
Mancoosi Deliverable D5.3: UPDB infrastructure to

collect traces of upgradeability problems in CUDF

format

Pietro Abate, Ralf Treinen

To cite this version:

Pietro Abate, Ralf Treinen. Mancoosi Deliverable D5.3: UPDB infrastructure to collect traces
of upgradeability problems in CUDF format. [Research Report] 2011. <hal-00698968>

HAL Id: hal-00698968

https://hal.inria.fr/hal-00698968

Submitted on 18 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47102864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00698968

UPDB infrastructure to collect traces of up-

gradeability problems in CUDF format

Deliverable 5.3

Nature : Deliverable

Due date : 31.01.2011

Start date of project : 01.02.2008

Duration : 40 months

May 9, 2011

Specific Targeted Research Project

Contract no.214898

Seventh Framework Programme: FP7-ICT-2007-1

A list of the authors and reviewers

Project acronym Mancoosi

Project full title Managing the Complexity of the Open Source Infrastructure

Project number 214898

Authors list Pietro Abate
Ralf Treinen

Workpackage number WP5

Deliverable number 3

Document type Deliverable

Version 1

Due date 31/01/2011

Actual submission date 03/02/2011

Distribution Public

Project coordinator Roberto Di Cosmo

Deliverable D5.3 Version 1.0 page 2 of 15

May 9, 2011

Abstract

One of the objectives of the Mancoosi project is to resolve some of the problems that users
of Free and Open Source Software distributions experience when trying to install, remove, or
upgrade packages installed on their machines. The specific goal of Workpackage 5 is to to build
a data base of problem reports generated from such user requests to a meta-installer, which
then will be used by the Mancoosi project, and the research community in general, to develop
better algorithms to compute upgrade paths.

We have in earlier work defined CUDF as a common format for describing package upgrade prob-
lems in a common, vendor-independent way [TZ08], and different vendors have set up the tools
and infrastructure to collect upgrade problem reports from their respective users [AGL+10].
This deliverable describes the infrastructure to build a common data base of upgrade problems
at a central, project-wide repository.

Deliverable D5.3 Version 1.0 page 3 of 15

May 9, 2011

Deliverable D5.3 Version 1.0 page 4 of 15

Contents

1 Introduction 9

2 Central Cudf Database 11

2.1 Database Backend . 11

2.1.1 Validation . 12

2.2 Database Frontend . 13

2.3 State of the Data Base . 13

5

May 9, 2011

Deliverable D5.3 Version 1.0 page 6 of 15

List of Figures

1.1 Reporting infrastructure . 10

2.1 Database Backend and Validation . 11

2.2 Cudf database validation report . 12

7

May 9, 2011

Deliverable D5.3 Version 1.0 page 8 of 15

Chapter 1

Introduction

Modern software systems are deployed in the form of a collection of components from which
users may chose the software packages that they wish to install on a machine. This choice is
not permanent and is subject to modification when a user applies updates, installs additional
software in order to satisfy new requirements, removes unwanted software, or replaces one
software component by an alternative component that provides the same functionality. In Free
and Open Source Software (FOSS) collections, the set of available software components itself
is rapidly changing, which adds further dynamics to the scenario.

In the FOSS world, software components are commonly called packages, and a collection of
packages is called a distribution. It is the job of the distribution editor to create and maintain
a coherent distribution. Each distribution editor chooses his format of metadata that describes
some abstract properties of the packages in the distribution. The most important pieces of
information in the package metadata are the name and version number of a package, its re-
quirements, what it conflicts with, and the features it provides.

One of the objectives of the Mancoosi project is to resolve some of the problems that users
experience when trying to modify the installation status of packages on their machine. In
particular, Workpackage 4 of the Mancoosi project aims at developing better algorithms for
finding solutions (in terms of versions of packages to install and remove) of such a user request. In
Workpackage 5, we build a database of problem reports regarding failed attempts to modify the
installation status of the packages that where produced with instrumented versions of currently
popular tools. This database will then be available as data set to to researchers working on
better algorithms, both in Workpackage 4 of the Mancoosi project, and researchers who do not
participate in Mancoosi.

In order to build such a database we implemented the infrastructure to collect and store up-
grade problems and make them accessible to the research community. The architecture of our
infrastructure, as defined in Deliverable 5.1 [TZ08], is summarized in Figure 1.1:

1. The meta-installer available on user machines is instrumented so that they can generate
a report of a failed package upgrade attempt. The format of the report is specific to
the software distribution used, but follows a general project-wide scheme called DUDF
(Distribution Upgradeability Description Format) [TZ08].

2. Problem reports are uploaded to a server specific to the software distribution.

3. Collected reports are translated by the distribution editor into a common format called
CUDF (Common Upgradeability Description Format) [TZ08].

9

May 9, 2011

4. Translated reports in CUDF format are transferred from the distribution editor’s server
to a central server of the Mancoosi project, where they will be used in the construction of
a project-wide problem database.

Figure 1.1: Reporting infrastructure

Deliverable 5.2 [AGL+10] described the submission infrastructure from end-users to distribution
editors and the translation from DUDF to CUDF. The current deliverable describes the process
of transferring CUDF documents to the project-wide server and the establishment of the problem
data base.

Deliverable D5.3 Version 1.0 page 10 of 15

Chapter 2

Central Cudf Database

The final point of collection for all end-user upgrade problems is the central CUDF database.
This database receives documents in the CUDF format that are generated and collected by all
distribution editors. CUDF documents are distribution independent per design, and therefore
constitute an homogeneous corpus of problems ready to be used by the research community.

2.1 Database Backend

Figure 2.1 details the implementation of the database backend. The submission mechanism is
based on the rsync service1, which is a very common tool available on most UNIX platforms. It
is efficient, and as a UNIX tool it can be easily used in scripts. We have chosen a push model
where all distribution editors periodically send new CUDF documents to the central database.
In order to avoid abuse of the service, each distribution editor is authenticated via a simple
asymmetric encryption schema.

Figure 2.1: Database Backend and Validation

1http://rsync.samba.org/

11

http://rsync.samba.org/

May 9, 2011

2.1.1 Validation

The central CUDF database aims to establish a collection of difficult problems that can be
used by the research community. Consequently, before selecting a CUDF problem for long term
storage we perform a number of tests to check the correctness of the document and evaluating
the semantic coherence.

We define coherence as the ratio of the number of broken (that is, not installable) packages to
the total number of packages present in a CUDF document. Informally, a package is said to be
broken if it is not possible to satisfy all it’s dependencies and conflicts in an empty universe.
By empirical evaluation on a large sets of CUDF documents that we have analyzed, we noticed
that a coherence index greater then 0.3, that is more then 30% of broken packages, is often an
indication of a problem in the CUDF document. These kind of problems, despite originating
from syntactically correct CUDF, can often be easily linked to an error in the translation process
from DUDF to CUDF.

Figure 2.2: Cudf database validation report

It is important to notice that semantic coherence in this context can only be used to guess
which documents are more likely to create problems. For this reason, our tests are not fully
automatic, but generate a report containing the suspicious problems to be periodically reviewed
by a human operator.

There are a number of tools involved in the validation process:

Correctness. Each Cudf document is checked using a syntax checker developed as part of
the Cudf library. cudf check takes as input a CUDF document and returns true if

Deliverable D5.3 Version 1.0 page 12 of 15

May 9, 2011

the document is compliant with the CUDF syntax and semantic as specified in [TZ08].
Otherwise, it returns a detailed error message specifying the localization of the problem.

Coherence. Document coherence is checked using the tool distcheck which is part of the
library dose32. distcheck reads a CUDF document and returns the coherence index as
described above, plus a detailed analysis of the problems encountered.

Cudf : debian/e69a0e36-9ef1-11df-9d4a-00163e46d37a.cudf

broken: 22

total: 50813

Coherence : 0.00

Correctness : True

Cudf : debian/29180036-5408-11df-9f57-00163e7a6f5e.cudf

broken: 46

total: 28812

Coherence : 0.00

Correctness : True

...

2.2 Database Frontend

Since the CUDF central database is still in a prototype phase at the time of this writing,
the front end of the database is composed of a number of static HTML pages with direct
link to the CUDF problems and a summary of their validation report. We also give users
full access to the database to download it and mirror. The database is accessible online at
http://data.mancoosi.org/cudf/db/.

2.3 State of the Data Base

As of February 3, 2011, the data base contains 434 problem reports, coming from Caixa Mágica
and debian users.

2http://www.mancoosi.org/software/#index2h1

Deliverable D5.3 Version 1.0 page 13 of 15

http://data.mancoosi.org/cudf/db/
http://www.mancoosi.org/software/#index2h1

May 9, 2011

Deliverable D5.3 Version 1.0 page 14 of 15

Bibliography

[AGL+10] Pietro Abate, André Guerreiro, Stéphane Laurière, Ralf Treinen, and Stefano Zac-
chiroli. Extension of an existing package manager to produce traces of ugradeability
problems in CUDF format. Deliverable 5.2, The Mancoosi Project, August 2010.
http://www.mancoosi.org/reports/d5.2.pdf.

[TZ08] Ralf Treinen and Stefano Zacchiroli. Description of the CUDF format. Deliverable
5.1, The Mancoosi Project, November 2008. http://www.mancoosi.org/reports/
d5.1.pdf.

15

http://www.mancoosi.org/reports/d5.2.pdf
http://www.mancoosi.org/reports/d5.1.pdf
http://www.mancoosi.org/reports/d5.1.pdf

	Introduction
	Central Cudf Database
	Database Backend
	Validation

	Database Frontend
	State of the Data Base

