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Abstract. The purpose of this work is to use a variational method to identify some of the parameters
of one-dimensional models for blood flow in arteries. These parameters can be fit to approach as
much as possible some data coming from experimental measurements or from numerical simulations
performed using more complex models.

A nonlinear least squares approach to parameter estimation was taken, based on the optimization
of a cost function. The resolution of such an optimization problem generally requires the efficient and
accurate computation of the gradient of the cost function with respect to the parameters.

This gradient is computed analytically when the one-dimensional hyperbolic model is discretized
with a second order Taylor-Galerkin scheme. An adjoint approach was used.

Some preliminary numerical tests are shown. In these simulations, we mainly focused on deter-
mining a parameter that is linked to the mechanical properties of the arterial walls, the compliance.
The synthetic data we used to estimate the parameter were obtained from a numerical computation
performed with a more accurate model: a three-dimensional fluid-structure interaction model. The
first results seem to be promising. In particular, it is worth noticing that the estimated compliance
which gives the best fit is quite different from the values that are commonly used in practice.

Résumé. Le but de ce travail est d’identifier certains des paramètres existant dans des modèles 1-d
d’écoulement sanguin dans des artères. Ces paramètres peuvent permettre d’approcher autant que
possible des configurations géométriques réalistes ou des données expérimentales. Une approche de
l’estimation de paramètres par moindres carrés non-linéaires a été adoptée, basée sur l’optimisation
d’une certaine fonction coût. La résolution d’un tel problème de minimisation requiert le calcul efficace
et précis du gradient de la fonction coût par rapport aux paramètres. Le gradient est discrétisé
analytiquement dans le cas d’une discrétisation du modèle hyperbolique 1-d par le schema de Taylor-
Galerkin. Une approche par l’état adjoint a été employée.

Des premiers résultats numériques sont fournis. Pour ces simulations, nous nous sommes concentrés
sur la détermination d’un paramètre lié aux propriétés mécaniques de la paroi artérielle. Les données
synthétiques utilisées pour l’estimation de ce paramètre ont été obtenues à partir d’un modèle beaucoup
plus raffiné : un modèle 3-d d’interaction fluide-structure. Les résultats semblent intéressants car le
paramètre estimé est assez différent de ce à quoi on s’attendrait a priori.
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Introduction

We focus in this study on the parameter estimation of a 1-d blood flow model, [11, 19]:

∂A

∂t
+
∂Q

∂z
= 0,

∂Q

∂t
+

∂

∂z

(
αQ2

A

)
+
A

ρ

∂P

∂z
+Kr

(
Q

A

)
= 0,

where the pressure P , the area A and the flux Q are the unknowns of the problem. We denoted by z the
abscissa, t the time, ρ the density of the blood. Two parameters, the Coriolis coefficient α and the friction
parameter Kr, are introduced in this model. This system is closed with a wall displacement law of the form

P (t, z) − Pext = β̃
(
A1/2 −A

1/2
0

)
,

that links the pressure and the area. We introduced the external pressure Pext, the area at rest A0 and
a coefficient β̃ that takes into account the mechanical characteristics of the arterial wall. The parameters
(α, β̃,Kr, A0) used in this model are related to physiological data or to the velocity profile. Thus our aim is to
identify some of these parameters.
Motivations. Two main objectives can be thought of to motivate the parameter estimation in 1-d models. The
first goal may have interesting clinical applications. Knowing some non-invasive clinical data measured on a
patient, one would like to retrieve the actual physiological or mechanical constants of this patient. For instance,
it is possible to measure unintrusively the mean fluxes and areas as a function of time at two or three different
sections of an artery. From these data, one would like to identify the mechanical properties of the arterial wall:
we could thus obtain the compliance of the wall and the pressure in a totally non-invasive manner.

The second objective is consists in making a coarsening of models. One is now able to solve the full 3-d
fluid structure interaction problem on real geometries, coming from real patients. However the resolution of
this problem is quite expensive and this complex model cannot probably be afforded for an intensive numerical
study requiring lots of resolutions. This can occur when one wishes to modify the configuration of the flux or
the boundary conditions for instance. In this case, a single resolution of the accurate but expensive 3-d model
could provide data, such as the flux and the area for all sections of the mesh. Then one can estimate the 1-d
parameters from the 3-d data; this would allow to make use of the cheap 1-d model for intensive computations,
but using the parameters that take into account data coming from a real geometry and a physically more
detailed model. This multiscale approach has already been used in a medical application: some 3-d Navier-
Stokes (without compliant walls) were performed to obtain a simple numerical/experimental law that was used
in ulterior 0-d simulations, [16, 17]. The difference is that in this study, we base our parameter identification
on sound mathematical tools, and we focus on 1-d models that provide a more accurate description of wave
propagation in the large arteries. One of the conclusions of this work is that the coefficient estimated by solving
the inverse problem is quite different from the coefficient one would have chosen a priori (an a priori expression
for β̃ is provided in Section 1). Thus this approach could provide 1-d models that are suitable for a 3-d–1-d
coupling in multiscale computations, see [8]. This illustrates the relevance of our approach.

To conclude on the motivations, one can either aim at estimating physical parameters from experimental
unintrusive measurements, or at having a cheap 1-d model to be as close as possible to an expensive 3-d model,
in order to make realistic configuration studies using this cheap model. We note here that the methodology
remains identical for both objectives, the only difference being the expression of the measurement operator.
Methodology. We followed a standard nonlinear least squares approach to parameter estimation, [3–5]. It
is based on the optimization of an appropriate cost function. The resolution of such a minimization problem
generally requires the efficient and accurate computation of the gradient of the cost function with respect to the
parameters, [4]. We discretized the 1-d model with a second order Taylor-Galerkin scheme, [1]. We computed
analytically the gradient of the discrete cost function, using an adjoint approach. The adjoint problem obtained
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is, as expected, a linear 1-d hyperbolic system, but has nonstandard discretization and boundary conditions,
that are due to the differentiation of the Taylor-Galerkin scheme.

A previous attempt was made in [14] to estimate the elasticity of the arteries. However, instead of differen-
tiating the discrete equations as we do here, the author differentiated first the continuous equations and then
discretized the continuous adjoint problem thus obtained. We believe this is a possible reason for the very slow
convergence he reached in the minimization process (about 1500 iterations for three parameters).

Finally, this approach allows to make a sensitivity analysis, [13, 15], that can provide information on the
relevant parameters to estimate, and on the type of measurements to perform. But this goes beyond the scope
of this study.
Results. The analytical discrete gradient was implemented and validated by comparison with finite differences
approximations. The adjoint problem was not computed by automatic code differentiation, but directly im-
plemented. Thus we could easily control the memory required by the gradient code. We used a constrained
optimization code based on a quasi-Newton method with active constraints.

We present some preliminary numerical results. In these numerical simulations, we mainly focused on deter-
mining the parameter β̃ that is linked to the mechanical properties, i.e. the compliance, of the arterial walls.
The synthetic data we used to estimate the parameter were obtained from a numerical computation performed
with a 3-d fluid structure interaction model. We first used as data the values of the areas and fluxes at only two
or three points of the domain (boundaries plus maybe the middle point). Although the data at two points do
not seem to be enough to find a stable value, it seems that with three points, one can obtain a β̃ relatively stable
(i.e. it is little changed when the estimation is made with all available spatial data). In the second numerical
tests, we used all data available from the 3-d computation. These first numerical results seem promising and
should be followed by further developments.

In Section 1, we present briefly the continuous 1-d model, that is derived in Section 2 with the Taylor-Galerkin
scheme. In Section 3, the gradient of the least squares cost function is computed with the adjoint approach.
Numerical results are presented in Section 4, and some conclusions and perspectives in Section 5.

1. Direct model: 1-d blood flow model

We present in this section a 1-d blood flow model based on the works in [10, 20]. See also [19]. It is a 1-d
vectorial hyperbolic problem, with a 2 × 2 flux matrix that admits two real eigenvalues with opposite signs
under physiological conditions.

We leave the problem of the parameterization and of the measurements for the next sections, see Section 3.1.

1.1. Continuous blood flow model

Let Ω = (0, L) be a 1-d domain of length L > 0. Let I = (0, Tf), with Tf > 0, the time interval of simulation.
The continuous system of equations reads, for the abscissa z ∈ Ω and the time t ∈ I

∂A

∂t
+
∂Q

∂z
= 0, z ∈ Ω, t ∈ I,

∂Q

∂t
+

∂

∂z

(
αQ2

A

)
+
A

ρ

∂P

∂z
+Kr

(
Q

A

)
= 0, z ∈ Ω, t ∈ I,

(1)

where U = [A,Q]� is the vectorial unknown of the problem, made of the area A and of the flux Q. The pressure
P is an intermediary unknown. We denoted by ρ the blood density that we assume perfeclty known in this
study. Two parameters, the Coriolis coefficient α and the friction parameter Kr, are introduced when deriving
this model. This system of partial differential equations is completed with an initial condition

U(0, z) = U0(z), z ∈ Ω, (2)
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and some adapted boundary conditions

φ0(U(t, 0),p) = q0(t), t ∈ I,
φL(U(t, L),p) = qL(t), t ∈ I .

(3)

In equations (2) and (3), U0, q0 and qL are given initial and boundary data. The definition of the real-valued
boundary functions φ0, φL is discussed in Section 2.2.

The system (1) is closed with a wall displacement law of the form, see [21] for instance and the reference
therein,

P (t, z) − Pext = ψ(A;A0,β) = β0

[(
A

A0

)β1

− 1

]
, (4)

where β = (β0, β1) is a pair of positive real parameters. The power coefficient β1 is often taken equal to 1/2,
which means that the pressure difference is proportional to the wall displacement, and, in this case, a linear
elastic law can provide an expression for β0, if the mechanical properties of the arterial wall are known a priori,

β1 = 1/2, β0 =
√
πh0,wE√

A0(1 − ν2)
, (5)

where h0,w is the wall thickness, E is the wall Young modulus, and ν is the Poisson coefficient. We can
reformulate the wall displacement law in the following way:

P (t, z) − Pext = ψ(A;A0, β) = 2ρβ
[
A1/2 −A

1/2
0

]
, with β =

β0

2ρA0
=

√
πh0,wE

2ρA0(1 − ν2)
. (6)

We introduce the following quantity

c = c(A;A0,β) =

√
A

ρ

∂ψ

∂A
=

√
β0β1

ρ

(
A

A0

)β1

, (7)

which has the dimension of a velocity and is related to the speed of propagation of simple waves along the tube.
We also introduce the integral of the square of the celerity c with respect to the area

C(A;A0,β) =
∫ A

A0

c2(τ ;A0,β) dτ =
β0β1A0

ρ(β1 + 1)

[(
A

A0

)β1+1

− 1

]
. (8)

Defining the flux function

F(U,p) =


 Q

α
Q2

A
+ C


 (9)

and the source term

B(U,p) =
[

0
B2

]
, B2 = Kr

Q

A
+
A

ρ
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+
A

ρ

∂ψ

∂β

dβ
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− ∂C

∂A0

dA0

dz
− ∂C

∂β

dβ

dz
, (10)

we can write the complete problem in a conservative form

∂U
∂t

+
∂

∂z
[F(U,p)] + B(U,p) = 0, z ∈ Ω t ∈ I . (11)
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We introduce the jacobian matrix

H(U,p) =
∂F
∂U

=


 0 1

c2 − α

(
Q

A

)2

2α
Q

A


 , (12)

whose eigenvalues are real, distinct, see [19]. It is also noted that for common values of the blood flow in human
arteries, these eigenvalues have opposite signs. We assume in the rest of the article that this hypothesis holds.

Remark 1.1. We can make two remarks concerning the initial and boundary terms. First, when simulating a
phenomenon that is periodic in time such as the arterial flow, the initial data U0 should not interfere on the
results. Therefore we did not consider it as one of the parameters to be estimated.

Second, as already noticed, the boundary conditions must be properly chosen. The number of boundary
conditions to impose at each end of the vessel equals the number of characteristics entering the domain through
that boundary. As the eigenvalues are distinct with opposite signs, i.e. the flow is sub-critical everywhere, one
must impose exactly one scalar boundary condition at z = 0 and z = L, see [19].

Thus the boundary conditions in equation (3) are correctly set, provided that the scalar functions φ0, φL are
properly chosen.

2. Discrete blood flow model

In this section, we give the discretization of the continuous problem (11).
In the rest of this article, the upper-scripts will be devoted to time steps numbers, whereas the lower indices

will in general denote the space indices, or the component index of a vector. For instance, for a vector v, the
αth component of v at time tn and at abscissa zi will be denoted (vα)n

i .

2.1. Taylor-Galerkin scheme

We discretize our system by a second order Taylor-Galerkin scheme [1], which might be seen as the finite
element counterpart of the Lax-Wendroff scheme. It has been chosen for its excellent dispersion error character-
istic and its relative simplicity of implementation. See [11] for details concerning the derivation of the scheme
for the blood flow model.

Let the interval Ω = (0, L) be subdivided into N + 1 elements ei+ 1
2

= [zi, zi+1], for i = 0, . . . , N and

zi+1 = zi + hi+ 1
2
, with z0 = 0, and

∑N
i=0 hi+ 1

2
= L, where hi+ 1

2
> 0 is the local element size. Let h > 0 be

the smallest diameter of all elements ei+ 1
2
, i = 0, . . . , N . We discretize the time interval I = (0, Tf ) in the same

way: let (tn), n = 0, . . . , Nt, be Nt + 1 instants such that t0 = 0 < . . . < tn < tn+1 < . . . < tNt = Tf . We call
∆tn+ 1

2 = tn+1 − tn > 0 the time step between tn and tn+1, n = 0, . . . , Nt − 1.
The space discretization is carried out using the finite element method [18]. Let Ψh be the space of continuous

piecewise linear finite element functions, also denoted P1, and Ψh = [Ψh]2, while Ψh,0 = [Ψh,0]2 = {ψh ∈
Ψh |ψh = 0 at z = 0 and z = L}. Let ψi be the P1 linear finite element nodal function associated to the
node at z = zi, i = i = 0, . . . , N + 1. Thus one can write Ψh = span{ψi, i = 0, . . . , N + 1} while Ψh,0 =
span{ψi, i = 1, . . . , N}. We will denote a generic vector valued test function by ψh ∈ Ψh. The discrete
continuity and momentum equations are recovered by taking test functions of the form ψh = [ψh, 0]T and
ψh = [0, ψh]T , respectively, with ψh ∈ Ψh,0.

At each time step we seek the solution Uh ∈ Ψh that we may write Un
h(z, t) =

∑N+1
i=0 Un

i ψi(z, t), with
Un

i = [An
i , Q

n
i ] the approximation of A and Q at mesh node zi.

Further, we note the L2(0, L) = L2(Ω) scalar product (u,v)Ω =
∫ L

0 u · vdz .
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Introducing the notations for U ∈ Ψh, BU =
∂B
∂U

,

Fn
LW (U) = F(U) − ∆tn+ 1

2

2
H(U)B(U) and Bn

LW (U) = B(U) − ∆tn+ 1
2

2
BU(U)B(U) ,

we write in equation (13) the Taylor-Galerkin discretization of the problem (11).
Given U0

h, for n = 0, 1, . . . , Nt − 1, find Un+1
h ∈ Ψh such that for all ψh ∈ Ψh,0

(Un+1
h ,ψh)Ω = (Un

h ,ψh)Ω + ∆tn+ 1
2

{(
Fn

LW (Un
h),

dψh

dz

)
Ω

− (Bn
LW (Un

h),ψh)Ω

}

+
(∆tn+ 1

2 )2

2

{
−

(
H(Un

h)
∂F
∂z

(Un
h),

dψh

dz

)
Ω

+
(
BU(Un

h)
∂F(Un

h)
∂z

,ψh

)
Ω

}
,

+B.C. z = 0 equation on Un+1
h (0) ,

+B.C. z = L equation on Un+1
h (L) .

(13)

In the system (13), by taking internal test functions ψh = [ψi, 0]T and ψh = [0, ψi]T , for i = 1, . . .N , we
obtain N discrete equations for continuity and momentum, respectively, for a total of 2(N + 2) unknowns (Ai

and Qi for i = 0, . . . , N+1). Thus boundary and compatibility conditions have to provide four additional scalar
relations, see next section.

To fully discretize the equation in (13), we need to determine how the non-linear terms are computed and
which numerical integration is performed. We choose to approximate the vectors F and B depending on
Un

h in (13) in the space P1, and the matrices H and BU in the space of element-wise constant functions

P0,h :=
{
vh ∈ L2(Ω) | vh|e

i+ 1
2

= cst, i = 0, . . . , N
}
. With this hypothesis, the integrations in (13) can easily

be made exactly.
Thus for a vectorial function v : Ψh → R

2,U �→ v(U) = [v1, v2]�, we define

vh(U) =

[
N+1∑
i=0

v1(Ui)ψi ,

N+1∑
i=0

v2(Ui)ψi

]�

∈ Ψh,

and for a matrix M : Ψh → R
2×2,U �→M(U) = (Mαβ)α,β=1,2, we define

Mh(U) = (Mh,αβ(U))α,β=1,2 , Mh,αβ(U) =
N∑

i=0

M̃h,αβ, i+ 1
2
1i+ 1

2
∈ P0,h (14)

with the mean value M̃h,αβ, i+ 1
2

= 1
2 (Mαβ(Ui) +Mαβ(Ui+1)) over the element ei+ 1

2
= [zi, zi+1], and the

characteristic function 1i+ 1
2

of the interval [zi, zi+1], for i = 0, . . . , N .
With these notations, we can write the fully discretized Taylor-Galerkin scheme (13). Using the notation

Fn
h,LW (U) = Fh(U) − ∆tn+ 1

2

2
Hh(U)Bh(U) and Bh,LW (U) = Bh(U) − ∆tn+ 1

2

2
(BU)h(U)Bh(U),

and introducing the operator for U,W ∈ Ψh

an
h(U,W;p) = ∆tn+ 1

2

{(
Fn

h,LW (U),
dW
dz

)
Ω

− (
Bn

h,LW (U),W
)
Ω

}

+
(∆tn+ 1

2 )2

2

{
−

(
Hh(U)

∂Fh

∂z
(U),

dW
dz

)
Ω

+
(

(BU)h(U)
∂Fh

∂z
(U),W

)
Ω

}
,

(15)
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the fully discretized scheme (13) yields:
Given U0

h ∈ Ψh, find Uh := (Un
h)n=1,...,Nt ∈ (Ψh)Nt such that for n = 0, 1, . . . , Nt − 1

(Un+1
h ,ψh)Ω = (Un

h ,ψh)Ω + an
h(Un

h ,ψh;p) ∀ψh ∈ Ψh,0 ,
B.C. on Un+1

h,0 ,

B.C. on Un+1
h,N+1.

(16)

In the discrete approximate problem (16), all the integrals can be computed exactly as they involve only the
products of two functions belonging either to P1 or to P0.

We need to add boundary conditions and compatibility conditions at z = 0 and z = L to close the system.

2.2. Boundary conditions

In this section and in the next sections 2.3 and 2.4, we will omit the subscript h in the variable names, for
the sake of simplicity.

As noticed in Remark 1.1, the hyperbolic problem (11) is well posed under sub-critical flow hypothesis when
one imposes as boundary conditions one scalar equation at each side of the tube. These conditions can be
the prescribed incoming characteristics, the prescribed pressure or the prescribed flux, for instance. It is not
possible to impose exactly at the same boundary both the flux and the pressure, see [11].

We decide to give a flux at the inlet and a pressure at the outlet:

Qn+1
0 = φ0(q0(tn+1),p) = q0(tn+1)

An+1
N+1 = φL(pL(tn+1),p),

(17)

where q0 is the flux and pL is the pressure to be imposed at the boundaries, whereas φi, i = 0, L are given
functions. The function φ0 is in this case the identity, and φL transforms the given pressure pL at the outlet

into the conservative unknown A. With the pressure law (4), it becomes A = φL(pL,p) = A0

(
1 + pL

β0

)1/β1

.

2.3. Compatibility conditions

To close the discrete system we need two more conditions on the boundaries. These conditions are a numerical
artefact that is linked to the type of scheme we adopted. They are called compatibility conditions and are chosen
to be non-reflecting conditions at each side of the tube. We assume that these conditions are treated explicitly
and linearly, imposing some conditions on the pseudo-characteristic variables, [19]. Thus they can take the
following form:

l�2 (Un)Un+1
0 − T2(Un) = 0 at z = 0,

l�1 (Un)Un+1
N+1 − T1(Un) = 0 at z = L,

(18)

where li(Un) ∈ R
2, i = 1, 2 are the two left eigenvectors depending on Un associated to the matrix H defined

in equation (12), and T1 and T2 are some scalar functions depending on Un.

2.4. Fully discretized problem

Gathering the boundary and compatibility conditions (17) and (18) and reintroducing the parameters p, we
obtain

Θ0(Un,p)Un+1
0 − T0(Un,p) = 0

ΘL(Un,p)Un+1
N+1 − TL(Un,p) = 0 ,

(19)

with at z = z0 = 0

Θ0(Un,p) =
[

Θ�
0,1

Θ�
0,2(U

n,p)

]
=

[
0 1

l�2 (Un,p)

]
, T0(Un,p) =

[
q0(tn+1)
T2(Un,p)

]
,
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and at z = zN+1 = L

ΘL(Un,p) =
[

Θ�
L,1(U

n,p)
Θ�

L,2

]
=

[
l�1 (Un,p)

1 0

]
, TL(Un,p) =

[
T1(Un,p)

φL(pL(tn+1),p)

]
.

Finally, reintroducing the subscript h, adding the boundary and compatibility conditions (19) to the com-
pletely discretized scheme (16), the problem to be solved reads:
Given U0

h ∈ Ψh, find Uh := (Un
h)n=1,...,Nt ∈ (Ψh)Nt such that for n = 0, 1, . . . , Nt − 1

(Un+1
h ,ψh)Ω = (Un

h ,ψh)Ω + an
h(Un

h ,ψh;p) ∀ψh ∈ Ψh,0 ,
Θ0(Un

h ,p)Un+1
h,0 = T0(Un

h ,p) ,
ΘL(Un

h ,p)Un+1
h,N+1 = TL(Un

h ,p) .
(20)

Remark 2.1. The problem (11) is a 1-d nonlinear hyperbolic problem, but the Taylor-Galerkin discretiza-
tion (20) contains (second order) parabolic terms. Thus, one needs to impose not only the boundary condi-
tions (17) that are natural for a hyperbolic problem, but also the compatibility conditions (18). Therefore at
each time step, before computing the solution at internal nodes, one has to compute the boundary values Un+1

h,0

and Un+1
h,N+1, by solving the two (2 × 2) linear systems (19).

3. Gradient of the discrete problem

We present in this section the gradient of the discrete problem (20) using the adjoint approach. We recall that
we used and implemented the rule (advocated in [3], [4], [5]): disretize first, differentiate after. In Section 3.1,
some notations are defined in order to present briefly in Section 3.2 the adjoint state approach, and to compute
analytically the gradient in Section 3.3.

3.1. Forward operators

3.1.1. State equation

The equation (20) defines a state equation that relates the parameters p to the state variables Uh

E(p,Uh) = 0 , (21)

where the parameters are
p = (α, β0, β1,Kr, A0, q0, qL)� ∈ R

P , (22)

with the dimension P > 0 of the parameter space to be defined further, and the state variable are

Uh = (Un
h)n=1,...,Nt =

(
[An

i , Q
n
i ]�

)
i=0,...,N+1; n=1,...,Nt

∈ (Ψh)Nt = R
N , N = 2Nt(N + 2). (23)

In equation (23), we have assimilated the finite functional space (Ψh)Nt and the space R
N . It will also be done

for Ψh and R
2(N+2). In the rest of the article, for simplicity but with an abuse of notation, we may use the

same notation Wn
h for an element of Ψh or of R

2(N+2).
As there exists a unique solution Up, h to the problem (21) for a given set of parameters p, see [11], we can

define the direct application
ϕ : R

P −→ R
N ,

p �−→ ϕ(p) = Up, h ,
(24)

The parameters p in (22) are supposed to be constant with time and are to be estimated. The issue of the
parameterization will be addressed in the section 3.1.5.
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3.1.2. Measurement operator

Let M be a measurement (or observation) operator

M : R
N −→ R

M,
U �−→ M(U) = V, (25)

with M > 0 the dimension of the measurement space. Different measurement operators can be devised, linear
or nonlinear, according to the type of data that are provided.

For instance, an experiment could provide the flux and area of a vessel at two different points ζ0 < ζ1, ζ1−ζ0 =
L, at given (Vt + 1) instants θ0 = 0 < . . . < θν < θν+1 < . . . < θVt = Tf . It is then reasonable to perform
the 1-d simulation between these two points, and therefore take z0 = ζ0 and zN+1 = ζ1. One can also
assume for simplicity that the temporal discretization is chosen such that the instants (θν)ν=0,...,Vt constitutes
a subsequence of (tn)n=0,...,Nt . Therefore, let φt : {0, 1, . . . ,Vt} → {0, 1, . . . , Nt} be the increasing function such
that tφt(ν) = θν , with φt(0) = 0 and φt(Vt) = Nt. With these hypotheses, the measurement operator is simply
a weighted sampling of the direct solution Up, h. It is linear and can be expressed

M(U) =
(
[wA

i,ν A
φt(ν)
i , wQ

i,ν Q
φt(ν)
i ]�

)
i=0 and N+1; ν=0,...,Vt

and M = 2 × (Vt + 1) × 2 ,

where the coefficients wA
i,ν and wQ

i,ν are positive weights attributed to each measure, representing the “degree
of confidence”, i.e. the inverse of the incertainty, one has in this measure.

When the data come from a numerical 3-d fluid structure computation, one can exploit the numerical results
on (Vz + 1) internal sections (ζj)j=0,...,Vz of the 3-d domain: Vz = 1, 2 or more. In this case, apply the same
technique for the spatial discretization as the one shown above for the temporal sampling, and introduce the
increasing indexation function φz in the same manner as φt. The measurement operator becomes this time

M(U) =
(
[wA

j,ν A
φt(ν)
φz(j), w

Q
j,ν Q

φt(ν)
φz(j)]

�
)

j=0,...,Vz; ν=0,...,Vt

and M = 2(Vt + 1)(Vz + 1) , (26)

with the positive weights wA
j,ν and wQ

j,ν , j = 0, . . . ,Vz; ν = 0, . . . ,Vt.

3.1.3. Forward function

Let F = M ◦ ϕ be the forward function, from the parameter space to the measure space

F : R
P −→ R

M,
p �−→ F (p) = Vp, h = M(Up, h) = M(ϕ(p)). (27)

3.1.4. Cost function

The resolution of the inverse problem consists in minimizing a cost function that computes the least squares
error between the measured data and the numerical results computed with the 1-d model. Thus the inverse
problem amounts to an optimization problem. To solve it, it is necessary to define the cost function to minimize,
that depends on the type of problem under consideration. Then one must choose an adequate technique to
perform the minimization of this cost function.

We assume that the measurement operator is defined by (26). Consider a given data vector Z ∈ R
M and we

call Zw ∈ R
M this vector multiplied by the positive weights introduced in (26),

Z = ([Adν
j , Qd

ν
j ]�)j=0,...,Vz; ν=0,...,Vt ∈ R

M , Zw = ([wA
j,ν Ad

ν
j , w

Q
j,ν Qd

ν
j ]�)j=0,...,Vz; ν=0,...,Vt ∈ R

M ,

where Adν
j , and respectively Qdν

j , represent the data area, respectively the data flux, given at space index j
and time index ν.
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Let J be the cost function

J : R
P −→ R,

p �−→ J(p) =
1
2
‖Zw −M(Up, h)‖2

RM ,
(28)

where ‖ · ‖Rn is the discrete l2 norm in R
n, associated with the scalar product < ·, · >Rn , n > 0.

The cost function can be expressed easily, with Up, h = ([An
i , Q

n
i ]�) ∈ R

N ,

J(p) =
1
2

Vt∑
ν=0

Vz∑
j=0

{
(wA

j,ν)2
(
Adν

j −A
φt(ν)
φz(j)

)2

+ (wQ
j,ν)2

(
Qdν

j −Q
φt(ν)
φz(j)

)2
}
. (29)

3.1.5. Parameterization

It is important to define the parameterization properly, see [6], and a sensitivity analysis can provide some
information on this matter. In this section, we consider a general parameterization. The parameters are only
supposed to satisfy some constraints determined by some physiological considerations, such that the parameters
p belong to a subset C of R

P .

3.2. Optimization: adjoint state approach

In order to perform correctly the optimization of the cost function (28) with a descent method, one needs
to compute the gradient of the cost function in a fast and accurate way. It is known that the finite difference
method is not efficient, see [4, 13]. One could rely on a direct computation of the jacobian of the forward map
F , with a cost that is proportional to the number P of parameters. We decided to compute the gradient using
an adjoint state approach that we present briefly here. As in our numerical experiments, see section 4, the
number of parameters to identify is very low, we could have fruitfully taken the former approach. However,
we preferred the adjoint method, that allows to identify, in a second step, more parameters, with a cost that
remains independent of the dimension of the parameter space.

To compute the gradient of a function G = G(p,V) which is an explicit function of the parameter vector p
and the output vector V = F (p), we introduce the Lagrangian

L(p,U, λ) = G(p,M(U))+ < E(p,U), λ >RN , (30)

where the Lagrange multiplier λ ∈ R
N is the adjoint variable of U.

With these notations, we can state the following proposition, (see [3]):

Proposition 3.1. Let (21) be a state equation and (25) an observation operator. Let G(p,V) and F (p),
given by (27), two regular enough functions. Let L(p,U, λ) be a Lagrangian defined by (30) associated with the
equation (21).

Then p ∈ C ⊂ R
P �→ G(p, F (p)) ∈ R is differentiable, and its gradient ∇G is given by the gradient equation:

< ∇G, δp >RP=
∂L
∂p

(p,Up, λp)δp ∀δp ∈ R
P , (31)

where
∗ Up ∈ R

N is the solution of the direct equation

E(p,U) = 0 , (32)

∗ λp ∈ R
N is the solution of the adjoint equation

∂L
∂U

(p,Up, λ)δU = 0 ∀δU ∈ δRN . (33)
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In this context, Up is called the direct state, and λp the adjoint state.

From the formula (33), the adjoint equation yields:

{
∂E

∂U
(p,U)

}�
λ+M ′(U)�∇VG(p,V) = 0. (34)

This presentation has the advantage of synthetizing the different applications according to the choice on
function G(p,V) :

• if G(p,V) =< V, ei >RM where ei is a basis vector of the measure space, then:

∇G = F ′(p)�ei,

and the adjoint approach enables a line-wise computation of the jacobian of the function F (p).
• if G(p,V) =< V, gv >RM where gv is a given vector in R

M, then:

∇G = F ′(p)�gv.

• if G(p,V) = 1
2‖Zw − V‖2, i.e. is equal to the cost function J(p), then:

∇G = ∇J.

3.3. Gradient of the discrete problem

We compute in this section the gradient of the discrete problem (20) using the adjoint approach. First, we
define the Lagrangian in section 3.3.1, then we differentiate the Lagrangian with respect to the state variable
to obtain the adjoint problem in section 3.3.2. Finally, the gradient is computed by differentiation with respect
to the parameters in section 3.3.3.

3.3.1. Lagrangian of the discrete problem

We define the Lagrangian of our particular discrete 1-d blood flow model (20). Two sets of Lagrange
multipliers are introduced. The first ones are associated with the boundary conditions (19) at z = 0 and z = L:

µzi,h = (µn
zi,h)n=1,...,Nt ∈ (R2)Nt , i = 0, L, (35)

and the second ones are associated with the equations on the internal nodes (16) and live in the space of the
test functions:

λh = (λn
h)n=1,...,Nt ∈ (Ψh,0)Nt = (R2)Nt×N . (36)

The Lagrangian associated with the forward discrete problem (20) and to the generic function G = G(p,V)
is hence:

L(p,U, λh, µz0,h, µzL,h) = G(p,M(Uh))

+
Nt−1∑
n=0

[
(Un+1

h , λn+1
h )Ω − (Un

h , λ
n+1
h )Ω − an

h(Un
h , λ

n+1
h ;p)

]

+
Nt−1∑
n=0

∑
i=0,L

[Θi(Un
h ,p)Un+1

h,i − Ti(Un
h ,p)] · µn+1

zi,h .

(37)

where Uh,L = Uh,N+1 = Uh(t, L).



PARAMETER IDENTIFICATION FOR A ONE-DIMENSIONAL BLOOD FLOW MODEL 185

3.3.2. Discrete adjoint problem

We differentiate the Lagrangian (37) with respect to the state Uh, remarking that δU0
h = 0, and omitting

for the sake of conciseness the dependency to the parameters p, to obtain

∂L
∂Uh

(ph ,Uh , λh , µz0 ,h , µzL,h)δUh =
(
∂M

∂Uh
(Uh)

)� (
∂G

∂V

)�
· δUh

+
Nt−1∑
n=1

[
(δUn+1

h , λn+1
h )Ω − (δUn

h , λ
n+1
h )Ω − ∂an

h

∂Uh
(Un

h , δU
n
h , λ

n+1
h )

]

+
Nt−1∑
n=1

∑
i=0,L

[
Θi(Un

h) δUn+1
h,i +

∂Θi

∂Uh
(Un

h) (δUn
h ,U

n+1
h,i ) − ∂Ti

∂Uh
(Un

h) δUn
h

]
· µn+1

zi,h

+(δU1
h, λ

1
h)Ω +

∑
i=0,L

[
Θi(U0

h) δU1
h,i

] · µ1
zi,h

= 0 ∀δUh ∈ (Ψh)Nt .

(38)

In equation (38), we formulated explicitely the dependency of the term ∂an
h

∂Uh
with respect to Uh and δUh, that

derives from the nonlinearity of the operator an
h. A discrete integration by parts in time to order the terms in

function of δUn
h yields

∂L
∂Uh

(ph ,Uh , λh , µz0 ,h , µzL,h)δUh = [∇Uh
M(Uh) ∇VG] · δUh

+(δUNt

h , λNt

h )Ω +
∑

i=0,L

[
Θi(UNt−1

h ) δUNt

h,i

]
· µNt

zi,h

+
Nt−1∑
n=1

[
(δUn

h , λ
n
h)Ω − (δUn

h , λ
n+1
h )Ω − ∂an

h

∂Uh
(Uh, δUn

h, λ
n+1
h )

]

+
Nt−1∑
n=1

∑
i=0,L

[
Θi(Un−1

h ) δUn
h,i

] · µn
zi,h

+
Nt−1∑
n=1

∑
i=0,L

[
∂Θi

∂Uh
(Un

h) (δUn
h ,U

n+1
h,i ) − ∂Ti

∂Uh
(Un

h) δUn
h

]
· µn+1

zi,h

= 0 ∀δUh ∈ (Ψh)Nt .

(39)

First, taking care of the final time tNt , i.e. δUh = δUNt

h , we take successively internal test functions
δUNt

h = ψh ∈ Ψh,0 and boundary test functions δUNt

h = ψh,i ∈ Ψh, i = 0, L, where ψh,0(0) = ψh,L(L) = 1.
Thus we have to solve the two following problems at time tNt :

Find λNt

h ∈ Ψh,0 such that, for all ψh ∈ Ψh,0

(λNt

h ,ψh)Ω = −
[
∇Uh

M(UNt

h ) ∇VG
]
· ψh , (40)

and then find µNt

zi,h ∈ R
2, i = 0, L such that

Θ�
i (UNt−1

h )µNt

zi,h = −
[
∇Uh

M(UNt

h ) ∇VG
]
· ψh,i − (λNt

h ,ψh,i)Ω. (41)

Next, we take care successively of time steps n, n = Nt − 1, Nt − 2, . . . , 1. We use as test functions δUn
h =

ψh ∈ Ψh,0 and δUn
h = ψh,i, i = 0, L. Thus we have to solve the two following problems at time tn:
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Find λn
h ∈ Ψh,0 such that, for all ψh ∈ Ψh,0

(λn
h ,ψh)Ω = − [∇Uh

M(Un
h) ∇VG] · ψh + (λn+1

h ,ψh)Ω +
∂an

h

∂Uh
(Un

h ,ψh, λ
n+1
h )

−
∑

i=0,L

[
∂Θi

∂Uh
(Un

h) (ψh,U
n+1
h,i ) − ∂Ti

∂Uh
(Un

h)ψh

]
· µn+1

zi,h ,
(42)

and then find µn
zi,h ∈ R

2, i = 0, L such that

Θ�
i (Un−1

h )µn
zi,h = − [∇Uh

M(Un
h) ∇VG] ·ψh,i

−(λn
h,ψh,i)Ω + (λn+1

h ,ψh,i)Ω +
∂an

h

∂Uh
(Un

h ,ψh,i, λ
n+1
h )

−
∑

j=0,L

[
∂Θj

∂Uh
(Un

h) (ψh,i,U
n+1
h,j ) − ∂Tj

∂Uh
(Un

h)ψh,i

]
· µn+1

zj,h .

(43)

The equations (40)-(41) and (42)-(43) consitute the adjoint problem associated with the direct problem (20).
Some details concerning the derivatives that appeared in the equations (42)-(43), in particular a way to express

analytically
∂an

h

∂Uh
, will be given in a forecoming article.

Several remarks can be made.

Remark 3.2. First, one can note that equations at final time tNt+1 (40)-(41) are deduced from the general
equations (42)-(43), with the assumption that λNt+1 ≡ 0 and µNt+1

zi,h ≡ 0, i = 0, L.
Second, the adjoint problem is, as expected, linear in (λh, µz0,h, µzL,h) and backward in time. It requires the

full knowledge of Uh at all instants and nodes. As our problem is 1-d, we can afford to store this information,
and no special technique is required to solve the adjoint problem.

Third, the adjoint problem has the same form as the direct problem (20). It is essentially a 1-d linear
hyperbolic problem, but as we used a Taylor-Galerkin discretization for the direct problem that contains (second
order) parabolic terms, the formulation (42)-(43) contains also nontrivial second order terms. The generic
function G (or the cost function J) introduces a source term in the adjoint equation.

Fourth, the equations on the boundaries can be solved at each time step n, after the computation of the
internal Lagrange multiplier λn

h. They involve the inversion of two 2× 2 matrices that are the transpose of the
ones in the direct systems (19).

3.3.3. Discrete gradient equation

At this stage, to compute the gradient, one has simply to apply the proposition 3.1. The equation (31) yields
for a δp ∈ R

P

< ∇G, δp >RP = ∇pG(p,M(Uh)) · δp +
Nt−1∑
n=0

−∂a
n
h

∂p
(Un

h , λ
n+1
h ;p) · δp

+
Nt−1∑
n=0

∑
i=0,L

[
∂Θi

∂p
(Un

h ,p)Un+1
h,i − ∂Ti

∂p
(Un

h,p)
]
µn+1

zi,h · δp .

(44)

4. Numerical results

In this section, some first numerical results obtained with the parameter estimation method presented in
the previous sections are shown. In this study, only synthetic data were used for the optimization and a single
constant parameter was estimated: in this section, the parameter vector is defined as p = β ∈ R, where β is
the compliance given in the equation (6), such that β = (2ρA0β, 1/2). In order to simplify the optimization for
these preliminary tests, β was supposed constant in space.
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After validating the computation of the discrete cost function gradient, the estimation method was tested
using different data and different amounts of data, in order to evaluate the sensitivity of the method with respect
to the information given.

4.1. Computing the 3d synthetic data

The data used for the parameter estimation was computed from two different 3-d fluid structure interaction
models.

The first simulation was made using a shell model for the structure [2, 12].
For the second simulation, the model used is implemented in the lifev code, [9]. A linear Venant Kirchoff

model was used for the structure. The fluid was modeled by the incompressible Navier-Stokes equations for a
Newtonian fluid. The interaction algorithm uses an exact Jacobian preconditioner, [7].

Figure 1. Left: fluid mesh. Right: structure mesh.

The domain used for both simulations is a cylindrical tube of length L3d = 5 along the z axis, with a
circular basis of radius at rest R0 = 0.5. A relatively coarse mesh was chosen for the simulation, as shown at
Figure 1: the mesh is made of 30720 tetrahedra for the structural mesh and 68160 for the fluid mesh. The
initial mesh is unstructured in the Oxy plane, but all nodes are contained in one of the 41 sections at altitude
z = i× L3d/40, i = 0, 1, . . . , 40.

The wall density ρw was taken equal to 1.2 and the Poisson coefficient νw equal to 0.3. Two different values
of the Young modulus E and the wall thickness at rest h0,w were used. For the first simulation, E1 = 3.E6
and h1

0,w = 0.05, whereas for the second one E2 = 4.E6 and h2
0,w = 0.1. The density of the fluid chosen was

ρf = 1.0 and its viscosity νf = 0.03.
The temporal discretization used was quite fine (dt = 1E − 4) in order to obtain a sufficient amount of data

for the optimization. The number of timesteps computed was 99 for the first simulation and 79 for the second
one. The simulations were stopped once the pressure wave arrived at the end of the tube, in order to avoid
unphysiological reflexion.

The data obtained from each simulation was post-processed in order to have, at each time step and at each
section of the tube, the values of the area Ad, the flux Qd and the pressure Pd of the blood flow (see the
notations in section 3.1.4).

Figures 2 and 3 show two examples at the same instant of a 3-d model solution for two different Young
modulus (the second is computed using a much coarser mesh, for visualizations purposes only).
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Figure 2. Solution of the 3-d model at time t = 50E − 4 for a Young modulus E1 = 4E6.
Left: fluid velocity along the z axis. Right: displacement of the structure along y axis.

Figure 3. Solution of the 3-d model at time t = 50E − 4 for a Young modulus E1 = 6E6.
Left: fluid velocity along the z axis. Right: displacement of the structure along y axis.

One notes the effect when one increases the Young modulus: the pressure wave is extended in space and
decreased in amplitude.

4.2. Solving the 1-d-model

In order to find the optimal value of a parameter, the algorithm does a series of simulations of the direct 1-d
model.

The parameter estimated here was β(= β0
2ρA0

); all other parameters were kept constant: β1 = 1/2, α = 1,
Kr = 8πν ≈ 0.75, ρ = 1, A0 = πR2

0 ≈ 0.78.



PARAMETER IDENTIFICATION FOR A ONE-DIMENSIONAL BLOOD FLOW MODEL 189

The 1-d domain, denoted by Ω, was chosen to be slightly shorter than the cylindrical tube used for the 3-d
simulations: Ω = [0.5, 4.5], and its length was therefore L = 4. This was done in order to avoid the problems
arising from the difference in the type of the boundary conditions between the 3-d and the 1-d models.

The 1-d computations were made with a spatial discretization of N = 128 elements of constant length
L/N = 4/128, and a time step dt = 1.e − 5, that is ten times smaller than the 3-d time step. These values
ensure the Courant condition to be always respected.

4.3. Measurement operator and cost function

For each test case, a series of estimations of β was done using different amounts of data. This means that
the measurement operator used for the optimization was changed, and so was, consequently, the expression of
the cost function J .

As explained in section 3.1.2, the measurement operator is a weighted sampling of the direct solution expressed
by (26). The weights used here were wA ≡ 1 and wQ ≡ 0.1 for all measures. They were chosen to compensate
the orders of magnitude of the area (O(1)) and the flux (O(10)) in the vessel. Three different space samplings
were chosen: the first one uses 33 measures taken at ζj = 0.5 + j × (4/32), for j = 0, . . . , 32. The second one
uses 3 measures, at ζ1 = 0.5, ζ2 = 2.5 and ζ3 = 4.5, and the last one only two, at ζ1 = 0.5 and ζ2 = 4.5. The
time sampling consists in using the data at either all the instants available or only at every ten of them. For
the first simulation, that means the measures are taken at θν = ν × dt for ν = 0, . . . , 99, or at θν = 10ν × dt for
ν = 0, . . . , 9. For the second simulation, they are taken at θν = ν × dt for ν = 0, . . . , 79 or at θν = 10ν × dt for
ν = 0, . . . , 7.

Let us note that the cost function minimized during each estimation is normalized. Its expression is the
following (cf. (29)):

J(β) =

∑Vt

ν=0

∑Vz

j=0

{ (
Adν

j −A
φt(ν)
φz(j)

)2

+ (0.1)2
(
Qdν

j −Q
φt(ν)
φz(j)

)2
}

∑Vt

ν=0

∑Vz

j=0

{
(Adν

j )2 + (0.1)2 (Qdν
j )2

} .

4.4. Validating the computation of the cost function gradient

In order to validate the computation of the cost function gradient using the method presented here, its value
was compared with the value obtained with the finite difference method. This method consists in computing
an approximation of the derivative of the cost function J(β) with respect to β, that is:

∂J

∂β
(β) = lim

h→0

J(β + h) − J(β)
h

(45)

The cost function gradient was computed in some test cases with both methods and the results, made in double
precision, showed 6 to 7 identical numbers.

4.5. Expected results of the estimation

Let us recall the role of the parameter β. As exposed in section 2, to derive the 1-d blood model from the
3-d one, a wall displacement law (cf. (4)) is used, that introduces two positive real parameters β0 and β1. In
these tests, the power coefficient β1 is taken equal to 1/2 and the law is reformulated into the expression (6),
that only involves one positive parameter β.

A linear elastic law provides the following expression for β:

β3d =
√
πh0,wE

2ρA0(1 − ν2
w)
, (46)
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where E, h0,w and νw are the wall Young modulus, the wall thickness at rest and the Poisson coefficient used
to compute the 3-d data.

The optimal value of β, minimizing the difference between the results of the 1-d and 3-d models, is therefore
expected to be β3d. It will be shown that this is not the case: the results obtained computing the 1-d model
with the estimated optimal value, βestim, fit better to the 3d data than the results obtained with β3d. The
accuracy of the estimation algorithm is therefore not to be evaluated from the accuracy on β, but from the
accuracy on the error between the 1-d results and the data.

4.6. Test case 1: shell structure, E = 3.E6 and h0,w = 0.05

The first test was made using the 3-d data obtained with a shell / Navier-Stokes coupling. The structure
has a Young modulus equal to 3.E6 and a wall thickness equal to 0.05. The number of iterations needed for
the optimization varied between 6 and 10 for all the different estimations.

4.6.1. Results of the optimization

The results obtained are shown in tables 1 and 2: for each estimation, the optimal value βestim is given, as
well as the corresponding value of the minimized cost function J and the value 1 −√

J , that gives the order of
explained data.
In order to better compare the precision of the different estimations, we also give the value of a general cost
function, called “fine cost function”, and denoted by Jfine. This function Jfine computes the least squares error
between the 3-d data measured at each of the 99 timesteps and the 33 sections, and the 1-d data obtained with
the estimated value βestim.

Nb zmeas 33 3 2
βestim 1.3E5 1.32E5 1.41E5
J 0.048 0.027 1.6E − 5

1 −√
J 78.1% 83.4% 99.6%

Jfine 0.048 0.048 0.052
1 − √

Jfine 78.1% 78% 77.2%

Table 1. Results using 99 time measurements and 33, 3 or 2 spatial measurements for a 3-d
data such that: E = 3E6 and h0,w = 0.05.

Nb zmeas 33 3 2
βestim 1.32E5 1.33E5 1.41E5
J 0.038 0.02 3E − 6

1 −√
J 80.6% 85.9% 99.8%

Jfine 0.048 0.048 0.052
1 − √

Jfine 78.0% 78.0% 77.2%

Table 2. Results using 9 time measurements and 33, 3 or 2 spatial measurements for a 3-d
data such that: E = 3E6 and h0,w = 0.05.
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We can see that, logically, the most accurate estimation is obtained in the case where the biggest amount of
3-d data is used for the optimization. But the results do not degenerate too much when the number of time or
space measurements is reduced. In fact, the value of β estimated from only 9 time and 2 space measurements,
provides results that explain 77, 2% of the data.

The results are actually quite stable with respect to the amount of data used. Particularly, when the number
of time measures varies from 99 to 9, the estimated value of β remains almost constant. On the other hand,
we notice that the value of βestim is more sensitive to the variation of the number of space measures. But this
sensitivity remains relatively low, the maximal variation of βestim being of 10%, when the amount of space
measurements changes from 33 to 2.

4.6.2. Results of the 1-d model using the estimated value βestim

For this test case, the expected value of β, according to relation (46), is β3d = 1.87E5. In order to compare
this value with the results of the different estimations, the 1-d model has also been computed using β3d. The
percentage of explained data obtained with this simulation, measured with the function 1−√

Jfine, is of 64%,
which is far bellow the one obtained with the different estimations made (see tables 1 and 2).

We show next the results of the 1-d model computed using the estimated value βestim = 1.30E5, obtained
from 99 time and 33 space measurements of the 3-d data. The results are compared with the 3-d data and with
the 1-d results computed using β3d. Note that there is a difference of about 30% between the values βestim and
β3d. Figures 4 and 5 represent the area of the vessel and the flux of the blood flow in the whole domain, after
50 and 90 time steps. Figure 6 shows the time evolution of the area and the flux at the middle of the tube, that
is at z = L/2.
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Figure 4. Area and flux obtained from the 1-d model using βestim (blue dotted line) and β3d

(green dashed line), compared to the 3-d data (red line), after 50 timesteps.

As an additional information, the pressure of the blood flow was computed from the 1-d results according to
the wall displacement law (6). It is displayed after 50 and 90 time steps in Figure 7.

On these figures, we observe that the results of the 1-d model manage to capture quite well the phase of the
waves of the 3-d data, but not its shape and amplitude. Particularly, the waves of the 3-d data are significantly
larger. This can be explained by one of the assumptions made for the derivation of the 1-d model, that considers
the vessel as a sequence of independent rings. On the contrary, the 3-d model used to compute the data takes
into account the propagation in the structure. On the other hand, the difference in the amplitude can be due
to the more important diffusivity of the 3-d models.

In addition, we can see that the results obtained with the estimated optimal value βestim are closer to the
3-d data than those computed using the expected value β3d. This becomes particularly true after 90 timesteps
and at the middle of the tube, where the waves obtained with β3d are clearly in advance with respect to the
data. On the contrary, the phase error of the waves obtained with βestim remains relatively small.
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Figure 5. Area and flux obtained from the 1-d model using βestim (blue dotted line) and β3d

(green dashed line), compared to the 3-d data (red line), after 90 timesteps.
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Figure 6. Area and flux obtained from the 1-d model using βestim (blue dotted line) and β3d

(green dashed line), compared to the 3-d data (red line), at z = L/2.
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Figure 7. Pressure obtained from the 1-d model using βestim (blue dotted line) and β3d (green
dashed line), compared to the 3-d data (red line). Left: after 50 timesteps. Right: after 90
timesteps.

This result has to be emphasized, because it proves the existence of a more optimal value of β than the one
given by (46), a relation resulting from physical considerations.
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4.6.3. Sensitivity of the estimation with respect to the space measurements

Next, the optimal values βestim obtained from different amounts of space measurements are compared, the
number of time measurements being constant and equal to 99. The results of the 1-d model computed with these
values are shown in figures (8) and (9). The comparison between the values estimated from 9 time measures is
not made because, as deduced from tables 1 and 2, there is almost no difference.
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Figure 8. Results of the 1-d model using the value βestim obtained from 99 time measurements
and 33 (blue dotted line), 3 (green dashed line) or 2 (red line) space measurements, compared
to the 3-d data (mauve small-dotted line), after 90 timesteps.
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Figure 9. Results of the 1-d model using the value βestim obtained from 99 time measurements
and 33 (blue dotted line), 3 (green dashed line) or 2 (red line) space measurements, compared
to the 3-d data (mauve small-dotted line), at z = L/2.

We can see that the optimal values of β estimated from 33 and 3 space measures provide almost the same
1-d results. But when changing to 2 space measurements, the phase error of the 1-d results grows significantly,
so that the advance of the area and flux waves with respect to the data increases largely. This means that with
2 space measurements, the estimation is not yet stable.

4.6.4. Sensitivity of the estimation with respect to the time measurements

The comparison is now made between the optimal values of β obtained from 99 and 9 time measurements,
the number of space measurements being constant and equal to 2, which is the minimum. The results of the
1-d model computed with these values are shown in figures (10) and (11).
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Figure 10. Results of the 1-d model using the value βestim obtained from 2 space measure-
ments and 99 (blue dotted line) or 9 (red line) time measurements, compared to the 3-d data
(mauve small-dotted line), after 90 timesteps. The two curves with 9 and 99 are almost iden-
tical.
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Figure 11. Results of the 1-d model using the value βestim obtained from 2 space measure-
ments and 99 (blue dotted line) or 9 (red line) time measurements, compared to the 3-d data
(mauve small-dotted line), at z = L/2. The two curves with 9 and 99 are almost identical.

We observe that, in both cases, the curves are perfectly superposed. The quantity of explained data is thus
already stable at 9 time measures.

4.7. Test case 2: 3-d structure, E = 4.E6 and h0,w = 0.1

The second test was made using the 3-d data obtained with a 3-d structure model with a Young modulus
of 4.E6 and a wall thickness of 0.1. Here again, the number of iterations necessary for the optimization was
bounded by 6 and 10.

4.7.1. Results of the optimization

The results obtained are shown in tables 3 and 4. The fine cost function computes here the least squares
error between the 3-d data measured at each of the 79 timesteps and the 33 sections, and the 1-d data obtained
with the estimated value βestim.

As expected, the most accurate estimation is obtained with the biggest amount of 3-d data, that is 79 time
and 33 space measurements. The percentage of explained data, measured with the function 1 − √

Jfine, is in
this case of 88.8%. But in the case where only 7 time and 2 space measurements are used, this percentage is
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Nb zmeas 33 3 2
βestim 3.13E5 3.20E5 3.67E5
J 0.013 0.0049 1.4E − 5

1 −√
J 88.8% 93% 99.6%

Jfine idem 0.013 0.025
1 − √

Jfine idem 88.6% 84.1%

Table 3. Results using 79 time measurements and 33, 3 or 2 spatial measurements for a 3-d
data such that: E = 4E6 and h0,w = 0.1.

Nb zmeas 33 3 2
β0,estim 5.64E5 5.74E5 5.98E5
βestim 3.19E5 3.24E5 3.38E5
J 0.0087 0.0017 1.1E − 5

1 −√
J 90.7% 95.9% 99.7%

Jfine 0.013 0.013 0.016
1 − √

Jfine 88.7% 88.4% 87.4%

Table 4. Results using 7 time measurements and 33, 3 or 2 spatial measurements for a 3-d
data such that: E = 4E6 and h0,w = 0.1.

of 87.4%, which is not much lower. Here again, the accuracy of the estimation does not decrease significantly
with the amount of data.

But the results of the estimation are less stable than in the first case. Particularly, the variation of the
estimated value when the time sampling changes is quite important. Indeed, when only 2 space measurements
are considered, the relative variation of βestim reaches 17% when the amount of time measurements is decreased
from 79 to 7.

4.7.2. Results of the 1-d model using the estimated value βestim

For this test case, the expected value of β, according to the relation (46), is β3d = 4.96E5. This value
provides 1-d results that explain 71% of the data, which is again far bellow the percentage obtained with the
different estimations made (see tables 3 and 4). Note that the maximal difference between the estimated value
βestim and β3d is of about 38%.

Next, we show the results of the 1-d model, computed using the estimation βestim = 3.13E5, which provides
the highest value of 1 − √

J . They are compared with the 3-d data and with the 1-d results computed using
β3d. Figures 12 and 13 represent the area of the vessel and the flux the blood flow in the whole domain, after
50 and 70 time steps. Figure 14 shows the time evolution of the area and the flux at the middle of the tube,
that is at z = L/2.

Firstly, we observe that in this case the results of the 1-d model fit much better to the 3-d data than in the
test case one. In fact, not only the phase of the waves is captured, but their shape and amplitude is also well
approached. Let us note that the 3-d model used here to compute the data is linear for the structure. This is
probably the reason why, in this case, the linear 1-d model is closer to the 3-d one.
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Figure 12. Results of the 1-d model using βestim (blue dotted line) and β3d (green dashed
line), compared to the 3-d data (red line), after 50 timesteps.
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Figure 13. Results of the 1-d model using βestim (blue dotted line) and β3d (green dashed
line), compared to the 3-d data (red line), after 70 timesteps.
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Figure 14. Results of the 1-d model using βestim (blue dotted line) and β3d (green dashed
line), compared to the 3-d data (red line), at z = L/2.

We can also see that the results obtained with the value βestim are much better than those obtained with
β3d. Indeed, the waves obtained with this last value are much too advanced with respect to the data, whilst
the phase error of the waves obtained with βestim remains relatively small, even after 70 timesteps.
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4.7.3. Sensitivity of the estimation with respect to the space measurements

The optimal values βestim obtained from different amounts of space measurements are now compared, the
number of time measurements being fixed at 79. The results of the 1-d model computed with these values are
shown in figures (15) and (16).
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Figure 15. Results of the 1-d model using the value βestim obtained from 79 time measure-
ments and 33 (blue dotted line), 3 (green dashed line) or 2 (red line) space measurements,
compared to the 3-d data (mauve small-dotted line), after 70 timesteps.

 0.78

 0.785

 0.79

 0.795

 0.8

 0.805

 0.81

 0.815

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008

Area at Z=L/2 for 79 time data and 2/3/33 space data

2data
3data

33data
3d data

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008

Fluxes at Z=L/2 for 79 time data and 2/3/33 space data

2data
3data

33data
3d data

Figure 16. Results of the 1-d model using the value βestim obtained from 79 time measure-
ments and 33 (blue dotted line), 3 (green dashed line) or 2 (red line) space measurements,
compared to the 3-d data (mauve small-dotted line), at z = L/2.

These figures show that, here again, a significant variation in the 1-d results only occures when dicreasing
the amount of space measurements from 3 to 2. In that case, the phase of the waves is lost, so that the area
and flux appear to be much more in advance with respect to the data. Thus, we can say that the estimation
starts to be stable from 3 space measurements.

4.7.4. Sensitivity of the estimation with respect to the time measurements

Here, the comparison is made between the estimated values of β obtained using 79 and 7 time measurements.
The amount of space measurements is first fixed at 33 and later at 2. The results of the first comparison are
shown in figures 17 and 18. For the second one, the results are shown in figures 19 and 20.

From the observation of these figures, we can say that, when 33 space measurements are used, the estimation
is stable with respect to the amount of time measurements. On the contrary, when the data is only considered
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Figure 17. Results of the 1-d model using the value βestim obtained from 33 space measure-
ments and 79 (blue dotted line) or 7 (red line) time measurements, compared to the 3-d data
(mauve small-dotted line), after 70 timesteps.
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Figure 18. Results of the 1-d model using the value βestim obtained from 33 space measure-
ments and 79 (blue dotted line) or 7 (red line) time measurements, compared to the 3-d data
(mauve small-dotted line), at z = L/2.

at 2 points in space, the estimation is unstable and varies significantly with the amount of time measurements
provided.

These numerical tests show that it is possible to identify the parameter β in a stable way from 3 measures in
space and 7 measures in time (in the first test case already from 2 measures in space and 9 in time). Moreover,
the estimations obtained are more optimal than the expected value β3d, as they provide 1-d results that explain
a bigger percentage of data.

5. Conclusions

In this work, the parameter identification of a 1-d blood flow model using the adjoint approach was stud-
ied. Starting from the discretization of the model with a second order Taylor-Galerkin scheme, the discrete
adjoint problem was derived. We obtained a linear 1-d hyperbolic system, with non-standard discretization and
boundary conditions. The resolution of the adjoint problem allows to compute the gradient of a cost function,
which evaluates the least squares error between the measured data and the 1-d results. The analytical discrete
gradient is necessary to minimize the cost function in order to find the optimal values of the parameters. Its
computation was therefore implemented and validated using the finite difference method. Some preliminary
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Figure 19. Results of the 1-d model using the value βestim obtained from 2 space measure-
ments and 79 (blue dotted line) or 7 (red line) time measurements, compared to the 3-d data
(mauve small-dotted line), after 70 timesteps.
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Figure 20. Results of the 1-d model using the value βestim obtained from 2 space measure-
ments and 79 (blue dotted line) or 7 (red line) time measurements, compared to the 3-d data
(mauve small-dotted line), at z = L/2.

numerical tests were performed. A single parameter was estimated – the arterial compliance β – which is the
most important parameter from a biomedical point of view. In order to simplify the estimation, β was assumed
to be constant in space. The optimization was made using data provided by two different 3-d models, and for
two different values of the Young modulus and the wall thickness at rest. In all cases, the estimated values of
β obtained were very different from the expected value β3d

1, the difference going from 30 to 38%. However,
the 1-d results computed with the estimated values appeared to be significantly closer to the data than those
obtained with β3d. Actually, the percentage of explained data obtained with these estimations was of about
75% to 89%, depending on the test case and the amount of data used for the optimization (this is not surprising
as in the first case the data were computed using a shell model with a non-linear constitutive law). Thus, it is
possible to retrieve the pressure of the blood flow in an artery in a non-intrusive way.

The interest of this work first lies in the application of a parameter estimation method to a 1-d blood flow
model, using a rigorous mathematical approach. Second, the method used for the optimization is efficient.
Indeed, once the adjoint state has been derived from the discrete 1-d model, the estimation can quite simply
be extended to more parameters and especially to parameters depending on space.

1given by an analytical formula and dependent on the values of the wall Young modulus E, the wall thickness at rest h0,w and

the Poisson coefficient νw.
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This work is a first step in the parameter identification for the 1-d blood flow model. The tests were for
the moment limited to the estimation of a single parameter, assumed to be constant in space and time. The
optimization should now be extended to other parameters, possibly depending on space. After a sensitivity
analysis, it would be interesting to estimate the area at rest A0 at each discretization point of the 1-d domain,
because this could allow to localize a possible tapering in the vessel. Another relevant application of the method
would be the parameter estimation involved in a bifurcation.
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