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émanant des établissements d’enseignement et de
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Short-time asymptotics for marginal distributions

of semimartingales
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CNRS - Université Pierre & Marie Curie (Paris VI).
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Abstract

We study the short-time aymptotics of conditional expectations of
smooth and non-smooth functions of a (discontinuous) Ito semimartin-
gale; we compute the leading term in the asymptotics in terms of the
local characteristics of the semimartingale. We derive in particular the
asymptotic behavior of call options with short maturity in a semimartin-
gale model: whereas the behavior of out-of-the-money options is found to
be linear in time, the short time asymptotics of at-the-money options is
shown to depend on the fine structure of the semimartingale.
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2.2.2 Time-changed Lévy processes . . . . . . . . . . . . . . . . 12

3 Short-maturity asymptotics for call options 13
3.1 Out-of-the money call options . . . . . . . . . . . . . . . . . . . . 14
3.2 At-the-money call options . . . . . . . . . . . . . . . . . . . . . . 18

1



We study the short-time asymptotics of expectations of the form E[f(ξt)]
where ξt a discontinuous Itô semimartingale. We study two different cases:
first, the case where f is a smooth (C2) function, then the case where f(x) =
(x−K)+. We compute the leading term in the asymptotics in terms of the local
characteristics of the semimartingale.

As an application, we derive the asymptotic behavior of call option prices
close to maturity in a semimartingale model: whereas the behavior of out-of-the-
money options is found to be linear in time, the short time asymptotics of at-the-
money options is shown to depend on the fine structure of the semimartingale.

These results generalize and extend various asymptotic results previously
derived for diffusion models [7, 9], Lévy processes [18, 14, 26], Markov jump-
diffusion models [4] and one-dimensional martingales [21] to the more general
case of a discontinuous semimartingale. In particular, the independence of in-
crements or the Markov property do not play any role in our derivation.

1 Introduction

In applications such as stochastic control, statistics of processes and mathemat-
ical finance, one is often interested in computing or approximating conditional
expectations of the type

E [f(ξt)|Ft0 ] , (1)

where ξ is a stochastic process. Whereas for Markov process various well-
known tools –partial differential equations, Monte Carlo simulation, semigroup
methods– are available for the computation and approximation of conditional
expectations, such tools do not carry over to the more general setting of semi-
martingales. Even in the Markov case, if the state space is high dimensional
exact computations may be computationally prohibitive and there has been a
lot of interest in obtaining approximations of (1) as t→ t0. Knowledge of such
short-time asymptotics is very useful not only for computation of conditional
expectations but also for the estimation and calibration of such models. Ac-
cordingly, short-time asymptotics for (1) (which, in the Markov case, amounts
to studying transition densities of the process ξ) has been previously studied
for diffusion models [7, 9, 12], Lévy processes [18, 19, 25, 2, 14, 13, 26], Markov
jump-diffusion models [1, 4] and scalar martingales driven by a one-dimensional
Poisson random measure [21], using a variety of techniques. The proofs of these
results in the case of Lévy processes makes heavy use of the independence of
increments; proofs in other case rely on the Markov property, estimates for
heat kernels for second-order differential operators or Malliavin calculus. What
is striking, however, is the similarity of the results obtained in these different
settings.

We reconsider here the short-time asymptotics of conditional expectations
in a more general framework which contains existing models but allows to go
beyond the Markovian setting and to incorporate path-dependent features. Such
a framework is provided by the class of Itô semimartingales, which contains all
the examples cited above but allows to use the tools of stochastic analysis.
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An Itô semimartingale on a filtered probability space (Ω,F , (Ft)t≥0,P) is a
stochastic process ξ with the representation

ξt = ξ0+

∫ t

0

βs ds+

∫ t

0

δs dWs+

∫ t

0

∫
Rd
κ(y) M̃(dsdy)+

∫ t

0

∫
Rd

(y − κ(y)) M(dsdy),

(2)
where ξ0 is in Rd, W is a standard Rn-valued Wiener process, M is an integer-
valued random measure on [0,∞]×Rd with compensator µ(ω, dt, dy) = m(ω, t, dy)dt
and M̃ = M − µ its compensated random measure, β (resp. δ) is an adapted
process with values in Rd (resp. Md×n(R)) and

κ(y) =
y

1 + ‖y‖2

is a truncation function.
We study the short-time asymptotics of conditional expectations of the form

(1) where ξ is an Ito semimartingale of the form (2), for various classes of
functions f : Rd → R. First, we prove a general result for the case of f ∈
C2
b (Rd,R). Then we will treat, when d = 1, the case of

E
[
(ξt −K)+|Ft0

]
, (3)

which corresponds to the value at t0 of a call option with strike K and maturity
t in a model described by equation (2). We show that whereas the behavior
of (3) in the case K > ξt0 ( out-of-the-money options) is linear in t − t0, the
asymptotics in the case K = ξt0 (which corresponds to at-the-money options)
depends on the fine structure of the semimartingale ξ at t0. In particular, we
show that for continuous semimartingales the short-maturity asymptotics of at-
the-money options is determined by the local time of ξ at t0. In each case we
identify the leading term in the asymptotics and express this term in terms of
the local characteristics of the semimartingale at t0.

Our results unify various asymptotic results previously derived for particular
examples of stochastic models and extend them to the more general case of a
discontinuous semimartingale. In particular, we show that the independence of
increments or the Markov property do not play any role in the derivation of
such results.

Short-time asymptotics for expectations of the form (1) have been studied in
the context of statistics of processes [18] and option pricing [1, 7, 9, 4, 14, 26, 21].
Berestycki, Busca and Florent [7, 9] derive short maturity asymptotics for call
options when ξt is a diffusion, using analytical methods. Durrleman [11] studied
the asymptotics of implied volatility in a general, non-Markovian stochastic
volatility model. Jacod [18] derived asymptotics for (1) for various classes of
functions f , when ξt is a Lévy process. Lopez [14] and Tankov [26] study the
asymptotics of (3) when ξt is the exponential of a Lévy process. Lopez [14] also
studies short-time asymptotic expansions for (1), by iterating the infinitesimal
generator of the Lévy process ξt. Alos et al [1] derive short-maturity expansions
for call options and implied volatility in a Heston model using Malliavin calculus.
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Benhamou et al. [4] derive short-maturity expansions for call options in a model
where ξ is the solution of a Markovian SDE whose jumps are described by a
compound Poisson process. These results apply to processes with independence
of increments or solutions of a “Markovian” stochastic differential equation.

Durrleman studied the convergence of implied volatility to spot volatility
in a stochastic volatility model with finite-variation jumps [10]. More recently,
Nutz and Muhle-Karbe [21] study short-maturity asymptotics for call options
in the case where ξt is a one-dimensional Itô semimartingale driven by a (one-
dimensional) Poisson random measure whose Lévy measure is absolutely con-
tinuous. Their approach consists in “freezing” the characteristic triplet of ξ at
t0, approximating ξt by the corresponding Lévy process and using the results
cited above [18, 14] to derive asymptotics for call option prices.

Our contribution is to extend these results to the more general case when ξ
is a d-dimensional semimartingale with jumps. In contrast to previous deriva-
tions, our approach is purely based on Itô calculus and makes no use of the
Markov property or independence of increments. Also, our multidimensional
setting allows to treat examples which are not accessible using previous results.
For instance, when studying index options in jump-diffusion model, one consid-
ers an index It =

∑
wiS

i
t where (S1, ..., Sd) are Itô semimartingales. In this

framework, I is indeed an Itô semimartingale whose stochastic integral repre-
sentation is implied by those of Si but it is naturally represented in terms of
a d-dimensional integer-valued random measure, not a one-dimensional Poisson
random measure, so the setting of [21] does not apply. Our setting provides a
natural framework for treating such examples.

Note that these ’short-time’ asymptotics are different from the ’extreme-
strike’ asymptotics studied by Lee [20] and extended by Friz, Gulisashvili and
others [3, 15, 16, 17]. But, in specific models, the two asymptotic regimes may
be related using scaling arguments.

2 Short time asymptotics for conditional expec-
tations

2.1 Main result

We make the following assumptions on the characteristics of the semimartingale
ξ:

Assumption 2.1 (Right-continuity of characteristics at t0).

lim
t→t0, t>t0

E [‖βt − βt0‖|Ft0 ] = 0, lim
t→t0, t>t0

E
[
‖δt − δt0‖2|Ft0

]
= 0,

where ‖.‖ denotes the Euclidean norm on Rd and for ϕ ∈ Cb0(Rd × Rd,R),

lim
t→t0, t>t0

E
[∫

Rd
‖y‖2 ϕ(ξt, y)m(t, dy)|Ft0

]
=

∫
Rd
‖y‖2 ϕ(ξt0 , y)m(t0, dy).
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The second requirement, which may be viewed as a weak (right) continuity
of m(t, dy) along the paths of ξ, is satisfied for instance if m(t, dy) is absolutely
continuous with a density which is right-continuous in t at t0.

Assumption 2.2 (Integrability condition). ∃T > t0,

E

[∫ T

t0

‖βs‖ ds
∣∣∣Ft0

]
<∞, E

[∫ T

t0

‖δs‖2 ds
∣∣∣Ft0

]
<∞,

E

[∫ T

t0

∫
Rd
‖y‖2m(s, dy) ds

∣∣∣Ft0
]
<∞.

Under these assumptions, the following result describes the asymptotic be-
havior of E [f(ξt)|Ft0 ] when t→ t0:

Theorem 2.1. Under Assumptions 2.1 and 2.2, for all f ∈ C2
b (Rd,R),

lim
t↓t0

1

t− t0
(E [f(ξt)|Ft0 ]− f(ξt0)) = Lt0f(ξt0). (4)

where Lt0 is the (random) integro-differential operator given by

∀f ∈ C2
b (Rd,R), Lt0f(x) = βt0 .∇f(x) +

1

2
tr
[
tδt0δt0∇2f

]
(x) (5)

+

∫
Rd

[f(x+ y)− f(x)− 1

1 + ‖y‖2
y.∇f(x)]m(t0, dy).

Before proving Theorem 2.1, we recall a useful lemma:

Lemma 2.1. Let f : R+ → R be right-continuous at 0, then

lim
t→0

1

t

∫ t

0

f(s) ds = f(0). (6)

Proof. Let F denote the primitive of f , then

1

t

∫ t

0

f(s) ds =
1

t
(F (t)− F (0)) .

Letting t→ 0+, this is nothing but the right derivative at 0 of F , which is f(0)
by right continuity of f .

We can now prove Theorem 2.1.

Proof. of Theorem 2.1
We first note that, by replacing P by the conditional measure P|Ft0 given Ft0 , we
may replace the conditional expectation in (4) by an expectation with respect
to the marginal distribution of ξt under P|Ft0 . Thus, without loss of generality,
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we put t0 = 0 in the sequel and consider the case where F0 is the σ-algebra
generated by all P-null sets. Let f ∈ C2

b (Rd,R). Itô’s formula yields

f(ξt) = f(ξ0) +

∫ t

0

∇f(ξs−)dξis +
1

2

∫ t

0

tr
[
∇2f(ξs−) tδsδs

]
ds

+
∑
s≤t

[
f(ξs− + ∆ξs)− f(ξs−)−

d∑
i=1

∂f

∂xi
(ξs−)∆ξis

]

= f(ξ0) +

∫ t

0

∇f(ξs−).βs ds+

∫ t

0

∇f(ξs−).δsdWs

+
1

2

∫ t

0

tr
[
∇2f(ξs−) tδsδs

]
ds

+

∫ t

0

∫
Rd
∇f(ξs−).κ(y) M̃(ds dy)

+

∫ t

0

∫
Rd

(f(ξs− + y)− f(ξs−)− κ(y).∇f(ξs−)) M(ds dy).

We note that

• since∇f is bounded and given Assumption 2.2,
∫ t

0

∫
Rd ∇f(ξs−).κ(y) M̃(ds dy)

is a square-integrable martingale.

• since ∇f is bounded and given Assumption 2.2,
∫ t

0
∇f(ξs−).δsdWs is a

martingale.

Hence, taking expectations, we obtain

E [f(ξt)] = E [f(ξ0)] + E
[∫ t

0

∇f(ξs−).βs ds

]
+ E

[
1

2

∫ t

0

tr
[
∇2f(ξs−)tδsδs

]
ds

]
+ E

[∫ t

0

∫
Rd

(f(ξs− + y)− f(ξs−)− κ(y).∇f(ξs−)) M(ds dy)

]
= E [f(ξ0)] + E

[∫ t

0

∇f(ξs−).βs ds

]
+ E

[
1

2

∫ t

0

tr
[
∇2f(ξs−) tδsδs

]
ds

]
+ E

[∫ t

0

∫
Rd

(f(ξs− + y)− f(ξs−)− κ(y).∇f(ξs−)) m(s, dy) ds

]
,

that is

E [f(ξt)] = E [f(ξ0)] + E
[∫ t

0

Lsf(ξs) ds

]
. (7)

where L denote the integro-differential operator given, for all t ∈ [0, T ] and for
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all f ∈ C2
b (Rd,R), by

Ltf(x) = βt.∇f(x) +
1

2
tr
[
tδtδt∇2f

]
(x)

+

∫
Rd

[f(x+ y)− f(x)− 1

1 + ‖y‖2
y.∇f(x)]m(t, dy),

(8)

Equation (7) yields

1

t
E [f(ξt)]−

1

t
f(ξ0)− L0f(ξ0)

= E
[

1

t

∫ t

0

ds (∇f(ξs).βs −∇f(ξ0).β0)

]
+

1

2
E
[

1

t

∫ t

0

ds tr
[
∇2f(ξs)

tδsδs −∇2f(ξ0) tδ0δ0
]]

+ E
[ ∫

Rd

1

t

∫ t

0

ds
[
m(s, dy) (f(ξs + y)− f(ξs)− κ(y).∇f(ξs))

−m(0, dy), (f(ξ0 + y)− f(ξ0)− κ(y).∇f(ξ0))
]]
.

Define

∆1(t) = E
[

1

t

∫ t

0

ds (∇f(ξs).βs −∇f(ξ0).β0)

]
,

∆2(t) =
1

2
E
[

1

t

∫ t

0

ds tr
[
∇2f(ξs−) tδsδs −∇2f(ξ0) tδ0δ0

]]
,

∆3(t) = E
[ ∫

Rd

1

t

∫ t

0

ds
[
m(s, dy) (f(ξs + y)− f(ξs)− κ(y).∇f(ξs−))

−m(0, dy) (f(ξ0 + y)− f(ξ0)− κ(y).∇.f(ξ0))
]]
.

Thanks to Assumptions 2.1 and 2.2,

E
[∫ t

0

ds |∇f(ξs).βs −∇f(ξ0).β0|
]
≤ E

[∫ t

0

ds ‖∇f‖ (‖βs‖+ ‖β0‖)
]
<∞.

Fubini’s theorem then applies:

∆1(t) =
1

t

∫ t

0

dsE [∇f(ξs).βs −∇f(ξ0).β0] .

Let us prove that

g1 : [0, T [→ R

t→ E [∇f(ξt).βt −∇f(ξ0).β0] ,
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is right-continuous at 0 with g1(0) = 0, yielding ∆1(t)→ 0 when t→ 0+ if one
applies Lemma 2.1.

|g1(t)| = |E [∇f(ξt).βt −∇f(ξ0).β0]|

= |E [(∇f(ξt)−∇f(ξ0)) .β0 +∇f(ξt). (βt − β0)]|

≤ ‖∇f‖∞ E [‖βt − β0‖] + ‖β0‖ ‖∇2f‖∞ E [‖ξt − ξ0‖] ,

(9)

where ‖‖∞ denotes the supremum norm on C2
b (Rd,R). Assumption 2.1 implies

that:
lim
t→0+

E [‖βt − β0‖] = 0.

Thanks to Assumption 2.2, one may decompose ξt as

ξt = ξ0 +At +Mt,

At =

∫ t

0

(
βs ds+

∫
Rd

(y − κ(y))m(s, dy)

)
ds,

Mt =

∫ t

0

δs dWs +

∫ t

0

∫
Rd
y M̃(ds dy),

(10)

where At is of finite variation and Mt is a local martingale. First, applying
Fubini’s theorem (using Assumption 2.2),

E [‖At‖] ≤ E
[∫ t

0

‖βs‖ ds
]

+ E
[∫ t

0

∫
Rd
‖y − κ(y)‖m(s, dy) ds

]
=

∫ t

0

dsE [‖βs‖] +

∫ t

0

dsE
[∫

Rd
‖y − κ(y)‖m(s, dy)

]
.

Thanks to Assumption 2.1, one observes that if s ∈ [0, T [→ E [‖βs − β0‖] is
right-continuous at 0 so is s ∈ [0, T [→ E [‖βs‖]. Furthermore, Assumption 2.1
yields that

s ∈ [0, T [→ E
[∫

Rd
‖y − κ(y)‖m(s, dy)

]
is right-continuous at 0 and Lemma 2.1 implies that

lim
t→0+

E [‖At‖] = 0.

Furthermore, writing Mt = (M1
t , · · · ,Md

t ),

E
[
‖Mt‖2

]
=
∑

1≤i≤d

E
[
|M i

t |2
]
.

Burkholder’s inequality [23, Theorem IV.73] implies that there exists C > 0
such that

sup
s∈[0,t]

E
[
|M i

s|2
]
≤ C E

[
[M i,M i]t

]
= C E

[∫ t

0

ds |δis|2 +

∫ t

0

ds

∫
Rd
|yi|2m(s, dy)

]
.
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Using Assumption 2.2 we may apply Fubini’s theorem to obtain

sup
s∈[0,t]

E
[
‖Ms‖2

]
≤ C

∑
1≤i≤d

E
[∫ t

0

ds |δis|2
]

+ E
[∫ t

0

ds

∫
Rd
|yi|2m(s, dy)

]

= C

(
E
[∫ t

0

ds ‖δs‖2
]

+ E
[∫ t

0

ds

∫
Rd
‖y‖2m(s, dy)

])
= C

(∫ t

0

dsE
[
‖δs‖2

]
+

∫ t

0

dsE
[∫

Rd
‖y‖2m(s, dy)

])
.

Thanks to Assumption 2.1, Lemma 2.1 yields

lim
t→0+

E
[
‖Mt‖2

]
= 0.

Using the Jensen inequality, one obtains

E [‖Mt‖] = E

√ ∑
1≤i≤d

|M i
t |2

 ≤
√√√√√E

 ∑
1≤i≤d

|M i
t |2

 = E
[
‖Mt‖2

]
.

Hence,
lim
t→0+

E [‖Mt‖] = 0,

and
lim
t→0+

E [‖ξt − ξ0‖] ≤ lim
t→0+

E [‖At‖] + lim
t→0+

E [‖Mt‖] = 0.

Going back to the inequalities (9), one obtains

lim
t→0+

g1(t) = 0.

Similarly, ∆2(t)→ 0 and ∆3(t)→ 0 as t→ 0+. This ends the proof.

Remark 2.1. In applications where a process is constructed as the solution to
a stochastic differential equation driven by a Brownian motion and a Poisson
random measure, one usually starts from a representation of the form

ζt = ζ0 +

∫ t

0

βs ds+

∫ t

0

δs dWs +

∫ t

0

∫
ψs(y) Ñ(ds dy), (11)

where ξ0 ∈ Rd, W is a standard Rn-valued Wiener process, β and δ are non-
anticipative càdlàg processes, N is a Poisson random measure on [0, T ] × Rd
with intensity ν(dy) dt where ν is a Lévy measure∫

Rd

(
1 ∧ ‖y‖2

)
ν(dy) <∞, Ñ = N − ν(dy)dt,

and ψ : [0, T ] × Ω × Rd 7→ Rd is a predictable random function representing
jump amplitude. This representation is different from (2), but as shown in [6,
Lemma 1] one can switch from the representation (11) to the representation (2)
in an explicit manner.

In particular, if one rewrites Assumption 2.1 in the framework of equation
(11), one recovers the Assumptions of [21] as a special case.
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2.2 Examples

If one has further information on the behavior of f in the neighborhood of ξ0,
then the quantity L0f(ξ0) may be computed more explicitly. We summarize
some commonly encountered situations in the following Proposition.

Proposition 2.1. Under Assumptions 2.1 and 2.2,

1. If f(ξ0) = 0 and ∇f(ξ0) = 0, then

lim
t→0+

1

t
E [f(ξt)] =

1

2
tr
[
tδ0δ0∇2f(ξ0)

]
+

∫
Rd
f(ξ0 + y)m(0, dy). (12)

2. If furthermore ∇2f(ξ0) = 0, then

lim
t→0+

1

t
E [f(ξt)] =

∫
Rd
f(ξ0 + y)m(0, dy). (13)

Proof. Applying Theorem 2.1, L0f(ξ0) writes

L0f(ξ0) = β0.∇f(ξ0) +
1

2
tr
[
∇2f(ξ0) tδ0δ0

]
(ξ0)

+

∫
Rd

[f(ξ0 + y)− f(ξ0)− 1

1 + ‖y‖2
y.∇f(ξ0)]m(0, dy).

The proposition follows immediately.

Remark 2.2. As observed by Jacod [18, Section 5.8] in the setting of Lévy pro-
cesses, if f(ξ0) = 0 and ∇f(ξ0) = 0, then f(x) = O(‖x− ξ0‖2). If furthermore
∇2f(ξ0) = 0, then f(x) = o(‖x− ξ0‖2).

Let us now compute in a more explicit manner the asymptotics of (1) for
specific semimartingales.

2.2.1 Functions of a Markov process

An important situations which often arises in applications is when a stochastic
processe ξ is driven by an underlying Markov process, i.e.

ξt = f(Zt) f ∈ C2(Rd,R), (14)

where Zt is a Markov process, defined as the weak solution on [0, T ] of a stochas-
tic differential equation

Zt = Z0 +

∫ t

0

b(u, Zu−) du+

∫ t

0

Σ(u, Zu−) dWu

+

∫ t

0

∫
ψ(u, Zu−, y) Ñ(du dy),

(15)
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where (Wt) is an n-dimensional Brownian motion, N is a Poisson random mea-
sure on [0, T ] × Rd with Lévy measure ν(y) dy, Ñ the associated compensated
random measure, Σ : [0, T ] × Rd 7→ Md×d(R), b : [0, T ] × Rd 7→ Rd and
ψ : [0, T ]× Rd × Rd are measurable functions such that

ψ(., ., 0) = 0 ψ(t, z, .) is a C1(Rd,Rd)− diffeomorphism

∀t ∈ [0, T ], E

[∫ t

0

∫
{‖y‖≥1}

sup
z∈Rd

(
1 ∧ ‖ψ(s, z, y)‖2

)
ν(y) dy ds

]
<∞.

(16)

In this setting, as shown in Proposition [6, Proposition 3], one may verify the
regularity of Assumption 2.1 and Assumption 2.2 by requiring easy-to-check
assumptions on the coefficients:

Assumption 2.3. b(., .), Σ(., .) and ψ(., ., y) are continuous in a neighborhood
of (0, Z0)

Assumption 2.4. There exist T > 0, R > 0 such that

Either ∀t ∈ [0, T ] inf
‖z−Z0‖≤R

inf
x∈Rd, ‖x‖=1

tx.Σ(t, z).x > 0

or Σ ≡ 0.

We then obtain the following result:

Proposition 2.2. Let f ∈ C2
b (Rd,R) such that

∀(z1, · · · , zd−1) ∈ Rd−1, u 7→ f(z1, . . . , zd−1, u) is a C1(R,R)−diffeomorphism.

Define
β0 = ∇f(Z0).b(0, Z0) + 1

2 tr
[
∇2f(Z0)tΣ(0, Z0)Σ(0, Z0)

]
+
∫
Rd (f(Z0 + ψ(0, Z0, y))− f(Z0)− ψ(0, Z0, y).∇f(Z0)) ν(y) dy,

δ0 = ‖∇f(Z0)Σ(0, Z0)‖,

and the measure m(0, .) via

m(0, [u,∞[) =

∫
Rd

1{f(Z0+ψ(0,Z0,y))−f(Z0)≥u} ν(y) dy u > 0,

m(0, [−∞, u]) =

∫
Rd

1{f(Z0+ψ(0,Z0,y))−f(Z0)≤u} ν(y) dy u < 0.

(17)

Under Assumptions 2.3 and 2.4, ∀g ∈ C2
b (Rd,R),

lim
t→0+

E [g(ξt)]− g(ξ0)

t
= β0 g

′(ξ0)+
δ2
0

2
g′′(ξ0)+

∫
Rd

[g(ξ0+u)−g(ξ0)−ug′(ξ0)]m(0, du).

(18)
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Proof. Under the conditions (16) and the Assumption 2.4, [6, Proposition 3]
shows that ξt admits the semimartingale decomposition

ξt = ξ0 +

∫ t

0

βs ds+

∫ t

0

δs dBs +

∫ t

0

∫
u K̃(ds du),

where
βt = ∇f(Zt−).b(t, Zt−) + 1

2 tr
[
∇2f(Zt−)tΣ(t, Zt−)Σ(t, Zt−)

]
+
∫
Rd (f(Zt− + ψ(t, Zt−, y))− f(Zt−)− ψ(t, Zt−, y).∇f(Zt−)) ν(y) dy,

δt = ‖∇f(Zt−)Σ(t, Zt−)‖,

and K is an integer-valued random measure on [0, T ] × R with compensator
k(t, Zt−, u) du dt defined via

k(t, Zt−, u) =

∫
Rd−1

|det∇yΦ(t, Zt−, (y1, · · · , yd−1, u))|

ν(Φ(t, Zt−, (y1, · · · , yd−1, u))) dy1 · · · dyd−1,

with {
Φ(t, z, y) = φ(t, z, κ−1

z (y)) κ−1
z (y) = (y1, · · · , yd−1, Fz(y)),

Fz(y) : Rd → R f(z + (y1, · · · , yd−1, Fz(y)))− f(z) = yd.

From Assumption 2.3 it follows that Assumptions 2.1 and 2.2 hold for βt, δt and
k(t, Zt−, .) on [0, T ]. Applying Theorem 2.1, the result follows immediately.

Remark 2.3. Benhamou et al. [4] studied the case where Zt is the solution
of a ‘Markovian’ SDE whose jumps are given by a compound Poisson Process.
The above results generalizes their result to the (general) case where the jumps
are driven by an arbitrary integer-valued random measure.

2.2.2 Time-changed Lévy processes

Models based on time–changed Lévy processes provide another class of examples
of non-Markovian models which have generated recent interest in mathematical
finance. Let Lt be a real-valued Lévy process, (b, σ2, ν) be its characteristic
triplet, N its jump measure. Define

ξt = LΘt Θt =

∫ t

0

θsds, (19)

where (θt) is a locally bounded Ft-adapted positive càdlàg process, interpreted
as the rate of time change.
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Proposition 2.3. If∫
R
|y|2 ν(dy) <∞ and lim

t→0, t>0
E [|θt − θ0|] = 0 (20)

then

∀f ∈ C2
b (R,R), lim

t→0+

E [f(ξt)]− f(ξ0)

t
= θ0 L0f(ξ0) (21)

where L0 is the infinitesimal generator of the L:

L0f(x) = b f ′(x)+
σ2

2
f ′′(x)+

∫
Rd

[f(x+y)−f(x)− 1

1 + |y|2
yf ′(x)]ν(dy). (22)

Proof. Considering the Lévy-Itô decomposition of L:

Lt =

(
b−

∫
{|y|≤1}

(y − κ(y)) ν(dy)

)
t+ σWt

+

∫ t

0

∫
R
κ(z)Ñ(dsdz) +

∫ t

0

∫
R

(z − κ(z))N(dsdz),

then ξ has the representation

ξt = ξ0 +

∫ t

0

σ
√
θs dZs +

∫ t

0

(
b−

∫
{|y|≤1}

(y − κ(y)) ν(dy)

)
θs ds

+

∫ t

0

∫
R
κ(z)θs Ñ(ds dz) +

∫ t

0

∫
R

(z − κ(z)) θsN(ds dz).

where Z is a Brownian motion. With the notation of equation (2), one identifies

βt =

(
b−

∫
{|y|≤1}

(y − κ(y)) ν(dy)

)
θt, δt = σ

√
θt, m(t, dy) = θt ν(dy).

If (20) holds, then Assumptions 2.1 and 2.2 hold for (β, δ,m) and Theorem 2.1
may be applied to obtain the result.

3 Short-maturity asymptotics for call options

Consider a (strictly positive) price process S whose dynamics under the pricing
measure P is given by a stochastic volatility model with jumps:

St = S0 +

∫ t

0

r(s)Ss−ds+

∫ t

0

Ss−δsdWs+

∫ t

0

∫ +∞

−∞
Ss−(ey−1)M̃(ds dy), (23)

where r(t) > 0 represents a (deterministic) bounded discount rate. For con-
venience, we shall assume that r ∈ Cb0(R+,R+). δt represents the volatil-
ity process and M is an integer-valued random measure with compensator
µ(ω; dt dy) = m(ω; t, dy) dt, representing jumps in the log-price, and M̃ = M−µ
its compensated random measure. We make the following assumptions on the
characteristics of S:
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Assumption 3.1 (Right-continuity at t0).

lim
t→t0, t>t0

E
[
|δt − δt0 |2|Ft0

]
= 0.

For all ϕ ∈ Cb0(R+ × R,R),

lim
t→t0, t>t0

E
[∫

R

(
e2y ∧ |y|2

)
ϕ(St, y)m(t, dy)|Ft0

]
=

∫
R

(
e2y ∧ |y|2

)
ϕ(St0 , y)m(t0, dy).

Assumption 3.2 (Integrability condition).

∃T > t0, E

[
exp

(
1

2

∫ T

t0

δ2
s ds+

∫ T

t0

ds

∫
R
(ey − 1)2m(s, dy)

)
|Ft0

]
<∞ .

We recall that the value Ct0(t,K) at time t0 of a call option with expiry
t > t0 and strike K > 0 is given by

Ct0(t,K) = e
−

∫ t
t0
r(s) dsE[max(St −K, 0)|Ft0 ]. (24)

The discounted asset price

Ŝt = e
−

∫ t
t0
r(u) du

St,

is the stochastic exponential of the martingale ξ defined by

ξt =

∫ t

0

δs dWs +

∫ t

0

∫
(ey − 1)M̃(ds dy).

Under Assumption 3.2, we have

E
[
exp

(
1

2
〈ξ, ξ〉dT + 〈ξ, ξ〉cT

)]
<∞,

where 〈ξ, ξ〉c and 〈ξ, ξ〉d denote the continuous and purely discontinuous parts
of [ξ, ξ] and [22, Theorem 9] implies that (Ŝt)t∈[t0,T ] is a P-martingale. In
particular the expectation in (24) is finite.

3.1 Out-of-the money call options

We first study the asymptotics of out-of-the money call options i.e. the case
where K > St0 .

Theorem 3.1 (Short-maturity behavior of out-of-the money options). Under
Assumption 3.1 and Assumption 3.2, if St0 < K then

1

t− t0
Ct0(t,K) −→

t→t+0

∫ ∞
0

(St0e
y −K)+m(t0, dy). (25)
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This limit can also be expressed using the exponential double tail ψt0 of the
compensator, defined as

ψt0(z) =

∫ +∞

z

dx ex
∫ ∞
x

m(t0, du) z > 0. (26)

Then, as shown in [5, Lemma 1],∫ ∞
0

(St0e
y −K)+m(t0, dy) = St0ψt0

(
ln

(
K

St0

))
.

Proof. The idea is to apply Theorem 2.1 to smooth approximations fn of the
function x→ (x−K)+ and conclude using a dominated convergence argument.

First, as argued in the proof of Theorem 2.1, we put t0 = 0 in the sequel
and consider the case where F0 is the σ-algebra generated by all P-null sets.
Applying the Itô formula to Xt ≡ ln (St), we obtain

Xt = ln (S0) +

∫ t

0

1

Ss−
dSs +

1

2

∫ t

0

−1

S2
s−

(Ss−δs)
2 ds

+
∑
s≤t

[
ln (Ss− + ∆Ss)− ln (Ss−)− 1

Ss−
∆Ss

]

= ln (S0) +

∫ t

0

(
r(s)− 1

2
δ2
s

)
ds+

∫ t

0

δs dWs

+

∫ t

0

∫ +∞

−∞
(ey − 1)M̃(ds dy)−

∫ t

0

∫ +∞

−∞
(ey − 1− y) M(ds dy)

Note that there exists C > 0 such that

|ey − 1− y 1

1 + |y|2
| ≤ C (ey − 1)

2
.

Thanks to Jensen’s inequality, Assumption 3.2 implies that this quantity is

15



finite, allowing us to write∫ t

0

∫ +∞

−∞
(ey − 1)M̃(ds dy)−

∫ t

0

∫ +∞

−∞
(ey − 1− y) M(ds dy)

=

∫ t

0

∫ +∞

−∞
(ey − 1)M̃(ds dy)−

∫ t

0

∫ +∞

−∞

(
ey − 1− y 1

1 + |y|2

)
M(ds dy)

+

∫ t

0

∫ +∞

−∞

(
y − y 1

1 + |y|2

)
M(ds dy)

=

∫ t

0

∫ +∞

−∞
(ey − 1)M̃(ds dy)−

∫ t

0

∫ +∞

−∞

(
ey − 1− y 1

1 + |y|2

)
M̃(ds dy)

−
∫ t

0

∫ +∞

−∞

(
ey − 1− y 1

1 + |y|2

)
m(s, y) ds dy +

∫ t

0

∫ +∞

−∞

(
y − y 1

1 + |y|2

)
M(ds dy)

=

∫ t

0

∫ +∞

−∞
y

1

1 + |y|2
M̃(ds dy)−

∫ t

0

∫ +∞

−∞

(
ey − 1− y 1

1 + |y|2

)
m(s, y) ds dy

+

∫ t

0

∫ +∞

−∞

(
y − y 1

1 + |y|2

)
M(ds dy).

We can thus represent Xt as in (2)):

Xt = X0 +

∫ t

0

βs dt+

∫ t

0

δs dWs

+

∫ t

0

∫ +∞

−∞
y

1

1 + |y|2
M̃(ds dy) +

∫ t

0

∫ +∞

−∞

(
y − y 1

1 + |y|2

)
M(ds dy),

(27)

with

βt = r(t)− 1

2
δ2
t −

∫ ∞
−∞

(
ey − 1− y 1

1 + |y|2

)
m(t, y) dt dy.

Hence, if δ and m(., dy) satisfy Assumption 3.1 then β, δ and m(., dy) satisfy
Assumption 2.1. Thanks to Jensen’s inequality, Assumption 3.2 implies that
β, δ and m satisfy Assumption 2.2. One may apply Theorem 2.1 to Xt for
any function of the form f ◦ exp, f ∈ C2

b (R,R). Let us introduce a family
fn ∈ C2

b (R,R) such that{
fn(x) = (x−K)+ |x−K| > 1

n

(x−K)+ ≤ fn(x) ≤ 1
n |x−K| ≤ 1

n .

Then for x 6= K, fn(x) −→
n→∞

(x−K)+. Define, for f ∈ C∞0 (R+,R),

L0f(x) = r(0)xf ′(x) +
x2δ2

0

2
f ′′(x)

+

∫
R

[f(xey)− f(x)− x(ey − 1).f ′(x)]m(0, dy).

(28)
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First, observe that if N1 ≥ 1/|S0 −K|,

∀n ≥ N1, fn(S0) = (S0 −K)+ = 0, so

1

t
E
[
(St −K)+

]
≤ 1

t
E [fn(St)] =

1

t
(E [fn(St)]− fn(S0)) .

Letting t→ 0+ yields

lim sup
t→0+

1

t
e−

∫ t
0
r(s) ds E

[
(St −K)+

]
≤ L0fn(S0). (29)

Furthermore,

E
[
(St −K)+

]
≥ E

[
fn(St)1{|St−K|> 1

n}

]
= E [fn(St)]− E

[
fn(St)1{|St−K|≤ 1

n}

]
≥ E [fn(St)]− fn(S0)− 1

n
E
[
1{|St−K|≤ 1

n}

]
.

But

E
[
1{|St−K|≤ 1

n}

]
≤ P

(
St −K ≥ −

1

n

)
≤ P

(
St − S0 ≥ K − S0 −

1

n

)
.

There exists N2 ≥ 0 such that for all n ≥ N2,

P
(
St − S0 ≥ K − S0 −

1

n

)
≤ P

(
St − S0 ≥

K − S0

2

)

≤
(

2

K − S0

)2

E
[
(St − S0)2

]
,

by the Bienaymé-Chebyshev inequality. Hence,

1

t
E
[
(St −K)+

]
≥ 1

t
(E [fn(St)]− fn(S0))− 1

n

(
2

K − S0

)2
1

t
E [φ(St)− φ(S0)] ,

with φ(x) = (x− S0)2. Applying Theorem 2.1 yields

lim inf
t→0+

1

t
e−

∫ t
0
r(s) ds E

[
(St −K)+

]
≥ L0fn(S0)− 1

n

(
2

K − S0

)2

L0φ(S0).

Letting n→ +∞,

lim
t→0+

1

t
e−

∫ t
0
r(s) ds E

[
(St −K)+

]
= lim
n→∞

L0fn(S0).
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Since S0 < K, fn = 0 in a neighborhood of S0 for n ≥ N1 so fn(S0) = f ′′n (S0) =
f ′n(S0) = 0 and L0fn(S0) reduces to

L0fn(S0) =

∫
R

[fn(S0e
y)− fn(S0)]m(0, dy).

A dominated convergence argument then yields

lim
n→∞

L0fn(S0) =

∫
R

[(S0e
y −K)+ − (S0 −K)+]m(0, dy).

Using integration by parts, this last expression may be rewritten [5, Lemma 1]
as

S0ψ0

(
ln

(
K

S0

))
where ψ0 is given by (26). This ends the proof.

Remark 3.1. Theorem 3.1 also applies to in-the-money options, with a slight
modification: for K < St0 ,

1

t− t0
(Ct0(t,K)− (St0 −K)) −→

t→t+0
r(t0)St0 + St0ψt0

(
ln

(
K

St0

))
, (30)

where

ψt0(z) =

∫ z

−∞
dx ex

∫ x

−∞
m(t0, du), for z < 0 (31)

denotes the exponential double tail of m(0, .).

3.2 At-the-money call options

When St0 = K, Theorem 3.1 does not apply. Indeed, as already noted in the case
of Lévy processes by Tankov [26] and Figueroa-Lopez and Forde [13], the short
maturity behavior of at-the-money options depends on whether a continuous
martingale component is present and, in absence of such a component, on the
degree of activity of small jumps, measured by the Blumenthal-Getoor index of
the Lévy measure which measures its singularity at zero [18]. We will show here
that similar results hold in the semimartingale case. We distinguish three cases:

1. S is a pure jump process of finite variation: in this case at-the-money call
options behave linearly in t− t0 (Proposition 3.1).

2. S is a pure jump process of infinite variation and its small jumps resemble
those of an α-stable process: in this case at-the-money call options have
an asymptotic behavior of order |t − t0|1/α as t − t0 → 0+ (Proposition
3.2).
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3. S has a continuous martingale component which is non-degenerate in the
neighborhood of t0: in this case at-the-money call options are of order√
t− t0 as t→ t+0 , whether or not jumps are present (Theorem 3.2).

These statements are made precise in the sequel. We observe that, contrarily
to the case of out-of-the money options where the presence of jumps dominates
the asymptotic behavior, for at-the-money options the presence or absence of
a continuous martingale (Brownian) component dominates the asymptotic be-
havior.

For the finite variation case, we use a slightly modified version of Assumption
3.1:

Assumption 3.3 (Weak right-continuity of jump compensator). For all ϕ ∈
Cb0(R+ × R,R),

lim
t→t0, t>t0

E
[∫

R

(
e2y ∧ |y|

)
ϕ(St, y)m(t, dy)|Ft0

]
=

∫
R

(
e2y ∧ |y|

)
ϕ(St0 , y)m(t0, dy).

Proposition 3.1 (Asymptotic for ATM call options for pure jump processes of
finite variation). Consider the process

St = S0 +

∫ t

0

r(s)Ss− ds+

∫ t

0

∫ +∞

−∞
Ss−(ey − 1)M̃(ds dy). (32)

Under the Assumptions 3.3 and 3.2 and the condition,

∀t ∈ [t0, T ],

∫
R
|y|m(t, dy) <∞,

1

t− t0
Ct0(t, St0) −→

t→t+0

1 {r(t0) >

∫
R
(ey − 1)m(t0, dy)}St0

(
r(t0) +

∫
R

(1− ey)+m(t0, dy)

)
+ 1 {r(t0) ≤

∫
R

(ey − 1)m(t0, dy)}St0
∫
R
(ey − 1)+m(t0, dy).

(33)

Proof. Replacing P by the conditional probability PFt0 , we may set t0 = 0 in the
sequel and consider the case where F0 is the σ-algebra generated by all P-null
sets. The Tanaka-Meyer formula applied to (St − S0)+ gives

(St − S0)+ =

∫ t

0

ds 1{Ss−>S0}Ss−

(
r(s)−

∫
R

(ey − 1)m(s, dy)

)
+

∑
0<s≤t

(Ss − S0)+ − (Ss− − S0)+.
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Hence, applying Fubini’s theorem,

E
[
(St − S0)+

]
= E

[∫ t

0

ds 1{Ss−>S0}Ss−

(
r(s)−

∫
R

(ey − 1)m(s, dy)

)]
+ E

[∫ t

0

∫
R

[
(Ss−e

y − S0)+ − (Ss− − S0)+
]
m(s, dy) ds

]
=

∫ t

0

dsE
[
1{Ss−>S0}Ss−

(
r(s)−

∫
R

(ey − 1)m(s, dy)

)]
+

∫ t

0

dsE
[∫

R

[
(Sse

y − S0)+ − (Ss − S0)+
]
m(s, dy)

]
.

Furthermore, under the Assumptions 2.1 and 2.2 for Xt = log(St) (see equation
(27)), one may apply Theorem 2.1 to the function

f : x ∈ R 7→ exp(x),

yielding

lim
t→0+

1

t
E [St − S0] = S0

(
r(0)−

∫
R

(ey − 1)m(0, dy)

)
.

Furthermore, observing that

St 1{St>S0} = (St − S0)+ + S0 1{St>S0},

we write

E
[
St 1{St>S0}

]
= E

[
(St − S0)+ + S0 1{St>S0}

]
≤ E [|St − S0|] + S0 P (St > S0) ,

using the Lipschitz continuity of x 7→ (x − S0)+. Since t → E [St] is right-
continuous at 0, for t small enough :

0 ≤ E
[
St 1{St>S0}

]
≤ 1

2
+ S0.

Thus,

lim
t→0+

1

t
E
[∫ t

0

ds 1{Ss−>S0}Ss−

(
r(s)−

∫
R
(ey − 1)m(s, dy)

)]
= S0

(
r(0)−

∫
R

(ey − 1)m(0, dy)

)
1 {r(0)−

∫
R

(ey − 1)m(0, dy) > 0}.

Let us now focus on the jump term and show that

t ∈ [0, T [7→ E
[∫

R

[
(Ste

y − S0)+ − (St − S0)+
]
m(t, dy)

]
,
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is right-continuous at 0 with right-limit

S0

∫
R

(ey − 1)+m(0, dy).

One shall simply observes that∣∣(xey − S0)+ − (x− S0)+ − (S0e
y − S0)+

∣∣ ≤ (x+ S0) |ey − 1|,

using the Lipschitz continuity of x 7→ (x− S0)+ and apply Assumption 3.3. To
finish the proof, one shall gather both limits together :

= S0

(
r(0)−

∫
R

(ey − 1)m(0, dy)

)
1 {r(0)−

∫
R

(ey − 1)m(0, dy) > 0}

+ S0

∫
R

(ey − 1)+m(0, dy).

This ends the proof.

Proposition 3.2 (Asymptotics of ATM call options for pure-jump martingales
of infinite variation). Consider a semimartingale whose continuous martingale
part is zero:

St = S0 +

∫ t

0

r(s)Ss− ds+

∫ t

0

∫ +∞

−∞
Ss−(ey − 1)M̃(ds dy). (34)

Under the Assumptions 3.1 and 3.2, if there exists α ∈]1, 2[ and a family
mα(t, dy) of positive measures such that

∀t ∈ [t0, T ], m(ω, t, dy) = mα(ω, t, dy) + 1|y|≤1
c(y)

|y|1+α
dy a.s., (35)

where c(.) > 0 is continuous at 0 and

∀t ∈ [t0, T ]

∫
R
|y|mα(t, dy) <∞, (36)

then
1

(t− t0)
1/α

Ct0(t, St0) −→
t→t+0

St0
1

2π

∫ ∞
−∞

e−c(0) |z|α − 1

z2
dz. (37)

Proof. Without loss of generality, we set t0 = 0 in the sequel and consider the
case where F0 is the σ-algebra generated by all P-null sets. The at-the-money
call price can be expressed as

C0(t, S0) = E
[
(St − S0)+

]
= S0E

[(
St
S0
− 1

)+
]
. (38)
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Define, for f ∈ C2
b (]0,∞[,R)

L0f(x) = r(0)xf ′(x) +

∫
R
[f(xey)− f(x)− x(ey − 1).f ′(x)]m(0, dy). (39)

We decompose L0 as the sum L0 = K0 + J0 where

K0f(x) = r(0)xf ′(x) +

∫
R

[f(xey)− f(x)− x(ey − 1).f ′(x)]mα(0, dy),

J0f(x) =

∫ 1

−1

[f(xey)− f(x)− x(ey − 1).f ′(x)]
c(y)

|y|1+α
dy.

The term K0 may be be interpreted in terms of Theorem 2.1: if (Zt)[0,T ] is a
finite variation semimartingale of the form (34) starting from Z0 = S0 with
jump compensator mα(t, dy), then by Theorem 2.1,

∀f ∈ C2
b (]0,∞[,R), lim

t→0+

1

t
e−

∫ t
0
r(s) ds E [f(Zt)] = K0f(S0). (40)

The idea is now to interpret L0 = K0 +J0 in terms of a multiplicative decompo-
sition St = YtZt where Y = E(L) is the stochastic exponential of a pure-jump
Lévy process with Lévy measure c(y)/|y|1+α dy, which we can take independent
from Z. Indeed, let Y = E(L) where L is a pure-jump Lévy martingale with
Lévy measure 1|y|≤1 c(y)/|y|1+α dy, independent from Z, with infinitesimal gen-
erator J0. Then Y is a martingale and [Y,Z] = 0. Then S = Y Z and Y is an
exponential Lévy martingale, independent from Z, with E[Yt] = 1.

A result of Tankov [26, Proposition 5, Proof 2] for exponential Lévy processes
then implies that

1

t1/α
E
[
(Yt − 1)+

] t→0+

→ 1

2π

∫ ∞
−∞

e−c(0)|z|α − 1

z2
dz. (41)

We will show that the term (41) is the dominant term which gives the asymptotic
behavior of C0(T, S0).

Indeed, by the Lipschitz continuity of x 7→ (x− S0)+,

|(St − S0)+ − S0(Yt − 1)+| ≤ Yt|Zt − S0|,

so, taking expectations and using that Y is independent from Z, we get

E[e−
∫ t
0
r(s) ds|(St − S0)+︸ ︷︷ ︸
C0(t,S0)

−S0(Yt − 1)+|] ≤ E(Yt)︸ ︷︷ ︸
=1

E[e−
∫ t
0
r(s) ds|Zt − S0|].

To estimate the right hand side of this inequality note that |Zt − S0| = (Zt −
S0)+ + (S0 − Zt)+. Since Z has finite variation, from Proposition 3.1

E[e−
∫ t
0
r(s) ds(Zt − S0)+]

t→0+

∼ tS0

∫ ∞
0

dx exm([x,+∞[).
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Using the martingale property of e−
∫ t
0
r(s) dsZt) yields

E[e−
∫ t
0
r(s) ds(S0 − Zt)+]

t→0+

∼ tS0

∫ ∞
0

dx exm([x,+∞[).

Hence, dividing by t1/α and taking t→ 0+ we obtain

1

t1/α
e−

∫ t
0
r(s) ds E

[
|Zt − S0|+

] t→0+

→ 0.

Thus, dividing by t1/α the above inequality and using (41) yields

1

t1/α
e−

∫ t
0
r(s) ds E [(St − S0)+]

t→0+

→ S0
1

2π

∫ ∞
−∞

e−c(0)|z|α − 1

z2
dz.

We now focus on a third case, when S is a continuous semimartingale, i.e. an
Ito process. From known results in the diffusion case [8], we expect in this case
a short-maturity behavior ins O(

√
t). We propose here a proof of this behavior

in a semimartingale setting using the notion of semimartingale local time.

Proposition 3.3 (Asymptotic for at-the-money options for continuous semi-
martingales). Consider the process

St = S0 +

∫ t

0

r(s)Ssds+

∫ t

0

SsδsdWs. (42)

Under the Assumptions 3.1 and 3.2 and the following non-degeneracy condition
in the neighborhood of t0,

∃ε > 0, P (∀t ∈ [t0, T ], δt ≥ ε) = 1,

we have
1√
t− t0

Ct0(t, St0) −→
t→t+0

St0√
2π

δt0 . (43)

Proof. Set t0 = 0 and consider, without loss of generality, the case where F0 is
the σ-algebra generated by all P-null sets. Applying the Tanaka-Meyer formula
to (St − S0)+, we have

(St − S0)+ =

∫ t

0

1{Ss>S0}dSs +
1

2
LS0
t (S).

where LS0
t (S) corresponds to the semimartingale local time of St at level S0

under P. As noted in Section 3.1, Assumption 3.2 implies that the discounted
price Ŝt = e−

∫ t
0
r(s) dsSt is a P-martingale. So

dSt = e
∫ t
0
r(s) ds

(
r(t)Stdt+ dŜt

)
, and

23



∫ t

0

1{Ss>S0}dSs =

∫ t

0

e
∫ s
0
r(u) du 1{Ss>S0}dŜs +

∫ t

0

e
∫ s
0
r(u) du r(s)Ss1{Ss>S0}ds,

where the first term is a martingale. Taking expectations, we get:

C(t, S0) = E
[
e−

∫ t
0
r(s) ds

∫ t

0

e
∫ s
0
r(u) du r(s)Ss 1{Ss>S0}ds+

1

2
e−

∫ t
0
r(s) ds LS0

t (S)

]
.

Since Ŝ is a martingale,

∀t ∈ [0, T ] E [St] = e
∫ t
0
r(s) ds S0 <∞. (44)

Hence t→ E [St] is right-continuous at 0:

lim
t→0+

E [St] = S0. (45)

Furthermore, under the Assumptions 2.1 and 2.2 for Xt = log(St) (see equation
(27)), one may apply Theorem 2.1 to the function

f : x ∈ R 7→ (exp(x)− S0)2,

yielding

lim
t→0+

1

t
E
[
(St − S0)2

]
= L0f(X0),

where L0 is defined via equation (5) with m ≡ 0. Since L0f(X0) <∞, then in
particular,

t 7→ E
[
(St − S0)2

]
is right-continuous at 0 with right limit 0. Observing that

St 1{St>S0} = (St − S0)+ + S0 1{St>S0},

we write

E
[
St 1{St>S0}

]
= E

[
(St − S0)+ + S0 1{St>S0}

]
≤ E [|St − S0|] + S0 P (St > S0) ,

using the Lipschitz continuity of x 7→ (x − S0)+. Since t → E [St] is right-
continuous at 0, for t small enough :

0 ≤ E
[
St 1{St>S0}

]
≤ 1

2
+ S0.

Thus, applying Fubini,

E
[∫ t

0

e
∫ s
0
r(u) du r(s)Ss 1{Ss>S0}ds

]
= O(t),
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a fortiori,

E
[∫ t

0

e
∫ s
0
r(u) du r(s)Ss 1{Ss>S0}ds

]
= o

(√
t
)
.

Hence (if the limit exists)

lim
t→0

1√
t
C(t, S0) = lim

t→0

1√
t
e−

∫ t
0
r(s) ds E

[
1

2
LS0
t (S)

]
= lim
t→0

1√
t
E
[

1

2
LS0
t (S)

]
.

(46)
By the Dubins-Schwarz theorem [24, Theorem 1.5], there exists a Brownian
motion B such that

∀t < [U ]∞, Ut =

∫ t

0

δs dWs = B[U ]t = B∫ t
0
δ2sds

.

So ∀t < [U ]∞ St = S0 exp

(∫ t

0

(
r(s)− 1

2
δ2
s

)
ds+B[U ]t

)
= S0 exp

(∫ t

0

(
r(s)− 1

2
δ2
s

)
ds+B∫ t

0
δ2s ds

)
.

The occupation time formula then yields, for φ ∈ C∞0 (R,R),∫ ∞
0

φ(K)LKt
(
S0 exp

(
B[U ]

))
dK =

∫ t

0

φ
(
S0 exp

(
B[U ]u

))
S2

0 exp
(
B[U ]u

)2
δ2
u du

=

∫ ∞
−∞

φ(S0 exp(y))S2
0 exp(y)2Lyt

(
B[U ]

)
dy,

where LKt
(
S0 exp

(
B[U ]

))
(resp. Lyt

(
B[U ]

)
) denotes the semimartingale local

time of the process S0 exp
(
B[U ]

)
at K and (resp. B[U ] at y). A change of

variable leads to ∫ ∞
−∞

φ(S0 exp(y))S0 exp(y)LS0e
y

t

(
S0 exp

(
B[U ]

))
dy

=

∫ ∞
−∞

φ(S0 exp(y))S2
0 exp(y)2Lyt

(
B[U ]

)
.

Hence
LS0
t

(
S0 exp

(
B[U ]

))
= S0L

0
t

(
B[U ]

)
.

We also have
L0
t

(
B[U ]

)
= L0∫ t

0
δ2s ds

(B) ,

where L0∫ t
0
δ2s ds

(B) denotes the semimartingale local time of B at time
∫ t

0
δ2
s ds

and level 0. Using the scaling property of Brownian motion,

E
[
LS0
t

(
S0 exp

(
B[U ]

))]
= S0 E

[
L0∫ t

0
δ2s ds

(B)
]

= S0 E

√∫ t

0

δ2
s dsL

0
1 (B)

 .
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Hence

lim
t→0+

1√
t
E
[
LS0
t

(
S0 exp

(
B[U ]

))]
= lim

t→0+

1√
t
S0 E

√∫ t

0

δ2
s dsL

0
1 (B)


= lim

t→0+
S0 E

√1

t

∫ t

0

δ2
s dsL

0
1 (B)

 .
Let us show that

lim
t→0+

S0 E

√1

t

∫ t

0

δ2
s dsL

0
1 (B)

 = S0 δ0 E
[
L0

1 (B)
]
. (47)

Using the Cauchy-Schwarz inequality,

∣∣∣∣∣∣E
√1

t

∫ t

0

δ2
s ds− δ0

 L0
1 (B)

∣∣∣∣∣∣ ≤ E
[
L0

1 (B)
2
]1/2

E


√1

t

∫ t

0

δ2
s ds− δ0

2


1/2

.

The Lipschitz property of x→ (
√
x− δ0)

2
on [ε,+∞[ yields

E


√1

t

∫ t

0

δ2
s ds− δ0

2
 ≤ c(ε)E

[∣∣∣∣1t
∫ t

0

(
δ2
s − δ2

0

)
ds

∣∣∣∣]

≤ c(ε)

t

∫ t

0

dsE
[∣∣δ2

s − δ2
0

∣∣] .
where c(ε) is the Lipschitz constant of x→ (

√
x− δ0)

2
on [ε,+∞[. Assumption

3.1 and Lemma 2.1 then imply (47). By Lévy’s theorem for the local time of
Brownian motion, L0

1(B) has the same law as |B1|, leading to

E
[
L0

1(B)
]

=

√
2

π
.

Clearly, since LKt (S) = LKt
(
S0 exp

(
B[U ]

))
,

lim
t→0

1√
t
E
[

1

2
LS0
t (S)

]
=

S0√
2π

δ0. (48)

This ends the proof.

We can now treat the case of a general Itô semimartingale with both a
continuous martingale component and a jump component.
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Theorem 3.2 (Short-maturity asymptotics for at-the-money call options). Con-
sider the price process S whose dynamics is given by

St = S0 +

∫ t

0

r(s)Ss−ds+

∫ t

0

Ss−δsdWs +

∫ t

0

∫ +∞

−∞
Ss−(ey − 1)M̃(ds dy).

Under the Assumptions 3.1 and 3.2 and the folllowing non-degeneracy condition
in the neighborhood of t0

∃ε > 0, P (∀t ∈ [t0, T ], δt ≥ ε) = 1,

we have
1√
t− t0

Ct0(t, St0) −→
t→t+0

St0√
2π

δt0 . (49)

Proof. Applying the Tanaka-Meyer formula to (St − S0)+ , we have

(St − S0)+ =

∫ t

0

1{Ss−>S0}dSs +
1

2
LS0
t

+
∑

0<s≤t

(Ss − S0)+ − (Ss− − S0)+ − 1{Ss−>S0}∆Ss.
(50)

As noted above, Assumption 3.2 implies that the discounted price Ŝt = e−
∫ t
0
r(s) dsSt

is a martingale under P. So we can write

dSt = e
∫ t
0
r(s) ds

(
r(t)St−dt+ dŜt

)
, and∫ t

0

1{Ss−>S0}dSs =

∫ t

0

e
∫ s
0
r(u) du 1{Ss−>S0}dŜs+

∫ t

0

e
∫ s
0
r(u) du r(s)Ss−1{Ss−>S0}ds,

where the first term is a martingale. Taking expectations, we get

e
∫ t
0
r(s) dsC(t, S0) = E

[∫ t

0

e
∫ s
0
r(u) du r(s)Ss 1{Ss−>S0}ds+

1

2
LS0
t

]

+ E

 ∑
0<s≤t

(Ss − S0)+ − (Ss− − S0)+ − 1{Ss−>S0}∆Ss

 .
Since Ŝ is a martingale,

∀t ∈ [0, T ] E [St] = e
∫ t
0
r(s) ds S0 <∞. (51)

Hence t→ E [St] is right-continuous at 0:

lim
t→0+

E [St] = S0. (52)

Furthermore, under the Assumptions 2.1 and 2.2 for Xt = log(St) (see equation
(27)), one may apply Theorem 2.1 to the function

f : x ∈ R 7→ (exp(x)− S0)2,
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yielding

lim
t→0+

1

t
E
[
(St − S0)2

]
= L0f(X0),

where L0 is defined via equation (5). Since L0f(X0) <∞, then in particular,

t 7→ E
[
(St − S0)2

]
is right-continuous at 0 with right limit 0. Observing that

St 1{St>S0} = (St − S0)+ + S0 1{St>S0},

we write

E
[
St 1{St>S0}

]
= E

[
(St − S0)+ + S0 1{St>S0}

]
≤ E [|St − S0|] + S0 P (St > S0) ,

using the Lipschitz continuity of x 7→ (x − S0)+. Since t → E [St] is right-
continuous at 0, for t small enough :

0 ≤ E
[
St 1{St>S0}

]
≤ 1

2
+ S0.

Thus, applying Fubini,

E
[∫ t

0

e
∫ s
0
r(u) du r(s)Ss 1{Ss>S0}ds

]
= O(t),

a fortiori,

E
[∫ t

0

e
∫ s
0
r(u) du r(s)Ss 1{Ss>S0}ds

]
= o

(√
t
)
.

Let us now focus on the jump part,

E

 ∑
0<s≤t

(Ss − S0)+ − (Ss− − S0)+ − 1{Ss−>S0}∆Ss


= E

[∫ t

0

ds

∫
m(s, dx) (Ss−e

x − S0)+ − (Ss− − S0)+ − 1{Ss−>S0}Ss−(ex − 1)

]
(53)

Observing that∣∣(zex − S0)+ − (z − S0)+ − 1{z>S0}z(e
x − 1)

∣∣ ≤ C (S0e
x − z)2,

then, together with Assumption 3.1 and Lemma 2.1 implies,

E

 ∑
0<s≤t

(Ss − S0)+ − (Ss− − S0)+ − 1{Ss−>S0}∆Ss

 = O(t) = o(
√
t).

Since δ0 ≥ ε, equation (48) yields the result.
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Remark 3.2. As noted by Berestycki et al [7, 9] in the diffusion case, the reg-
ularity of f at St0 plays a crucial role in the asymptotics of E [f(St)]. Theorem
2.1 shows that E [f(St)] ∼ ct for smooth functions f , even if f(St0) = 0, while
for call option prices we have ∼

√
t asymptotics at-the-money where the function

x→ (x− S0)+ is not smooth.

Remark 3.3. In the particular case of a Lévy process, Proposition 3.1, Propo-
sition 3.2 and Theorem 3.2 imply a recent result of Tankov [26, Proposition 5,
Proof 2].
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de Probabilités, XXI (Univ. Strasbourg, vol. 1247 of Lecture Notes in
Math., Springer, Berlin, 1987, pp. 81–99.

[20] R. W. Lee, The moment formula for implied volatility at extreme strikes,
Math. Finance, 14 (2004), pp. 469–480.

[21] J. Muhle-Karbe and M. Nutz, Small-Time Asymptotics of Option
Prices and First Absolute Moments, J. Appl. Probab., 48 (2011), pp. 1003–
1020.

[22] P. Protter and K. Shimbo, No arbitrage and general semimartingales.
Ethier, Stewart N. (ed.) et al., Markov processes and related topics: A
Festschrift for Thomas G. Kurtz. Beachwood, OH. Institute of Mathemat-
ical Statistics Collections 4, 267-283, 2008.

[23] P. E. Protter, Stochastic integration and differential equations, Springer-
Verlag, Berlin, 2005. Second edition.

[24] D. Revuz and M. Yor, Continuous martingales and Brownian motion,
vol. 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], Springer-Verlag, Berlin, third ed.,
1999.

30
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