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We study the rheology of cornstarch suspensions, a non – Brownian particle system that exhibits discontinuous shear 
thickening. Using Magnetic Resonance Imaging (MRI), the local properties of the flow are obtained by the determination 
of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization 
characteristic of yield stress fluids. When the overall shear rate is increased, the width of the sheared region increases. 
The discontinuous shear thickening is found to set in at the end of this shear localization regime when all of the fluid is 
sheared: the existence of a non-flowing region thus seems to prevent or delay shear thickening. Macroscopic observations 
using different measurement geometries show that the smaller the gap of the shear cell, the lower the shear rate at which 
shear thickening sets in. We thus propose that the discontinuous shear thickening of cornstarch suspensions is a 
consequence of dilatancy: the system under flow attempts to dilate but instead undergoes a jamming transition because it 
is confined. This proposition is confirmed by an independent measurement of the dilation of the suspension as a function 
of the shear rate. It is also explains the MRI observations: when flow is localized, the non-flowing region plays the role of 
a “dilatancy reservoir” which allows the material to be sheared without jamming. 

 
I. Introduction: 
 

Shear thickening has been observed for a wide variety of suspensions [Barnes, (1989)]. The phenomenon is 
frequently encountered during the processing of concentrated dispersions in various industries where it has a strong 
impact on energy consumption. Shear thickening can be defined as an increase in the steady-state shear viscosity η  of 

a fluid with the shear rate γ  when the latter exceeds some critical value cγ  . The detailed mechanism of shear-
thickening is still under debate [see e.g. Boersma et al. (1990), Franks et al. (2000), Hoffman (1972), Macias et al. 
(2003), Laun et al (1992), Hoffman (1974), Foss and Brady (2000), Ackerson (1990) and Chen et al (1994). The 
majority of investigations of shear thickening were conducted on colloidal suspensions (Boersma et al. (1990), Franks 
et al. (2000), Hoffman (1972)]. Bender and Wagner (1996) and Maranzano and Wagner (2002) attribute the 
phenomenon to the shear-induced formation of hydrodynamic clusters – transient concentration fluctuations that are 
driven and sustained by the applied shear field. The viscosity rise is continuous at low volume fractions, but can also be 
discontinuous at higher ones [Macias et al. (2003), Laun et al (1992), O'Brien and Mackay (2000), Bertrand et al. 
(2002)], probably because of aggregation of hydroclusters creating a jammed network [Hoffman (1974), Foss and 
Brady (2000)]. In the latter case, the clustered shear thickened state may be a long–lived metastable state characterized 
by a large yield stress, as shown by Cates et al. (2005). In the picture of Bender and Wagner (1996), the formation of 
flow–induced hydroclusters results in an increased dissipation of energy and, consequently, the viscosity increases. The 
commonly accepted picture for shear thickening in Brownian suspensions is now the formation of shear-induced 
hydroclusters [see e.g. the recent summary by Wagner and Brady (2009)]. This results in large hydrodynamic stresses 
in rapid flowing suspensions, and there is simulation and other evidence that these are the dominant stresses in the 
shear-thickened regime [Bender and Wagner (1996), Phung et al. (1996)]. However, some of these simulations are 
limited to relatively modest volume fractions ( 49.0≤ϕ ); experiments at much higher concentrations suggest that 
instead a thermodynamic mechanism may take place [O’Brien and Mackay (2000)]. In any case it seems highly 
unlikely that the ‘static jamming’ observed by Bertrand et al. (2002) is due to hydrodynamic interactions alone, since in 
the persisting solid phase there is no macroscopic flow to provide those interactions. Also, as far as we know, 
hydrodynamic models for shear thickening offer no immediate explanation of nonmonotonic regions of the flow curve 
[Holmes et al. (2005)]. Thus it seems clear that mechanisms other than pure hydrodynamics are at work in sufficiently 
dense shear-thickening suspensions [O’Brien and Mackay (2000), Bertrand et al. (2002)]. Indeed, it has already been 
emphasised [Ball and Melrose (1995), Melrose and Ball (1995; 2004a,b)] that deviations from pure lubrication forces 
can dominate the physics of any hydrodynamically clustered state [Holmes et al. (2005)]. 

Shear thickening is also observed in non-Brownian suspensions with larger particle sizes [Williamson and 
Heckert (1931); Fall et al. (2008; 2010); van der Werff and de Kruif (1989); Sellitto and Kurchan (2005) Berthier, et al 
(2000); Brown and Jaeger (2009; 2010)]; here the mechanisms at play are less clear. Recently, Brown and Jaeger 
(2009) have shown a transition between a shear thinning and a shear thickening regime where the shear thickening 
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behavior is characterized by n/1γσ ∝ . For their measurements 5.0≈n  far from jamming and n continuously 
decreases towards 0 upon approaching jamming (that is, the volume fraction maxϕϕ → ). However Fall et al. (2010), in 
a non-Brownian particle suspensions similar that those of Brown and Jaeger show that the intrinsic behavior (from 
local MRI measurements) shows only viscous (n = 1) or granular scaling (with n = 0.5) and that shear thickening 
simply corresponds to the transition between the two regimes. Note that, we call this regime granular; however it is 
important to realize that the scaling law with n = 0.5 can correspond to any inertial flow, including that of Newtonian 
fluids, and is not necessarily a granular scaling. The MRI data showed that in steady-state such systems are 
heterogeneous due to particle migration, and that consequently the macroscopic stress–strain rate relationship cannot be 
directly related to the local constitutive behavior and thus in particular to the shear thickening.  

Here, we compare local and global measurements for what is perhaps the best – known example of a shear 
thickening suspension: cornstarch particles suspended in water. We show that the shear thickening can in fact be 
viewed as a re – entrant solid transition in this system: (i) at rest the material is solid because it has a (small) yield 
stress; (ii) for low shear rates, shear banding (localization) occurs, and the flowing shear band grows with increasing 
shear rate, the shear thus liquefies the material; (iii) shear thickening happens at the end of the localization regime, 
where all of the material flows, subsequently it suddenly becomes ‘‘solid’’ again. In addition, (iv) we find a 
pronounced dependence of the critical shear rate for the onset of shear thickening on the gap of the measurement 
geometry, which can be explained by the tendency of the sheared system to dilate. This is confirmed by an independent 
measurement of the dilation of the suspension as a function of the shear rate. It also explains the MRI observations: 
when flow is localized, the non-flowing region plays the role of a “dilatancy reservoir” which allows the material to be 
sheared without jamming.  

This paper follows up on our earlier work on shear thickening of cornstarch [Fall et al., (2008)], but is much 
more detailed in that here we present also the MRI measurements of the concentration, more detailed measurements of 
the velocity profiles, plate-plate measurements, oscillation measurements and more detailed measurements of the 
variation of the gap of the plate-plate cell under an imposed normal stress. In order for these new data to be 
comprehensible we do have to repeat some of the earlier data and discussion. In this way we obtain a more complete 
picture of the shear thickening behavior.   
 
II. Materials and methods 
 
 The cornstarch particles (from Sigma Aldrich) are relatively monodisperse particles with, however, irregular 
shapes [Figure 1]. Suspensions are prepared by mixing the cornstarch with a 55 wt% solution of CsCl in demineralized 
water. The CsCl allows one to perfectly match the solvent and particle densities [Merkt et al. (2004)]. We study 
suspensions of volume fraction ranging between 38% and 46%, and focus here mainly on the behavior of a 44% 
cornstarch suspension that is representative of the rest. The effect of changing the volume fraction will be discussed in 
detail in Sec.III.6. 
 

 
Figure 1: Micrograph of the cornstarch particles. 

 
 Experiments are carried out with a vane-in-cup (inner cylinder radius Ri = 12.5 mm, outer cylinder radius Re = 
18.5 mm, height H = 45 mm) or parallel plate geometry on a commercial rheometer (Bohlin C-VOR 200) that imposes 
either the torque or the rotational velocity (with a torque feedback). The vane geometry is equivalent to a cylinder with 
a rough lateral surface which reduces wall slip [Larson (1999)]. The inside of the cup is also covered with the granular 
particles using double sided adhesive tape. For the parallel plate geometry, the upper plate is of 40 mm diameter; both 
plates are roughened. Velocity profiles in the flowing sample were obtained with a velocity controlled magnetic 
resonance imaging (MRI) rheometer from which we directly get the local velocity distribution in a Couette geometry 
with a gap of 1.85 cm. We investigated the stationary flows for inner cylinder rotational velocity Ω ranging between 
0.2 and 10 rpm, corresponding to overall shear rates between 0.04 and 2.35 s-1 [Raynaud et al. (2002), Rodts et al. 
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(2005), Bonn et al.(2008)]. All the measurements were done in the same laboratory with a controlled humidity of 40%; 
cornstarch is likely to take up some water from the atmosphere.  

 
III. Experimental results 

 
1. Typical macroscopic behavior 

 
Let us first present the typical behavior observed when shearing a cornstarch suspension (Figure 2) 
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Figure 2: Apparent viscosity vs. shear rate when performing a step stress test in a vane in cup geometry. 
 
 
 The viscous properties at higher stresses were measured with step stress tests. The basic trends in ( )γη  are 
similar for all measured volume fractions: at low stresses, η  decreases with increasing applied stress, reflecting shear-
thinning behavior. As the stress increases further, η  increases, reflecting shear-thickening behavior, and then reaches a 
plateau. This abrupt increase in viscosity observed is characteristic of “discontinuous” shear thickening. To better 
understand this behavior, we performed MRI measurements in a Couette geometry. 
 
2. Local rheology: velocity and concentration profile measurements 
 
 In Figure 3, we plot the dimensionless velocity profiles for the steady flows of a cornstarch suspension, for 
various rotational velocities ranging from 0.2 to 9 rpm. 
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Figure 3: Dimensionless velocity profile in the gap obtained by MRI measurements. Insert: the shear rate at the 
interface between sheared and unsheared regions is given by the slope of the velocity profile at that point, taken of 
course in the moving part of the material. 
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 The MRI measurements of the velocity profiles first, show that there is no slip to within the experimental 
uncertainty. The data shown is normalized on the speed of the rotating inner cylinder, and extrapolates to unity, 
showing that slip is negligible. Second, the flowing part of the sample occupies only a small fraction of the gap at low 
rotation velocities: we observe shear localization. The velocity profiles are composed of two regions: the part close to 
the inner cylinder is moving, and the rest is not. For the lower rotation speeds, since the part of the material that does 
not move is subjected to a stress, this implies that the suspension has a yield stress. The yield stress can be determined 
from the critical radius cr  at which the flow stops: the shear stress at a given radius r as a function of the applied 

torque T and fluid height H follows from momentum balance, and thus the yield stress at cr  follows immediately as 
22/ cy HrT πσ = . The yield stress turns out to be on the order of 0.3 Pa. Although it seems obvious that concentrated 

suspensions that show shear thickening also have a yield stress, we have not found literature comparing the pre-
thickening flow behavior to a Bingham model as we do here, with the exception of the recent work of Brown and 
Jaeger (Brown and Jaeger, 2010) where the pre-thickening behavior was compared to a Herschel-Bulkley model. This 
is probably due to the fact that the yield stress is low. We can detect it relatively easily here because we use the MRI 
data. 
 A striking observation is that the shear rate at the interface between sheared and unsheared regions is different 
from zero, in contrast with what is observed in simple yield stress fluids [Bonn and Denn (2009), Moller et al. (2009), 
Ovarlez et al., 2008, 2010]. We indeed observe that the slope of the velocity profile at that point [Figure 3, Insert] is 
equal to 0.2s-1. This implies that below 12.0 −≈ syieldγ there is no stable flow. The existence of a critical shear rate for 
yield stress materials has been discussed previously in detail, and requires that the system be (slightly) thixotropic. The 
critical shear rate associated with the yielding of thixotropic materials has been discussed in detail elsewhere [Moller et 
al. (2006), (2008), (2009)]. In our case, this is likely to be due to competition between slight sedimentation or 
creaming, i.e., a density matching that is not perfect and shear-induced resuspension [Coussot et al., (2002a, b); Fall et 
al. (2009)]. Upon increasing the rotation rate, a larger part of the fluid is sheared, and for the highest rotation speeds the 
sheared region occupies the entire gap. We are unable to go to higher rotation rates in the MRI since the shear 
thickening sets in immediately when the shear band occupies the entire gap of the Couette cell, and when it does the 
motor of the rheometer is no longer sufficiently strong to rotate the inner cylinder: shear thickening is observed as an 
abrupt increase of the measured torque on the rotation axis. We therefore see the onset of shear thickening at the first 
shear rate for which all of the material is sheared; we will show below that this is likely to happen because the presence 
of a non-flowing region delays and attenuates the shear thickening. 
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Figure 4: (a) Local shear stress as a function the local shear rate. The line is a fit to the Bingham model: γ+σ=σ ky  

with Pa.y 350≈σ , s.Pa.k 300= . b) Local concentration profiles in the Couette gap geometry for a cornstarch 

suspension sheared at various rotational velocities ranging from 3 to 9 rpm. 
 
 
 From the velocity profiles )(rv , we can determine the constitutive behavior. In the flowing part, the local shear 

rate within the Couette gap can be given as ( )
r
v

r
vr −⎟
⎠
⎞

⎜
⎝
⎛

∂
∂=γ . By combining ( )rγ  with the local shear stress 

( ) 22/ HrTr πσ =  at each radial position r, for various rotational velocities Ω, one obtains the constitutive equation 
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( )γσ  of the fluid.  The locally measured constitutive equation of the cornstarch suspension is shown in Figure 4 (a). It 

is consistent with the observation that Pay 3.0≈σ  and 12.0 −≈ syieldγ .  
 
 The MRI also allows us to measure the particle concentration; to within the experimental uncertainty of ±0.2% 
in volume fraction the particle concentration is homogeneous throughout the gap. Thus, during the flow and at the 
onset of shear thickening, the suspension remains homogeneous within the gap. As a result, no migration of particles is 
observed to the limit of the transition to the shear thickening regime. This is perhaps surprising in the light of recent 
measurements of shear thickening in suspensions of spherical particles, where shear thickening is always accompanied 
by particle migration (Fall et al, 2010). In Couette flows, the consequence of migration is an excess of particles near the 
outer cylinder [Leighton and Acrivos (1987a, b), Ovarlez et al. (2006), Huang and Bonn (2007)]. However our 
measurements do not completely rule out particle migration; we estimate, from the MRI data that the maximum 
gradient in particle concentration, if any, is around 0.1%. This is indeed very small when compared to migration for 
suspensions of spherical particles, where gradients of several percents are observed in the same MRI Couette cell. 
 The critical shear rate is due to the existence of a yield stress and is in principle decoupled from the onset of 
shear thickening. However, in the Couette geometry used for the MRI experiments, the existence of a yield stress 
makes that part of the material flows, and another part does not because the stress it is subjected to is smaller than the 
yield stress. As shown by the plate-plate presented below, the existence of a non-flowing region influences the onset of 
shear thickening, and so the critical shear rate is indirectly coupled to the shear thickening phenomenon. To the 
contrary, for the critical stress both the dilation and the measurements as a function of volume fraction show that the 
onset of shear thickening is directly dependent on the stress.  
 The emergence of shear thickening at the end of the localization regime then suggests that the non-flowing part 
plays an important role in the shear thickening. To assess what this role is, classical rheology measurements were 
conducted. 
 
3. Role of a dead zone 

 
 In order to investigate in detail the influence of the non-flowing region in the Couette cell on the observed shear 
thickening, parallel plate geometry is used. This geometry has the additional advantage that there is no reservoir of 
particles present, as is the case of the Couette. If we need to, a ‘non-flowing’ region can be created in this geometry by 
simply leaving a few milliliters of paste around the gap and in contact with the sample between the plates [Figure 5]. In 
addition this geometry allows us to measure the normal stresses. 

 
Figure 5: example of a ‘non–flowing’ region or ‘dead zone’ in parallel plate geometry. 

 
 
 The rheometer measures a torque T and a rotation rate ω , which are related to the stress and shear rate at the 
edge r = R of the sample by 32/3 rT πσ = and br /2 ωπγ = , with R the plate radius and b the gap size. In this case 
the shear rate being up and shear thickening is favored. The viscosity and normal stresses are measured with a gap size 
of 0.8 mm. 
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Figure 6: Role of surplus of paste on the shear thickening transition: Evolution of normal stress and viscosity as a 
function of the applied shear rate. 
  
 
 Figure 6 shows the evolution of viscosity and normal stress with the applied shear rate. For low shear rates, a 
typical behavior γσ /1∝  of a shear thinning fluid is observed. At a certain shear rate, a very abrupt increase in 
viscosity is observed. However, this abrupt increase in viscosity is only observed when the surplus of paste around the 
plates is carefully removed. If a few milliliters of suspension are left on the bottom plate in contact with the paste 
between the two plates, the shear thickening is much attenuated: there is no abrupt increase in viscosity. Defining the 
critical shear rate as the first shear rate for which the apparent viscosity goes up, the surplus of paste increases the 
critical shear rate very significantly.  
 We also observe that the shear thickening is accompanied by the emergence of large normal stresses. For low 
shear rates, the normal stresses are very small. However, from the critical shear rate on, grows and becomes very 
important. The critical shear rate for which normal stresses appear is very similar to that for which the viscosity 
increases. We note also that if a surplus of paste is left around, the shear thickening is accompanied by much lower 
normal stresses. 
 These results provide a possible explanation for the MRI experiments in which shear thickening only happens 
when all of the material flows in the Couette geometry. When only part of the material flows, the dead zone plays a 
role analogous to the surplus in the parallel plate experiments, which delays and weakens the shear thickening, as is 
observed here in the parallel plate geometry. At the end of the shear localization regime, the Couette system is 
suddenly analogous to the parallel plate geometry without surplus; the critical shear rate is thus suddenly lowered and 
the material jams. In conclusion, it seems evident that, indeed, the presence of a non-flowing region delays and 
attenuates the shear thickening. We can note that these findings are consistent with a picture that hydroclusters 
formation leads to discontinuous shear thickening and jamming when the hydroclusters percolate the structure [Wagner 
and Brady, (2009); Cates et al (2005)]. 
 
4. Dilation effect 
 
 These data suggest that, in both measurement geometries, the dead zone plays the role of a “reservoir” of 
dilation which helps the material to flow without jamming. Indeed, the principal information obtained from the normal 
stress measurement is their on-off behavior, which is quantitatively linked with the onset shear rate of shear thickening, 
as was verified by studying different volume fractions [Fall et al. (2008)]. The normal stresses are reminiscent of the 
shear induced dilatancy of dry granular matter: when sheared, it will dilate in the normal direction of the velocity 
gradient. Dilatancy is a direct consequence of collisions between the grains: to accommodate the flow, the grains have 
to roll over each other in the gradient direction, and hence the material will tend to dilate in this direction. However, in 
our system without a surplus, the grains are confined, both between the plates and in the solvent. The latter provides a 
confining pressure that is mainly due to the surface tension of the solvent, making it impossible to remove grains from 
the suspension. As suggested by Cates et al (2005) and Fall et al. (2008), the confinement pressure associated with this 
should be on the order of the surface tension over the grain size, PaRPc 7000/ ≈= γ . This confinement pressure is in 
the same order of magnitude as the typical normal stresses measured near the onset of shear thickening [Figure 6]. In 
addition, this gives a maximal dilation that is on the order of 1 particle diameter ( mμ20≈ ); compared to the radius of 
the parallel plate cell this gives a maximum dilation of about 0.1%, too small to be detected by our MRI density 
measurements. 
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 In dilatancy [Reynolds (1885)], the volume of a collection of particles must increase upon shearing to enable 
flow. This has been suggested as a possible mechanism for jamming in concentrated colloidal suspensions [Cates et al. 
(2005)]. Dilation within a fixed volume of suspending liquid involves the formation of force transmitting 
‘hydroclusters’, whose growth eventually causes particles to encounter the air-liquid interface. This generates large 
capillary forces at the free surface, which can then balance the normal inter-particle forces and resist further motion. 
The particles can thus form spanning hydroclusters in close contact, jamming the sample. This may then fracture into 
millimetre-scale ‘granules’ [Cates et al. (2005)]. Jamming of colloids is also seen in pipe and channel flows [Isa et al. 
(2009); Haw (2004)]; here free surfaces are not present. As the upper plate is retracted, a filament forms which narrows 
and eventually breaks. An elongational flow, in contrast to more conventional shear and pipe geometries, therefore 
implies an increase of the interfacial area during flow. Although purely elongational flow can be achieved by 
exponential plate separation, a constant separation speed is closer to fiber-spinning and other industrial processes. In 
these, a purely tensile loading evokes a mixed flow combining elongation and shear. Recent studies [Bischoff White et 
al. (2010)] have demonstrated that extensional rheometry can successfully be performed on colloidal suspensions. 
Bischoff White et al measured the tensile stresses of a (φ ~ 0.355) cornstarch solution. They observed a flowable 
filament at low extension rates but beyond this found a transition to brittle fracture. The interactions in this system are 
poorly characterized but clearly attractive (see Figure 1 of [Bischoff White et al. (2010)]), presumably due to strong 
van der Waals forces. Such interactions could strongly influence the flow behavior as they do in strongly aggregating 
colloids at lower densities [Bischoff White et al. (2010)]. 
 We further investigate the role of dilation by doing oscillatory rheology (Figure 7). We find that, the material 
shows a linear elastic behavior GG ′′≈′  10  at low shear stresses, i.e. it behaves as a "solid" material. Increasing the 
stress, a “solid-liquid” transition is found characterized by a yield stress at which "' GG ≈ ; then the suspension begins 
to flow and "' GG < . These observations are consistent with the behavior observed in steady shear (see above). 
Increasing the applied stress even more, the ‘liquid’ regime quickly ends by the shear thickening of the system 
(characterized by an abrupt increase of G’ and G’’), for a critical shear strain 1≈cγ  
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Figure 7: (a) Elastic modulus (G') and loss modulus (G") in the 44% volume fraction suspension as a function of shear 
strain for an imposed shear stress (0.001 to 100 Pa) at 1 Hz in a vane geometry. (b) Critical strain vs. gap and 
frequency 
 
 
 It is clear from Figure 7 that the nonlinearity between stress amplitude and strain amplitude becomes more and 
more significant as the stress amplitude increases. Moreover, the appearance of nonlinear behavior is accompanied by 
non-sinusoidal responses in the oscillatory shear experiments. As the higher harmonic signals emerge, the material 
functions such as G’ and G’’ lose their original physical meaning. Considerable efforts [Yu et al. 2009; Cho et al. 
2005; Ewoldt et al. 2008; Klein et al. 2007] have been made towards obtaining useful and desirable material 
information from such LAOS (Large Amplitude Oscillatory) experiments. For our purposes, the nonlinear oscillatory 
experiments are useful for characterizing the onset of shear thickening as well for determining the time scales required 
to generate the shear thickening response. Indeed, in the oscillatory experiments, the first natural interpretation of the 
observation of shear thickening would be that the shear rate fπγγ 2=  applied during the oscillations is equal to the 
critical shear rate cγ  observed in the continuous shear experiments when cγγ ≈ . With a frequency f =1Hz, the critical 
oscillatory shear rate at the onset of thickening is ≈ 6.5 s-1, a value 3 times higher than the critical shear rate observed 
during continuous shear. To understand this difference, we have performed the same experiments for several 
frequencies. We observe, in Figure 7(b), that the critical shear strain 1≈cγ  at the onset of thickening is constant; it is 
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also independent of the gap sized, in contrast with cγ  (see below). The conclusion is that 1≈cγ  is indeed the relevant 
physical quantity in the oscillatory experiments. This observation means that, even for high shear rates, thickening 
cannot take place if a two neighboring grains did not experience a relative motion of order of particle diameter; this is 
consistent with the major role of dilation evidenced above. 

 
5. Confinement effect 

 
 It is therefore tempting to see whether the shear thickening phenomenon itself can be attributed entirely to the 
confinement: if the cornstarch is confined in such a way that the grains cannot roll over each other, this could in 
principle lead to an abrupt jamming of the system. 
 Experimentally, instead of setting the gap size in the rheometer for a given experiment, we can impose the 
normal stress and vary the gap size in order to reach a target value of the normal stress. If this is done for different 
shear rates, and the target value for the normal stress is taken to be zero, we can obtain the dependence of the gap 
variation on shear rate. A typical measurement is shown in Figure 8 (a), where we impose a constant shear rate and 
measure the gap and viscosity as a function of time. This shear rate and initial gap combination are beyond the shear-
thickening transition in shear rate, and thus the viscosity (shear stress) starts to strongly increase, as do the normal 
stresses. The latter then leads, through a feedback loop, to an increase in the gap, allowing the system to dilate, until the 
shear thickening disappears altogether: the shear stress is back to low values (less than 10 Pa). This unambiguously 
demonstrates that the shear thickening is a dilation effect, and that taking away a confining factor makes the thickening 
disappear altogether. 
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Figure 8: Time evolution for a 16.1 −= sγ applied shear rate of: (a) the gap size and the normal stress; (b) Normal 
(circles) and shear stresses (squares). The rheometer is set to change the rotation rate of the tool through a feedback 
loop to make sure the shear rate is constant, even though the gap is changing. 
  
 
 More quantitatively, repeating this experiment for different shear rates [Figure 8(b)], one can obtain the gap 
change as a function of the shear rate that allows the suspension to flow freely, i.e., without developing normal stresses 
due to particle collisions. The linear evolution of hΔ  with the shear rate ch γβ=Δ with ≈β (0.273±0.013) mm.s.  
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Figure 9: Variation of the gap according to the shear rate. 
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 This can be compared to the parallel-plate experiments in which the gap was systematically varied. Figure 10(a) 
shows the measured apparent viscosity as a function of shear rate for different gaps.  For low shear rate, again a shear 
thinning behavior is observed. At the critical shear rate, a very abrupt increase in viscosity is observed; the main point 
here is that this critical shear rate increases with increasing gap. Comparison between parallel plate, cone and plate, and 
Couette cells showed identical critical shear rates to within the experimental uncertainty showing that the shear rate 
gradient present in our parallel plate geometry does not strongly affect our results. 
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Figure 10: (a) Apparent viscosity and normal stress as a function of shear rate for different gaps in mm. Measurements 
were made with a parallel plate rheometer (Bohlin C-VOR 200) with radius R =20 mm. (b) Evolution of the critical 
shear rate a function of the gap. The error bars correspond to the uncertainty (reproducibility) of the experiments. 
 
 
 We then define the critical shear rate as the shear rate for which both the apparent viscosity increases and for 
which non-zero normal stresses are first observed: both values are very similar and, more importantly, increase linearly 
with the gap [Figure 10]. Again, if a few milliliters of suspension are left on the bottom plate in contact with the paste 
between the two plates, the critical shear rate strongly increases and becomes roughly independent of the gap size 
[Figure 10]. 
 The critical shear rate with a surplus of paste present is, in addition, the same as that found in the large gap 
Couette cell, in which there is also a reservoir of particles present in the non-flowing region. The flow curve of Figure 
3 shows that in the MRI experiments the critical shear rate is ~ 4 s-1; as soon as this shear rate is exceeded, the system 
shear thickens. We therefore conclude that the critical shear rate for thickening obeys h

IM cc αγγ −=  for chh <  

and constant above; here h is the gap size, =α (4.95±0.44) (mm.s)-1, 
Mcγ  the critical shear rate when the suspension is 

sufficiently confined and cIγ  the intrinsic critical shear rate. 
 Moreover, this linear evolution of a critical shear rate with the gap size presents a striking similarity with the 
dilation results shown in Figure 9. Indeed, we can observe that the value of =α  4.95 is roughly consistent with the 
value found in Figure 9 ( 66.31 =−β ), providing a quantitative check that indeed the dilatancy is responsible for the 
shear thickening. 
 
6. Shear thickening as a Viscous/Granular transition 
 
 Another parameter that has a large effect on the critical shear rate is the volume fraction. At low volume 
fractions: 4.0<ϕ , shear thickening is either less dramatic or absent [van der Werff and de Kruif (1989)]. In Figure 11, 
we show the typical evolution of the viscosity as a function the shear rate of cornstarch suspension with different 
concentrations. 
 



 10

0,01 0,1 1 10 100

0,1

1

10

100

1000

V
is

co
si

ty
 (P

as
)

Shear rate (s-1)

     Φ (%)
 38
 40
 42
 44,1
 45,5

37 38 39 40 41 42 43 44 45

14

21

28

35

42

49

38 40 42 44 46 48

0

10

20

30

C
rit

ic
al

 s
he

ar
 ra

te
 (s

-1
)

Concentration (%)

σ c (P
a)

Concentration (%)

 Rough Vane
 Rough PP40
 Smooth Vane 
 CP40-4°
 Smooth PP40

 
Figure 11: Viscosity as a function a shear rate for different concentrations. (b) Critical shear stress of shear thickening 
vs. concentration in different measurement geometries. Inset: Critical shear rate of shear thickening vs. concentration. 
 
 
 We found that the critical shear rate ( )ϕγ c  decreases roughly linearly with increasing concentration and 
secondly that the critical shear stress of shear thickening remains roughly constant at ( ) Pac 20≈ϕσ  consistent with the 
work of [Fall et al. (2010)]. In this picture, for low stresses, the viscosity of the interstitial fluid lubricates the contacts 
and one recovers a viscous behavior; this agrees with the observed Bingham behavior provided the stress on the system 
is much larger than the yield stress so that the latter can be neglected. However for higher stresses, a Bagnold-type dry 
granular rheology would be expected. The hallmark of this behavior is that the stress in the Bagnold regime, i.e., 
beyond shear thickening scales inertially [Fall et al. (2010), Lemaître et al. (2009), Mills and Snabre (2009)], 

implying 2γσ ∝ . However, for the cornstarch, this cannot be verified directly because the system beyond shear 
thickening has a very high viscosity making measurement over a large range of shear rates impossible. In addition, for 
the highest shear rates one observes instabilities in both the parallel plate cell and the Couette cell that are probably due 
to the normal stresses, and that make that the fluid is expelled from the gap. 
 However remaining around the onset shear rate, we can verify that in the second, shear thickening regime, the 
system behaves similarly to a dry granular material, which is exactly what is at the basis of the lubricated to inertial 
transition. If the system is a frictional one (as a dry granular material should be), due to the steric interaction between 
the particles, the local shear stress σ  induces a local normal stress nμσσ =  where μ is the macroscopic friction 
coefficient. 
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Figure 12: Proportionality between normal stress and shear stress in the shear thickening regime for the 44% volume 
fraction suspension 
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 Figure 12 shows the evolution of shear stress as a function a normal stress for different gap sizes of parallel 
plate geometry. We found that the normal stresses change linearly with the shear stresses. This linearity can be used to 
define the macroscopic friction coefficient of the suspension; we find a value 0.62±0.01: this value is similar to that 
found in dry granular materials [da Cruz et al, (2005)] and other shear-thickening fluids [Lootens et al. (2003, 2005); 
Brown and Jaeger, (2011)]. This suggests that in the shear thickening regime, the interstitial fluid plays no more role as 
lubrication forces become negligible: contacts behave like "dry" contacts. In this case, shear thickening can therefore 
again be considered as a transition from lubricated regime to a frictional regime under flow. The shear thickening 
transition is then due to direct contacts between particles induced by the shear. 

 
7. Shear thickening as a re-entrant jamming transition 

 
 In our situation, the yield stress is smaller than the critical stress and consequently the sample yields and flows 
before thickening. If the critical stress is the smallest one, the thickening behavior may even disappear altogether 
[Gopalakrishnan and Zukoski, (2004), Brown and Jaeger (2009)]. Our data show that for the cornstarch suspensions 
there are two critical stresses for which the apparent viscosity becomes infinite: first, upon approaching the yield stress 
from above, the viscosity diverges, in agreement with the MRI observations that the flow behavior is close to that of a 
Bingham fluid. Second, at the critical stress for thickening, an almost discontinuous jump of the viscosity is observed. 
These observations suggest a “solid–liquid–solid” transition. This is in addition qualitatively the same picture as that 
obtained from by the oscillatory shear experiments (Figure 7). 
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Figure 13: Solid–liquid–solid transition; apparent viscosity vs. stress when performing a step stress test. 
 
 
 This is a typical example of discontinuous shear thickening, in which the region with positive slope of )(γσ  
occurs in a stress range that is nearly independent of packing fraction as mentioned above in Figure 11. This slope 
increases with packing fraction, approaching ση ∝ corresponding to a discontinuous stress/shear-rate relation. These 
results are similar to theory that suggests that shear thickening is due to a re-entrant jamming transition [Sellito and 
Kurchan (2005)]. It has been suggested for glassy systems that applying a shear is equivalent to increasing the effective 
temperature with which the system attempts to overcome energy barriers [Berthier et al. (2000)]. If now a system has a 
re-entrant ‘‘solid’’ transition as a function of temperature, the ‘‘solid’’ phase may also be induced by the shear, leading 
to shear thickening [Sellito and Kurchan (2005); Fall et al. (2008)], as is also observed here (Figure 13). Indeed, the 
sample is “solid” in the sense that G’>>G’’ (Figure 7) and the torque becomes too large for the MRI rheometer to turn. 
In the convential rheology, there are instabilities due to the large elasticity that expel the starch from the gap of the 
measurement geometry, making determination of an apparent viscosity difficult. 
 
IV.  Conclusion 
 
 We have studied the flow behavior of dense suspensions of non-colloidal particles, cornstarch particles in water, 
by coupling local velocity and concentration measurements through MRI techniques, and macroscopic rheometric 
experiments in Couette and parallel plate geometries. The MRI data reveals that the flow exhibits shear-banding at low 
rotation velocities of the inner cylinder. The MRI also showed that the material is homogeneous and no migration is 
observed, contrary to what happens for non-Brownian suspensions of spherical particles [Fall et al., (2010)]. 
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 Classical rheology then shows that the critical shear rate for the onset of shear thickening depends on the 
confinement: it evolves linearly with the gap size. This linear evolution is a direct consequence of the dilatancy 
observed in this suspension under shear. Indeed, from dilation measurements, we have shown that the application of a 
shear rate higher than the critical shear rate for thickening directly leads to a dilation of the suspension. Conversely, 
taking away the confinement attenuates the shear thickening behavior, or even makes it disappear altogether. For the 
MRI observations this implies that when flow is localized, the nonflowing region plays the role of a “dilatancy 
reservoir” which allows the material to be sheared without undergoing a jamming transition. 
 This convincingly shows that the dilation is at the origin of the discontinuous thickening. In addition, in 
oscillatory experiments we found a critical shear strain for shear thickening that appears independent of the frequency. 
The value of the critical shear strain ( 1≈cγ ) also supports the idea that discontinuous shear thickening is a direct 
consequence of shear induced dilatancy that is hindered by the confinement. 
 The critical shear rate associated with the yield stress is due to the existence of a yield stress and is in principle 
decoupled from the onset of shear thickening. However, in the Couette geometry used for the MRI experiments, the 
existence of a yield stress makes that part of the material flows, and another part does not because the stress it is 
subjected to is smaller than the yield stress. As also shown by the plate-plate measurements (Figure 6), the existence of 
a non-flowing region influences the onset of shear thickening, and so the critical shear rate is indirectly coupled to the 
shear thickening phenomenon. However both the dilation and the measurements as a function of volume fraction show 
that the critical stress for the onset of shear thickening is directly coupled to the onset behavior. 
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