communicate with the upstream developers by forwarding them bug reports,

patches or feature requests.

We see that the job of maintainers is substantial for which attempts to auto-
mate some of those tasks, such as automated dependency extraction tools [4,
5] or getting source code updates from developers [6] are no substitute. In our
example, we have a Debian-based distribution 1, with two maintainers for foo,
and an RPM-based distribution 2 with one maintainer. A given product will be
divided into one or more units, which will be compiled for the different archi-
tectures supported by the distribution (a given unit may not be available on all
architectures) and bundled as packages. The metadata and control files specify
how the product is divided into units, how each unit is to be compiled and pack-
aged and on which architectures, as well as the dependency information, the
textual description of the units, their importance, and classification tags. These
packages are then automatically downloaded (as well as their dependencies) by
the package management software (for instance, apt or urpmi) of the users of
that distribution. Some users may prefer to download directly the sources from
the developers, in which case they will typically execute a sequence of com-
mands such as ./configure && make && make install to compile and install
that software. However, they then lose the many benefits of a package manage-
ment system, such as tracking of the files installed by the package, automated
installation of the dependencies, local modifications and installation scripts.

We now turn to the problem of ensuring the quality of a distribution. This
problem is the focus of the European FP6 project EDOS (Environment for the
development and Distribution of Open Source software). This problem can there-
fore be divided into three main tasks:

Upstream tracking makes sure that the package in the distribution closely
follows the evolution of the software development, almost always carried
over by some team outside the control of the distributor.

Testing and integration makes sure that the program performs as expected
in combination with other packages in the distribution. If not, bug reports
need propagating to the upstream developer.

Dependency management makes sure that, in a distribution, packages can
be installed and user installations can be upgraded when new versions of
packages are produced, while respecting the constraints imposed by the de-
pendency metadata.

In this paper, we focus on the last task: dependency management. This task
is surprisingly complex [4, 7], owing to the large number of packages present in a

typical distribution and to the complexity and richness of their interdependen-
cies. It is at the very heart of the research activity conducted in workpackage 2
of the EDOS project.

More specifically, our focus is on the issues related to dependency manage-
ment for large sets of software packages, with a particular attention to what must
be done to maintain consistency of a software distribution on the repository side,
as opposed to maintaining a set of packages installed on a client machine.

This choice is justified by the following observation: maintaining consistency
of a distribution of software packages is fundamental to ensure quality and scal-
ability of current and future distributions; yet, it is also an invisible task, since
the smooth working it ensures on the end user side tends to be considered as
normal and obvious as the smooth working of packet routing on the Internet. In
other words, we are tackling an essential infrastructure problem that has long
been ignored: while there are a wealth of client-side tools to maintain a user
installation (apt, urpmi, smart and many others [8–10]), there is surprisingly
little literature and publically available tools that address server-side require-
ments. We found very little significant prior work in this area, despite it being
critical to the success of FOSS in the long term.

The paper is organised as follows. Section 2 contains a formal description of
the main characteristics of a software package found in the mainstream FOSS
distributions, as far as dependency are concerned. In Section 3 we identify and
formally define three desirable properties of a distribution with respect to depen-
dency management. Section 4 discusses the feasibility of checking these proper-
ties. A few empirical measurements are given in section 5, followed by conclusions
in section 6.

2 Basic definitions

Every package management system [11, 12] takes into account the interrelation-
ships among packages (to different extents). We will call these relationships re-
quirements. Several kinds of requirements can be considered. The most common
one is a dependency requirement: in order to install package P1, it is necessary
that package P2 is installed as well. Less often, we find conflict requirements:
package P1 cannot coexist with package P2.

Some package management systems specialize these basic types of require-
ments by allowing to specify the timeframe during which the requirement must
be satisfied. For example, it is customary to be able to express pre-dependencies,
a kind of dependency stating that a package P1 needs package P2 to be present
on the system before P1 can be installed [11].

In the following, we assume the distribution and the architecture are fixed.
We will identify packages, which are archive files containing metadata and in-
stallation scripts, with pairs of a unit and a version.

Definition 1 (Package, unit). A package is a pair (u, v) where u is a unit
and v is a version. Units are arbitrary strings, and we assume that versions are
non-negative integers.

While the ordering over version strings as used in common OSS distributions is
not discrete (i.e., for any two version strings v1 and v2 such that v1 < v2, there
exists v3 such that v1 < v3 < v2), taking integers as version numbers is justified
for two reasons. First, any given repository will have a finite number of packages.
Second, only packages with the same unit will be compared.

For instance, if our Debian repository contains the versions 2.15-6, 2.16.1-
cvs20051117-1 and 2.16.1cvs20051206-1 of the unit binutils, we may en-
code these versions respectively as 0,1 and 2, giving the packages (binutils, 0),
(binutils, 1), and (binutils, 2).

Definition 2 (Repository). A repository is a tuple R = (P,D,C) where P
is a set of packages, D : P → P(P(P)) is the dependency function5, and
C ⊆ P × P is the conflict relation. The repository must satisfy the following
conditions:

– The relation C is symmetric, i.e., (π1, π2) ∈ C if and only if (π2, π1) ∈ C
for all π1, π2 ∈ P .

– Two packages with the same unit but different versions conflict6, that is, if
π1 = (u, v1) and π2 = (u, v2) with v1 6= v2, then (π1, π2) ∈ C.

In a repository R = (P,D,C), the dependencies of each package p are given
by D(p) = {d1, . . . , dk} which is a set of sets of packages, interpreted as follows.
If p is to be installed, then all its k dependencies must be satisfied. For di to be
satisfied, at least one of the packages of di must be available. In particular, if
one of the di is the empty set, it will never be satisfied, and the package p is not
installable.

Example 1. Let R = (P,D,C) be the repository given by

P = {a, b, c, d, e, f, g, h, i, j}
D(a) =

{
{b}, {c, d}, {d, e}, {d, f}

}
D(b) =

{
{g}

}
D(c) =

{
{g, h, i}

}
D(d) =

{
{h, i}

}
D(e) = D(f) =

{
{j}

}
C = {(c, e), (e, c), (e, i), (i, e), (g, h), (h, g)}

where a = (ua, 0), b = (ub, 0), c = (uc, 0) and so on. The repository R is
represented in figure 2. For the package a to be installed, the following packages
must be installed: b, either c or d, either d or e, and either d or f . Packages c
and e, e and i, and g and h cannot be installed at the same time.

In computer science, dependencies are usually conjunctive, that is they are
of the form

a → b1 ∧ b2 ∧ · · · ∧ bs

5 We write P(X) for the set of subsets of X.
6 This requirement is present in some package management systems, notably Debian’s,

but not all. For instance, RPM-based distributions allow simultaneous installation
of several versions of the same unit, at least in principle.

Fig. 2. The repository of example 1.

where a is the target and b1, b2, . . . are its prerequisites. This is the case in
make files, where all the dependencies of a target must be built before build-
ing the target. Such dependency information can be represented by a directed
graph, and dependencies can be solved by the well-known topological sort algo-
rithm. Our dependencies are of a more complex kind, which we name disjunctive
dependencies. Their general form is a conjunction of disjunctions:

a → (b1
1 ∨ · · · ∨ br1

1) ∧ · · · ∧ (b1
s ∨ · · · ∨ brs

s). (1)

For a to be installed, each term of the right-hand side of the implication 1 must
be satisfied. In turn, the term b1

i ∨ · · · ∨ bri
i when 1 ≤ i ≤ s is satisfied when at

least one of the bj
i with 1 ≤ j ≤ ri is satisfied. If a is a package in our repository,

we therefore have

D(a) = {{b1
1, . . . , b

r1
1 }, · · · , {b1

s, . . . , b
rs
s }}.

In particular, if one of the terms is empty (if ∅ ∈ D(a)), then a cannot be
satisfied. This side-effect is useful for modeling repositories containing packages
mentioning another package b that is not in that repository. Such a situation
may occur because of an error in the metadata, because the package b has been
removed, or b is in another repository, maybe for licensing reasons.

Concerning the relation C, two packages π1 = (u1, v1), π2 = (u2, v2) ∈ P
conflict when (π1, π2) ∈ C. Since conflicts are a function of presence and not of
installation order, the relation C is symmetric.

Definition 3 (Installation). An installation of a repository R = (P,D,C) is
a subset of P , giving the set of packages installed on a system. An installation
is healthy when the following conditions hold:

– Abundance: Every package has what it needs. Formally, for every π ∈ I,
and for every dependency d ∈ D(π) we have I ∩ d 6= ∅.

– Peace: No two packages conflict. Formally, (I × I) ∩ C = ∅.

Definition 4 (Installability and co-installability). A package π of a repos-
itory R is installable if there exists a healthy installation I such that π ∈ I.
Similarly, a set of packages Π of R is co-installable if there exists a healthy
installation I such that Π ⊆ I.

Note that because of conflicts, every member of a set X ⊆ P may be installable
without the set X being co-installable.

Example 2. Assume a depends on b, c depends on d, and c and d conflict. Then,
the set {a, b} is not co-installable, despite each of a and b being installable and
not conflicting directly.

Definition 5 (Maximal co-installability). A set X of co-installable packages
of a repository R is maximal if there is no other co-installable subset X ′ of R
that strictly contains X. We write maxco(R) for the family of all maximal co-
installable subsets of R.

Definition 6 (Dependency closure). The dependency closure ∆(Π) of a set
of package Π of a repository R is the smallest set of packages included in R
that contains Π and is closed under the immediate dependency function D :
P(P) → P(P) defined as

D(Π) =
⋃

π∈Π

d∈D(π)

d.

In simpler words, ∆(Π) contains Π, then all packages that appear as immedi-
ate dependencies of Π, then all packages that appear as immediate dependencies
of immediate dependencies of Π, and so on. Since the domain of D is a complete
lattice, and D is clearly a continuous function, we immediately get (by Tarski’s
theorem) that such a smallest set exists and can be actually computed as follows:

Proposition 1. The dependency closure ∆(Π) of Π is:

∆(Π) =
⋃
n≥0

D
n
(Π).

The notion of dependency closure is useful to extract the part of a repository
that pertains to a package or to a set of packages.

Definition 7 (Generated subrepository). Let R = (P,D,C) be a repository
and Π ⊆ P be a set of packages. The subrepository generated by Π is the
repository R|Π = (P ′, D′, C ′) whose set of packages is the dependency closure of
Π and whose dependency and conflict relations are those of R restricted to that
set of packages. More formally we have P ′ = ∆(Π), D′ : P ′ → P(P(P ′)), π 7→
{d ∩ P ′ | d ∈ D(π)} and C ′ = C ∩ (P ′ × P ′).

Fig. 3. The subrepository generated by package c. The dependency closure is {c, g, h, i}.

Figure 3 shows the subrepository generated by the package c of example 1.
The dependency closure of c is the set of package nodes of that subrepository.
A larger, real-world example is shown in figure 4.

We then have the following property, which allows to consider only the rele-
vant subrepositories when answering questions of installability.

Proposition 2 (Completeness of subrepositories). A package π is
installable w.r.t. R if and only if it is installable w.r.t. R|π. (Similarly for
co-installability.)

3 Maintaining a package repository

The task of maintaining a package repository is difficult: the maintainance team
must monitor the evolution of thousand of packages over time, and address the
error reports coming from different sources (users, QA teams, developers, etc.).
It is desirable to automate as much of this work as possible. Our medium-term
goal is to build tools that help distribution maintainers track dependency-related
problems in package repositories. We detail here some of the desirable properties
of a repository. The first is history-free, in that it applies to a given state of a
repository.

AND

libc6

perl-base

AND

AND

AND

libtext-charwidth-perl

AND

libtext-iconv-perl

libtext-wrapi18n-perlliblocale-gettext-perl

slang1a-utf8

AND

debconf

AND NOR

NOR

debconf-i18n

AND

NOR

debconf-english AND

libnewt0.51libtextwrap1

libdebian-installer4

debconf-doc

OR

ANDNOR

cdebconf

libdb1-compat

OR

AND

sysstat

Fig. 4. The subrepository generated by the package sysstat in Debian stable on 2005-
12-13, viewed as a boolean graph. Version numbers have been omitted for brevity.

Being trimmed We say that a repository R is trimmed when every package of R is
installable w.r.t. R. The intuition behind this terminology is that a non-trimmed
repository contains packages that cannot be installed in any configuration. We
call those packages broken. They behave as if they were not part of the repository.
It is obviously desirable that at any point in time, a repository is trimmed, that
is, contains no broken packages.

The next properties are history-sensitive, meaning that they take into account
the evolution of the repository over time. Due to this dependency on time, the
precise formulation of these properties is delicate. Just like history-free properties
are relevant to users who install a distribution from scratch, history-sensitive
properties are relevant to users who upgrade an existing installation.

Monotonicity Let Rt be the repository at time t and consider a coinstallable set
of packages Ct. Some users can actually have packages Ct installed simultane-
ously on their system. These users have the possibility of installing additional
packages from Rt, resulting in a coinstallable set of packages C ′

t. These users
can reasonably expect that they will be able to do so (extend Ct into C ′

t) at any
future time t′, using the repository Rt′ , which, being newer, is supposed to be
better than the old Rt.

Of course, users are ready to accept that in Rt′ they will not get exactly C ′
t,

but possibly C ′
t′ , where some packages were updated to a greater version, and

some others have been replaced as the result of splitting into smaller packages
or grouping into larger ones. But, clearly, it is not acceptable to evolve Rt into
Rt′ if Rt allows to install, say, apache together with squid, while Rt′ does not.

We say that a repository history line is monotone if the freedom of a user to
install packages is a monotone function of time. Writing F (x,R) for the set of
possible package sets in R that are a possible replacement of package x according
to the metadata, monotonicity can be formally expressed as

Mon(R) = ∀t < t′. ∀P ∈ Con(Rt). ∃Q ∈ Con(Rt′). ∀x ∈ P. Q ∩ F (x,Rt′) 6= ∅

Upgradeability Another reasonable expectation of the user is to be able to up-
grade a previously installed package to the most recent version (or even any more
recent version) of this package that was added to the repository since her latest
installation. She is ready to accept that this upgrade will force the installation of
some new packages, the upgrade of some other packages, and the replacement of
some sets of package by other sets of packages, as the result of the reorganization
of the structure of the packages. However, she cannot accept that the upgrade
of a package forces the complete removal of other previously installed packages
that she uses.

In other terms, the evolution of a repository respects the upgradeability prop-
erty if all upgrades of individual packages can be performed without loss of func-
tionality: all packages removed as part of such an upgrade must be compensated
by the installation of other packages of equivalent functionality. The notion of
“equivalent functionality” needs to be indicated in the metadata of the packages,
such as for instance the “Replaces” clauses in Debian’s package metadata.

We remark that these properties are not interdefinable. We give here a proof
of this assertion by exhibiting example repositories showing this independence
of the properties. For the first two cases, consider three repositories R1, R2,
R3 whose sets of packages are P1 = {(a, 1), (b, 1), (c, 1)}, P2 = {(a, 1), (b, 1)},
P3 = {(a, 1), (a, 2), (b, 1)} with no conflicts nor dependencies among the version
1 packages and a conflict among (a, 2) and (b, 1). Notice that at each moment t
in time, Rt is trimmed.

1. A repository that stays trimmed over a period of time is not necessarily
monotone, nor upgradeable. Since (c, 1) disappears between times 1 and 2,
this step in the evolution does not preserve monotonicity. Since (a, 2) has a
new conflict (namely with (b, 1)) in R3, the evolution from R2 to R3 does
not preserve upgradeability.

2. A repository that stays trimmed over a period of time and evolves in a
monotone fashion is not necessarily upgradeable. The evolution from R2 to
R3 above is monotone, each of R2 and R3 is trimmed, but we fail upgrade-
ability because there is no way of going from {(a, 1), (b, 1)} to {(a, 2), (b, 1)}
because of the conflict.

3. A repository that stays trimmed over a period of time and is upgradeable is
not necessarily monotone.
Consider repositories R1 and R2 with P1 = {(a, 1), (b, 1)} and
P2 = {(a, 2), (b, 1)}. Assume (a, 1) and (b, 1) are isolated packages, while
(a, 2) conflicts with (b, 1). Now, a user having installed all of R1 and really
willing to get (a, 2) can do it, but at the price of giving up (b, 1). This
evolution of the repository is therefore upgradeable but not monotone.

4. A repository that evolves in a monotone and upgradeable fashion is not
necessarily trimmed at any time: indeed, the monotonicity and upgradeabil-
ity property only speak of consistent subsets of a repository, that cannot
contain, by definition, any broken packages.
Consider for example repositories R1, R2 with P1 = {(a, 1)},
P2 = {(a, 1), (b, 1)}. Assume (a, 1) and (b, 1) are broken because they
depend on a missing package (c, 1). Here, the evolution of R1 to R2 is
trivially monotone and upgradeable, because there is no consistent subset
of R1 and R2, and both R1 and R2 are not trimmed because they contain
broken packages.

The examples above to prove that the three properties are actually indepen-
dent may seem contrived, but are simplifications of real-world scenarii. For in-
stance, example 3 can actually happen in the evolution of real repositories, when
for some reason the new version of a set of interrelated packages is only partially
migrated to the repository. Many packages are split into several packages to iso-
late architecture-independent files, as in the Debian packages swi-prolog and
swi-prolog-doc. When performing this split, it is quite natural to add a conflict
in swi-prolog-doc against old, non-splitted versions of swi-prolog. If the new
version of swi-prolog-doc slips into a real repository before the new, splitted
version of swi-prolog, we are exactly in situation number 3 above.

Package developers seem aware of some of these issues: they actually do their
best to ensure monotonicity and upgradeability by trying to reduce as much as
possible the usage of conflicts, and sometime resorting to naming conventions
for the packages when a radical change in the package happens, like in the case
of xserver-common vs. xserver-common-v3 in Debian, as can be seen in the
dependencies for xserver-common.

Package: xserver-common

Conflicts: xbase (<< 3.3.2.3a-2), xsun-utils, xbase-clients (<< 3.3.6-1),

suidmanager (<< 0.50), configlet (<= 0.9.22),

xserver-3dlabs (<< 3.3.6-35), xserver-8514 (<< 3.3.6-35),

xserver-agx (<< 3.3.6-35), xserver-common-v3 (<< 3.3.6-35),

xserver-fbdev (<< 3.3.6-35), xserver-i128 (<< 3.3.6-35),

xserver-mach32 (<< 3.3.6-35), xserver-mach64 (<< 3.3.6-35),

xserver-mach8 (<< 3.3.6-35), xserver-mono (<< 3.3.6-35),

xserver-p9000 (<< 3.3.6-35), xserver-s3(<< 3.3.6-35),

xserver-s3v (<< 3.3.6-35), xserver-svga (<< 3.3.6-35),

xserver-tga (<< 3.3.6-35), xserver-vga16 (<< 3.3.6-35),

xserver-w32 (<< 3.3.6-35), xserver-xsun (<< 3.3.6-35),

xserver-xsun-mono (<< 3.3.6-35), xserver-xsun24 (<< 3.3.6-35),

xserver-rage128, xserver-sis

4 Algorithmic considerations

Our research objective within the EDOS project is to formally define the desir-
able properties of repositories stated in section 3 (and possibly other properties
that will appear useful), and to develop efficient algorithms to check these prop-
erties automatically.

It is really not evident that any of these problems are actually tractable
in practice: due to the rich language allowed to describe package dependencies
in the mainstream FOSS distributions, even the simplest problems (checking
installability of a single package) may involve verifications over a large number
of other packages. During our first investigations of these problems, we have
indeed already proven the following complexity result.

Theorem 1 (Package installability is an NP-complete problem). Check-
ing whether a single package P can be installed, given a repository R, is NP-
complete.

The full proof of this result will be published separately. It relies on a simple,
polynomial-time reduction of the 3SAT problem to the installability problem.
Given an instance of 3SAT, a repository is constructed having one package for
the whole 3SAT formula, one package per clause of that formula, and three
packages for each propositional atom occurring in that formula. Dependencies
and conflicts between these packages are added in such a way that the package
for the whole formula is installable if and only if the 3SAT formula is satisfiable.

Nevertheless, this strong limiting result does not mean that we will not be
able to decide installability and the other problems in practice: the actual in-
stances of these problems, as found in real repositories, could be quite simple in
the average.

In particular, the converse of the reduction used for the NP-completeness
proof leads to an effective way of deciding package installability. We developed
an algorithm that encodes a repository R and its dependencies as a Boolean
formula C(R). (Details of the encoding will be published in a forthcoming paper.)
Assignments of truth values to boolean variables that satisfy C(R) are in one-
to-one correspondence with sets of co-installable packages. Therefore, a package
P is installable if and only if the Boolean formula C(R)∧P is satisfiable, which
we can check relatively efficiently using off-the-shelf SAT solving technology.

We implemented the conversion algorithm as well a SAT solver [13] and ran
it over both the Debian pool (over 30,000 packages) and the Mandriva Cooker
distribution (around 5,000 packages). The execution time is entirely acceptable,
and the tool found a number of non-installable packages in both distributions.

We are now focusing our attention on the two time-dependent desirable prop-
erties for the repositories, which are, algorithmically speaking, much harder.

5 Empirical measurements

In parallel with our formal complexity and algorithmic investigations, we also
performed some empirical measurements on the Debian and Mandriva distribu-
tions, to try and grasp the practical complexity of the problems.

Figure 5 gives a histogram showing the number of packages as a function of
the size of the dependency closure, from the Debian stable, unstable and testing
pools on 2005-12-13, which has 31149 packages. The average closure size is 158;
50% of the packages have a closure size of 71 or less, 90% of 372 or less, and
99% of 1077 or less. These numbers show that naive combinatorial algorithms,
exponential in the size of the dependency closure, are clearly out of the question.

Figure 6 estimates the complexity of solving the Boolean formulae generated
by our encoding of the installability problem. The “temperature” T of a formula
in 3SAT conjunctive normal form is defined as T = m/n where m is the number
of clauses and n the number of variables. There is strong theoretical and practical
evidence that hard SAT problems have a temperature close to 4.2, while SAT
problems with temperatures well below or above that limit are easier to solve.
The temperatures for the SAT problems corresponding to installability of the
Debian packages range from 0.75 to 1.49, well below the threshold value of
4.2. This result confirms that we are dealing with relatively easy satisfiability
problems, maybe owing to the small-world nature of the dependency graphs [14].

6 Conclusions

We have presented and motivated in this paper three fundamental properties
for large repositories of FOSS packages that are quite different from the usual

0 250 500 750 1000 1250 1500 1750 2000
Dependency closure size

1

10

100

1000

10000

N
um

be
r

of
 p

ac
ka

ge
s

0

0.25

0.5

0.75

1

C
um

ul
at

ed
 r

at
io

Fig. 5. Number of packages as a function of the size of their dependency closures.

0.75 1 1.25 1.5
Temperature

1

10

100

1000

10000

N
um

be
r

of
 p

ac
ka

ge
s

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

ed
 r

at
io

Fig. 6. Number of packages as a function of the “temperature” of the SAT problems
corresponding to their installability problems.

properties of component collections, due to the large spectrum of languages,
technologies, frameworks and interfaces spanned by a contemporary FOSS dis-
tribution.

Despite their algorithmic complexity, we have already performed large-scale
tests indicating that the first of these properties can be mechanically checked in
reasonable time. We continue similar investigations on the other properties.

We claim that providing efficient tools to check these properties is an essential
step in order to ensure that the FOSS development model stays sustainable, and
we suggest that researchers should look into the specificities brought by FOSS
in the software engineering world.

References

1. Broy, M., Denert, E.: Software Pioneers: Contributions to Software Engineering.
Springer-Verlag (2002)

2. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Ad-
dison Wesley Professional (1997)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

4. Tuura, L.A.: Ignominy: tool for analysing software dependencies and for reducing
complexity in large software systems. In: Proceedings of the VIII International
Workshop on Advanced Computing and Analysis Techniques in Physics Research.
Volume 502. (2003) 684–686

5. Taylor, L., Tuura, L.: Ignominy: a tool for software dependency and metric analysis
with examples from large HEP packages. In: Proceedings of CHEP’01. (2001)

6. Eklund, D.: The lib update/autoupdate suite. http://luau.sourceforge.net/ (2003–
2005)

7. van der Storm, T.: Variability and component composition. In: Proceedings of the
Eighth International Conference on Software Reuse (ICSR-8). (2004)

8. Silva, G.N.: Apt-howto. http://www.debian.org/doc/manuals/apt-howto/ (2004)
9. Mandriva: URPMI. http://www.urpmi.org/ (2005)

10. Niemeyer, G.: Smart package manager. http://labix.org/smart/ (2005)
11. Debian Group: Debian policy manual. http://www.debian.org/doc/debian-policy/

(1996–1998)
12. Bailey, E.C.: Maximum RPM, taking the Red Hat package manager to the limit.

http://rikers.org/rpmbook/,http://www.rpm.org (1997)
13. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella,

A., eds.: Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers. Volume 2919 of Lecture Notes in Computer Science., Springer (2004) 502–
518

14. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. Submitted to Journal of Theoretical Computer Science (2005)

Appendix E

Contribution to the VII
Workshop de Software Livre
(WSL06)

The following is the contribution of the WorkPackage2 Team to the VII Workshop
de Software Livre (WSL06)

173

News from the EDOS project: improving the maintenance of
free software distributions ∗

Jaap Boender 1 , Roberto Di Cosmo 1 , Berke Durak 2

Xavier Leroy 2 , Fabio Mancinelli 1 , Mario Morgado 3

David Pinheiro 3 , Ralf Treinen 4, Paulo Trezentos 3 , Jérôme Vouillon 1

1 PPS, University of Paris 7, Firstname.Lastname@pps.jussieu.fr

2INRIA Rocquencourt, Firstname.Lastname@inria.fr

3Caixa Magica, Firstname.Lastname@caixamagica.pt

4LSV, ENS de Cachan, Firstname.Lastname@lsv.ens-cachan.fr

Abstract. The EDOS research project aims at contributing to the quality assur-
ance of free software distributions. This is a major technical and engineering
challenge, due to the size and complexity of these distributions (tens of thou-
sands of software packages). We present here some of the challenges that we
have tackled so far, and some of the advanced tools that are already available
to the community as an outcome of the first year of work.
Keywords: free software, open source software, dependency management, con-
straint satisfaction, rollback, EDOS project.

1 Introduction
So-called distribution editors like Caixa Magica, Conectiva, Debian, Mandriva, RedHat,
Suse, Ubuntu and many others try to offer some kind of reference viewpoint over the
breathtaking variety of free and open source software (FOSS) available today: they take
care of packaging, integrating and distributing tens of thousands of software packages,
very few of them being developed in-house and almost all coming from independent de-
velopers. As a consequence, most FOSS distributions today simply rely on the general
notion of a software package1: a bundle of files containing data, programs, and config-
uration information, with some metadata attached. Most of the metadata information is
about dependencies, i.e., the relationships with other packages that may be needed in
order to run or install a given package, or that conflict with its presence on the system.

How can one ensure the quality of a distribution? This problem, which is the
focus of the European Sixth Framework Programme project EDOS (Environment for the
development and Distribution of Open Source software), can essentially be divided into
three main tasks:

Upstream tracking makes sure that a package in the distribution closely follows the
evolution of the software development, almost always done by some team beyond
direct control by the distributor.

∗This work was supported by the EDOS Specific Targeted Research Project of the 6th European Union Framework Programme.
1Not to be mistaken for the software organizational units such as librairies, modules or classes.

Testing and integration makes sure that a program performs as expected in combination
with other packages in the distribution. If this is not the case then bug reports
should be sent to the upstream developer.

Dependency management makes sure that, in a distribution, packages can be installed
and user installations can be upgraded when new versions of packages are pro-
duced, while respecting the constraints imposed by the dependency metadata.

Inside the EDOS project, work package 2 (WP2) is about dependency manage-
ment. This task is surprisingly complex [Tuura 2003, Van der Storm 2004] due to the
large number of packages present in a typical distribution and to the complexity and rich-
ness of their interdependencies. More specifically, our focus is on the issues related to
dependency management for large sets of software packages, with a particular emphasis
on maintaining consistency of a software distribution on the repository side, as opposed
to maintaining a set of packages installed on a client machine. This choice is justified by
the following observation: maintaining consistency of a distribution of software packages
is fundamental to the quality and scalability of current and future distributions; yet, it is
also an invisible task, since the smooth working it ensures on the end user side tends to be
considered as normal and obvious as the smooth working of packet routing on the Inter-
net. In other words, we are tackling an essential infrastructure problem that has long been
ignored: while there are a wealth of client-side tools to maintain a user installation (apt,
urpmi, smart and many others [Silva 2004, Mandriva 2005, Niemeyer 2005]), there are
surprisingly little literature and publically available tools that address server-side require-
ments. We found very little significant prior work in this area, despite it being critical to
the success of FOSS in the long term.

In this short paper we want to give an overview of some of the tools developed
inside the EDOS Project that have the potential to improve the management of distribu-
tions from the point of view of dependencies. The paper is organized as follows. Section 2
contains a formal description of the main characteristics of a software package found in
mainstream FOSS distributions as far as dependencies are concerned. The algorithmic
aspects of solving the dependency constraints are underlined in Section 3. Section 4 de-
scribes the usage of some of these tools for a Linux distribution (Caixa Magica) and their
extension of APT with a rollback feature. Some metadata exploration tools developed by
the WP2 and taking into account the historical evolution of the repositories are described
in Section 5.

2 Basic definitions

Every package management system [Debian 2005, Bailey 1997] takes to various extends
into account the interrelationships among packages. We will call these relationships re-
quirements. Several kinds of requirements can be considered. The most common one is
a dependency requirement: in order to install package P1, it is necessary that package P2

be installed as well. Less often, we find conflict requirements: package P1 cannot coexist
with package P2.

Some package management systems specialize these basic types of requirements
by allowing to specify the time frame during which the requirement must be satisfied. For

example, it is customary to be able to express pre-dependencies, a kind of dependency
stating that some package P1 needs some package P2 to be present on the system before
P1 can be installed [Debian 2005].

These notions can be made precise [Di Cosmo et al. 2006], and we refer the in-
terested reader to that paper for a more detailed discussion. For the current presentation
we do not need such a level of formal precision, and we will rely on the intuitive meaning
of commonly used terms like package, dependency, conflict, repository and installation.

The first, most basic quality requirement for a distribution is that for each
package P being part of a distribution there should exist at least one installation of the
distribution that satisfies all dependency constraints and that contains P. Otherwise,
P is useless: nobody will ever be able to install it without breaking the dependency
constraints, which in turn breaks the package management system.

Definition 1 (Installability). A package π of a repository R is installable if there exists an
installation I that contains π and that is healthy, i.e. with no broken dependencies.

We say that a repository R is trimmed when every package of R is installable
w.r.t. R. The intuition behind this terminology is that a non-trimmed repository contains
packages that cannot be installed in any configuration. We call those packages broken,
and they should be excluded from the repository.

Our first set of tools is able to formally check whether a repository is trimmed,
and if not it explains which packages are not installable for which reason.

3 Algorithmic considerations
It is not obvious that checking a repository for broken packages is actually tractable
in practice: due to the rich language allowed to describe package dependencies in the
mainstream FOSS distributions, this task may involve verifications over a large number
of packages. During our first investigations of these problems we have indeed already
proven the following complexity result.

Theorem 1 (Package installability is an NP-complete problem). Checking whether a
single package P can be installed, given a repository R, is NP-complete.

Nevertheless, the actual instances of these problems, as found in real repositories,
turn out to be quite simple in the average.

We implemented various checking tools, using custom solvers as well as a SAT
solver [Eèn and Sörensson 2004] and CP solvers, and ran them over both the Debian
pool (about 15,000 source packages giving 20,000 units, totaling 30,000 packages in
the different distributions, including ”contrib” and ”non-free” packages) and the Man-
driva Cooker distribution (around 5,000 packages). The execution time is completely
satisfactory, and the tools found a number of non-installable packages in both distri-
butions. These tools are available from the subversion server of the EDOS project at
http://www.edos-project.org/.

Notice that, unlike scripts that are actually used in some distributions, these EDOS
tools are correct and complete, that is, they find all broken packages, and only the broken

packages, and they are highly efficient, as they can analyze the whole Debian repository
in just a couple of minutes.

You can of course simply go to the EDOS subversion repository and download
the tools to run them on the command line, but we have also two real-world deploy-
ment examples which show how a distribution manager could use them in a production
environment.

4 Deployment and usage of the tools at Caixa Magica
Caixa Magica is a Portuguese Linux distribution used nationwide in Portugal. It is used
not only in schools and public administrations but also by companies and private citizens.
It is based on the RPM format although it uses apt (namely apt-rpm) since 2004. As in
other Linux distributions, it has FTP servers with the official software packages (RPMs)
and servers with unofficial RPMs submitted by the community. The company encourages
the submission of these unofficial packages since they are much more up-to-date than the
stable and official ones. For that purpose Caixa Magica has created a website, named
“ContribWare” (http://contribware.caixamagica.pt/), which maintains the sub-
mission of unofficial packages. ContribWare is now 3 months old and hundreds of pack-
ages have been submitted through it. One workflow-related problem of such systems is
detecting the broken dependencies. The contributors who submit packages usually have a
lot of software installed and thus may fail to identify dependencies. These dependencies
can also be on not yet packaged software.

4.1 Description of graphical statistics interface
Using the WP2 rpmcheck tool, we were able to identify broken dependencies in Contrib-
Ware. A Python script has been developed for processing the information and displaying
an HTML page containing a table summarizing the detected problems, as in Figure 1.
The table has the following columns:

• New Packages: new packages added to the repository. It began with 5,337 pack-
ages.

• Packages in Test: packages that have been submitted to ContribWare by users and
that have been moved to the “on test” state by Caixa Magica editors. This column
has 4 sub-columns: new, approved, refused and total. Packages that are approved
go to “New packages” and leave the “on test” state.

• Broken Dependencies: this column gives the number of packages with broken
dependencies, with a link to a more detailed description. The latter gives the
broken packages with their unsatisfied dependencies.

4.2 Apt rollback - extending package maintenance
The EDOS team is also developing some enhancements to the package management pro-
cess. One of them is the APT rollback mechanism. As some upgrades are not always suc-
cessful, customer requirements on quality assurance opened the need for implementing
a rollback mechanism into apt-rpm. This mechanism relies on registering the requests
for installation, upgrade, downgrade and removal of packages from the system as well as
saving, in some situations, the packages’ configuration files (depending on the operation

Figure 1. Daily log of Caixa Magica archives.

to be performed on the packages: upgrade, downgrade or removal). This mechanism per-
mits to restore the system back to its state before any apt operation. For example, if an
error is detected after an upgrade, the system can quickly restore its previous state. With
every apt-rpm operation we save the following information:

• the package’s name and version before the operation,
• the package’s version after the operation (only for upgrades or downgrades),
• the operation’s type (install, upgrade, downgrade or remove),
• a transaction ID,
• a timestamp and
• the package’s configuration files.

If the operation is an upgrade, a downgrade or a removal, we query the package’s
metadata to check the existence of any configuration files, and if so we save them. Note
that files that are saved are the ones available in the system, not the package’s original
configuration files, so that when a rollback is performed we ensure that we restore the
configuration files as they were at the time of the operation, including user modifications.

A rollback is basically the inverse of a transaction. It includes the inverse package
operation (downgrade for an upgrade, removal for an installation, etc.) as well as the
restoration of the package’s configuration files (if necessary) as shown in Table 1:

Operation Rollback operation Action taken with the Configuration Files
install remove None
remove install Restore configuration
upgrade downgrade Restore configuration files
downgrade upgrade Restore configuration files

Table 1. Rollback operation relationships.

We implemented this functionality into libapt, thus ensuring that tools like
synaptic also register every operation performed and we added two more commands
to apt-get:

• apt-get rollback-hist: For displaying the history of operations with their
transaction IDs

• apt-get rollback <transaction id>: For rolling back the operations per-
formed in the given transaction.

5 EDOS Tools for Exploring the Debian History
The history tool allows command-line exploration of the Debian metadata using
an algebraic query language. Daily metadata is extracted from the archives on
snapshot.debian.net and stored in a MySQL database. However, despite the data
being stored in a structured manner and being appropriately indexed, performance of
even simple SQL queries (such as finding the set of immediate potential dependencies
of a set of packages) is poor. This is partly due to the complex nature of metadata,
which is, due to disjunctive dependencies, not a graph but a a hypergraph, whose
relational representation requires multiple levels of indirection. Also, it is well-known
that standard SQL cannot handle transitive closures. Hence we have opted for using the
SQL database only as an off-line storage engine; history loads the whole database
into RAM, and can then answer complex queries efficiently. We now give a very short
introduction to the query language.

The tool works as a classic read-evaluate-print loop. Expressions or directives
are entered and their results printed. The basic data types handled by history are units,
packages, sources, sets of the above, dates, integers and booleans. Care has been taken to
provide concise notation for describing these. The basic features of a functional language
with strict evaluation are provided. The usual Boolean operations on sets (intersection &,
union | and difference \) are allowed. Sets can be filtered by regular expressions or
user-defined functions. With operators such as exists and for all, this effectively pro-
vides first-order quantified queries. Besides directives that print the metadata in human-
readable form, various operators are provided so that the metadata can be used in complex
expressions. The metadata is historically represented as functions which map dates to sets
of packages. For instance, if p is a package, provides(p) is the set of units provided by p,
and if s is a set of packages, closure(s) is the dependency closure of s : all packages that
packages of s might need to run are contained in s – but due to disjunctive dependencies,
s will usually contain extraneous packages, and due to conflicts, it might not be possible
to install all packages of s. Thus, the dependency solver of debcheck and rpmcheck has
been integrated into history as an operator install(p1, p2) which computes a set p of
co-installable packages such that p1 ⊆ p ⊆ p2. Table 2 gives an overview of the available
operators.

We are developing a web version of history with an interface similar to that of
ara2. An early prototype integrating results from the dependency solver and the historical
metadata database, called anla, is available at http://brion.inria.fr/anla/, see
Figure 2 for a screenshot.

6 Conclusions
We hope that the efficient and formally based tools developed by the EDOS project will
be soon adopted by distribution editors to improve their production cycle.

2ara is a text-based search engine for Debian packages which can compute Boolean combinations of field-restricted regular
expressions, available at http://ara.edos-project.org/

Operator Meaning
s&t, s|t, s \ t Boolean set intersection, union and difference
provides(p) Set of units provided by a package
conflicts(p) Set of packages that conflict with a package
closure(p) Dependency closure of a package
source(p) Source of a package
unit(p) Unit of a package
latest(u) Latest version of a unit
versions(u) All the versions of a unit
what provides(u) The set of packages that provide a unit
replaces(p) The set of packages replaced by a package
install(p, q) Returns an installation of the set of packages p inside the set q
member(x, s) True when the element x is a member of the set s
filter(s, f) Return the elements of s for which f(s) is true.
exists(s, f) True when f(s) is true for one element of s
for all(s, f) True when f(s) is true for all elements of s

Table 2. Operators. Most operators are overloaded to work on sets. Functions are first-class values
with lexical scoping that can be defined anonymously.

Figure 2. Checking status of Debian archives. Most broken packages owe their status to dependency
on packages that are not in their archives, for instance a package in unstable that depends on a
package in stable is broken. To filter out these uninteresting cases, we have merged archives into a
bundle before launching the checker. All the displayed metadata information is fully hyperlinked.

References
Edward C. Bailey. Maximum RPM, taking the Red Hat package manager to the limit.

http://rikers.org/rpmbook/,http://www.rpm.org, 1997.

Manfred Broy and Ernst Denert. Software Pioneers: Contributions to Software Engi-
neering. Springer-Verlag, 2002.

Debian Group. Debian policy manual. http://www.debian.org/doc/debian-policy/, 1996–
2005.

David Eklund. The lib update/autoupdate suite. http://luau.sourceforge.net/, 2003–2005.

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Test-
ing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy,
May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture Notes in
Computer Science, pages 502–518. Springer, 2004.

Roberto Di Cosmo, Berke Durak, Xavier Leroy, Fabio Mancinelli and Jérôme Vouillon.
Maintaining large software distributions: new challenges from the FOSS era.
FRCSS06, Vienna, 1st April 2006.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Nathan LaBelle and Eugene Wallingford. Inter-package dependency networks in open-
source software. Submitted to Journal of Theoretical Computer Science,
2005.

Mandriva. URPMI. http://www.urpmi.org/, 2005.

Gustavo Niemeyer. Smart package manager. http://labix.org/smart/, 2005.

Gustavo Noronha Silva. Apt-howto. http://www.debian.org/doc/manuals/apt-howto/,
2004.

Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Ad-
dison Wesley Professional, 1997.

L. Taylor and L. Tuura. Ignominy: a tool for software dependency and metric analysis
with examples from large HEP packages. In Proceedings of CHEP’01, 2001.

L. A. Tuura. Ignominy: tool for analysing software dependencies and for reducing com-
plexity in large software systems. In Proceedings of the VIII International
Workshop on Advanced Computing and Analysis Techniques in Physics Re-
search, volume 502, pages 684–686, 2003.

Tijs van der Storm. Variability and component composition. In Proceedings of the Eighth
International Conference on Software Reuse (ICSR-8), 2004.

	Executive summary
	Overview
	WorkPackage 2's activities in the big picture
	Task overview
	Task 1: upstream tracking
	Task 2: dependency management
	Task 3: automatic rebuilding
	Task 4: thinning

	Upstream tracking
	WP2 - Task 1
	Introduction
	Existing solutions
	Clustering-based event-notification system
	Dynamic clustering
	Simulations
	Ongoing and future work

	Thinning
	Dependencies are not enough
	State of the art
	Linux From Scratch
	The debootstrap tool
	Rpmstrap tool
	Componentized Linux and PDK
	Catalyst tool
	Klik

	Current limitations
	Proposed approach
	The need for additional information
	A first solution
	Further optimizations

	Rebuilding from scratch
	State of the art
	Expected issues
	Build systems
	Improvements

	Current limitations
	Rebuilding a single package from scratch
	Rebuilding the complete distribution from scratch

	Ongoing work

	Dependency management
	Basic definitions
	Relevant desirable properties of a package repository
	Algorithmic considerations
	Encoding the Installability problem as a SAT problem
	Encoding the Installability problem as a CP problem

	Package management meta-tools: survey and state of the art
	Quick survey of known tools and formalizations
	Software providing NP-complete dependency management logic
	Entities handling less-than-NP-complete dependency logic

	Analysis of some package management tools
	General analysis on a given testbench
	Further investigation

	APT
	Apt on the Car/Glass testbench
	Algorithm specification
	Apt's surprising behavior.
	Conclusions on APT
	A sidenote: upgradeability in practice, and a suggestion for the future

	Portage
	Conclusions on Portage

	SMART
	Smart on the Car/Glass testbench
	Smart Algorithm
	Combinatorial explosion
	Conclusions on Smart

	URPMI
	Algorithms used
	Upgradeability in practice
	Notes on implementation
	Examples
	urpmi on the Car/Glass testbench
	Conclusions on Urpmi

	Conclusions

	Tools and software currently delivered by the WP2 project team.
	The framework
	The toolchain
	Ceve
	EDOSLib
	The EGraph package repository description format
	ProblemGenerator
	EDOS Explorer
	EDOS Visualizer
	EDOS Statistics
	CP/Mozart solver
	SAT transcoder
	Naive solver
	The integrated checker: debcheck/rpmcheck
	The history tool: package timeline exploration

	Solvers, complexity analysis and benchmarks
	Experimental results

	Conclusions
	Package org.edos_project.model.util
	Classes
	Class PackageDependencyData
	Class PackageDependencyDataSet
	Class Type
	Class VertexColorLabeller
	Class VertexColorLabeller.ColorType

	Package org.edos_project.model
	Classes
	Class AlternativeEdge
	Class AlternativeVertex
	Class DependencyEdge
	Class DependencyGraph
	Class DependencyType
	Class DependencyVertex
	Class Package
	Class PackageRepository
	Class StandardDependencyEdge
	Class StandardUnitVertex
	Class UnitVertex
	Class VersionOperator
	Class VersionRelationship
	Class VirtualPackageEdge
	Class VirtualPackageVertex

	Package org.edos_project.io
	Classes
	Class EGraph

	Contribution to the Workshop on Future Research Challenges for Software and Services (FRCSS06)
	Contribution to the VII Workshop de Software Livre (WSL06)

