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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-00714310


UNIVERSITÉ PARIS-DIDEROT

THÈSE

Présentée pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ PARIS-DIDEROT

Discipline : Physique

Spécialité : Interdisciplinarité

École Doctorale Frontières Du Vivant (ED 474)

Laboratoire Matières et Systèmes Complexes et Orange Labs

Promenade dans les cartes de villes

- Phénoménologie mathématique et

physique de la ville -

une approche géométrique

pésentée par

Thomas Courtat

���������

Thèse e�ectuée sous la direction de

Stéphane Douady et Catherine Gloaguen

���������

Soutenue le 31 Janvier 2012 devant le Jury composé de :

Marc Barthélémy Chercheur, CEA Examinateur

Gilles Coppin Professeur, Telecom Bretagne Rapporteur

Vincent Danos Professeur, University of Edinburgh Rapporteur

Laurent Decreusefond Professeur, Telecom Paris Tech Examinateur

Stéphane Douady Directeur de recherche, CNRS Directeur

Jean-Pierre Frey Professeur, Université Paris Est Créteil Examinateur

Pablo Jensen Professeur, ENS de Lyon Examinateur

Catherine Gloaguen Ingénieur de recherche, Orange Labs Directrice





Contents

I Introduction 15

1 Cities and Science 19
1.1 Social Physics and Urban Thermodynamics . . . . . . . . . . . . . . . . . . 21

1.2 Morphology analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 From Graph to Complex Network Theory . . . . . . . . . . . . . . . . . . . 27

1.4 A representation of the city as a collection of objects arranged in space . . . 33

1.5 Growth models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Mixing town-planning with Physics 41
2.1 Science and Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Shape emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 What is a city ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Approach of this thesis 53
3.1 Quantitative principles shaping the city . . . . . . . . . . . . . . . . . . . . 53

3.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Style of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Main notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

II Mathematical and Physical Modeling of the City 61

4 Mathematical and Computational Representation of Cities 63
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 City Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Algorithms to Recover Street Hypergraph structures . . . . . . . . . . . . . 72

4.4 Tuning and Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Computational implementation . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Phenomena 83

3



4 CONTENTS

5.1 Return on phenomena described in the literature . . . . . . . . . . . . . . . 85

5.2 Street scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Small World e�ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Distance transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Map Description and analysis 97
6.1 Topological and Geometrical descriptors . . . . . . . . . . . . . . . . . . . . 99

6.2 Map analysis and Centralities . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Analyzing maps and planning with the Simplest Centrality 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Avignon: testing the robustness of simplest centrality toward windowing . . 113

7.3 Villers-Sur-Mer: testing town-planning scenarios . . . . . . . . . . . . . . . 117

7.4 Conclusion: comparison with Space Syntax and "dual" (street) graph . . . . 117

8 Models 121
8.1 A continuous models that came last but we present �rst . . . . . . . . . . . 123

8.2 Simple network models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3 Morphogenesis of the City . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Object Morphogenesis of the City . . . . . . . . . . . . . . . . . . . . . . . . 138

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

III Stochastic Geometry 145

9 Sketching a city with Stochastic Geometry 147
9.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 Low scale models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.3 High scale model: Gabriel Graph . . . . . . . . . . . . . . . . . . . . . . . . 158

9.4 Identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10 Map Segmentation 165
10.1 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2 City Segmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

IV Conclusion 183

11 Conclusion 185

V Appendices 189

A Geometry 191



CONTENTS 5

A.1 Some basis on Euclidian planar geometry . . . . . . . . . . . . . . . . . . . 191

A.2 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.3 Tessellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.4 Fractal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B Complex Networks'theory 195
B.1 What is a complex network ? . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.2 Analysis of complex networks . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.3 Canonical complex networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.4 Spatial embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

C Measure and probability theory for stochastic geometry 201
C.1 Measure and integration theory . . . . . . . . . . . . . . . . . . . . . . . . . 201

C.2 Real random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.3 Stochastic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209





Abstract

We are interested in the phenomenology of cities by restricting them to the geometry of

their street network. This study aims at being synthetic, functional and interdisciplinary.

It follows the large work that has been performed from the early XXth century by town-

planners, social scientists, geographers, statisticians, physicists.

We try to demonstrate that the street - as a coherent alignment of street segments - can

be considered as an essential elementary structure of the city. How much information is

encoded in the street network? To what extent does it constraint the city use? How are

the current urban layout and its evolution determined jointly by tra�c axis and structuring

elements?

We present a mathematical and computational framework allowing to consider the map of

a city as a geometric continuum associated to the topology of a planar graph. To this graph

we juxtapose a hypergraph structure using the street geometry to obtain easily the notion

of axis and a multi-scale representation of the city.

In spite of an apparent shape diversity, we show that the street network of a city is sub-

jected to general laws that leave hallmarks on a city map. We propose several morphogenesis

models of the city, implementing the idea that the city's growth follows a structured exten-

sion / division of space logic and able to reproduce hallmarks observed on actual maps.

The understanding of regulation mechanism of the city allows us to propose functional al-

gorithms whose computational e�ciencies are very interesting. We present an algorithm

recovering streets from a collection of street segments; the notion of simplest centrality

whose calculus on a map allows a hierarchical analysis of it, revealing for instance main

tra�c axis and ill-deserved area; a fast approximate algorithm to �nd the shortest path

between two random points; and a Spectral Clustering based algorithm to produce morpho-

logical segmentations of maps. We also work on the identi�cation of random tessellation

models to be substituted to an actual road network and to solve large optimization problems

using statistical equivalence.
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Résumé

Nous nous intéressons à la phénoménologie des villes en nous limitant à la géométrie induite

par le squelette de leur réseau de rues. C'est une étude à volonté synthétique, fonctionnelle

et interdisciplinaire qui vient s'ajouter aux travaux qui ont été menés à grande cadence

depuis le début du XXème siècle par des urbanistes, sociologues, géographes, statisticiens,

physiciens.

Nous cherchons à montrer que la rue, en tant qu'alignement cohérent de segments de rues

peut être considérée comme structure élémentaire de la ville. Quelle quantité d'information

est donnée par la géométrie du réseau routier ? Dans quelle mesure contraint-il nos échanges ?

Comment le paysage urbain actuel est-il déterminé par son évolution le long d'axes de cir-

culation et d'éléments structurants ?

Nous présentons un cadre mathématique permettant de considérer la carte d'une ville comme

un continuum géométrique dé�ni par la topologie d'un graphe planaire. Nous superposons

à ce graphe une structure d'hypergraphe pour manipuler aisément la notion d'axes ainsi

qu'une représentation multi-échelles de la ville.

En dépit d'une grande diversité apparente de formes, nous montrons que le réseau de rues

d'une ville se soumet à un certain nombre de lois générales qui laissent des traces sur le plan

de la ville. Nous proposons des modèles de croissance et de morphogénèse de la ville, implé-

mentant l'idée que l'évolution de la ville suit une logique d'extension / division structurée

de l'espace et reproduisant les signatures observées sur les plans de villes réelles.

La compréhension des mécanismes régulateurs de la ville nous permet de proposer des algo-

rithmes fonctionnels dont le temps de calcul est très intéressant. Ainsi nous présentons un

algorithme reconstituant les rues à partir de segments de rues ; la notion de centralité simple

dont le calcul sur une carte permet une analyse hiérarchique de celle-ci, met en valeur les

axes de tra�c principaux et en évidence les zones mal desservies ; un algorithme permettant

d'approximer rapidement le plus court chemin entre deux points aléatoires ; un algorithme

prenant appui sur le Spectral Clustering pour produire des segmentations morphologiques

de cartes et retravaillons l'identi�cation de modèles de mosaïques aléatoires pour les sub-

stituer à un réseau urbain particulier dans la résolution par équivalents statistiques de grands

problèmes d'optimisation.
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Introduction
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This introductory part is constituted of three chapters that aim at leading naturally the

reader to the stakes of this manuscript. The �rst chapter is a state of the art reviewing

considerations on city modelling from the XVIII-th century. It depicts, synthesizes and

critics the main theories ordered according to thematics and chronology. The second chapter

is more personal and presents de�nitions of modelling, shape and city. The observation

of real cities and their comparison to other transportation networks lead to isolate main

principles of city systems in the third chapter that presents the problem of the thesis and a

quick outlook of the contents of the manuscript.
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16 CHAPTER 1. CITIES AND SCIENCE

Cities And Sciences : Synthesis
Cities have become a subject of scienti�c investigation since the early XXth century for

economists, geographers, town-planners, social scientists, architects and recently physi-

cists. The �rst motivation was economical: to understand the variation of costs in space

and to minimize them in practical tasks. The resulting literature is large, making it

di�cult to synthesize in a few pages. Two levels of observation complement each other:

the macro and the micro. The macro gets interested in the statistical distributions of

measures on cities (size, population, production...) and their correlations. The micro

models the behaviour of agents or local infrastructures and their interactions to predict

displacement �ux or emergence of phenomena. These approaches can also be divided

in spatial and non spatial approaches. To end with, the spatial approach considers the

global shape of a city or the one of its road network.

Contributions of this chapter

1. A synthetic state of the art on urban modelling.
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1.1 Social Physics and Urban Thermodynamics

1.1.1 Around Zipf Law

The �rst famous work on quantitative social science was [4] extended by Zipf [138] who

exhibited that the distribution of cities' populations follows a power law distribution:

P(Population > N) ∝ 1/Nα with α & 1 (1.1)

The validity of this law has been empirically proved in [120] for 73 countries with some

variations in α, one of the di�culty being the lack of an universal de�nition of the notion

of city. This phenomenon is explained in [3] by a model of preferential attachment or

multiplicative stochastic process (see App B). Wealth is created in a system of cities and

the probability that a city captures wealth is proportional to its size (total amount of wealth).

In [19], the authors show that all quantitative indicators of a city's size (population, creation,

innovation, electrical consumption...) are linked with power laws: if Y (t) is a urban indicator

and N(t) the population at time t,

Y (t) = Y0.N(t)β (1.2)

For the majority of indicators, β > 1 which means parameters have to grow faster than the

population. This is antithetic of stable development where all internal metabolism has to

scale sub-linearly to be viable.

1.1.2 Quantitative Geography, Spatiality

Zipf'law and its developments provide macroscopic insights on the city's resources. A prob-

lem of practical importance in economics is to know how these resources are organized

spatially, to determine costs related to mercantile exchanges and production.

The trends we are going to depict �t together under the generic term "regional science".

Their paternity can be attributed to Adam Smith: most of them are a spatial translation of

his Homo Economicus principle, considering agents are acting rationally to maximize their

pro�t.

Von Thünen model, marginal productivity theory The Von Thünen model [131]

of agricultural land was one of the �rst model which encapsulates the most important

ingredients for a monocentric, isolated city where farmers transport their production directly

to the city center and behave rationally to maximize their pro�ts. The rent cost decreases

with the distance to the center but the cost associated with good transportation increases

with this distance. Following this argument, Von Thünen concluded that for each product

there is a certain distance from the city where its production would be worthwhile. The

center of the city is the marketplace and for a product there is a particular distance of

pro�tability: beyond the production is not pro�table and before there exists another product

more pro�table to deal with. The consequence is the organization of the monocentric city

into regular crowns devoted to particular types of production.
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Location, central place theory Location theory is the science that aims at explaining

in a general way the spatial distribution of resources in an economical system. It directly

steps on the work of Von Thünen. It has particularly been developed in the 30's by German

geographers and economists. The most well known model is Chrisaller's Central Place

Theory [39].

This work is presented as a rigorous deductive theory. It starts by making assumptions:

space is homogeneous, isotropic, producers and consumers are rational agents who try to

maximize their pro�t, reduce their cost and transportation. Activities gathers into "places"

represented by points with their in�uence area in the plane. A more central place has a

bigger in�uence area. The resulting "optimal" distribution of central places is a two layer

hierarchy of cities regularly distributed on a perfectly hexagonal lattice. One can reproach

to Christaller ( apart from is adhesion to Hitler's Reich), some fantasy on his hypothesis,

choice of parameters (that are more symbolic than rational) and epistemological approach

[100]. The problem with Christaller is that he modelled some ideal in a contestable fashion

rather than the reality and tried with the Nazi regime to impose its model to the reality.

We can also refer to August Lösch [80] that has a more rigorous and soft reasoning and who

reaches similar con�gurations of central places.

Regional science Encompassing location theory, Regional Science has started by 40's and

thrived until 80's. For instance Isard's [71] is somewhat the cornerstone of the movement. It

gathers tries in explaining and modelling any spatio-economical phenomena: transportation,

migration, land use and urban development, inter-industry relations, environmental and

ecological forecast, resource management, urban and regional policy analysis, geographical

information systems.

An interesting part of Regional Science is gravitational models [121, 47] which aims at

describing human movements between various locations. This theory refuses to consider

that the cost of a path is proportional to its length and postulates similarly to Newton's

gravity law that [121]:

Fab =
PaPb
d(a, b)2

(1.3)

where a and b are two cities of population Pa and Pb separated by a distance d(a, b). Fab
is the "demographic force" between a and b: a measure of the interactions between people

of a and b such as migration, travels, commercial exchanges... Note that Fab = Fba. This

means that the "attraction" of a is weighted by the population of b to obtain the number

of interactions from b to a.

This leads to Reilly's law of retail gravitation: the in�uence zone of each city is not de�ned

by the perpendicular bisector between the cities but by the distance (from b):

Db||a =
d(a, b)

1 +
√

Pb
Pa

(1.4)

More generally one could postulate a law of the form:

Fab = C.PaPb.f(d(a, b)) (1.5)
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where f is a decreasing function and C some constant. The choice of f and C depends on the

application. For instance [9] synthesizes that one obtains f(d) = 1/d for railway expresses,

f(d) = 1/d2 for Korean highways and telecommunication �ows, f(d) = exp (−d/κ) for cargo

ships.

For theoretical convenience, one could replace Pa by Fa =
∑

b Fab in Eq.1.5 as a measure of

the importance of the city. It is then possible to show by entropy minimization [136] that

for a discrete and large system of cities, the "less informative gravitational law" for trips is

Fab = AaBbFaFbe
−βd(a,b) (1.6)

where Aa, Bb and β are theoretical formal parameters to be tuned for a particular system.

More recently, Jensen [72] has shown that some commercial activities have interest to gather

in a same point of a city and other can be uniformly distributed in the city.

1.1.3 Dynamics, Multi Agent modeling

As pointed out in [2] by M. Batty, the previous works consider the city as an inert matter, a

sytem at equilibrium. In the 90's, computational improvement and the emergence of Multi

Agent framework enabled the possibility to consider the city as a dynamical system, far

from equilibrium and constituted of numerous little agents whose interactions dynamically

change the shape and utilization of space.

A multi agent model (MAM) is a system compounded of an environment (for instance a pla-

nar �eld with a superimposed grid or a prede�ned map) on which evolve sequentially a large

number of "microscopic" agents communicating and interacting. Several types of agents

are de�ned by an interface of characteristics and behaviours toward environment. Each

agent evolves according to the variations of the environment and the population modifying

dynamically the land use.

Generally speaking if multi agent modelling tends to reproduce realistic trends, it needs a

large calculus power and does not naturally propose a synthetic point of view on a phe-

nomenon. The "simpli�ed" version of MAM are Cellular automata, which work with one

or two kinds of agents on a square grid with a very limited number of possible actions.

There are many applications of MAM to city dynamics at various scales (micro or macro

simulations, urban or regional levels). The book [2] presents along its chapters typical ap-

plications: asystematic mobility, pedestrian and vehicle tra�c simulation, journey to work

�ows, land use changes, economic in a poli-nucleated urban area. There exist several soft-

ware packages to handle common problems with urban multi agent modelling: MaGIA, The

Time Machine, Cage, GioCoMo, EuroSim, SimPop...

1.2 Morphology analysis

1.2.1 Typologies

A �rst look at the internal structure of the city comes with human geography at the

beginning of the 20th century. Geographers proposed a typology of cities [32], showing how
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to recognize visually some characteristic patterns or "Figures de style", and relate them to

the typography, or some basic structure (linear or radial). Fig.1.1 is an extract of [32] which

shows examples of typical typologies of French cities.

The architect Stephen Marshall also presents in [86] a zoology of street patterns with an orig-

inal and interesting re�ection on the functionality and the perception of street arrangement

completing the work of [81].

1.2.2 The Fractal City

In [52, 11, 123] the authors observe that a metropolitan organizes fractaly (Fig.1.2). This

is a feature of the non stable condition of urban growth: the fractal dimension, empirically

calculated from the center of the area increases through time and tends to 2. Theoretical

consideration on fractals and fractal dimensions can be found in App.A.

The city is a non compact pattern, there is a continuity between highly dense zones: city

cores and their country side. Added to that some green areas remain to air the city core

and create scattering. Together with a hierarchical comprehension of the city they are the

two key ideas of the fractal analysis of cities. In fact this theory restricts itself to auto a�ne

shapes such as Fourier's dust or Sierpinski's carpet and compares the cities features to these

reference models.

This theory raises some problems.

From an epistemological point of view, the "Fractal Theory of Cities" cannot pretend to

be a scienti�c theory: they make an observation or hypothesis according to which the city

shapes as a fractal (auto-a�ne would be are more coherent expression with the presentation

of their work). But they get no deductive results from this hypothesis, they assume it is a

fractal and so compute its fractal dimension. In science, the corpus of deductions has to be

stronger than the hypothesis made at the beginning of the theory.

From a purely technical point of view, the dimension they measure highly depends on

arbitrary methods. They have to choose if the city is lineal or circular. When circular, they

have to decide of a single center point for the city and then they measure the fractality

of the trace of the built up area radially from this point. The notion of "built up area"

is also arbitrary, it results essentially from the thresholding of the density map. Added to

that the box counting method they use to determine the dimension is known to be very

sensitive and the practical curves they plot for instance in "Fractal Geometry for measuring

and modelling Urban Pattern" ([2]) is very noisy.

1.2.3 Density pro�le

The �rst to get interested in density pro�les of cities is Clark in the 50's with [40]. In spite

of very modest techniques to compute this density for several cities, he shows for a dozen

of cities around the world that the population density is a decreasing exponential of the

distance to the center of the city. To obtain this he needs to de�ne the notion of city center

and to integrate population density along rings of constant radius. Remark this work was

not easy and maybe not accurate with the tools of the 50's, indeed, he �ts density pro�le
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Figure 1.1: Di�erent typologies of cities, street networks and general shapes illustrated by

French town examples from [32]. In most cases, cities are structured by the local topography: a

valley, meanders...

with only a �ve or six points. The article is very clear, methodical and pleasant to read

but it would be worthwhile to redo the calculus with modern computers. He also shows

that density gradient decreases globally with time. This observed phenomenon is taken as

a postulate in [85].

More recent studies [18] lead geographers as Denise Pumain to consider density pro�les can
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Figure 1.2: From [123]. Observation of the fractal spatial layout of Besançon in France and the

�rst steps of the Sierpinski Carpet used by the authors to explain fractal via the notion of

auto-a�nity.

be of di�erent shapes: exponential, power law or Gaussian. Agreements are the decrease

of density gradient with time and the existence of a trough in the density next to the very

center of the city.

1.2.4 Stochastic Geometry

To solve optimization problems from Telecommunication engineering, [57] suggests to replace

the actual road network of a city with a stochastic model [122] "statistically equivalent".

They get it down in [59] and obtain good results for Access Network Cost assessment in

[61]. Two main ingredients are to be chosen: the intensity of the road network and its

morphology. The intensity is a real positive parameter and the morphology is a referent

tessellation model from a collection of classical and well mathematically studied tessellation:

Poisson Line Tessellation, Poisson Voronoï Tessellation or Poisson Delaunay Tessellation.

This supposes that a city is geometrically stationary: the observation of mean intensive

parameters on a window does not depend on the choice of this window.

In fact this hypothesis is solely locally legitimated and the rigorous use of this method calls
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for a �rst step of segmentation of the city into homogeneous area (see Ch.9 for models,

Ch.10 for segmentation and App.C for a review on stochastic geometry).

1.3 From Graph to Complex Network Theory

When working on the network of streets in a city, the city is generally seen as a graph. Possi-

bly vertices (or nodes) of this graph are intersections between streets and edges are portions

of street that bind these vertices. This section reviews the joint history of city modelling

and graphs, the practical interest of this modelling, its popularization with Geographical

Information Systems and the systematic statistical study that follows.

1.3.1 Koenigsberg bridges, Operational research

Graph theory and city modelling were "invented" in the same time by Leonhard Euler in

1735. The question was to know whether it was possible to walk through each bridge of the

city of Koenigsberg once and only once.

He observed that the organization of the bridges around the local geography can be - for this

problem - reduced to a purely topological object: a graph. Furthermore this graph exhibits

the property of planarity whose constraint is strong enough to provide a negative answer to

the question. This illustrates how space constraints our transportation and way of life.

We will be more exhaustive in Ch.4 but let us give here some de�nitions on graphs to

understand the state of the art. A graph G is a couple G = (V,E) where V is a �nite set

called vertex set and E a part of V ×V called edge set. If a couple (v1, v2) is in E, this means

that vertices v1 and v2 are "bounded" or "in relation". For instance in a city graph, two

intersections are in relation if there exists an actual piece of road between them (and this road

must not contain any other intersection). If E is symmetric ((v1, v2) ∈ E ⇒ (v2, v1) ∈ E)),

the graph is undirected and the two opposite edges are considered as a single edge. The

degree ki of a vertex i is the number of edges that pass through i (half this quantity in an

undirected graph context).

When it is possible to represent V by point on the plane, E by a collection of curves

binding the vertices in relation without having edge-crossings outside of V , the graph is

planar. Street networks are planar (see Fig.1.3, right). Planarity is a huge constraint on the

features of the graph which will induce di�culties to compare actual street network with

relevant reference planar graph models. When the graph is planar, a new set of objects can

be de�ned: the cells. They are portions of the plane delimited by elementary cycles of edges.

In the following section, the number of vertices will be written m, the number of edges n

and the number of cells c. These three quantities are linked by the Euler's formula:

m− n+ c = 1 (1.7)

Such a topological point of view is rich in operational research to solve tricky optimization

problems such as the shortest path problem, the salesman problem or the minimum spanning

tree problem. This section mainly gets interested in the analysis of the topology of a graph
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representing a city.

The graph theory [16, 64] leads to the complex network theory [23, 98, 1] when graphs are

large and feature some global, non trivial phenomena like small-world behaviour (the path

length between two nodes is very small compared to the size of the network) or scale-free

degree distribution (a hierarchical organization that may lead to a small-world behaviour),

see App.B for more theoretical considerations.

Figure 1.3: The map of Koenigsberg (left), a diagram to emphasize the structure of the river

(middle) and the abstraction of the topology of this structure as a graph (right). From Wikipédia.

1.3.2 Geographic Information System (GIS)

A GIS is a software allowing to handle rich geographic data: capture, modify, apply queries

to them and producing thematic maps. It deals with vector or raster data. Vector data

are compounded of spatial objects (points, polylines, polygons) to which are associated

additional information (thickness of the street, street name, population...). The objects can

be a representation of a road network (polylines), regions etc... Rasters are simply images,

a grid of color pixels to produce a map on a particular topic. Web sites like Google Maps

present a raster rendering of underlying vector data.

1.3.3 Topological Statistics

The advent of GIS has allowed an exhaustive study of cities, in particular the research of

statistical correlations between the di�erent topological features that may present a map.

In what follow, we consider a map as a (large) undirected graph G = (V,E) with m the size

of V , n the size of E, ki the degree of the vertex i and < k >=
∑
ki/n the average vertex

degree.

Vertices and Edges topology analysis [35] and [33] get interested in the statistics of

topology in worldwide cities. They work on square extractions of maps (Fig.1.4).

They describe at �rst basic indicators such as the number of vertices, edges, mean vertex

degree, total length of edges, mean edge length. They show that the mean degree is very

low, typically between 2 and 3 which forbids the network to behave as a scale-free network.

The given explanation is that the planarity strongly constraints the topology. This is partly
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Figure 1.4: Square extraction of the footprint of Verona. Element of the data base used in [33]

to study statistical properties of street networks.

true even if the planarity only constraints the mean degree to be smaller than 6 the bound

being reached for instance in a Delaunay triangulation (see App.B and App.A). [35] remarks

that the degree is hardly ever larger than 5 but [33] describes the whole degree distribution

by an exponential �tting, which is exaggerated toward the support of the distribution.

[33] shows that the assortativity coe�cient Γ which describes if vertices connect to vertices

of the same degree or not is rather negative: there is no connection between vertices of high

degree.

The meshdness coe�cient:

M =
m− n+ 1

2n− 5
(1.8)

measures in [33] if the map is highly connected ("constructed") or not. Indeed m− n+ 1 is

the actual number of cells in the network and 2n−5 is the maximal number of cells reachable

for a network with the same number of vertices. But [9] shows that for large network M

writes as a function of the mean degree < k >. M typically ranges between 0.01 and 0.3.

M is a measure of the cost of the network. Other measures of the cost can be de�ned, we

will write them M generically and the e�ciency E� can be de�ned for instance by:

E� =
1

n(n− 1)

∑
i,j∈V
j 6=i

deuclij

dij
or

1

n(n− 1)

∑
i,j∈V
j 6=i

1

dij
(1.9)

where dij and d
eucl
ij are respectively the shortest path and the Euclidian distances between

vertices i and j. Indistinctly, the e�ciency is high if it is possible to go fast from a vertex

to another. This is the case if the graph is highly connected: if M is high. But having

an high M asks in practice for work and money. In an actual city, M and E� are two

antagonistic parameters: they want to minimize M and to maximize E�. The resulting city

is a compromise between these two parameters.

In these articles, results are normalized by constructing two extreme graphs from the same

set of vertices as the actual city: a "cheap" tree with the Minimum Spanning Tree and

an "expensive" highly connected graph with the Greedy Triangulation. A measure µ is

normalized to µ∗

µ∗ =
µ− µMST

µGT − µMST
(1.10)
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It was a great and new idea to use two structurally di�erent planar graphs as reference models

or "O-models", the planarity being a strong constraint, the classical reference random graph

(App.B) is not a relevant point of comparison for planar graphs.

E�∗ is an increasing function of normalized M∗ with a saturation: E�∗ ∼M∗→1 0.8. The

grid like cities obtain a better e�ciency than medieval cities for a relative cost between 0.3

and 0.4. Cycles are also under study which shows that a city has very few triangles: a street

network is not transitive. [34] explores also a set of positive correlations between the city

robustness (number of nodes to remove so that the largest component size is 50% of the

original network) andM . The result is quite general: the network is as robust as it is costly.

Note that in the limit case of the tree, the network is more robust to random attacks but

much less to selective ones.

Vertices and edges Topology general statistics [8, 10, 9] present several empirical

laws binding L the total length of streets, n the number of vertices and m the number of

edges. First m ∝ n which means the average degree of cities is quite constant. It is observed

that the total length of streets in a city follows a power-law distribution: P(L) ∝ L−γ with

γ ' 3.36 > 3 which means that both mean and variance exist and that there is a typical

edge length. From the two previous laws, it predicts that L ∝
√
n.

Cells features [79] studies the "dual" topology: the connectivity of cells in the network

of German cities. Since the dual graph is also planar the mean number of cell neighbours or

cell degree cannot exceed 6. It exhibits indeed a predominance of degree 4, with much more

variance than vertex degree (there are cell degrees of 19). As for the geometry of cells, it

shows that the probability of an area A is P(A) ∝ A−γ with γ ' 1.9 for 104 < A < 107 m2.

The distribution of form factors: Φ = 4A/(πD2) (D is the diameter of the incircle) indicates

a broad intra and intercity diversity (Fig.1.5).

1.3.4 Centralities

First introduced in social science [12], a centrality is a measure de�ned on the set of a graph's

vertices or on its edges to quantify to what extent an element is important, "central" for

the graph. A central point is a point "easy to reach", a point "one has to cross to go from a

point to an other". For instance the root of a spanning tree should have an high centrality

whereas its terminations should not. Here are classical centralities de�ned for the vertices

i ∈ V . Notice that the same notion can be de�ned for edges ∈ E

The degree centrality measures a very local centrality:

CDi =
ki

n− 1
(1.11)

The closeness centrality measures to what extent a vertex is near to the others with

respect to the street network:

CCi =
n− 1∑
j∈V
j 6=i

dij
(1.12)
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Figure 1.5: Form factor Φ for three reference regular lattices (a) and for the cells of a street

network (b). In real street networks, the form factor exhibits a wide diversity. From [79].

The betweenness centrality measures the proportion of shortest paths that pass through

the vertex i:

CBi =
1

(n− 1)(n− 2)

∑
j,k∈V
j 6=k 6=i

σjk(i)

σjk
(1.13)

with σjk is the number of shortest paths between j and k and σjk(i) is the number of these

paths that cross i.

The straightness centrality measures if the network is "star-shaped" from a vertex:

CSi =
1

n− 1

∑
j∈V
j 6=i

deuclij

dij
(1.14)

A variant of straightness is the e�ciency centrality:

CEi =

∑
j∈V, j 6=i

1
dij∑

j∈V, j 6=i
1

deuclij

(1.15)

The information centrality measures the non robustness of the network toward the re-

moval of a vertex:

CIi =
CS(G)− CS(G− {i})

CS(G)
(1.16)

where CS(G) is the average straightness centrality of the graph G: CS(G) =< CSi >i∈V .

Two kinds of studies are (jointly) applied to centralities in road networks: the spatial dis-

tribution and the global distribution of centrality in the city [42, 117, 106]. The spatial

distribution is represented with the city graph and colours on vertices coding for di�erent

values of centrality, which provides a direct reading of the map. If the closeness presents
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above all a radial decrease from the center of the image, the other centralities capture routes

and area, emphasizing main streets or ill deserved zones. [108] shows correlations between

centralities and densities of retail and services.

CB is single scaled, well approximated by a Gaussian curve ([79] �nds a power law, interpret-

ing that only a few nodes maintain the transportation and might be subject to congestions),

CC and CS are seen as mainly linear through the city and the authors claim that CI has

distinct behaviour if it is a planned city (exponential) or if its is a self-organized one (power

law with exponent between 2 and 3).

Centralities have been de�ned �rstly for abstract graphs. Only the straightness and e�ciency

centralities take in account the spatiality of a street network (not really the planarity but the

spatiality) by introducing Euclidian and Shortest Path distances in the measure. In Ch.4

we will de�ne a mathematical framework allowing to handle easily with the geometrical and

spatial aspects of a city and apply this framework in Ch.6 to rede�ne centralities coherently

for street networks.

1.3.5 Random walks

A random walk on a graph is a stochastic (or random) process on that graph. A number N

of agents evolve sequentially and independently on that graph with respect of a transition

kernel providing probabilities to move from a vertex to one of its neighbours. Generally,

after a large number of steps, agents are distributed on the graph with respect of a stationary

distribution (see [14] for the theory and more precise considerations). This distribution is

only determined by the transition kernel and the topology of the graph.

Monograph [21] is an exhaustive study of random walks on topological graphs representing

maps. They use classical discrete Markovian processes on graphs (purely random walk, or

walk biased by a centrality) to characterize and compare various urban structures (Venice,

Rothenburg, Amsterdam, Bielefeld, Manhattan). As indicators, authors study:

• The mixing rate of a simple random walk.

• The relative entropy and the entropy rates of the simple random walk and a random

walk biased by centrality.

• The �rst passage time and the hitting time of streets.

• Community structures and map segmentation by di�usion processes.

• Various thermodynamic quantities such as the city entropy.

The book remains quite general on random walks and its dedication to cities is more a

pretext than a real concern. Indeed it is not realistic to imagine agents jumping from a

street intersection to an other, it would be interesting to study random walk in a continuous

framework, for instance the one we will introduce in Ch.4. Added to that it would be

interesting to �nd back a centrality as a stationary distribution rather than impose it a

priori in the random process.
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1.3.6 Other Complex Networks

The conclusion of the works presented in this section is that the city does not behave like a

classical complex network: it does not exhibit classical small-world or scale-free features. It

presents rather trivial behaviours, partially due to their spatial embedding.

The city should be compared to other spatial networks. [9] reviews general and particular

features of spatial complex network, including cities. [34] is the similar study as in [33]

for ant networks of galleries where we see the same qualitative relationships between cost,

e�ciency and robustness. In these articles they built reference models as two extremal kinds

of planar graphs: the minimum spanning tree and the greedy triangulation. Nonetheless

they construct these graphs with the same vertex set as the actual city. One could imagine

that the modi�cation of the edges induces also a modi�cation on the presence or position

of some vertices. [24, 103] show from the geometry of cells and that a city is a hierarchical

network to be compared to crack patterns.

1.4 A representation of the city as a collection of objects ar-

ranged in space

1.4.1 Human perception of Space

In [81] the architect Kevin Lynch reports through several and various examples his study of

perception of space by people. He concludes with the notion of mental map that constitutes

our perception of space through �ve elements: paths (streets allowing to travel from a point

to another), edges (that provide spatial delimitations to streets, like walls, buildings...),

districts (coherent local zones in the city), nodes (central and strategic points), landmarks

(identi�able places and objects that serve as reference points). In short urban space can be

divided into objects relevant to our perception and our way-�nding: on the one hand axes,

on the over hand blocks or "islets". The one being the "dual" of the other.

This is the foundation of the whole "Space Syntax" theory and application. These founda-

tions have be re-explored by the main authors of Space Syntax for instance in pedestrian

way-�nding [68, 67]. These two references are representative but not exhaustive.

1.4.2 Space Syntax

Space Syntax [73, 66, 67, 2] is a framework dedicated to the analysis of cities. From a city

layout, it de�nes a "visibility graph" called the "axial map" (Fig1.6 Up) and then measures

the topological integration of the axes. This integration is supposed to be representative of

�ow of people in this axis and thus of its importance. Integration is plotted into a color map

which provides a visual tool to diagnose the valuation of elements in a map (Fig1.6 Down).

Visibility Graph Axial lines are used to represent directions of visibility; they represent

the longest visibility lines in two-dimensional urban space [73, 66, 67]. Axial lines are
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Figure 1.6: Space Syntax framework. On Top: a virtual map with street width (a), the visibility

lines of this map (b) and the associated connectivity graph (c). Down: the color plot of integration

for the city of Oxford. From [73] and Bin Jiang's web site.

calculated from a map of a city representing streets as thick lines (Fig1.6,a). The drawing

of these lines is called the visibility graph (Fig1.6,b). Each axis has an ID (identi�cation

number) and two axis that meet are adjacent. This principle induces a graph structure

(connectivity graph): axis are vertices and their intersections are edges (Fig1.6,c).

Integration From the connectivity map, [66] de�nes various observation parameters.

From one node i in the connectivity graph, s ∈ N, Ns(i) the number of nodes reachable

with s steps and q the maximal number of steps. Then

li =

q∑
s=1

s.Ns (1.17)

is called the connectivity of node i if q = 1, the global depth li if q = +∞ and the local

depth if 1 < q < +∞ (typically q = 3 to compute the local depth). The integration of an

axis is calculated by its "Relative Asymmetry" index:

RA(i) = 2
li/(n− 1)− 1

n− 2
(1.18)

which is the mean global depth of node i normalized by the mean global depth of the

complete graphKn [21] shows that the distribution ofRA can adopt various shapes according
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to the city.

Implementation Space Syntax is implemented as a GIS module. It is widely used in

architecture and town-planning to quantify the navigability of a network and study socio

cultural factors as crime, tra�c congestion, hospitals, shops or museums placing...

Criticisms If there is a large literature on the use of space syntax, there is a little on

its mathematical and computational foundations. [111] is an article pointing out some

inconsistencies of Space Syntax:

• The decision making of a pedestrian does depend on the metric, not only on the

topology.

• The axial map discards 3D information or land use.

• There is not uniqueness of the axial map for a given "urban texture".

• The visibility graph is very sensible to small deformations of the map. It provides the

example of a grid and the same grid with a little variation in vertices position: axial

analysis passes through long line to little segments.

• Curved street are very di�erent from straight lines in the space syntax framework:

they are not represented by a single axe.

• Edges e�ect and segregation paradox: consider two grids, the main axes are at the

middle of these grids. Then bind these grids by a segment, the main axe is this new

joint and middle axes have then a poor integration.

To this list of "inconsistencies" follows an exchange between the Space Syntax creator Hillier:

[69] and Carlo Ratti: [111, 110].

From our point of view, inconsistencies listed by Carlo Ratti are more or less legitimate.

Indeed space syntax su�ers of some inconsistencies on its de�nition and mathematical for-

mulation. The visibility map is not robustly de�ned with respect of variations on the

representation of the city (small deformations or also sampling of the map), the resulting

integration map depends arbitrary on the way the map is stored in memory. We will provide

a mathematical framework to compensate rigorously for these di�culties in Ch.4. Ratti re-

proaches to space syntax not to take in account 3D information. We will neither consider

these information in this manuscript. We imagine 3D information are strongly correlated

to spatial information and we will try to see how much information is contained in the

planar geometry of a map, how the particular arrangement of a city can determine its local

and global evolution. To come to the segregation paradox, it is possible that a small new

street segment becomes an important transportation hub after the whole city has reached

an equilibrium with the new structure in Ch.6 we will present a comparable measure and

emphasize its robustness toward local and global scales. What is more disappointing is that

former main axes that keep an important local function have a poor integration. It would

be interesting to have a measure of integration that has both a global and a local interpreta-

tion. To end with, space syntax uses the argument of "human perception" to legitimate its
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integration relevance. In Ch.6 we will avoid to use such argument and show mathematically

the relevance of our measure.

1.4.3 Axial representations of the City

As said above, the visibility map is not robustly de�ned with respect of small variations

of a map. It is very sensitive to local curvature and to the sampling of the map. Various

methods have been proposed to overcome this inconsistency. The notion of axis is replaced

in [74] by the notion of named-street: two axes are the same if they have the same name

in the data base. In [49] two axes are melt if their angle is lesser or equal to an arbitrary

threshold (45◦). [105] presents the Intersection Continuity Principle: two axes are melt at

an intersection if they make the largest convex angle between all angles at the intersection.

1.4.4 The "dual" analysis

The graph induced by axes (whatever is the method used to recover this notion) is called

in the literature the "dual graph" and the plain graph representing the map the "primary

graph". The study of this graph is referred in [105] as the "dual approach" even if the

meaning of dual is completely di�erent from the common mathematical sense as used previ-

ously (the cells connections is the dual of the cell's edges). [114] speaks of an "information

network".

The "dual" street graph (where each street is now a vertex and an edge is drawn between

streets that intersect) is no more planar, similarly as for the visibility graph in Fig.1.6,c.

It behaves much more like a classical scale-free or small-world network than the primary

graph. If [105, 21] suggest that the connectivity of streets follows a power law distribution

1/kγ with 2 < γ < 3. [74] �nds for various cities (Munich, San Francisco, Gäval) polynomial

�tting in the log-log scale plot, [75] shows it is heavy tailed but not necessarily with a power

law. [74] also studies the k-clustering coe�cient for several parts of Sätra:

C(k)(i) =
2l

(k)
i

m
(k)
i (m

(k)
i − 1)

(1.19)

where l
(k)
i is the number of edges at a topological distance smaller than k and m

(k)
i the

number of vertices with that property. The clustering coe�cient is much higher than the

one of a random graph plus there is for cities under study a very low maximal topological

distance between streets (7). It concludes the scale-free behaviour is not obvious but that

the dual graph is a small-world network. For [75] the connectivity distribution shows that

the city is a hierarchical structure and they propose a fractal model for the placement of

roads whose fractal dimension is related to the exponent in the connectivity distribution.

[105] computes classical centralities on the dual graph.

In conclusion, there exist two approach to study street network: the "primal" approach and

the "dual" approach. The "primal" only exhibits trivial phenomena, the planar embedding

of a map being a strong constraint. The "dual" approach even if not always robustly de�ned

by authors seems to be more promising.
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1.5 Growth models

1.5.1 Cellular automata

A cellular automaton is somehow the simplest ancestor of Multi Agent models. A square

grid is given and each site can take values in a �nite alphabet. Local rules are de�ned to

make the grid evolve. They have become well known from John Horton Conway's Game of

Life in the 70's. One of the most famous cellular automata is Eden's model [46] which is to

mimic the growth of a colony of bacteria. The Eden model has been modi�ed to reproduce

trends of the urban growth [15] A huge work has been realized on the modelling of city

by cellular automata. It deals with the global evolution of the city morphology [26] or the

di�erentiation of space [2].

1.5.2 DLA

A Di�usion-Limited Aggregation is a process where particles displace randomly in space,

following a Brownian motion and end up to cluster when they meet other particles. They

are a particular case of cellular automata when the size of the pixel tends to 0. DLA

models for instance the growth of Safman-Taylor instability. They generally produce fractal

shapes. That is why their are proposed in [11] to model the growth of a city. Nonetheless

the result is a single tree-shaped cluster. In [87, 85] they use more sophisticated correlated

percolation models in presence of a density gradient to produce several clusters still fractal

on the boundary but with compact center Fig.1.7.

1.5.3 L-Systems

[101, 104] extend L-Systems (or Lindenmayer Systems [109]) to create real-like maps for

graphics and video games. A L-system is compounded of an alphabet A, a set of words A∗,
a set of postulates or rules P de�ned on A and an initial state w0. The system makes w0

evolve recursively to w0 with the evolution rules, some stochasticity and by taking care of

preserving the global coherence of the system.

From a population density map and a geographical constraints (elevation map, boundaries

see Fig.1.8, Left), the program proposes at each step to make the city grow of a segment.

To this it chooses the best road pattern (raster, radial, branching) and coherency is checked

(for instance that a new segment connects in an existing edge) and if necessary corrected.

A resulting map is shown in Fig.1.8, Right.

1.5.4 Complex Network Growth

The �rst attempt to model the growth of a city from the network point of view is [8]. The

presented model seeks out to mimic the observed cell area distribution observed in [79]:

P(A) ∝ A−γ with γ ' 1.9. The model is sequential: the city is a graph (Gn = (Vn, En))n∈N
initialized with G0 = ((0, 0), ∅). At each step a new center Vn+1 is added with respect
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Figure 1.7: From [87]. Left column: infrastructure distribution in real cities ; right column:

simulated correlated percolations to mimic these distributions.

to a radial isotropic probability density P (r) ∝ exp (−|r|/|rc|) with rc = 0.1km. Then it

connects to Gn that become Gn+1 by adding to En all segments whose end points are Vn+1

and points in the relative neighbourhood (see Sec.A.3.3) of Vn+1 in Vn.

In [10] the same authors provide re�nements of this model by coupling the evolution of

the road network and the population density. They subdivide a bound window into square

sectors and assume that existing network on each square de�nes a probability of settlement.

This probability on square i depends 1) on the rent price CR(i) = Aρ(i) where A is a

constant and ρ(.) the network density 2) on the accessibility CT (i) = B(gm − ḡ(i)) where

B and gm are constant and ḡ(i)) is the mean betweenness of nodes in square i. The income

of a new center in a sector i is then of the form K(i) = Y − C − R(i) − CT (i), Y being a

constant which is increasing with the mean centrality and decreasing with the cost of the

location. A center is chosen in square i with a probability proportional to eβ0K(i) which

rewrites exp (β(λḡ(i)− ρ(i))), β and λ being two tunable parameters. If λ is small, new

centres appear where the density is low (cheapest places) which produces an homogeneous

spatial network. If λ is higher, typically λ = 8.0 for β = 1 clusters and a particular central
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Figure 1.8: From [104]. A map (on the right) generated by a L-System (CityEngine) from maps

of water, height and population (on the left).

Figure 1.9: From [8]. On the left evolution of a spatial network with uniform distribution of

centres on a window ; on the right, the same with an exponential distribution of centres.

core appear. The radial density variation from the core is well �tted by an exponential, the

same exponential as it was enforced in the �rst article [8].

A "dual" approach can be found in [20]: they do not consider an intrinsic evolution of the

network but an evolution by a succession of division of the cells an parcels which induces

evolution of the road network and ensures a power law on the distribution of the areas.

The DLA models are used to recreate fractal cities. The only purpose was to propose a model

that has a fractal result. But DLA are indeed generic models known to produce fractals.
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And the articles never give a city-based interpretation of their results. City Engine with

L-systems produces impressive maps and can easily be extended to produce 3D landscapes.

Their results are visually satisfactory but they are not explicative. The network growth

model is the basis of the work we will present in Ch.8. From local rules emerge global

features observed in real cities. When biasing by centrality the choice of new centres, the

local choice is made with a global integrated criterion. In our model we will replace the

topological point of view (centres are added and create new street intersection) with a

geometrical point of view: the growth of the city will not be determined by the position of

former centres but by the whole continuum of infrastructures along the streets. Our model

will also be auto-su�cient: we will not impose a priori density distribution for new centres

but make this distribution emerge from simple local interactions.

1.6 Synthesis

In the �rst chapter of the collaborative book [2], "Fifty Years of Urban Modeling: Macro-

Statics to Micro-Dynamics", Michael Batty describes the advances of urban modelling

through XXth century. Michael Batty, architect-planner and geographer is a major con-

tributor of modern urban modelling. He has participated to fractal theory, DLA models,

Space Syntax, Urban perception and tra�c... He presents the evolution of urban modelling

with tree parallel "time lines": Models, Cities and Planning. These time lines present inde-

pendently the evolution of modelling, actual cities and planning method from the industrial

"monocentric" city to the modern global city passing through the poly-nucleated city. He

also proposes a "deconstruction" of this time line which shows the intricate links between

these three lines.

We propose here to synthesize modern urban modelling through a list of complementary

points of view. Two levels of observation complement each other: the macro and the
micro. The macro gets interested in the statistical distribution of measures of cities (size,

population, production...) and their correlations. The micro models the behaviours of agents

or local infrastructures and their interaction to predict displacement �ux or emergence of

phenomena.

These approaches can also be divided in spatial and non spatial approaches.
The spatial approach considers the global shape of a city or this of its road network.
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Mixing town-planning with Physics: Synthesis
The purpose of this chapter is to explain simply to a town-planner what a model is and
to a physicist what a city is. We also discuss the notion of shape and the recent theory of

morphogenesis that shows that a lot of shapes in nature are determined by endogenous

phenomena: the dynamics of an evolving object imposes strong constraints on its shape.

To what extent can we develop a morphogenesis of the city?

We will simply de�ne a city as a set of distributed infrastructures spatially evolving
and whose global wealth is su�cient to maintain the pace of life.

A city structures around the duality of its blocks and of street network. Former

blocks are divided (as in crack patterns) into smaller blocks with a strong constraint: the

cutting segments must arrange into long lines forming streets.

We will distinguish between organic cities and planned ones. The �rst is the result
of local non concerted interactions trying to optimize at a certain moment the e�ciency

of a particular new point. In the second the city is in one piece: all the infrastructures

are placed in the same time, creating globally supposedly optimal patterns.

The geometry of the city is adapted to the local geography that acts as an outside

constraint shell in its development.

Contributions of this chapter

1. A qualitative study of cities with comparison to veins and crack networks.
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2.1 Science and Modelling

" What is a model ?

- You know it is somewhat like the ships on your shelves, it is reduced boats scienti�c people

construct.

- Then scientists play all day long ? They build toy models to have fun ?

- To have fun ? No they do not !

Ah, indeed they do, you are right. Let me tell you a story little girl. Science is necessary

to our survival but that is not why me made it. Science, do not believe what the dictionary

says is above all a vice. "A man who thinks is a corrupted animal". Science is the set of all

the things we know. Well, we have made a huge step :)

You have to admit that you and your awareness are surrounded by a world that has an

intrinsic reality, that is to say that does not depend on you and your observation of it. A

very well-known man whose name was Plato thought and this is widely obvious or admitted

by the whole scienti�c community that you and in the continuity all the other persons do

not have a direct access to truth. He says that all we can and agree to see of the truth are

its projections on the wall of a dark cavern. That is the same as if you saw a rabbit only

by its shadow.

Science implicitly postulates the existence of a truth that only makes its presence known

to us through reality that is another time �ltered by our perception. Science tends to

understand truth by going past our senses to limit to reality that does not depend - by

de�nition or maybe by hypothesis - on the person that considered it.

Here we are, Science is the set of all what people have said and will say about reality as

an approximation of truth. Truth would be an idea we cannot reach directly. In fact I

would prefer to see science as an approach, a way to comprehend world that wants to be

independent of perception. To this a lot of work has been done to de�ne coherence rules,

reasoning and methods.

All what has occurred, that have been reality at one time is now true as a story. That is the

point of history. It is a science also. But what we are speaking about is what will always

be true.

Physics is the part of science that is concerned by this. If I want to be coherent I would

have to claim biology is a part of physics. In fact traditionally people split physic in several

parts. Biology is the part of physic that looks at living systems. For a long time physic and

biology have been totally separated. They have started to melt partially again.

Now that we know what physic is we can speak of models.

A scienti�c model you were right is the same as a reduced ship model. A model is a way

to handle with reality. As we reduce ships to put them on the shelves, we reduce reality to

put it on our minds. When reducing we simplify.

In fact, if I have understood what I was telling, the �rst and most important model that

we have had is language. This model says that reality is constituted of elementary elements

we can replace by symbols and describe their interactions. That is the power of models.

Language even if it is not the necessary condition of thinking is a highly e�cient catalyst

of it. We have extracted from the world a relatively small number of words that interact in

sentences. And this allows us thinking beyond our perception.

So, what we ask to a model is to organize our perception of reality by simplifying it or let
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us say by adapting it to the structure of our mind. "

2.2 Shape emergence

I think we have to de�ne separately ideal shapes and physical shapes.

An ideal shape is a characteristic of a set on a particular metrical space. "Shape" is an

equivalence relationship: two sets are of the same shape if there exist a rotation, a translation

and a dilatation transforming one into the other. Shape is all the information of a set without

consideration of size, position and orientation.

In physics - the science of real objects - this de�nition seems to be too rigid. It is generally

connoted to the outlines of the object, its exterior lines. It may depend on the perception

we have of the object, the scale of observation. Let us consider a rabbit (rather than a piece

of wax). This rabbit is articulated, its stoutness is variable with time but we would require

this rabbit keeps its "rabbit shape" as an intrinsic attribute. All the same in the set of all

rabbits, there is a variation in features, they can be more or less hairy, they can have lost

their tail, the relative size of ears can change.

The "shape" of a rabbit is distinguished from its posture. The posture would be the math-

ematical description of an instantaneous picture of the rabbit. The shape of a rabbit is an

ideal, an object is said to be a rabbit if it presents a tolerable variation to that ideal. We

will call that ideal "the typical rabbit". It may not be a rabbit. It is a variable object that

generates realisations.

A problem in physics is the presence of matter in the shape. Does matter import ? I

mean di�erentiation of elements that constitutes the shape ? Has the interior of a rabbit,

stomach, lungs etc. to enter to the de�nition of "rabbit shape". I think for real object there

is no absolute accessible de�nition of shape. Shape is a model that depends highly of the

approximation induced by the observation scale. And if we want to be coherent with this

idea we have to accept that the skin compactness, the hair color etc. are elements of shape

at a certain scale.

And can we speak of shape for a non compact object ? Fractal theory presents objects whose

boundaries are not clearly de�ned or at least highly change with the observation scale. The

notion of shape is thus dependent of the nature of the object and the observation scale. The

stake is to succeed in describing a shape.

There are simple shapes, that can be easily written and constructed in mathematics such as

circles, polygons, conics. And the recursive notion of compound shapes: a shape is a simple

shape or a shape to which we add another shape with a particular size and relative position.

If shape is translation invariant, the relative position of elements in a compounded shape

are essential.

Shapes can be described by some properties. Notions can be topological properties: prop-

erties that do are stable with respect of a smooth distortion of space. Or they can be

geometrical with metrics and angles.

A functional point of view had been adopted to explain emergence of shapes in nature:
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physical object exist and have their particular shape since this shape is somehow optimal

to last. Morphogenesis theory [25, 45] shows through numerous cases that shapes of sur-

rounding objects can be explained not by their function but by their causes. In the growth

of an object, the physical constraints that excerpt make the shape of the object evolve in

a particular way. Shape is then explained by endogenous principles: the formation process

of an object determine its shape and the possible variation of the actual object to an ideal

shape.

2.3 What is a city ?

This section is to de�ne the city, its components and present qualitatively the mechanisms

of its growth. It is a mixing of the references [113, 38, 92, 22, 127, 26], discussions with

social-scientists, town-planners and architects (I thank Clément-Noël Douady, Jean-Pierre

Frey, Philippe Bonin) and my advisers.

2.3.1 Origins

To give a de�nition vague enough to handle the numerous cases the notion have to cop

with let us de�ne a city as "the spatial infrastructures in place to organize a community of

people". We will be more speci�c latter.

The very �rst city then dates back to Neolithic area from -6000 a.c when men became

geographically stable and invented agriculture. In the occidental antiquity cities started to

look like our current cities with streets and compact organization of houses. Cities were

closed spaces surrounded by walls, the streets were straight organized around the Cardo

(north / south axis) and the Decumanus (est / west axis) and their intersection was the

Forum, a public meeting place mainly dedicated to politics. The city has then a symbolic

meaning: it is the spatial projection of a divine order. From Prehistory to Antiquity cities

have been enlarged to gather and exchange in the same secure place necessary goods.

In the middle age the city looses its symbolism, with irregular maps and intricate network

of small streets. Three centers are generally distinguished: the market, the castle and the

cathedral or church. The city is a spontaneously organized system around these three places

of exchange, symbol and power.

Renaissance rehabilitates symbolism and aesthetic, it breaks up with middle age by extend-

ing the city, making boulevards of former walls, straightening streets, introducing geomet-

rical shapes, radial and orthogonal layout.

The concept of city had to adapt to the industrialization and the appearance of new trans-

portation means. The willing at this time is coherent with renaissance: the city's pace of

life has to be improved, humanized. Transport is more e�cient, straight lines are added in

extension of the city and in addition of its initial network.
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2.3.2 Town planning

The idea of town-planning could gather all work and thoughts on the construction and

optimization of the city. Nonetheless, the term itself and the work of town-planner has only

been institutionalized in the beginning of 20th century. It has a scienti�c claim but it is

above all a practice. Practice that calls for interdisciplinary competencies: architects, social

scientists, engineers...It is "the practise that aims at creating through time an ordered layout

of space creating harmony, well-being and economy". Town planners are then decision-

makers acting rationally at a local or regional scale.

Town-planning intervene to (1): Create a new city, (2): Re-structure an existing city or

district (3): Extend a city.

There are two main modern theories of town-planning:

Progressive: represented for instance by Cerda, Haussman, Le Corbusier. Progressive the-

ory has a real scienti�c claim, the city has to be organized rationally, to ensure e�cient

circulation, well-fare and hygiene. The streets are thus long and large lines opening

up view on spectacular monuments. Functions are separated, there is a hierarchy in

places, and the main city core dilutes into country side.

Culturalist: represented for instance by Marcel Poète. This theory gives priority to the

expression of humanism in the city. The city is above all a meeting place. Space has

to be varied, intimist, surprising. Present and past coexist. City is directly compared

to a living organism.

2.3.3 Elements of geometry

Here are a few de�nitions related to city geometry.

A town is a political / historical entity of adjacent infrastructures. Towns are gathered

into cities or agglomerations or urban unities. A city is a spatially coherent reunion

of towns. In graph theory we would say cities are "connected components" or clusters of

infrastructures. Cities have a physical meaning contrary to towns whose limits are arbitrary

�xed.

A city generally includes a main city core and suburbs. Not to be confused with suburbs,

faubourgs are quarters that �rst have grown at the boundary of a city center that generally

ends up to absorb them.

A Metropolis: is an arti�cial gathering of agglomerations created politically to encourage

their exchanges and their joint development.

A block: is a small compact gathering of building or un-built zone surrounded by streets.

For mathematical convenience we will consider block are the same as cells in graph theory:

a small portion of space delimited by streets and that does not contain any loop.

Blocks have to be distinguished from parcels that are land-law unities and have owner.

They can be re-divided or melt together. The document revising the state of parcels is the

land registry (a detailed map of parcels with supplementary information).

The street is a transport unity. In occidental culture it is de�ned by its name. Geometri-

cally it is the continuity of coherently aligned pieces of roads. Contrary to parcels, they are
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public area.

A city does not pop up from nothing. There is always a geographical reason, a river, a

power resource that makes the place appealing. A community gathers next to it to exploit

it e�ciently. They create infrastructures, these infrastructures are added to the initial

wealth of the geography and attract new people. Little by little a city grows by adding new

elements, keeping most of the previous ones. During this evolution, buildings in blocks are

often destroyed and reconstructed to increase the local density but an element is stable: the

empty space of the street.

We want here to de�ne the important notion of structuring elements. Qualitatively

when building a city, people will try to have an e�cient access to local resources and thus to

construct streets orthogonal to these resources. Former streets become structuring elements.

Recursively, the impact of structuring elements are reinforced through time. For instance in

the map of Venice (Fig.2.1) we clearly observe that the intricate structure of the channels

act as a shell that shapes actively the growing network.

Figure 2.1: The city of Venice. The river structure is an essential element in the Venice's

transportation network. The intricate shape of the channels sculpts the shape of the street network

that tends to be locally perpendicular to it. Extracted from Google Maps by Andreas Perna.

2.3.4 Functions

A city is a gathering of people in a fuzzy area, to create goods that at least
permits the perenity of the community.
Thus a city attempts to lodge people, ensure their survival, well-being, circulation and their

communication; to optimize the economical production.
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2.3.5 Diversity

A wide diversity of city systems is observable as well on their overall shape as on their street

network structure.

For a town, the boundaries are more or less intricate.

Most of the times cities or agglomerations do not have clear boundaries, which has lead

people to de�ne it as "fractaly shaped". We will discuss this description. Let us say there

is no clear universal de�nition to limit cities in space, there is a continuity between city and

countryside, the growth of a city being the progressive conquest of the countryside area.

Cities tend to sprawl along long pre-existing connecting roads.

One can consider mono-centric or poly-centric cities. A monocentric city is the "tradi-

tional" vision of a city we have: it is compounded of a main city core highly dense and density

decreases in the suburbs. Polycentrism corresponds to the idea of metropolis. Metropolis

are arti�cial entities, an interesting question would be to wonder if from a monocentric sys-

tem new centres can naturally appear for instance when the center is saturated. Another

question is to wonder if polycentrism is a stable descriptor of a system that evolves. Won't

centres end up to melt into a single core?

The road network of cities also exhibits a wide diversity both between cities and between

di�erent parts of the city: diversity expresses at the inter-city scale but also at the inner-city

scale. Network can be regular (square for instance) lattice, radial, tree-like, labyrinthine

di�cult to describe simply or "organic". General street networks are a mixing of these

patterns [86].

2.3.6 Construction

Some street patterns seem intuitively "optimal" in regard to a particular geography. The

square grid of American cities for instance is optimal in the sense that it reduces the mean

distance between two points of the city and allows a regular compact distribution of build-

ings. The radial scheme is optimal when there is a very central resource: the goal of people

living in the city is not to go uniformly from a point to another but to reach this center.

We also picture that more generally an "optimal" city could be an homotopy of a square

grid or radial pattern. The homotopy being a smooth distortion of the network to adapt it

to the geography.

But this supposes that the city is entirely built in a short span of time. We will speak of

planned cities. And most of the time it is not the case. Local structures have to evolve and

the city has to extend spatially as much as it growths in terms of economy or population.

Square grids are not "stable" structures.

If a city is progressively made, we will speak of organic cities. In this case an original frame

is built around structuring elements and various agents (individual persons, industries...)

come to settle in the city, they have to choose a place and to connect to the network. For

instance in Oulan-Battor (Fig.2.2) the city is constituted by many persons that progressively

arrive and build their houses to be close to other inhabitants. The houses are aligned more

or less to leave a path allowing transportation. Another typical case is the city of Xian

(Fig.2.3). It was originally a planned square city around the imperial palace. But square
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Figure 2.2: The city of Oulan-Battor (Mongolia). The growth of this city consists in the addition

of houses. The growth starts from an pre-existing road, the density increases with the proximity to

this road. Other roads are not explicitly created: when adding a new house, urban actors make

sure that it is aligned with neighbours along main resulting streets and secondary streets also

appear. From Google Maps.

blocks were large enough which allowed an organic evolution of the city. Various populations

constructed street segments in the initial squares. As we can see in Fig.2.3 these populations

did not have the same wealth or the same politics and a morphological gradient results in

the 1948 map.

2.3.7 Comparison with other networks

To understand what a city is we have compared it to other planar networks whose shapes

look similar: leaf venation network and crack pattern on the surface of a pottery. This

comparison is not original, it has already be done in [24] from the iterative division of

space perspective and in [103] from the hierarchical representation of transport network

perspective.

As the city, the boundaries of the leaf and its inside network evolve jointly. The leaf exhibits

a highly hierarchical network, from a long (and large) stalk to a little segment of vein. The

network includes loops at a medium scale. But these loops are not observable at general

scale (Fig.2.4, Up) and the small scale structure is tree like (Fig.2.4, Down). The vein

network in a leaf is above all hierarchical, tree like, the loops intervene at a medium scale to

make redundancies in the network and make it more robust. In a street network the notion

of loop or cell is essential, it is a structure element which plays a role in the evolution of the

system.

Crack pattern are obtained when a bounded surface of clay for instance dries. The initial

structure cracks (Fig.2.5) into a line to reduce global tension. There are two resulting cells.
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Figure 2.3: The Chinese town of Xi'an in 1949, with various subdivision patterns inside a regular

grid. The square grid was created as an original frame around the imperial palace: the city was

originally planned. But through time organic patterns have re-divided the initial structure. We

can also notice a "morphological gradient" of these patterns: the network is more structured at

East and more tree-like at South-West.

These cells redivide independently. The new division curves are perpendicular to the vase

boundaries and to the �rst line. And so on until cells reach a minimal size (determined by

the thickness of the vase). The result looks like a city map but there are structural and

dynamical di�erences.

(1): For the vase, boundaries are still, in a city they move. (2): The divisions of two

adjacent cells in the vase are independent, in a city, blocks may be cut coherently to create

long resulting axes. (3): The perpendicularity constraint is stronger for crack patterns: a

new separator has to be perpendicular to the two older separators it meets. Consequently

the new separator cannot be a line, it is a curve. In a city the constraint seems to be looser:

the new separator have to be a line and thus can be perpendicular only to one of the former

streets it meets.
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Figure 2.4: Observation of a leaf's venation network at two scales. From Andreas Perna.
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Figure 2.5: Picture of a Crack pattern at the surface of a terra-cotta vase. From Ste�en Bohn.



Chapter 3
Approach of this thesis

3.1 Quantitative principles shaping the city

The two previous chapters of this introduction have put in light important principles arising

in urban context:

1. Classically monocentric and polycentric cities are distinguished. In fact a system of

cities responds to a hierarchical principle illustrated by Zipf's law: the distribution of

cities'size follows a power law. Small cities orbit around big cities and again smaller

cities orbit around the small cities... At the scale of a city, we �nd more or less im-

portant district or streets also hierarchically distributed. Monocentric and polycentric

cities are ideal cases, �rst or second order spatial approximation of this hierarchy

principle. Both cases can be considered under the same idea of cities with distributed

resources.

2. The city may be planned that is to say constructed of one piece or organic that is to say

constructed little by little by independent agents. These two cases correspond to two

di�erent optimization procedures and produce two very di�erent resulting patterns.

In the planned case, the global structure is optimal to adapt to the local geography.

In the organic case, agents or settlers add sequentially infrastructures to the current

city's layout. Each infrastructure addition is locally optimal at a given time for the

settler that makes it.

3. The city organizes into coherent geometrical structures called streets. These streets

are subjected to the hierarchy principle: there are long and not so long streets with a

more or less central importance. New streets are generally perpendicular to previous

streets or geographical elements of importance (such as rivers) we call generically

structuring elements. This rule is determinant in the construction of the network: it

induces anisotropy, clusters or gradient of density along main axis. Main axis may

be pre-existing or are the hallmark of the extension of the city into the countryside.

Another geometrical constraint arises when considering the duality between blocks

and streets. Former large blocks are divided into smaller blocks with the constraint

to make aligned streets.

4. The "primal graph" of a city map exhibits quite trivial behaviours common to most

planar networks. Nonetheless one of the most evident particularity of city maps is their

49
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organization in long axes or streets. The "dual graph" constituted of these streets as

vertices and their intersections as edges may display more noticeable features.

3.2 Problems

In this thesis we will question the phenomenology of the city from its network
structure. We want to show how the street network structure jointly constraints
the further development of a city and the use of space by its inhabitants.
We will not use complementary information such as population, street width, building

height... We will consider the skeleton of a map, see it as a planar graph and go into

its description, analysis and study the repercussion it has on our use of space (tra�c, engi-

neering...).

3.3 Summary

The principal scienti�c notions our work will rely on are Euclidian Geometry, Graph and

Complex Network Theory, Measure Theory and Stochastic Geometry. They are presented

in three independent appendices: App.A, App.B, App.C.

In Ch.4 we provide mathematical structures to represent city maps. We want to consider

the geometry of a map without limiting to its topology as done traditionally in the complex

network framework. A city is represented by a geometrical graph approximated (with an

arbitrary accuracy) by a straight graph G. The straight graph is a geometrical object whose

topology is su�cient to code the geometry which is pleasant for computational concerns.

To this graph is associated its geometrical projection that allows to de�ne functions and

integrate them all along the streets segments of the city. For instance a function f can be

de�ned on each point of the city (not only vertices), it could represent the population on

each point and it will be possible to "integrate" this population all along the street system

with the uniform measure µG:

Total population =

∫
all along the street system

f d (Uniform measure on the city) (3.1)

=

∫
G
f(g)dµG(g) (3.2)

To the city graph is superimposed an hypergraph structure that provides a multi-scale

representation of the graph by recovering the notion of street from street segments. A city

graph is then a graph G with its vertices V and its edges E. To this graph is associated its

"projection" on R2: πG and a uniform measure µG. We automatically provide G with an

additional hypergraph structure H

G = ((V,E), H, µG(.)) (3.3)

This mathematical framework comes with its computational implementation. We address

the choice of optimal structures to code city graphs and present classical and new algorithms
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Figure 3.1: On the left a straight graph G that is the approximation of a geometrical graph: the

vertex A is an additional vertex to sample the curvature of the dotted edge. On the right, we have

provided this straight graph with an hypergraph structure H constituted of three hyperedges

called streets that are disjoint sets of edges of G.

to e�ciently solve classical problems on city maps as for instance the shortest path problem

in weighted or unweighted graphs (classical) or the street hypergraph recovering with two

original algorithms and their implementation in linear time. The new Cab Driver's algo-

rithm for fast approximation of the shortest path problem in cities presented in Ch.6 is an

illustration of the e�ciency of hypergraphs in urban modelling.

In Ch.5 we will observe and test two phenomena occurring in cities' hypergraph. The length

of streets follows a mixture of log-normal laws: there are long and small streets in a city,

the resulting distribution is heavy tailed but admits an expectancy. The street hypergraph

can be represented as a graph. The shortest path distance in this graph corresponds to the

number of times one has to turn to go from a street to an other. And this graph exhibits

a Small-World property. We propose a clear de�nition of this property but the main idea

is that the number of times one has to turn to go from the street of a random point to the

street of an other random point scales logarithmically with a measure of the size of the city

(we take the total length of streets as a reference measure but they are all linked by power

relations according to [19]).

E(distance between two random points) = O(log(Size of the city)) (3.4)

In Ch.6 we present a sequence of measures to characterize and compare cities: the size, the

topology, the e�ciency, the anisotropy, the compactness. These measures could be used to

automatically classify cities for instance to cluster them according to the typical cities or

"�gures de style" presented in [32], see Fig.1.1. But the inner-city diversity is generally too

broad and we will see in Ch.10 these measures are interesting to cluster a particular city in

morphologically homogeneous zones. Ch.6 ends with the rede�nition of centralities in our

mathematical framework. From the de�nition of simplest distance (number of turns to go

from one point to an other), we de�ne the simplest centrality and compare it to the closeness

and the straightness centrality. This new centrality is faster to compute and propose a

hierarchical interpretation of the city. We will justify the relevance of this centrality by

using the phenomena observed in Ch.5. The analysis of simplest centrality naturally leads

to a brand new algorithm to solve the shortest path problem: the Cab Driver's Algorithm.
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Figure 3.2: From left to right: a city is compounded of 5 streets forming an hypergraph. To this

hypergraph is associated a graph whose vertices are streets and edges are drawn between two

streets if they intersect in the map. The shortest path distance between two streets - vertices in

the "street hypergraph graph" called simply hypergraph corresponds to the simplest distance

between two points in the streets. The last picture shows between points A and B the shortest

path in blue and one of the simplest path in red.

In Ch.7 we use the simplest centrality to analyse the map of two French towns: Avignon

and Villers-Sur-Mer. Avignon is studied through three scales: the historical center, the city

center and the extended town. Simplest centrality allows to recover main roads in the city

at its various scales of functioning and to diagnose ill-deserved area. With Villers-Sur-Mer,

we test the interest of simplest centrality to assess town-planning scenarios to homogenize

the transportation in the city.

Figure 3.3: Visualization of the simplest centrality of Avignon. It enhances main boulevards and

radial axis (in red) and allows to diagnosis ill-deserved zones in pink.

In Ch.8 we propose several models to explain the growth of the city. The �rst model is

continuous: the city is a scalar �eld of wealth. An integro-di�erential equation is proposed

for the spatio-temporal evolution of the city. The main idea is that each in�nitesimal area

of the city creates at time t additional wealth proportional to the wealth of the area. This
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new wealth is then dispatched through the city:

∂f(~x, t)

∂t
= λ.Cste

∫
R2

f(~y, t)K(||~x− ~y||)d~y (3.5)

with Cste
∫ ∫

K(||~x− ~y||)d~xd~y = 1 and λ ≥ 0. This equation can be applied to a system of

several cities and is coherent with the Zipf's law. We study the equation numerically for a

monocentric city and show in this case the wealth pro�le is an inverse power law, the global

growth of the city is exponential, the local growth is a power-law followed by an exponential

and the border of the city drifts away exponentially.

The next models are network based. We de�ne a simple division of space process and show

it produces a Small-World network. To reproduce also the distribution of cells'area observed

in [79] we propose a model of division / extension of space.

Finally, we introduce models for the "Morphogenesis of the organic City". It implements

more realistically the division / extension of space principle. The idea is that the current

layout of a city induces a potential �eld P quantifying the interest of a place x for new

settlers. The potential is a sum of elementary potentials V induced in x by the collection

of objects (streets, rivers...) forming the city.

PG→x =
∑

hobject in G

Vh→x (3.6)

Sequentially new settlers arrive in the city, chose a place and link this place to the existing

infrastructure. This model reproduces the log-normal scaling of streets and the Small-World

behaviour of the street hypergraph. A few parameters to describe the politic of inhabitants

of the city allow to produce a wide range of city patterns.

Last two chapters (Ch.9 and Ch.10) place in the continuity of [57] in the stochastic geometry

framework. The purpose is to solve large optimization problems from telecommunication

engineering by statistical equivalence. To an actual map is substituted a stationary random

tessellation. We choose low scale models (Poisson Line Tessellations and Crack Tessellations

with or without anisotropy distribution) and an high scale model (Poisson Gabriel Graph)

that are relevant is a urban context. We propose an algorithm to simulate the typical vertex

of a Poisson Gabriel Graph and use it to assess the mean topology of this random graph. To

low scale models we add a new segment process to take dead-ends into account. We propose

a robust algorithm to identify a map with a good equivalent random graph. The problem is

a city is generally not stationary. We solve it with a step of morphological segmentation of

the map. To this we introduce a new spectral clustering ([7]) based algorithm. The whole

procedure of segmentation - identi�cation can be performed in a linear time.

3.4 Style of the thesis

Our approach seeks to be interdisciplinary, functional and synthetic.

Interdisciplinary: We place in a physical science approach to work on a subject that

belongs to social science. To complete our project we will have to handle relatively new

mathematical notions and implement them into computer cod since our data are numeric.

We will try to use a vocabulary and give interpretations of our results into terms that are
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Figure 3.4: Sketch of the division - extension of space idea. From an original frame (in yellow)

the city produces division patterns when it locally densi�es (in red). Sometimes the city produces

a few lines of extension at its outskirts (in blue). And then the global result is re-divided (in

green). Various implementations of this principles will allow use to recover main observed

phenomena in the city: small-world in the street hypergraph, log-normal scaling of street lengths,

power-law distribution of blocks'area.
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Figure 3.5: On the right, the result of a morphological segmentation of the city of Lyon. To each

coloured zone is associated one of the stationary random tessellation displayed on the left,

according to the measured topology and anisotropy of the zone. Optimization problems can be

analytically solved for each model and thus substituting a real planar graph to one of this

tessellation allows a fast solution of optimization problems by statistical equivalence rather than

using heavy back-tracking methods.

relevant for physicists, mathematicians, engineers, computer scientists and town-planners.

Functional: The results of this work are implemented into automatic procedures that can
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be used in town planning, tra�c forecast or telecommunication engineering. The algorithms

are optimized.

Synthetic: our presentation of the subject will not be wordy. We present our hypothesis,

compare them to reality and try to explain them by mathematical models as minimal as

possible. In particular the growth models we present in Ch.8 do not take into account all the

ingredients that would be necessary to mimic the complexity of a human community. We

only want to exhibit a minimal set of principles that permits to explain some phenomena

occurring on cities and reproduce quite a diversity of shapes. This framework is made to be

�exible. In a second step interested persons can easily make it evolve in a more elaborated

structure to observe more subtle behaviours our predict trends.

3.5 Main notations

Generally a graph will be called G, its vertices V , its edges E and its cells C. An hypergraph

will be H and we will use also H for the graph associated to the hypergraph. To designate

vectors we use the classical ~x, xk for its components, t~x for its transpose and we will designate

matrix with bold letters. So if G is a graph, its adjacency matrix is G. Its shortest path

matrix will be G∗. If a matrix stores information related to a collection of object (vi) the

components of the matrix G can be written Gij or G(vi, vj). The cardinal of a set S is

written ]S or shorten into S for instance when studying computational complexity.

We use classical geometrical notations: < ., . > is a scalar product, when this product de-

pends on matrix A we write < .|A|. >. The n-norm is ||.||n (||t(x1, ..., xm)||nn =
∑
|xi|n)and

for the Euclidian norm (n = 2) we simplify with ||.||. The same notation ||.|| is sometimes

also used to designate the length of an orientable path, for instance if h is a (curved) street,

||h|| is its length. The shortest path distance on a graph is written dspG (., .) = dsp = G(., .).

When we compare shortest and Euclidan distance we will prefer to use de. The simplest

distance on a geometrical graph equipped with an hypergraph is dsim(., .). To compute

this distance we have to compute the shortest path distance on the hypergraph H written

coherently H∗. By abuse of notation H∗(x, y) can be the simplest path distance between

two points of the original graph.

If x is a point in (xi) a collection of points then Vor(x||(xi)) is the Voronoï (see App.A) cell
of x relatively to (xi) for the Euclidian distance.

µd is the Borelian measure on Rd. We use erf to designate the error function, log for the

natural logarithm, N (m,σ2) both to designate a normal law of mean m and variance σ2

and its density. Random variable are in capital letters and X ∼ f means the variable X

follows the law f . Probability, expectancy and variance are respectively P, E, V.

We use the notation of Landau for functions especially to express complexities: f = O(g)

means f/g → Constant 6= 0.
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Mathematical and Computational Representation of Cities: Synthesis
Studied under the Complex Network approach, cities'maps have been naturally considered

as graphs whose edges are portion of streets and vertices their intersections. This purely

topological representation looses all the geometric information of the map. For instance

the city's geometry particularity is to gather its segments into coherent sets called streets.
We de�ne the notion of geometric graph, it is always possible to sample as a straight
graph whose topological structure is su�cient to recover geometry. These objects are

naturally equipped with an integral operator allowing measuring function all along their

geometry. An additional hypergraph structure reports the multi-scale street structure

of the system. We discuss two methods to recover automatically the notion of street from

the map's geometry without information such as the streets'name.

Computational representation of city graphs is discussed as a corpus of optimized
algorithms to solve recurrent problems.

Contributions of this chapter

1. A city graph is seen as a continuous object with a Borelian measure.

2. The notion of "dual graph" is replaced by the structure of hypergraph

3. Study of two algorithms to recover street hypergraph structure. After confrontation

with real data, the best algorithm to manage this task appears to be parameter free.

It approximately minimizes the global torsion at street intersections.

4. Corpus of optimized classical algorithms on city graphs.
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4.1 Data

4.1.1 Geographical Information Systems

We have evoked GIS in 1.3.2. In practice, Vector data are collections of lines, polylines

(streets), polygons or pierced polygons (regions) to which are associated alphanumerical

attributes such as street name, street type, length, width, population... Data are georefer-

enced into projection coordinates. In France the classical coordinates in use are the various

variations of Lambert system. Commonly used SIG are MapInfo, ArcView or also the open

source Open Jump.

4.1.2 MIF �les

We will not use a full SIG �le(".shp") but only the map of streets it contains. From a .shp

it is possible to extract two �les with an open format. The ".MIF" �le is an extraction of

the geometrical information of a map. It is a standard "MapInfo" Interchange �le, generally

associated wit a ".MID" �le that contains the additional textual information. A street map

is encoded into a list of polylines ("Plines"), each representing a portion of road.

A typical extraction of the structure of a .MIF �le is:

Data

Pline 2

433634.57305836806 2381798.4086203203

433631.8246595768 2381740.657403816

Pline 2

433859.8172549281 2384204.937368185

433998.1683535401 2384085.947034154

Pline 4

433773.95605450065 2381542.5069964

433794.1700535319 2381538.780212023

433809.68250936584 2381535.9222575817

433818.186687505 2381533.576159634

The data is compounded of three polylines, each polyline is characterized by its number of

vertices and a list of line, each line containing the (x, y) coordinates of a vertex separated

by a blank.

4.1.3 Import routine

From a ".MIF" �le we want to create a structure "GRAPH" that contains a �eld "Vertices"

which is a v × 2 numerical array gathering the coordinates of all street intersections and a

�eld "Edge" which is a e× 2 array, the line i contains the references of the two extremities

of the i-th edge in the array "Vertices". This data structure to represent graphs will be

discussed in 4.5.2. To limit the size of the resulting structure, each extremity of poly-lines

are conserved but intermediate points are transformed into vertices in a proportion s de�ned
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by the operator.

When we will recover the notion of street from the plain collection of street segments of the

map it will be very important to be sure we have conserved actual angles between street

segments at every intersection. To that purpose, we in fact always keep the extremities of

a polyline but also their direct neighbour, the other intermediary points are sampled.

Data in "MIF" �le are noisy: there is redundancy in edges and some of them are detached

to the global structure, we have to erase double and detached segments. To this we �rst

import the whole graph and then compute its connected components (with the algorithm

described in 4.5.2) and only keep the largest one.

Algorithm 1 Map Import

1: Open the �le "City.MIF"

2: Scan it

3: For each Pline, transform the extremities and their direct neighbour as vertices and do

the same for a proportion s of intermediate points

4: Compute the connected components of the resulting graph

5: Keep the largest connected component and erase the others

6: Erase edges that appear several times

7: Translate the map such as the point (0, 0) is the center of gravity of the map

4.1.4 Data base

We have constituted from the Environmental Systems Research Institute's maps a data base

of 109 French cities. We selected major towns except from Paris (that was too large at the

beginning of this work to allow reasonably short calculus) plus a few smaller ones from

Parisian suburbs, country and seaside. To each city is associated a complete version and an

underscaned one. Typically the resulting graphs contain 5000 to 10000 vertices.
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4.2 City Graphs

Classically a city map is represented by a graph. This is a purely topological representation.

In this section we present the notion of graph and adapt it to be relevant for cities. If graphs

are interesting since they are easily implemented in a computer and since there is a large

corpus of e�cient algorithms related to these objects, they do not a priori permit to handle

the geometry of a map. For instance we have seen above that the processing of a .MIF

�le produces "arti�cial" vertices (of degree two) to sample the curvature of some streets.

These vertices have no physical meaning and should not be counted as other vertices. Or

we can consider that an edge is a continuous set of vertices of degree two, which is both

consistent topologically and geometrically. We will show here that in a general way maps

are geometrical graphs: to each edge is associated a particular curve in the plane. But

geometrical graphs are not practical computationally. We will show it is always possible to

sample a geometrical graph to a "close" straight graph for which the geometrical information

is encoded in the topology. To a geometrical or straight graph is canonically associated an

abstract measure which allow to integrate information "all along the geometry of the city",

replacing classical topological and biased by sampling vertices
∑

vertices by
∫
all points in the city

.

4.2.1 Graphs and planar graphs

A graph G is a couple (V,E) where V is a �nite set {v1, ..., vn} called vertices and E a part

of V × V called edges. If E is symmetric ((a, b) ∈ E ⇒ (b, a) ∈ E) the graph is said to be
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undirected. For an undirected graph, the degree function dG is de�ned on V and counts the

number of edges that pass through a vertex: dG(v) = ]{x ∈ V, (v, x) ∈ E}.
To a graph one can associate its adjacency matrix (Fig.4.1 Left) G of size ]V × ]V whose

entry G(vi, vj) is 1 if vi and vj are adjacent i.e. if there is an edge between vi and vj , 0

otherwise. We write vi ∼ vj when vi and vj are adjacent. Similarly if two edges e1 and e2

share a vertex we write e1 ∼ e2.

To an edge e linking v1 and v2 can be associated a weight w(e) = w(v1, v2) for instance

to model a variable resistance in the branches of an electrical system. When no weight is

associated to the edges of the graph, this one is said unweighted.

A path is a sequence of vertices (v1, ..., vm) such as vi ∼ vi+1. If v1 = vm the path is called

a loop or circuit.

The length of the path (v1, ..., vm) is m − 1 if the graph is unweighted,
∑
w(vi, vi+1) if it

is weighted. Among all possible path between v1 and vm, there exist at least one whose

length is minimal. It is call the (a) shortest path and its (their) length is the shortest path

distance between v1 and vm.

a b

1 2

3

5

6

1
2

3

4

4 5 6   1  2  3  4  5  6
1  0  1  0  0  0  0
2  1  0  1  0  0  0
3  0  1  0  1  1  0
4  0  0  1  0  1  0
5  0  0  1  1  0  1
6  0  0  0  0  1  0 

Figure 4.1: The representation of a graph by its symmetric adjacency matrix (a). This graph is

planar: it admits at least two geometrical graphs as drawings (b).

The graph is said to be planar (Fig.4.1 Right) if it is possible to draw G on the plane, i.e.

to materialize, V by a set of points in R2 and E by a set of curves that do not intersect

outside of V . One can show it is possible to draw a planar graph by imposing to the edges

to be straight segments.

In a drawing appears the notion of cell. A cell is a geometrical object. It is a region of the

plane delimited by a minimal loop i.e. a loop whose associated region does not contain any

other loop. The set of cells is written C and the Euler's relationship holds: If G = (V,E) is

a planar graph and C the set of its cells then

]V − ]E + ]C = 1 (4.1)
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4.2.2 Geometrical and straight graphs

Among all possible planar representations of a graph, we want to de�ne a notion of graph

that can contain the real information of a city map.

A geometrical graph can be seen as a particular drawing of a planar graph.

Let the available space A be a connected and compact subset of R2, V a �nite subset of

A and E a set of almost everywhere derivable paths included in A from one element of V

to another that do not intersect outside of V . Then G = (V,E) is an element of the space

of geometrical graphs Gg(A). If E is restricted to straight segments (G ∈ Gs(A)) , G is a

straight graph. To a geometrical graph G, one associates the "geometrical projection of G

in the plane" πG, the subset of A de�ned by :

πG = {x ∈ A, ∃e ∈ E, x ∈ e} (4.2)

πG is compact so we can provide Gg(A) with an Hausdor� distance :

dH(g1 || g2) = max
x∈πg1

min
y∈πg2

||x− y|| (4.3)

A drawing G′ = (V ′, E′) is a recti�cation (Fig.4.2 Right-Bottom)of the geometrical graph

G = (V,E) if V ⊂ V ′ ⊂ πG and if each element of E′ is a segment.

1 2
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4
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6

4

3
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a b

Figure 4.2: A geometrical graph (a) and two of its recti�cations (b). The upper one is not

straight because two edges intersect outside of the vertices set.

G′ is not necessarily a planar straight graph since edges can possibly intersect outside of

vertices (Fig.4.2 Right-Up). The idea is that one should be able to add to a geometrical

graph as many vertices of degree two as he wishes and still consider the same mathematical

object.

Every geometrical graph admits a planar recti�cation
Every geometrical graph is the limit of a sequence of straight graphs
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A geometrical graph is always tacitly weighted: the weight of an edge e between v1 and v2

is the geometrical length of e: ||e|| which equals ||v1 − v2|| when the graph is straight.

4.2.3 Hypergraphs

A hypergraph is a couple V of vertices (as for graphs) and E of hyperedges. An hyperedge

is a subset (if the hypergraph is undirected, a n-uple of vertices otherwise) of V . In short,

a hypergraph is a graph whose edges can contain more than two vertices. We will use

hypergraphs to represent multi-scale structures in a city map i.e. scales that are larger than

the segments between two vertices.

Let G = (V,E) a graph, if R is an equivalence relationship on E then = (V,E/R) is an

hypergraph. For instance we will seek out to reconstruct the notion of street by relations

of the kind "these edges belong to the same street" whose result constitutes the street
hypergraph.
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21

street 1

street 3

st 2

a b

Figure 4.3: A straight graph (a) and its hypergraph structure (b) deduced from Rπ/20. Viewed

as a city's map, this graph contains 7 streets segments but 3 streets.

In Sec.4.3 we will try to recover a street hypergraph structure from a graph. The relation

"be in the same street" is hard to decide for two street segments far from each other. To

solve that problem, the idea is to de�ne a �rst local relationship R̂: "these edges share a

vertex and are aligned" and propagate it to a global relationship R: "these edges are in the

same street". We will use the following property: If R̂ is a re�exive relationship on E2 then

the relationship R on E de�ned by:

e1Re2 iif ∃ α1 = e1, α2, ... , αn = e2 ∈ E | α1 R̂ α2, α2 R̂ α3, ...., αn−1 R̂ αn (4.4)

is an equivalence relationship (transitive closure). This permits to de�ne equivalence classes

from local relationships ((Fig.4.3 Right).

Another simple example of hypergraph is the trunk hypergraph de�ned by the local

relationship "these edges meet at a vertex of degree 2". The resulting hyperedges or trunks

are pieces of the street network contained between two "real" vertices i.e vertices that do

not come from sampling.
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4.2.4 Measure

To represent a geometrical graph as a continuum, we want to de�ne the notion of in�nitesimal

piece of street. As the Lebesgue's measure µ(.) on R, we want to create a measure µG(.) on

a graph G.

As a compact part of A, πG is a polish space (complete and separable) on which one can

de�ne a Borelian measure µG (see App.C or [78, 89] for more precisions on measure theory).

For instance µG(G) is the total length of edges in G or if A is a subgraph or an extraction

of G (the intersection between πG and a compact set W ), µG(A) is the total length of edges

in A. That measure permits to integrate functions along the edges of a geometrical graph.

If h(g) is the height of buildings at the position g in the graph G that represents a city then∫
G
h(g)dµG(g) (4.5)

is the total height of buildings in the graph.

If f is a measurable function on G, we seek out to estimate
∫
G f(g)dµG(g). An easy to

implement algorithm is a Monte-Carlo method. The measure PG(.) = µG(.)/µG(G) is a

"uniform" probability measure on G with its Borelian σ-algebra. A random variable X

following PG provides a random point on the graph G. In addition,

E(f(X)) =
1

µG(G)

∫
G
f(g)dµG(g) (4.6)

and if X1, ..., Xn are n independent random variables that follow PG,

µG(G)

n

∑
f(Xi)→

∫
G
f(g)dµG (4.7)

which allows to approximate any integral on G. If H is an hypergraph then h ∈ H can be

seen as a subgraph of G and we have trivially:∫
G
f(g)dµG(g) =

∑
h∈H

∫
h
f(g)dµG(g) (4.8)

4.2.5 Terminology and notations

A city graph G is a straight graph that represents the map of a city or a city that could

exist. It writes G = ((V,E), T,H, µG) where V is the set of vertices, E the set of edges, T

the hypergraph of trunks and H an additional hypergraph structure that represents streets

and will be de�ned later, µG is the Borelian measure associated to πG that will be identi�ed

with G. Elements in E are called street segments, in H streets and in T trunks.

We partition V into V = V1∪V2∪V+ where V1 are vertices of degree 1 called dead ends, V2

vertices of degree 2 called junctions that will be seen as sample artefacts and V+ vertices of

higher degree called intersections that make sense in the topology of the city. Two vertices

are adjacent if they are the end points of a same edge. Two edges, trunks or streets are

adjacent if they share a same vertex. In all cases for two adjacent elements a and b of
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Figure 4.4: LEFT: Street 1 is branched (vertex D) and the Street 3 contains a loop. RIGHT: At

intersection A, segment 1 could be associated to 3 and 2. The closest angle to π is made by 3 but 3

and 4 correspond to an angle reciprocally minimal. They are associated and 1 is then associated

with 2. The same reasoning leads to the same associations whatever the �rst segment considered.

these set we write a ∼ b. If v is a vertex, E(v), H(v) and T (v) are respectively the sets of

edges, streets and trunks that pass through v. Similarly we write V (e) the end points of the

edge e, V (t), V (h)... The degree function of a city G is de�ned for V , E, H, T , written

dG(x) and counts the number of elements in the same set that are directly adjacent to x.

4.3 Algorithms to Recover Street Hypergraph structures

Let C = (V,E) be a city graph. We have proposed to represent mathematically coherent

structures in the city by hypergraphs. The trunk hypergraph is evident to de�ne. But when

coming to street hypergraph, we have to deal with the idea of alignment. Intuitively, a street

is a collection of coherent street segments. We present here two algorithms, depending on

an angular parameter α that de�nes the notion of alignment, and check them against our

data base to asses their relevance and determine the values for α that make sense in our

urban context.

4.3.1 Angular tolerance (AT)

We use the local re�exive relationship R̂α depending on the angular parameter α:

e1 R̂α e2 iif ∃v, v1, v2 ∈ V, e1 = [vv1], e2 = [vv2],

| (d(v) = 2) ∨ (|(](−→vv1,
−→vv2)− π| ≤ α)) (4.9)

this relation considers that two adjacent street segments are part of the same street if they

meet at a junction or if they meet at an intersection but remain almost aligned (Fig. 4.4

left). This algorithm strongly risks producing "branched streets" (red solid line in Fig. 4.4

left, Fig. 4.5).
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4.3.2 The minimal reciprocal alignment (MRA)

To avoid the above cited problem, let us de�ne Ŝα. We position at particular vertex v and

consider the set of the edges passing through it E(v) = {e1 = [v1v], .., en = [vnv]}. We

iteratively de�ne Ŝα with the variable s:

1. the initial "remaining edges" is set for s = 0: E0 = E(v),

2. we consider all pairs of edges (ei, ej) 1 ≤ i < j ≤ n, eiSαej iif

|(](−→vvj ,−→vvj)− π| ≤ α)

and ∀ek = [vvk] ∈ Es 6= ei, ej , |(](−→vvk,−→vvi)− π| < |(](−→vvi,−→vvj)− π|
and |(](−→vvk,−→vvj)− π| < |(](−→vvi,−→vvj)− π| (4.10)

Two edges are associated if they are the most aligned in Es.

3. Es+1 is Es without the edges associated in the s step.

4. We go on till (Es) stabilizes.

The re�exivity on the minimal condition induces the re�exivity of Ŝθ.

For instance in Fig.4.4 right: E0 = {1, 2, 3, 4}, 3 and 4 are associated, E1 = {1, 2}, 1 and 2

are associated and the algorithm ends.

Roughly speaking this algorithms tries to minimize the global "torsion" in the set of streets.

Compared to "AT", this algorithm will not produce streets with branches (excepted in very

special cases).

4.4 Tuning and Performances

We have speci�ed AT and MRA with a single angular parameter α. In practice we want

the algorithm to recover the actual streets of a city.

It is hard to access to these information with our data. But in a particular city, their

number can be extracted although not reliable: there are as many streets as there are

di�erent street names in the data base. . We just try to reach the true number of streets.

(AT) and to a lesser extent (MRA) risk producing branched rather straight streets. We

de�ne the branching coe�cient to describe this tendency and seek out to minimize it.

In this section we assess the performances of the algorithms and deduce an optimal tuning

for α from a corpus of N = 109 major French towns: (C1, .., CN ).

4.4.1 Criteria

Number of street recovering

We assume we know for N cities their actual number of streets: T1, ..., TN . Let α −→ fk(α)

the function that associates to an angle α the number of streets one of our algorithm asses
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for the city k. If the algorithm is relevant, the quadratic error

∆2(α) =
1

N

N∑
k=1

(
fk(α)− Tk

Tk

)2

(4.11)

is small. However (Tk) is not accurate because some street segments have a blank "NAME"

�eld. The data base underestimates the number of streets. To get around this problem,

we assume the error in the data base is proportional to the proposed number of streets:

T̃k = (1 + λ)Tk ∀k. The criterion rewrites in function of α and λ:

∆2(α, λ) =
1

N

N∑
k=1

(
fk(α)− (1 + λ)Tk

(1 + λ)Tk

)2

(4.12)

A quick study of the data base permits to assess that 0.1 < λ < 0.7. This can seem

surprisingly high but these blank �elds are above all related to small streets, side-streets,

short paths... ∂∆2

∂λ (α, λ) = 0 leads to a functional relationship between α and λ = λα:

λ(α) =

∑
fi(α)2/T 2

i∑
fi(α)/T 2

i

− 1 (4.13)

and the criterion rewrites only in function of α:

Γ2(α) =
1

N

N∑
k=1

1− fk(α)

Tk.
∑
fi(α)2/T 2

i∑
fi(α)/Ti

2

(4.14)

Branching coe�cient

Let H a hypergraph structure computed from C and h ∈ H a street, seen as an extracted

subgraph of C. The number of branches in h is de�ned by:

ξ(h) =
∑
v∈h

max(dh(i)− 2, 0) (4.15)

To measure the branched aspect of H we de�ne its branching coe�cient from the number

of branches of its streets (see Fig.4.5):

Ξ(H) =

∑
h∈H ξ(h)∑

k>2(k − 2).d◦(k)
(4.16)

If none of the streets is branched, Ξ = 0 and if H is compounded of a single non straight

street, H is maximally branched wit Ξ = 1.

4.4.2 Analysis

For the 109 cities of the data base and several values of the angle α we have calculated

the mean criteria Γ and Ξ. The algorithm is relevant and its angle is good if Γ and Ξ are

minimal. This permits for each algorithm to �nd the best angle and assess the relevance of

the algorithms.
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Figure 4.5: The red solid graph is a street. Its number of branches is 1 + 2 = 3.

AT

The function Γ(α) reaches its absolute minimum in 0. But this value is eliminated since it

drives to an aberrant value of λ. The second best value of the criterion (21%) in reached

around π/5 (Fig. 4.6 top-left). This corresponds to a λ = 0.5 (Fig. 4.6 top-right) which

is coherent with the order of magnitude we expressed when looking at the data base. The

absolute minimum in the branching coe�cient is in average Ξ = 0.15 which is slightly high

but stays reasonable (Fig. 4.6 bottom-right). Fig. 4.6 bottom-left shows the criterion for λ

constant equal to 0.5. With the corrected number of streets the criterion is convex and π/5

appears as a rather good and stable minimum.

MRA

For this algorithm, the function Γ(α) is almost constant equal to 0.2 (Fig. 4.7 top-left). λα
is exponentially decreasing with an asymptotic value of 0.56 (Fig. 4.7 top-right).

But ∀λ ∈ [0, 1] C(α, λ) has an asymptotic minima (when α → π/2, Fig. 4.7 bottom-left).

The choice of λ is hence not clear but for every reasonable value of λ, the criteria is optimized

for α→ π/2.

Conversely λ = 0.56 is stable since almost every angle provides a value of λ close to 0.56:

0.56 ' λα ∀α ∈ [π/5, π/2]

Moreover this is the optimal value we found for λ with AT which is comforting.

ΞMRA < 0.01 = ΞAT /10 (Fig. 4.7 bottom-right) which is very satisfactory: (MRA) almost

does not produce branches.

In fact the found optimal value α = π/2 means that the best tuning of the algorithm is

"angle free". Either the vertex under consideration is a junction or there is at least an

angle smaller than π/2. Consequently the condition on α is relaxed from Sα to S = S≥π/2.

The global minimum is the same for the two algorithms: 0.21 but the branching coe�cient

is much smaller for MRA. Branches in streets are anecdotal when using MRA (one can

appear in a very particular case even if instinctively we would say branches are an impossible

con�guration).

We will in practice use the MRA in its maximal version that does not depend on the angle.
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Figure 4.6: Tuning and performances of the Angular Tolerance algorithm (AT). Top-left: Γ(α),

Top-Right: λ(α), Bottom-Left: ∆(α) for λ = 0.5 and Bottom-right: the increasing of the mean

branching coe�cient Ξ with α.

Figure 4.7: Tuning and performances of the Minimal Reciprocal Angle algorithm (MRA).

Top-left: Γ(α), Top-Right: λ(α), Bottom-Left: ∆(α, λ) for λ = 0.3 to 0.7 (its optimal value) and

Bottom-right: the increasing of the mean branching coe�cient with α asymptotically inferior to 1%
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From ↓ to → Space Adjacency matrix Incidence list Adjacency list Mixed

Adjacency matrix O(V 2) - O(V 2) O(V 2) O(V 2)

Incidence list O(V + E) O(E) - O(E) O(E)

Adjacency list O(V + V.d̄G) O(E) O(V.E2) - O(V.E2)

Mixed O(V + V.d̄G + E) O(V ) O(1) O(1) -

Table 4.1: Storage size of each structure and the complexity of the algorithm converting a

structure into another.

4.5 Computational implementation

In this section we present the way one can code a city graph on a computer and discuss the

e�ciency of various structures from the complexity of essential algorithms on graphs. It ap-

pears that the incidence list is the best compromise between storage size and computational

complexity of common algorithms. We review classical algorithms (connected component,

shortest path distances) and propose an e�cient algorithm for the new problem of deriving

an hypergraph from a graph. A crucial remark to legitimate the hypergraph structure in

6.3.2 will be that the point to point shortest path problem is solved in ]V 2 or ]V log ]V for

a weighted graph and in ]V for an unweighted graph.

4.5.1 Structures

A straight graph is totally de�ned by the positions of its vertices and its adjacency matrix.
Nonetheless the adjacency matrix is sparse and thus is not e�cient in terms of storage space.

We can use an incidence list representation to overcome this di�culty. Vertices are stored

into an array or list with two columns and as many lines as there are vertices and edges into

an other one with two columns, each one containing a reference to the extremities.

Another structure which is redundant but e�cient is the adjacency list. To each vertex v

is associated the list of vertices adjacent to it V (v).

The last structure we use is mixed: it contains a vertices array, an edge array and for

each vertex v the list E(v). A hypergraph can either be represented by an additional array

containing for each edge a label or a list of edges for each hyperedge. The incidence list is

in general the best compromise between storage size and e�ciency in algorithms. The table

Tab.4.1 sums up the size of each structure and the complexity necessary to pass from one

structure to another. The following paragraph lists the common algorithm we have to deal

with in our framework. In most of the cases incidence list is an e�cient structure and when

it is not the case, the cost to convert that structure to a more e�cient one is negligible.

In the following we write for an hypergraph G = ((V,E), H), V = ]V , E = ]E, d̄G the

mean degree in V and H = ]H. As an order of magnitude, 500 ≤ V ≤ 20000, d̄G ' 2.5 and

thus E and V are almost the same, H ' V/10.
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4.5.2 Algorithms

Here are the most important algorithms we will have to handle.. We present them in

pseudo-code and calculate their complexity with the adapted structure.

Find the vertices adjacent to a vertex and Find the edges passing through a
vertex These trivial problems are solved in O(E) with an incidence list by looking at the

extremities of each edge. An adjacency list permits to do the task in a constant time but

the structure conversion is O(E).

Get n random points on the graph To compute integral numerically along the street

system with µG, it is necessary to sample randomly the map in n independent points. This

can be done with incidence list in O(nE):

Algorithm 2 Random points on a geometrical graph

1: INPUT Graph G = (V,E), Number of Points n

2: vector CumLength size E CumLength(i) =
∑

j≤i ||ej ||
3: L = total street length

4: for i=1 to E do
5: u= Uniform Random Number in [0L]

6: e= argmin(CumLength(ei) ≥ u)
7: Vertices v1, v2 = extremities of e

8: λ = Uniform Random Number in [0, 1]

9: OUTPUT(i) = λ.v1 + (1− λ)v2

10: end for

An edge is chosen at random with a probability proportional to its length. Then a number

λ between 0 and 1 is uniformly picked and the resulting random point is the barycentre of

the edge's extremities weighted by λ and 1− λ.

Compute the connected components of a graph When importing a map, it is neces-

sary to erase some disturbing detached edges. To this we compute the connected components

of the whole graph and only keep its largest class of equivalence. This is done linearly in

time with a mixed structure or in O(V.E) with an incidence list.

The idea is to take a vertex at random, to give it a label 1 and to spread the same label to

its neighbours and then to the neighbours of its neighbours... The successive neighbours are

stored in a FIFO, when it is empty the algorithm increments the label and re-starts from

the �rst vertex non-labeled it �nds.

Compute the shortest path distance between all pair of vertices We want in a

�rst time �nd the shortest path distance along the street system for any couple of vertices.

A classical and very simple to understand algorithm is the Floyd Warshall's algorithm: The

time complexity is O(V 3) and the storage capacity is O(V 2). There exist some modi�cations
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Algorithm 3 Connected components of a graph

1: INPUT Graph G = (V,E)

2: Component = Vector size V initialized to 0

3: Visited = Vector size V initialized to false

4: FIFO Current = [V (1)]

5: Visited(i) = true

6: currentLabel = 1

7: while (not(isvoid(Current))) do
8: Vertex v = dequeue(Current)

9: Component(v) = currentLabel

10: N = {w ∈ V (v), not(Visited(w))}
11: Visited(all in N)= true

12: Current = queue(Current , N)

13: if isVoid(Current) then
14: Current = [argmin {i, Component(i) = 0} ]

15: currentComp ++

16: end if
17: end while

Algorithm 4 Floyd Warshall's algorithm for all shortest paths in a positively weighted

graph

1: INPUT Adjacency Matrix A size V × V
2: Matrix Distances size V × V
3: Each element in Distances =∞
4: If A(i,j)=1 then D(i,j)=1

5: Each diagonal element in Distances = 0

6: for k=1 to n do
7: for i=1 to n do
8: for j=1 to n do
9: Distances(i, j) =min(Distances(i, j), Distances(i, k)+Distances(k, j));

10: end for
11: end for
12: end for

of this algorithm providing a time complexity ofO(V 2 log V ) but they are much more di�cult

to implement.

Given two vertices, their single shortest path can be found in O(V log V ) by the Dijkstra's

algorithm using appropriated structures.

For two random points x and y on the graph we can adapt the previous algorithms by

remarking that:

dspC (x, y) = min
ex∈E(x) , ey∈E(y)

{dspC (ex, ey) + ||ex − x||+ ||ey − y||} (4.17)

For an unweighted graph, this can be done much more e�ciently: in O(V ) for a particular

couple of points and in O(V 2) for every pair. We will see it is a primordial element that
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Algorithm 5 Dijkstra's algorithm for the point to point shortest path in a positively

weighted graph

1: INPUT Graph G = (V,E), Vertex start, Vertex end

2: Vector currentDistances of size ]V initialized to ∞
3: currentDistances(start) = 0

4: for all v ∈ V (start) do
5: currentDistances(v) = d(start, v)

6: end for
7: while ∃x ∈ V | currentDistance(x) =∞ do
8: v1 =argmin(currentDistances )

9: for all v2 ∈ V (v1) do
10: currentDistances(v2) = min(currentDistances(v2),currentDistances(v2) +

d(v1, v2))

11: end for
12: end while
13: OUTPUT currentDistances(end)

makes the hypergraph structure appealing in the next section.

The idea is again to explore progressively the neighbourhoods of a vertex with a FIFO (or

a Stack).

Algorithm 6 Point to Point shortest path in unweighted graphs

1: INPUT Graph G = (V,E), Vertex v1, Vertex v2

2: Vector Distances of size V each element initialized to ∞
3: FIFO Current = [v1]

4: FIFO Next = []

5: CurrentDistance= 0

6: while Distances(v2) =∞ do
7: for all v ∈ Current do
8: Distances(v) = CurrentDistance

9: Next = Next ∪{w ∈ V (v)Distances(w) =∞}
10: end for
11: Current =Next

12: Next = []

13: CurrentDistance ++

14: end while

If the graph under consideration is a small-world (the mean shortest path length scales as

the logarithm of the size of the graph, we will be more rigorous on this de�nition in 5.3 and

App.B) , we can show the algorithm solves the point to point problem in log V is in average,

the point to all other points in V .

We note nvi the number of vertices at a distance i of a the vertex v. To �nd the distance

to v of a vertex at a distance i, it is necessary to explore
∑i

j=0 n
v
j vertices. We write M(v)

the maximal distance to vertex v. The diameter D(G) of the graph is the maximum of

M(v), α(G) is the mean shortest path distance between two random vertices. If the graph
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is small-world, D(G) and α(G) are O(log ]V ) (see 5.3 for the relations between average,

radius and diameter). The total time to �nd independently all the shortest paths is

M(v)∑
i=0

i∑
j=0

nvj =

M(v)∑
i=0

(M(v)− i)nvi (4.18)

= M(v)]V − E(dsp(v, .)) (4.19)

Thus the expectancy of complexity for the shortest path distance between a random vertex

and an other is

1

(]V )2

∑
v∈V

(M(v)]V − E(dsp(v, .))) ≤ D(G)− α(G)

(]V )2
(4.20)

= O(log ]V ) (4.21)

If this algorithm does not work with general weighted graphs it is because of loops and

branches: it is impossible to explore progressively the increasing neighbourhoods, a vertex

can be in a remote neighbourhood but close because of weights in the path linking it to the

source vertex.

Nonetheless the algorithm can be easily adapted for weighted graphs that present no branches:

"line graphs". This may seem a too restricted class of graph to be interesting but we will see

in Ch.6 it is a very important preamble for our Cab Driver's Algorithm that approximates

shortest path problem in a logarithmic time.

Algorithm 7 Point to Point shortest path in weighted line graph

1: INPUT Graph G = (V,E), Vertex v1, Vertex v2

2: Vector Distances of size V each element initialized to ∞
3: Distances(v1) = 0

4: FIFO Current = [(v1, ∅)] . FIFO of tuples vertex - vertex, the second vertex is the

previous vertex in the path from the source v1 to the current vertex.

5: FIFO Next = []

6: while Distances(v2) =∞ do
7: for all (v, u) ∈ Current do
8: Distances(v) = Distances(v) + d(u, v)

9: Next = Next ∪{(w ∈ V (v)Distances(w) =∞, v)}
10: end for
11: Current =Next

12: Next = []

13: end while

Compute an hypergraph Both algorithms (AT) and (MRA) can be implemented within

the same skeleton by encapsulating two functions "Relation" with a Boolean output, taking

as parameters a vertex v, the set E(v) and two distinct elements of it. The algorithm divides

in two steps: (1) determine local relations between segments (2) transform this relation into

equivalence classes by using Eq. 4.4. In the following code we mix up objects and their
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Algorithm 8 Hypergraph Computation

1: Input Graph G = (V,E)

2: Vector H of size E

3: Array of Sets Connection size E

4: for all v ∈ V do . Step 1: local relationship

5: Neighbours = E(v)

6: for 1 ≤ j < k ≤ ]Neighbours do
7: e1 = Neighbours(j)

8: e2 = Neighbours(k)

9: if Relation( v, e1, e2, Neighbours) then
10: Connection(e1, next index available) = e2

11: Connection(e2, next index available) = e1

12: end if
13: end for
14: end for
15: CurrentStreetMark = 1 . Step 2: global propagation of the relationship

16: for all e ∈ E do
17: if H(e) = 0 then
18: stack = [e]

19: while notEmpty(stack) do
20: current = pop(stack)

21: H(current) = CurrentMark

22: push(stack, {f |f ∈ Connection(current), H(f) = 0})
23: end while
24: CurrentMark ++

25: end if
26: end for

index in an array. With plain graph structure, the complexity is O(V × E) (Step 1) and

O(E) (Step 2) thus globally in O(V 2). With an adjacency list (calculated in O(E)) Step 1

becomes 0(V ) and the whole algorithm is O(V ).

4.6 Conclusion

In this chapter we have presented a proper mathematical framework and its optimized

implementation to work on city maps. We will use this formalism in the next chapters. It

is theoretically relevant, allows physical interpretation of measures such as centralities. One

of the success of this chapter will be presented in Sec.6.3.2 with the Cab Driver's Algorithm

that will use all the knowledge and formalism of the �rst chapter of this thesis to approximate

the shortest path problem in a map in a logarithmic time, using an hypergraph structure as

an intermediary.
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Phenomena: Synthesis
Both by their global shapes and the structure of their street network, cities exhibit a

large diversity. This diversity is sometimes interpreted as the expression of the human

freedom and creativity. Nonetheless, we can measure some general features on cities' map

and interpret them as hallmarks of the functional constraints that build cities. In the

next chapter we will attempt to show that in fact these hallmarks can be explained by

some emerging phenomena.
It has been shown in the literature that the area of cells in a city follows a power law

distribution. We show here that the length of street is log-normally distributed,
that the street graph (or hypergraph) of a city exhibits a small-world behaviour
and that Euclidian and Shortest path distances in a city dominate each other.

Contributions of this chapter

1. Street length scales as a log-normal function, at least for the 109 French towns under

study.

2. Street hypergraph exhibits a small-world behaviour, rigorous de�nition of this notion

in the context.

3. Relation between Euclidian and shortest path distances in cities.



5.1. RETURN ON PHENOMENA DESCRIBED IN THE LITERATURE 81

5.1 Return on phenomena described in the literature

The literature presented in Ch.1 has pointed out some phenomena occurring in the urban

context. The most well known is the hierarchical repartition of resources in a system of cities

induced by the Zipf's law [138, 120]. This is a multi - city scale phenomenon in a polycentric

system. If the empirical �tting of data by a power law may be statistically contestable, the

main idea is relevant: the distribution of a "measure" of city size is scale invariant, with

a very few big entities and a lot of small ones. This can be explained by a preferential

attachment model: the bigger a city is the more it tends to attract new resources created

in the whole city system.

At a single city scale, [40] shows that the radial distribution of resources follows an expo-

nential law. This result can be challenged considering the measurement tools that were

available in the 50's when was written the article. More recently [30] proposed to model

this distribution by an exponential, a power law or a Gaussian. In short, resources tend to

decay with the distance to the gravity center. At the same time, a large body of literature

[11, 51, 52, 53, 123] points out the fractal organization of a city. This is coherent with the

hierarchical distribution of sizes in a city systems. In fact it is the geometrical formulation

of the hierarchy principle on the di�erent parts of the city itself. But a city is compound

of a few scales only. We will only remember from this theory that a city presents several

scales on its street system and the boundary of a city is not a simple shape and is di�cult

to de�ne objectively: there is continuity between the city an its countryside.

The network has been studied from a functional point of view in [74, 114, 33, 105, 106]. The

main conclusions are that on the plain graph of a city's map there are no very noticeable

phenomena. The topology is very constrained by the planarity of the graph, the associartiv-

ity is trivial and the robustness of the network is quite variable according to its structure

but remains as classical as other planar networks [34]. Emerging phenomena seem to appear

not on the map or "primal graph" but on the "dual" (street) graph, that is to say the graph

that represents the relationship between streets or axes. An interesting result relative to

the distribution of cells in a street network has been found in [79]. The distribution of cell

area approximately follows a power low with exponent 2. We do not have easily access to

cells statistics with our data base. We consider this result as true and will try to mimic it

in the models we present in Ch.8. A model based on addition and connections of centers is

built in [8]. This model also reproduces other topological statistics the author presents in

the beginning of its articles.

Here we will observe two phenomena occurring on the street hypergraph: the street length

repartition follows a log normal law and the dual graph present somewhat of a small-world

behaviour. We will prefer to use the expression "hypergraph" to designate the graph ob-

tained by considering streets as vertices and their intersections as edges.
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5.2 Street scaling

5.2.1 Empirical street length �tting

In a city, there are long streets assuring an e�cient transportation system and small streets

let us say "densely" distributed to provide habitation space. We thus expect that the

distribution of street lengths L exhibits a wide range of values or scales logarithmically.

Fig.5.1 plots the distribution of the logarithm of street lengths (derived from (MRA) but

the result is robust with other methods) in the French city of Amiens. The global shape

of this histogram suggests two maxima and two (di�erent) normal tails. We assume that

logL follows a mixture of two Gaussians (or similarly that L follows a mixture of log-normal

laws):

logL ∼ p−.N (m−, σ−) + (1− p−).N (m+, σ+) (5.1)

with m− < m+. The identi�cation of this model has been performed with an Expectation

Maximization algorithm. Other cases show that the multi log normal distribution is robust

Figure 5.1: The distribution of the logarithm of street lengths in Amiens (France). The red

curve it the �tting of this distribution by a mixture of two Gaussians.

even if it is possible to observe one or two maxima. For our whole data base of French

towns we calculated a bi-normal �tting of L and calculated the p-value of this �tting from

a Kolmogorov - Smirnov test: "L follows a mixture of two log normal laws" against "L does

not follow a mixture of two log normal laws". We have chosen this test rather than a Chi-2

for its robustness to distribution supports which is an important requirement when testing

heavy distribution tails. Theoretical considerations and a discussion on the choice of this

test can be found in 5.2.3.

In Protocol 1 we have for each city calculated the best parameters with an EM algorithm

and calculated the p-value of L follows a mixture of two log normal laws with these estimated

parameters" against "L does not follow a mixture of two log normal laws with these estimated

parameters, as often done in the literature. Nonetheless the statistics of the test is changed

if parameters are estimated with the same data as used for the test.

We built a second protocol: since Kolmogorov -Smirnov is relevant from 100 samples and

our cities typically contain 500 to 1000 streets, we randomly divide each length distribution
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in two parts, used one to estimate parameters and the other to perform the test. The

estimation and the test are done with less data and are then less accurate. Results for both

methods are summed-up in Fig. 5.2. The hypothesis is as relevant as the p-value is close to

Average Min Max > 0.05 > 0.1

Protocol 1 0.75 0.042 1 99% 98%

Protocol 2 0.32 1.9× 10−4 0.98 77% 70%

Figure 5.2: Main characteristics of the p-value distribution for the test "the distribution follows

a mixture of log-normal" in 109 French Cities. Protocol 1 estimates parameters and performs a

Kolmogorov -Smirnov test with the same data. Protocol 2 used the (randomly chosen) half of the

streets to assess parameters and the other half to perform the test.

1. Traditionally one considers that the hypothesis cannot be rejected if p-value> 0.1.

The �rst protocol shows a really impressive p-value of 0.75.

Let's focus on the second method. It is theoretically valid but needs randomization. From

a realization to another the p-value of a particular city may highly change but the average

p-value remains between 0.3 and 0.4. In 77% of cases the hypothesis is not rejected and in

average the p-value is 0.32 which is quite high: if with a p-value of 0.1 one cannot assert

the hypothesis is false, it begins to be true when the p-value is above 0.3.

5.2.2 Interpretation

Log-normal laws are common in nature [77]. They appear in concentration of elements,

latency periods of disease, rainfall, permeability in plant physiology... They are characteristic

of multiplicative processes. We then could think that a city shapes itself by dividing in

smaller blocks former blocks. This would lead to consider the city is the result of a division

process. [124] recalls that for isotropic planar tessellations stable under iteration the length

of the typical "I segment" (a street) is long-tailed but the result is not a log-normal. It is

necessary to add another phenomenon to get the log-normal distribution.

This could be the consequence of the extension of the city: people have a typical trans-

portation length: λ. They accept to settle in a place where they have access to a constant

volume of resources at a distance smaller than λ. Then when they cannot further divide

blocks they place at the exterior of the city into larger blocks.

To come to bimodality: this one does not appear clearly on each city. A social science

explanation is the succession of several transportation modes along time or that several

populations built the city with two di�erent policies (inhabitants and industries for instance).

We do not have the material to discuss deeply this observation but we would rather incline
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toward the intrinsic hallmarks of the duality between division and extension of space when

a city grows.

5.2.3 Recall on Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is a non parametric statistical test. Let f be a continuous

density of probability and (x1, ..., xn) n samples. We want to measure weather theses samples

could have been generated by real random variables of density f . We test H0: "(x1, ..., xn)

are independent samples from random variables following f" versus H1 = H̄0.

Let F (x) =
∫ x

f(t)dt the "theoretical" distribution function associated to f and Fn(x) =

]{xi ≤ x, 1 ≤ i ≤ n} the "empirical" distribution function of the samples. One creates the

statistics

Dn =
√
nsupx|F (x)− Fn(x)| (5.2)

Since {xi} is �nite, that supremum can be calculated as a minimum. Under H1, Dn → ∞
but under H0, Dn → K = sup[0,1]|B(t)| (in distribution) where B is the Brownian bridge.

The distribution function of K is known:

P(K ≤ x) = 1−
∞∑
i=1

(−1)i−1e−2ix2
(5.3)

Thus for the measure Dn it is easy to compute the p-value of the test : P(K ≥ Dn). In our

case (a Gaussian mixture), the theoretical repartition function F writes simply in function

of the function erf. We have preferred a KS-test rather than a χ2 test since:

1. The test is independent of the choice of bean size in an histogram

2. The test is robust toward the support of distribution. Indeed χ2 assumes there is a

reference compact interval on which is calculated the di�erence between theoretical

frequencies and measured ones. This interval is generally chosen with min and max

observations as boundary and this tacitly introduces a lot of information into the test.

Nonetheless, contrary to χ2 test, there is no general variation of KS test that permits to test

adequacy when parameters have been estimated from the data used to perform the test. We

could have used boot strap methods to overcome this di�culty. But the implementation

was not realistic for the �ve free parameters. Since we had numerous data for each city,

we decided to randomly cut these data into two sets: one to assess parameters and one to

perform the test.
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Figure 5.3: On the left, a city graph with its streets A,B,C,D,E forming the hypergraph H. On

the right the representation of H as a graph: each street label is now a vertex and an edge is

drawn between two of them if the street intersect in the geometrical projection of the city graph.

5.3 Small World e�ect

5.3.1 De�nitions

Let G a city with H an hypergraph structure over it. Let us call topological distance of H

the function dtopoH : H ×H −→ N that satis�es:

dtopoH (h1, h2) =

{
0 ifh1 = h2

min
h∈H,h∩h2 6=∅

dtopoG (h, h1) + 1 otherwise (5.4)

The topological distance counts the number of times one needs to turn to go from a street to

another one. H can be naturally seen as another graph we still write H with an adjacency

matrix H. The hyperedges become vertices and an edge between two vertices is drawn only

if the two associated hyperedges meet in G (as geometrical subgraphs). dtopo(h1, h2) is then

simply the shortest path distance between h1 and h2 in the unweighted graph H with the

shortest path matrix H∗ (Fig.5.3) .

The topological average distance of a street h0 is :

1

]H

∑
h∈H

dtopo(h, h0) (5.5)

A central street would be a street that minimizes the previous sum.

One drawback of this wholly topological de�nition is that, since topological distances are

integers, several streets can be de�ned simultaneously as central streets. Common sense

would then be to take all of these streets as simultaneous central streets, and to calculate

the distance of any street as the minimum of the distance to any of these streets to de�ne

the notion of distance of a street to the center of the city.

Another way is to weight with the street lengths:

d̄topoC (h0) =
1

µC(C)

∑
h∈H
||h||.dtopo(h, h0) (5.6)
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(||h|| is the length of the street h). This de�nition has an interesting interpretation: if x

is a point on h0 and if Y is a uniformly chosen point on C (with respect to µC(.)), then

the expectancy of the number of turns to do to go from x to Y is d̄topoC (h0). Based on

this observation, we de�ne for the whole hypergraph H an average topological distance
coe�cient for a city: α that is the mean number of turns to do to go from a random

point to another in the city. It represents the "inverse of the e�ciency" of the city.

α(H) =
1

µC(C)2

∑
h1,h2∈H

||h1||||h2||.dtopo(h1, h2) (5.7)

If L is the vector containing the length of streets, α(H) writes as a bilinear form:

α(C) =
1

µC(C)2
tLH∗L (5.8)

A street that minimizes d̄topoC (.) is unique if the network is not too regular (like a square

lattice). It is called the center of the city hC . The topological distance of streets to the

center of the city constitutes the topological map of the city and can be represented with

color scales as for the city of Amiens and its central district in Fig.5.4.

The topological radius of the city is then de�ned by

rC = max dtopoC (h, hc) (5.9)

and its diameter by :

diamC = max
h1,h2∈H

dtopoC (h1, h2) (5.10)

In an evident way,

rC ≤ αC ≤ diamC ≤ 2rC (5.11)

In Amiens, the topological center appears to be a part of its highway-belt. In Fig.5.4 we have

plotted the distance of each street to the topological center. This map gives a hierarchical

vision of the space. There is no radial component of the increase of the topological distance:

a scale of long streets serves the whole city, allowing the variation of the topological distance

to be mainly local.

Added to that the topological radius of the city grows very slowly with the size of the city

(14 in the center of Amiens, 18 in the whole city that is eight times bigger).

5.3.2 Observations

More generally we would not be surprised to observe a Small World behaviour in H. A

graph exhibits a Small World behaviour (see [1, 98, 23] or App.B for more details) when

the average path length between two random nodes is very small compared to the number

of nodes in the network. The problem is to de�ne properly the notion of "small". In

a dynamical context, when the number of nodes Nt and the average path length Pt are

functions of time, "small" is when Pt ≤ O(logNt).

We consider a set of cities of total street length (size) Li and of average topological distance

αi. Fig.5.5 represent the relation between logLi and αi in our data basis. This scatter plot
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Figure 5.4: The "topological maps" of Amiens (left) and of its central district (right). In each

map, the red street is the topological center and the color of each street refers to its distance to

that center. The maximum distance to the center is the radius of the map (18 in the whole city

and 16 in the center). It is striking that this radius increases slowly with the size of the considered

street system. We can even infer that the construction of surrounding highway belt (the found

center) is made precisely to keep the topological radius of the city small. The XIXth century

boulevard is a aside structuring element of the city and thus has become a historical center for the

core of Amiens.

is �tted by a line whose slope of 1.0086 is very close to 1. For the sake of simplicity we have

�xed the slope at exactly 1 and redone a median �t to �nd a robust gap at the origin. Then

for a city of size L, the expected average topological path distance is (de�ned as):

αth = log
L

L0
, L0 = 0.905.103m (5.12)

One would say the points in Fig.5.5 are quite dispersed around the �tted line. Indeed but

the important thing is that the order of magnitude of α is the same than logL. And the gap

∆ between αth(L) and the observed αobs is an information on the e�ciency of a particular

city relatively to an average city independently of its size Fig.5.6.

∆ = αobs − log
Lobs
L0

(5.13)

We have chosen to de�ne ∆ from the theoretical e�ciency function of Lobs rather than from

the line of Fig.5.5 since this way ∆ appears more like an additive noise.

If ∆ < 0 as for Boulogne-Billancourt and Lyon, the city is more e�cient, if ∆ > 0 as for

Digne-les-Bains, Gap, Nantes and Mende the city is less e�cient.

In Fig.5.7, we represented for each city the ratio between its diameter and its radius. This

ratio lies theoretically between 1 and 2. If the ratio is 2 as in Amiens, Annecy, Belfort,

Bourges, Colmar, Evreux, Le Mans, Levallois-Perret, Tarbes, Troyes, Vannes and Villers-

sur-Mer, the city is called "centralized": the topological distance to go from a point to

another is the same than to go from the �rst point to the center and then to switch to the
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Figure 5.5: For the 109 French towns of our data basis, in blue, the mean topological α distance

between two points in a city in function of the logarithm of total street length (as a measure of the

size) of the city. The equation of the red line is y = x− 6.8079.

Figure 5.6: The shift ∆ between the measured mean e�ciency of a city and the expectancy

according to the total street length from Eq.5.12. Toward this criterion, cities with a negative ∆

are more e�cient and these with a positive ∆ are less e�cient. The x-axis corresponds to the

name of each city in our data base ordered by alphabetic order (ID). We have chosen this x-axis

since ∆ is uncorrelated to the length of streets.

second point (even if the "centre" is a surrounding boulevard or highway). The city center

is a necessary passage point.

Conversely if the ratio is smaller as in Angers, Carcassonne, Chaumont or Dax, the city

is "with distributed resources": it is not necessary to pass through the center to displace,

there exist e�cient streets everywhere in the city.

5.3.3 Discussion

In Eq.5.12 de�ning the theoretical e�ciency of a city, L0 can be considered as a typical

street length, which could depend on the culture of the country and the age of the city

system under consideration. In France, this typical length has the order of magnitude of

the kilometre. But what is amazing is that the factor in front of the logarithm is almost

exactly 1 which means that the phenomenon expresses in the Neperian basis.
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Figure 5.7: The topological radius vs the topological diameter of the cities in our data basis. By

de�nition radius ≤ diameter ≤ 2.radius. If diameter ' 2.radius, the city is "centralized": to move

from one point to another, a person needs to pass through the center of the city; contrary to that

is diameter < 2. radius, there often exist an e�cient path from a point to another that does not

pass through the topological center of the city: we will say the city has "distributed resources".

The x-axis corresponds to the ID of each city in our data base.

We are tempted to explain this small world behaviour by an underlying scale-free behaviour

on the degree of streets. Nonetheless even if in Amiens and its center (Fig.5.8) the degree

function looks like a line, the range is not wide enough to claim a scale-free behaviour.

Then we will content ourselves to note a hierarchical distribution of streets that is strongly

correlated with the street length and leads to a small-world behaviour all the same. There

are long streets creating a upper scale that desert the city area, to which connect smaller

streets. We also note that the street graph is not transitive: streets do not form triangles

which has for consequence that the robustness of the street system is very sensitive to

strategic attacks.

5.4 Distance transformation

Several distances can be de�ned given any pair of points x, y ∈ C. The most natural are the

Euclidian or �y-bird distance: de(x, y) = ||x−y|| and the shortest-path distance with respect
to the streets network dspC (x, y). To observe the distribution of de, dsp and their correlation,

we randomly sampled Amiens with respect to the probability measure µC(.)/µC(C) over

5000 couples of points S = (Xi, Yi). It is noticeable that distributions of d
e and dspC have the

same global shape (Fig.5.9-c) and that conditionally to de, dspC is localized around a value

close to a constant plus de (Fig.5.9-b) as if dspC could write α.de + β (Fig.5.9-a).

The conditional distributions look like normal distribution and the global distribution of

distances could be �tted by beta laws converging to Weibull laws when the observation

window is large enough.

Note that a priori the proportionality coe�cient depends on the global shape of the city. In

a city dense enough, relatively homogeneous, with no evident ill deserved zones, Euclidian

distance between two points is a good order of magnitude of the shortest path distance.
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Figure 5.8: Log-Log plot of the street degree distributions in Amiens (red triangles) and its

center (blue points). The scatter plots can be �tted by lines but the variation of street degree is

not su�cient to speak of scale-free distributions.
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Figure 5.9: The distribution of dsp conditionally to de. The colormap shows P(dsp|de).
Probabilities have been truncated at 0.2 get a better color dynamics. The white line is the �rst

bisector. The second graph shows the probability distribution of dsp for di�erent values of de.

Curves have pretty much the same global shape with a variance increasing with de. The last plot

C shows the repartition of Euclidian and Shortest Path distances through the city, the two

resulting histograms have the same shape, Shortest Path distance is Euclidian distance translated

slightly and dilated.
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Map Description and analysis : Synthesis
We present here a few parameters allowing describing and comparing the shape of maps:

size, topology, anisotropy, compactness, e�ciency. We rede�ne in our mathemat-

ical framework the notion of centrality. We study two classical centralities and compare

them to a new one we propose: the simplest centrality.
It is based on the average topological distance between streets. We compare its capacity

to interpret a map, detect ill deserved zones and main axis and its time complexity with

the classical centralities.

We justify a posteriori and a priori its consistency and relevance. We propose to interpret

this centrality as the approximation of a stationary �ow of displacements.

We propose a new algorithm to solve the point to point shortest path problem: the Cab

Driver's Algorithm that approximates the solution in a logarithm time.

Contributions of this chapter

1. De�nition of a few description parameters: size, anisotropy, topology, compactness,

e�ciency.

2. Rede�nition of centrality in the city graph framework.

3. De�nition of the simplest centrality and comparison with classical centralities. Sim-

plest centrality presents a more coherent hierarchical view on the city, putting in

light main axis, ill deserved zones. It is boundary e�ects free. Furthermore it is

much faster to run.

4. A priori mathematical justi�cation for simplest centrality.

5. Logarithmic algorithm for point to point shortest path on city maps: the Cab

Driver's Algorithm.
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6.1 Topological and Geometrical descriptors

Bettencourt et Al. have statistically shown in [19] that every macroscopic measure of the

"size" of the city writes as a power function of another measure of the size. Here we only

get interested to the measures that only depend on the extracted city graph of a map

G = ((V,E), H)).

6.1.1 Size of a city

In complex network theory, the measure of the size of a graph is naturally its number of

vertices. The number of vertices is similarly taken in [33, 73, 74, 35] as the measure of the

size of the city when looking only at its map.

But this measure can be largely biased by the arti�cial number of degree 2 vertices as said

in Ch.4 and observed in Fig.6.1. One possibility is to remove these nodes. The number of

vertices does not take into account the scale of the city: for instance picture a city only

constituted by a a very long street compared to a city made of four little streets forming

a square. From the number of vertices point of view, the second city is the biggest but in

fact, the �rst one gathers more resources. The total length of streets in the graph µG(G)

measures the intrinsic size of the city.

6.1.2 Topology

Let N(k) = ]{v ∈ V,N(v) = k} be the number of vertices of degree k in G and N̄(k) =

N(k)/
∑
N(i) be their mean number. As said above, the set V2 (junctions) should not

be taken into account since it only represents sampling artefacts to preserve the shape of

streets. In [33] the histogram of N is studied by means of an exponential tail of distribution.

Nonetheless, this distribution Fig.6.1 is very peaked in 3 or in 4. It is thus su�cient to

describe the histogram N by the organic ratio:

rN =
N(1) +N(3)∑

j 6=2N(j)
(6.1)

This allows to discriminate quickly whether the city had been planned or not. Indeed a

planned city is �lled with a homotopy of a rectangular grid (only N̄(4) 6= 0 leading to

rN ' 0 in the limit case). This grid is clearly useful to settle buildings but also sticks

to human perception of space since we have the intuition of left - right / front - behind.

Higher order connections are also characteristic of planned pattern creating radial places

on purpose. In unplanned or organic cities i.e. created by the interaction between non

concerted settlements, there is little probability for streets segments to be coherent and so

the largest number is N(3) with also some dead-ends leading to rN ' 1. This parameter we

have introduced is thus a very simple measure of the degree of planning or organicity of the

city.

Following [35] we characterize the topology of a city by its "meshedness coe�cient". It's

easy to count ]V and ]E then the number of cells, ]C is deduced from Euler's formula.
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Figure 6.1: The histograms of degrees' distribution in Amiens (whole city and center). We

observe that both distributions are peaked in 3 even in the more regular city centre, where the

number of connections 4 is still half. The large number of 2 comes from straightening, especially in

the suburb curved streets and should not be taken into account.

Given V , the maximum number 2.]V − 5 of faces is obtained by the Greedy Triangulation

algorithm [35]. So the quantity M = (]E − ]V + 1)/(2.]V − 5) equals to 0 if the city is a

tree and is close to 1 if it is a highly connected graph. For real cities [74]M typically ranges

between 0.08 and 0.35.

To be coherent with our preceding remark we should not take junctions into account. It has

no incidence on the numerator: ]E − ]V is constant but we have to change 2.]V − 5 into

2.]V.(1− N̄(2))− 5

M3 =
]E − ]V + 1

2.]V.(1− N̄(2))− 5
(6.2)

M3 is quite small because of the general lack of triangles in the topology of a city contrary

to a greedy triangulation network. As a trapezoid contains two triangles, we rescale it in

M4 = 2M3 whose maximum is hit when the considered city contains the maximal number

of trapezoids. We thus modify the meshdness coe�cient of [35] to take into account the lack

of meaning of junctions and the lack of triangles in actual cities.

Amiens appears as an "average" organic city, with a meshedness coe�cientM4 of 0.41 (0.54

when restricted to the center) and rN = 0.79 (0.68 in the center).

6.1.3 Anisotropy

In order to grant an e�cient access to physical resources, the street system locally tends to

be perpendicular locally to structuring elements as for example rivers or older streets (as

explained is Ch.2). Then a city is not "isotropic" but generally presents two main directions.

Although everybody agrees that a city is anisotropic, we have found any de�nition of

anisotropy in the literature or a way to measure it. The measure we have introduced in

Ch.4 allows to de�ne rigorously this instinctive notion.
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Figure 6.2: Angular distribution of Amiens (top left : whole city - top right : center). We notice

on both distributions an approximate four-fold symmetry. The doubled angular distributions

(bottom) look like ellipsoïds which allows to de�ne the anisotropy coe�cient as the ratio of the

eigenvalues of the inertia matrix: Ani = 0.42 in the whole city and Ani = 0.71 in the center.

Let ~u0 ∈ R2 be an arbitrary vector, taken as an angular origin. For angle α ∈ [0, π] we want

a measure of the "total length" of streets in G that are oriented in directions [0, α]:

Ψ∗(α) = µG (g ∈ G, ](g, ~u0) ∈ [0, α]) (6.3)

where ](., .) is the angle measure between two vectors in [0, π]. In the special case of straight

graphs, the impact of each street-segment is proportional to its length. From this, we de�ne

the angular density by

Ψ(α) =
dΨ∗(α)

dα
(6.4)

The drawing of Ψ reveals the anisotropy of the city graph (Fig.6.2). For an isotropic city,

the angular density ΨI would be a continuous and uniform density ΨI(α) = 1
π .

We notice a fuzzy four-fold symmetry as the result of local street perpendicularity. It would

be useful to sum up the four-fold symmetry of this angular density as a single normalized

indicator. We looked for a bound distance measure between Ψ and ΨI .

Since the angle is de�ned modulo π, we can "fold" Ψ : Ψ(2)(θ) = Ψ(θ)ei2θ −
∫

Ψ(u)ei2udu

The observed distribution Ψ is discrete because of the limited number of streets segments,

measures like
∫
|f − 1

π |
n highly depends on the size of the bean chosen to estimate the

integral.

The inertia matrix ( ∫
Re(Ψ(2))2 −

∫
Re(Ψ(2))Im(Ψ(2))

−
∫
Re(Ψ(2))Im(Ψ(2))

∫
Im(Ψ(2))2

)
which is symmetric and positive (from Cauchy-Schwartz's inequality) with two eigenvalues

λ1 > λ2 this allows us to de�ne

Ani = 1− λ2

λ1
(6.5)



98 CHAPTER 6. MAP DESCRIPTION AND ANALYSIS

as an anisotropy coe�cient.

For Amiens, its anisotropy coe�cients varies from 0.42 in the whole city to 0.71 in the center.

This corresponds to the visual impression of Fig.6.2. Indeed the historical grid-like Roman

center of the city has diluted with distance and time to a more isotropic radial distribution

of resources.

6.1.4 Density, Compactness

We propose here an easy to calculate indicator that expresses in the same time the com-

pactness of the city's shape and of its street system.

Let A be the area of the convex hull (App.A) of a city graph G. µG(G) is the total length

of its street system.

Then we imagine a city with a square convex hull of the same area that is to say with a side

of length
√
A and a regular square lattice �lling this hull. The constraint for the mesh-size

is to obtain the same total length of streets. The area of mesh divided by the area of the

hull is a number between 0 and 1 and one minus this quantity is a measurement of the idea

of compactness in the city. Thus we de�ne:

Comp = 1− 4A
(µG(G)− 2

√
A)2

(6.6)

Comp is generally located between 0.9 and 1 (0.936 for Amiens): cities we study are very

compact.

6.1.5 Network e�ciency

If we pick two points at random on a map G, the expectancy of the shortest path distance

between these two points is the integral of dsp(., .) over all couple of points with respect of

the uniform measure µG × µG divided by µG(G)2. The expectancy is obviously comprised

between 0 and µG. ∫ ∫
dsp(x, y)dµG(x)dµG(y) = µG(G)3αG (6.7)

αG ∈ [O, 1]. Scaling arguments shows that αG only depends on the global shape of the city

graph. It can tend to 0 for a highly dense square network and to 1 for an in�nite binary

tree.

Thus the average path length in a city is directly proportional to the total length of its

streets: µC(C). The ratio between the average path length and the total street length is an

indicator of the e�ciency of the street network.

6.2 Map analysis and Centralities

The parameters previously de�ned permit a global characterization of maps, we here address

the problem of comparing the quality of di�erent points in a map. We want to de�ne a

measure on the geometry of a map that quanti�es if a point is well located or not. This

extends the classical topological notion of centrality.
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6.2.1 Classical centralities

There are two natural distances on a geometrical graph: the Euclidian de and the shortest

path one dsp. In the complex network framework [1, 23] a centrality is a measure de�ned

on V that quanti�es whether a node has a central location or not. Among already de�ned

centralities (closeness, betweenness, straightness, information, see Ch.1), we focus here on

those that directly derive from distances.

The closeness centrality CCi of a node i measures if the node is close to the others in

average.

CCi =
]V − 1∑

j∈V
j 6=i

dsp(i, j)
(6.8)

The straightness centrality CSi of a node i measures if the node is rather in a straight

line or not and if that node e�ciently transforms Euclidian distances into shortest path

distance

CSi =
1

]V − 1

∑
j∈V
j 6=i

de(i, j)

dsp(i, j)
(6.9)

For a continuous and geometrical description of the city, avoiding topological bias, these

two centralities can be rede�ned by means of µG for each point x of the city graph:

CC(x) =
µG(G)∫

G d
sp(x, g)dµG(g)

(6.10)

CS(x) =
1

µG(G)

∫
G

de(x, g)

dsp(x, g)
dµG(g) (6.11)

CS(x) is well de�ned since de(x, g) ∼
x→g

dsp(x, g).

6.2.2 Simplest distance and simplest centrality

A plausible behaviour for a human being to go from place A to place B would be to adopt the
simplest path instead of the shortest one. To model this choice, we de�ne the information

distance diC,p(A,B) from a point to another along a path p in the city. And we de�ne

the information distance between those two points as : min
p path from A to B

diC,p(A,B) . Let's

compute this distance from the toy map Fig.6.3. To direct somebody from A to B along the

doted red path (P1) instructions are: (1) From A take the 1st street to the right with respect

to the house, (2) go straight (keep on the same street) while meeting 6 street-crossings (an

intersection of degree n counts for n−2 street-crossing), (3) on the 7th intersection, take the

second street from the right, (4) go straight - 4 street-crossings, (5) on the 5th intersection

take the third one, (6) go straight - 1 streets-crossing, (VII) walk for 35 meters.

This is encoded into the "path information vector" where the odd components are the

number of the street to take at the current intersection (the �rst street being the right

one), the even components are the number of intersections to cross straight before turning,

and the last component is the distance to go in the last street segment: ~I(A → B||P1) =

[1, 6, 2,4, 3,1|35] and for P2 the blue doted path that is the shortest path between A and
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B, ~I(A → B||P2) = [1,0, 2,0, 1,1, 2,0, 2,0, 2,0, 1,0|15]. The information length of a path

is its number of components: 7 and 13 respectively for P1 and P2. We de�ne the information

distance between two points as the minimal information distance among all paths that go

from A to B. In Fig. 6.3 the red dotted path was the simplest so the information distance

from A to B is 7. By convention, the simplest distance between A and B dsim(A,B) is 0

if A = B, 1 if A and B are in the same street and the information distance minus 2 otherwise

(the �rst and the last component in the information vector being always necessary). The

simplest path distance is then a well de�ned distance for all points in a geometrical graph.

This distance corresponds generally to the topological distance of the streets the points are

in plus one.

There may exist several simplest paths between two points. To each simplest path we

associated its metric simplest distance: the total length of the path. The simplest path that

minimizes the metric simplest distance is called the shortest simplest path.

Figure 6.3: Two points A and B located on a city graph. The blue solid path is the shortest path

between the two points and the red dotted one is a simplest path but not the shortest simplest

path.

As for the closeness, the averaging of the simplest distance de�nes a centrality, (the sim-
plest centrality):

Csim(x) =
µG(G)∫

G d
sim(x, g)dµG

(6.12)

Since dsim is constant on a street h, the simplest centrality rewrites if x is on the street h0:

Csim(x ∈ h0) =
µG(G)∑

h∈H ||h||.dtop(h, h0)
(6.13)

where dtopo is the shortest path distance on the hypergraph presented in Ch.5.

6.2.3 Display

We represent the street network in R2 and associate to each point a color that cods for its

centrality. To this we map the centrality using a color-map with C colours. The corre-

spondence can be linear (Fig.7.3) or adaptive (Fig.6.4).For the adaptive one, we used a

histogram equalization in order to get a more contrasted plot. That way a color represents

a proportion 1/C of the city.
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Figure 6.4: The di�erent centralities studied in this article for two french cities: Avignon (the

extended city center) and Troyes. The color mapping is obtained with 5 colours and a histogram

equalization so that in each picture a color represent a proportion 1/C of the city.

6.2.4 Comparison of centralities

We see in Fig.6.4 that each centrality produces a di�erent interpretation of the map. A

radial one for the closeness, a local one for the straightness and a hierarchical one for the

simplest centrality.

For the closeness, we see essentially a radial decrease. For Troyes the maximal centrality

corresponds to the city center, for Avignon the maximum is hit in the center of the image

rather than in the center of the city (on the top left). This shows closeness depends highly

on the chosen borders of the map (boundary e�ect).

That would be the result obtained by replacing the shortest path distance by an Euclidian

distance and calculating the centrality on a homogeneous grid. This con�rms the observation

made in Sec.5.4: in "normal" cities, the layout is rather dense and homogeneous leading to

de ' dsp.
The straightness appears to be boundary e�ect free. In the case of Avignon, it �nds correctly

the center but for Troyes, but the overall impression is rather disorganized, this centrality

does not provide a global coherent vision of the city.

On the contrary, the simplest centrality we proposed provides a hierarchical view of the city.

Both in Avignon and in Troyes, it reveals the main historical or modern axis.

On each map of Avignon, a zone is particularly striking (right) for it produces a discontinuity

in the overall variation of the centralities. The centralities are able to put in light ill-deserved

zones. Troyes is quite homogeneous so a centrality does not reveal much but Avignon is a
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composite city and the centrality analysis is in accord with reality (this will be discussed

more deeply in the next chapter). The main axis are the old city walls, a high way and radial

axis. The ill-deserved zone detected on the right is a residential area, voluntary isolated and

the one on the bottom is a poor area known by town planners.

6.2.5 Iterated centrality

One of the problems of simplest centrality is its sensibility to roundabouts that break crossing

street into two segments. To get around this di�culty, one can iterate the computation of

centralities, using the previous centrality result instead of the street length. To this we

have to put aside the continuous representation of the city and stick to the topological

representation of the hypergraph street network.

Imagine at step n a centrality vector ~C(n) gathers centralities of streets. We recall that

H∗ is the matrix whose component H∗ij is the topological distance between streets i and j.

Then if we want to replace in Eq.6.12 the length of streets by their current centrality ~C(n),

it should look like:
1

C
(n+1)
i

=
∑
j

C
(n)
j H∗ij (6.14)

The result in the inverse of a centrality because a centrality should decrease with increasing

mean topological distance. Taking the direct and the inverse centrality in the same formula

is not practical so we rather introduce the inverse of the topological distance. To avoid

divergences, we add 1 to each topological distance. These two constraints lead to consider

the matrix H̃
∗
whose components are H̃

∗
ij = 1/(H∗ij + 1) and whose lines are normalized

to 1. Then H̃
∗
is a stochastic matrix, positive and irreducible and the Perron-Frobenius

theorem shows that

~C(n) = (H̃
∗
)n ~C(0) → ~C(∞) with H̃∗ ~C(∞) = ~C(∞) (6.15)

where C∞ is the positive eigenvector of H̃
∗
associated to the eigenvalue 1 and whose sum of

coe�cients is 1. Iterating this way we obtain a stable centrality C∞ which is more robust

to structures like roundabouts that parasite our analyse.

6.3 Discussion

6.3.1 Justi�cations for simplest centrality

To justify simplest centrality we could use an a posteriori argument: it gives a great inter-
pretation of maps that both puts in light obvious main axes and reveals some hidden ill

deserved areas.

We can also remark that this centrality is pleasant and easy to interpret since it is con-

stant on coherent lines. In fact we have seen that contrary to other centrality it is bound-
ary e�ect free and coherent. It is adapted to the hierarchical and looped structure of

cities'maps.

An interesting point is that simplest centrality is very fast to compute: if the initial
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graph size is V then getting the hypergraph can be done in O(V ) and all the topological

distances on the hypergraph are unweighted distances on a small-world graph that can be

computed in O(H2) where H is the number of streets (approximately V/10 in practical

cases). Whereas closeness, straightness or betweenness are computed (with more memory

demands) in O(V 2 log V ) with simple structures. With typical map, simplest centrality cal-

culus is 1000 times faster.

We technically remark here that both for simplest ans shortest distances, if the time to

compute all the path distances from a particular point is F (V ) then the known algorithms

to �nd all the point to point distances is V F (V ). Thus it is not more e�cient to calculate

all the distances and then to calculate all the centralities. The storage of distances matrix

can lead to memory over�ows then we will prefer to compute distances for a single point,

its centrality, just store this centrality and redo it for the other points.

A good centrality tells about the distance to travel from a point to the rest of the map. We

have seen that using a shortest path distance (closeness) leads to too much spurious e�ects.

However using the simplest distance is a good approximation of the shortest path distance

and it is also independent of boundary e�ects.

The total distance from a point to another along the simplest path is greater than the

one along the shortest path. But this distance is a good upper bound of shortest distance

since streets are straight and organized to connect hierarchically: most of the time the
(metric) simplest distance is also the shortest! The problem is to convert our integer

simplest distance to a real metric distance. The metric simplest distance is the total distance

through the simplest path. From a point A to a point B the simplest path pass through

street intersections a0... an with n the topological simplest distance. It can be written:

d(A→ B) =
∑

d(ai → ai+1) '
∑
||ai − ai+1|| ' dsim(A,B).l0 (6.16)

where l0 is a typical distance. The last approximation is justi�ed by the log normal scaling

of street lengths and thus the existence of the expectancy of distances ||ai − ai+1||: l0 and

of its variance. The simplest distance is the number of straight pieces of path we have to

go from A to B and also the number of terms in the sum. Up to a scaling parameter l0,

simplest distance is a good approximation of shortest distances.

The log-normal scaling also shows there are very long streets that are main axes. The

existence of these main axes crossing the whole map explain the robustness of simplest

centrality toward boundary e�ects contrary to closeness centrality. In conclusion simplest
centrality is both an approximation and a better conditioning of closeness or
shortest path centrality. This surprising property comes from the particularities (heavy

tail and �nite expectancy) of street length distribution.

6.3.2 A new algorithm to �nd shortest path: The Cab Driver's Algorithm

From the previous remarks, we can build a very simple and brand new algorithm to compute

shortest path of two points on the street network.

Shortest path distances in a planar graph are calculated as shortest path distances in a

weighted graph.
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An origin and a destination point are given. The graph is transformed into a street hyper-

graph. The simplest path between the streets of these two vertices is found (the hypergraph

structure is smallest than the graph structure and above all the hypergraph is unweighted

which allows to use the shortest path algorithm for unweighted graphs that is faster, see

Ch.4, Algo.6). We write ai the successive intersections of streets in the simplest path. The

only thing to asses is the various shortest path distances between ai−1 and ai. Since these

two points are on a same street, and a street is rather straight, the shortest path distance

can be approximated by their Euclidian distance: ||ai−1 − ai||. But it is possible to be

more precise taking into account the curvature of the portion of street joining ai−1 and ai
while keeping the same complexity order. The portion of street between ai−1 and ai is a

weighted graph but not branched and it is in fact very easy to adapt Algo.6 for distances in

unweighted graphs to a weighted graph that has no branches.

Algorithm 9 Fast Algorithm to �nd shortest paths on a city map

1: INPUT Graph G = (V,E), Vertices v, w

2: Compute Hypergraph H

3: Compute Intersection Matrix of H: H̃

4: v ∈ hv, w ∈ hw
5: Compute Path , simplest path between hv and hw: a0, ..., an
6: Compute distance between v and w =

∑
||ai − ai+1|| (with Euclidian distances or

shortest path distances in a weighted line graph)

Once the hypergraph computed, this algorithm is simply a shortest path algorithm on an

unweighted graph: the path between two vertices can be found in O(H) at worst and since

the graph is a small-world, it can be done in O(logH) in average. The hypergraph is

computed in O(V ). This is to be compared to the complexity of the best known algorithm:

Dijkstra's which runs in O(V log V ) with the suitable data structures.

Using a slight modi�cation of Alg.6 it is possible to �nd all the simplest paths from a street

to another with the same time complexity and then to choose the shortest simplest path.

6.3.3 Conclusion

We have de�ned new scalar parameters such organic coe�cient, anisotropy, compactness to

describe a map or a part of a map... We will reuse them with bene�ts in Ch.10 to cluster

large maps. We could propose an automatic classi�cation of parts of cities using these

parameters and PCA. Indeed a whole city is composed of parts of di�erent characteristics.

Thus parameters have not a strong meaning globally and it would more interesting to seek

out to classify extractions of various cities.

We have introduced the simplest distance which permits to de�ne a new centrality (co-

herently with our continuous framework), the simplest centrality which is very signi�cant

providing a global, hierarchical view of a map. The use of this centrality in practical town-

planning cases is discussed in the next chapter.

The hallmarks of the city tested in Ch.5 allow to show that the simplest path distance is a

good approximation of the shortest path distance and thus to propose and prove the validity
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of a brand new algorithm: the Cab Driver Algorithm. It computes in a logarithmic time

the shortest path between two points in the map by approximating it by the simplest path.





Chapter 7
Analyzing maps and planning with the

Simplest Centrality

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Avignon: testing the robustness of simplest centrality toward windowing 113

7.3 Villers-Sur-Mer: testing town-planning scenarios . . . . . . . . . . . . . . 117

7.4 Conclusion: comparison with Space Syntax and "dual" (street) graph . . 117

107



108
CHAPTER 7. ANALYZING MAPS AND PLANNING WITH THE

SIMPLEST CENTRALITY

Analysing maps and planning with the Simplest Centrality : Synthesis
In this chapter we apply and test the simplest centrality in two real town-planning prob-

lems.

At �rst we study at various scales the city of Avignon and show this centrality is meaning-

ful at various scales, allows to �nd principal transportation axis and diagnose ill-deserved

area. The use of an adaptive color scale to display centrality is necessary.

Then we test several scenarios to open up a new district to the whole city in Villers-Sur-

Mer.
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7.1 Introduction

With a team of social scientists and town planners, we have submitted to the urban o�ce

of a few cities our analysis of their city. The question was to know if the simplest centrality

rendering makes sense to urban actors (recovering important streets and ill deserved zones),

if added to that it permits to put in light some dysfunctions in the network that are not

trivial and if it can be used to simulate the impact of urban modi�cations, help to test

scenarios to relieve congestion or to open up isolated area. The �rst study we present is a

multi scale analysis of Avignon ; in the second, we observe an ill deserved zone in Villers-

Sur-Mer and compare three simple scenarios to homogenize the city. Town planners have

received our work with enthusiasm.

7.2 Avignon: testing the robustness of simplest centrality to-

ward windowing

Avignon is a large city in the south of France, born into the hollow of the river Le Rhône with

the Durance river. It dates back to the prehistory but the current city is built on the basis

of the medieval city. The medieval walls have been progressively engulfed, leaving tracks

as a belt surrounding the medieval center of the city. We have studied the city on three

di�erent scales to assess of the robustness of the simplest centrality Fig.7.1: the historic city

center delimited by a remain of a city wall (1), a qualitatively dense area (2) and the whole

city area (3).

Figure 7.1: The city of Avignon and its neighbourhood. We have studied it on three scales: the

historic city center (1), the dense area (2) and the whole city (3)

The intra-muros city center is rather homogeneous with distributed resources. We have
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plotted it with three colours (Fig.7.2) that allow to distinguish between main axis, and side

streets, leaving a middle category for roads in between. The found main axis correspond to

the boulevard cycling around the medieval wall. It also recovers the curved street east to

center which is an important medieval access road from the nearby big city. It �nds also

the North to South new XIXth century road. These two roads are the main two axes for

public transport. Other small variations in the order of the streets turned out to be very

signi�cant. It �rst �nds the historical mentions around the Papal Palace (A in Fig.7.2). The

other three lower (blue) color zones (B, C and D in Fig.7.2) correspond to burrows with

small streets not very well deserved. The town-planners informed us that these burrows

where under scrutiny for their bad state and their rehabilitation is now planned.

Figure 7.2: The centrality map of the center of Avignon with three colours which represent high

central street (red), medium (green) and low (blue). It is to remark that the notion of "low"

centrality is relative to this particular map, the center of Avignon is nearly homogeneous. Apart

from the historical Papal Palace and the bishops mansions (noted A), we have three more

homogeneous blue places (B, C and D) which are precisely the burrows where rehabilitation is due.

It also underlined an essential middle age curved road, from right to center, that is not considered

by people even if it is still essential for transportation.

The result for the dense area Fig.7.3 and Fig.7.4 is more subtle. Fig.7.3 represents the

centrality map with a linear scale. Almost all the map is of the same orange color, just an

area in the east di�erentiates by a drop of centrality. This could be disappointing for the

defence of simplest centrality. But we plotted the same centrality with an adaptive scale

of colours in Fig.7.4 (see 6.2.3) and the new created dynamics reveals structures. We �rst

have to remark that the wall remains an essential structure at this scale even if intra-muros

main streets seem to vanish at this resolution of observation. In fact a characteristic of the

adaptive color scale is that if one zooms on the city center on the second map and rescales

the colours, the main local roads will re-appear (to a certain extent).

At this scale, we �nd again obvious main axis: the city boulevard and the modern sur-

rounding highway running east and south at �rst and secondarily radial streets. Two zones

in pink are emphasized as are ill deserved zones. The east one (Fig.7.4-A) with extreme
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values was at the origin of the bad conditioning of the linear color scale. The other part

(Fig.7.4-B) surrounded by the modern highway does not have the same e�cient structure as

its surroundings. Interestingly these two zones are ill-deserved for two opposite reasons. The

west zone (Fig.7.4-B) is a poor district with security problems. The east zone (Fig.7.4-A)

on the contrary is a residential district that badly connects to the network on purpose, to

keep the streets quiet. It is almost a tree, well-known for the inhabitants for the labyrinthine

impression it makes.

It is one of the surprising lessons of this case study, that ill-deserved zones are not necessary

poor but could also be middle-class neighbourhoods researched for their tranquillity. The

other zones around A and B outside the city center has also a di�erent structure that cor-

responds to di�erent histories: the north-east one is more recent and gained on industrial

lands, the south one is older and gained in the XIXth century on agricultural lands. In this

last part we can even distinguish the part closer to the city, older with a better centrality

than the part near to the modern highway corresponding to lower class buildings.

Figure 7.3: The simplest centrality of dense area of Avignon with a linear color scale.

At last, the whole city area centrality Fig.7.5 re�ects the notion of urban continuity. The

centrality decreases with the distance to the center but this decrease is smooth thanks to

the hierarchy of important streets. A historical radial street linking the former wall and

the main boulevard to an outside town appears to have a more important role at the global

scale (Fig.7.5) than at the dense area scale (Fig.7.3). We thus see it as a high level hub

around which the industries were �rst built. It shows it importance to link di�erent parts

of the city and the city to the outside but has not really a local function.

The comparison of the centrality of Avignon at three di�erent scales shows that roughly the

centrality is stable and does not depend on the map borders: we always �nd the same main

boulevards and access roads. At the second order however we �nd di�erences which shows

how the main elements function di�erently at di�erent scales.
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Figure 7.4: The simplest centrality of dense area of Avignon with an adaptative color scale. One

place comes out, noted A. This very ill-deserved place is well known as a labyrinth where only

local people venture. It is in fact a well-considered middle class villa settling, local people enjoying

the total absence of through tra�c. On B, the place is not so well deserved, at the border and

surrounded by highway, and this is the poor area with security problems.

Figure 7.5: The simplest centrality of the whole city of Avignon with an adaptative color scale.

Town planners still despair on the choice of A as the pace for the new TGV train station, on a

ill-deserved place, (blocked by the two rivers), while B would have been traditionally irrigated, C a

place with high development potential. The actual booming place is in D (proposed for the

station), also on the main circulation axes, but away from already constructed area which raised

administrative and political problems.
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7.3 Villers-Sur-Mer: testing town-planning scenarios

For an other test, we chose the city of Villers-Sur-Mer.

Villers-Sur-Mer is a small seaside city in the North of France.

Since we have seen in Ch.5 that Villers is a centralized city (it is necessary to pass through

the center to go from a point to an other), we have plotted the topological distance of streets

to the center rather than the centrality as in Avignon's case. Fig.7.6 (up-left) is the result

for the actual city.

What surprised us at �rst was that the streets are not perpendicular to the sea. This was

contradictory with our idea of structuring elements. But historically the city has not been

built to be a seaside resort but as a village inside the ground, connected to a small port

protected by the cli�s. The city expanded around the west rocks Les Vaches noires, people

came to paint and the path to these rocks was the primordial axis. It is actually what the

analyse found as the city center. This axis de�nes the direction of streets, the secondary

ones being simply perpendicular to it. It is the local structuring element, kind of backbone

of the city with its aside ribs.

Then the city developed from west to east and became lately a seaside resort, which makes

streets perpendicular to the sea. The recent area on the east is relatively badly deserved, its

topological distance to the center going from 5 to 8 whereas the average for the city is about

3. It contains a commercial center Villers 2000 that it would be interesting to irrigate. We

thus proposed three scenarios to modify slightly the city to reduce the topological distance

of this area or at least make it enter into the average topological distance. Scenario 1, Fig.7.6

(up-right): build a belt around the area. Scenario 2, Fig.7.6 (bottom-left): cut the main

road into to pieces to have people make a detour in their displacements and then produce

new attractions. Scenario 3, Fig.7.6 (bottom-right): combine the two previous scenarios.

The addition of a boulevard is practically ine�cient: it decreases the global radius of 1

but the commercial area stays on the margins. Interestingly, cutting the main road makes

obviously the radius and the mean distance increase but the commercial area becomes an

average well deserved zone: we want here to interpret centrality as a stationary �ow of a

random walk. People cannot use the main street e�ciently, by cutting it we make them use

auxiliary paths and thus they have to visit the commercial area that becomes arti�cially

a popular place. The combination of the two scenarios provides the same radius as the

original city but the distribution of centrality is more centred around the average. The

boulevard belt becomes the city center, the old center is split into two average streets and

the commercial area is as well deserved as the seaside or the access to rocks.

7.4 Conclusion: comparison with Space Syntax and "dual"

(street) graph

At �rst sight our approach of topological distance and simplest centrality is very similar to

the Space Syntax framework [66]. They analyse the city into continuity lines, which are axis

on which an agent as a total visibility. Then they de�ne local and global indices to measure

the quality of the integration of each line. They justify the relevance of their analysis by
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Figure 7.6: The distance to the center of streets in Villers-Sur-Mer (up-left). To open up the

new east commercial region we have tested the impact of three scenarios. The addition of a

boulevard or belt around this area (up-right), the cut of the main road to have people by-pass this

hole through the commercial region (down-left) and the combination of the two previous scenarios

(bottom-right).

showing their measure is strongly correlated with the pedestrian perception of space and

choice of orientation [68]. As said in Ch.1, the main inconsistency of space syntax is very

sensitive to a small variation of the road network. This inconsistency have been overcome

by replacing the notion of line by that of streets (with di�erent de�nitions) for instance in

[73]. In a nutshell space syntax and its by-product divide space into objects and measure

their integration by counting a topological distance between them. They justify theirselves

by a human perception argument.

Contrary to space syntax, we present a coherent and synthetic framework. Structures and

measure are clearly and well de�ned. We have shown that hypergraph can be computed

only from the topological structure of the map and this linearly in time and independently of

any arbitrary parameter. We make the link between local measure and hypergraph measure
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with the simplest distance which approach the simplest distance. We show that one can pass

from a continuous graph to a simply topological structure the hypergraph by replacing the

simplest distance by a weighted topological distance. This is a good approximation highly

justi�ed by the optimization of computational time. We do use a mathematical argument to

prove the relevance of our measure rather than a human perception one. To plot centrality

we used an adaptive color scale which is the same than to consider only the ranking of

streets. Thus our centrality has both a local and a global meaning, a zoom on a map and a

rescaling of colours de�ning a centrality map.

We must admit nonetheless that [105] reaches almost the same results as us. They work on

the notion of "dual graph" i.e. the graph associated to street network that can be obtained

by streets' name or some other algorithm. Then they compute classical centralities on this

graph. We have a robust method to identify streets and our simplest centrality is somehow

the closeness centrality on the "dual graph". Indeed, our weighting by lengths permits to

have a physical interpretation of the centrality but the result is almost the same. This can be

justi�ed by the existence of C∞ (Ch.6, iterated centrality) and the exponential convergence

of Eq.9.2. The simplest centrality is the �rst iterated centrality, C(1) when C(0) is the

length proportion of streets while the closeness on the "dual graph" is C(1) obtained when

C(0) = t(1, ..., 1)/]H. Starting from close starting points and converging toward the same

stationary point, it thus reasonable that the �rst iterated are close.

Maybe the visual representation of the "dual centrality" in [105] is not convincing and so

they did not seek to extend their investigation. The reason might just be they used a linear

scale of colours.
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Models: Synthesis
In the previous chapters, we have quantitatively studied cities, tried to describe them and

to show that in spite of a great apparent variability of shapes, cities' maps exhibit common

hallmarks. In this chapter we present models that reproduce and thus can explain these

signatures. The main idea of these models is that in the organic case, the city's layout
is determined by a process of extension and division of space.
The �rst model we present consider the city as a continuum of wealth concentrations
that interact and evolve. This model implies that the local growth of a city is globally

exponential and that it is the same asymptotically locally. This model predicts an

exponential movement of the "border" of a city and a power law distribution of
wealth through space.

The other models are dynamic planar graphs. The �rst is simply a division process

which reproduces the "small world" e�ect on street graph. The second adds an extension

component that keeps the small world e�ect and explains the statistics of blocks' sizes

and the logarithmic scaling of street lengths.

The last two models are more intricate and do not allow explicit calculus. It implements

more realistically the idea of extension division of space with a few parameters that allow

to reproduce a huge diversity of networks while keeping the main features. We named it

"Morphogenesis of the city".

Contributions of this chapter

1. An evolution model for the density of spatial resources.

2. Numerical simulation of this model in the monocentric case.

3. Two very simple models of division and extension / division of space that allow

calculus to exhibit features: small-world e�ect and distribution of blocks'area.

4. The morphogenesis model is a �exible framework that reproduce main trends and

diversity. It can easily used as a basis to incorporate re�nements: diversity of agents,

anisotropy of space...
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8.1 A continuous models that came last but we present �rst

8.1.1 Principles and formulation

We built the model bellow to answer the question "at what speed does a city's boundary

move?" Indeed in the division / extension model we present further in this chapter, we

had to assume an exponential growth of the borders to reproduce blocks' area distribution.

This assumption seemed surprising. We did not �nd a clear answer in the literature or in

discussions with experts of the city. We thus tried to build a justi�cation.

This model is a spatial translation of the Zipf's principle. As a scale free function the

distribution of city sizes leads to think that in a closed city system the growth of a particular

city has a multiplicative logic (see Ch.1) or App.B). We extend this principle to every piece

of the city. A particular place produces wealth proportionally to its current wealth. The

total wealth of the city is then growing as an exponential. The question is to model how

the created wealth of a particular place dispatches in space.

We de�ne a �eld f(~x, t) which represents the density of "wealth" in the city at place ~x

at time t. We consider every point in space has an in�uence on the whole space: a point

~y of wealth f(~y, t) at t creates a "wealth quantity" proportional to f(~y, t) and which is

dispatched on each point ~x of space following a decreasing function (or "kernel") of ||~x− ~y||
written K. Thus the wealth at each point ~x evolves at time t with a time derivative:

∂f(~x, t)

∂t
= λ.Cste

∫
R2

f(~y, t)K(||~x− ~y||)d~y (8.1)

with Cste
∫ ∫

K(||~x− ~y||)d~xd~y = 1 and λ ≥ 0.

Let I(t) be the total wealth of the city at time t:

I(t) =

∫
R2

f (8.2)

The spatial integration of both sides in Eq.8.1, the permutation integral - derivative on the

left and use of Fubbini's theorem combined with the normalization of K on the right permit

to show that I is an exponential of time:

dI = λIdt =⇒ I(t) = I0 expλt (8.3)

λ is the growth factor of the city typically of 1 percent per year. The exponential growth of

the whole city is coherent with Zipf's law. The question our model tries to answer is how is

this growth dispatched through space?

An in�nite number of kernels can be chosen, the conditions being their positivity and inte-

grability. In what follow, we study two particular kernels. The Newtonian Kernel:

∂f(~x, t)

∂t
= λ.Cste

∫
R2

f(~y, t)

1 + γ.||~x− ~y||n
d~y (8.4)

where n > 2 to ensure integrability and Cste is a normalization constant such as the integral

of the kernel is 1:

Cste =
2π2

n n
√
γ sin (2π/n)

(8.5)
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Newtonian Kernels describe a long range in�uence. Conversely the Exponential Kernel

exp (−γ||~y||) normalized by the constant: 2π/γ2 will be our test model for small range

in�uences.

8.1.2 Solutions

We want to solve Eq.8.1 in the case of a "monocentric and radial city", for the two

kinds of toy kernels: Newtonian and Exponential. If f(., 0) is radial and if there is no

perturbations in the evolution of the system then f(~x, t) is radial and can write: f̃(r, t).

Eq.8.1 writes as a convolution:
∂f(~x, t)

∂t
= λf ∗K (8.6)

The equation "could" be easily solved by using Fourier Transform:

f̃(r, t) =

∫
r̄J0(rr̄)e(2πt

∫
¯̄rJ0(r̄¯̄r)K(¯̄r)d¯̄r)dr̄ (8.7)

Jn(x) =
1

π

∫ π

0
cos (nτ − x sin τ)dτ (Bessel functions) (8.8)

Nonetheless Eq.8.7 is not easy to simplify and it is not convenient to use in numerical

simulations. Indeed J0 oscillates a lot and can be negative. Parametric integrals involved

depend on scales factors (r̄ and ¯̄r) which makes the approximation toward in�nity unstable.

This is the general problem of Fourier transform that are always oscillating and reach a

constant (for instance zero) value only by the mean of in�nite destructive interferences.

Nonetheless, Eq.8.7 permits to show that the solution at time t is continuous with respect

of conditions at time 0: the initial city can be represented by a Dirac. We then opt for

a numerical simulation of the evolution and to this use the following positive and robust

equation:

∂f̃(r0, t)

∂t
=

∫
rf̃(r, t)

[∫ 2π

0
K̄(r, r0, θ)dθ

]
dr (8.9)

with

K̄(r, r0, θ) = K

(√
r2 + r2

0 − 2rr0. cos θ

)
(8.10)

8.1.3 Simulations

We present here the observed result of numerical simulations with Eq.8.9 for a Newtonian

Kernel.

The pro�le distribution at time t is an inverse power function whose asymptotic exponent

−γ(t) is not constant but increases with time: the pro�le tends to be smoother. Fig.8.1

shows the evolution of the pro�le through time.

This result is not in agreement with [40] which observes in the 50's (and thus with limited

measures tools) that the density pro�le of several cities around the world is exponential. It

would be worth to re-do the measurements with modern tools. The �ttings in [40] are based

on few points, the density at a distance r being the average of densities in a crown centered
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Figure 8.1: Log-log plot of the density pro�le of a city with 1 percent of annual growth after

100, 200, 300 and 400 years of evolution. The pro�le is power-law shaped: when far from the

center, f(r, t) ∼∞ A(t)/rγ(t) with γ decreasing through time. This resulting curve has the same

shape than the initial kernel.

to the city core (maybe di�cult to de�ne in a practical context). We found nonetheless a

coherent result: the density gradient vanishes with time.

Let us consider a �xed point in space and look at the evolution of wealth through time in

this point. Fig.8.2 shows that there are two regimes of growth: at �rst the local wealth is a

power function (Fig.8.2, left), then it transform to an exponential function (Fig.8.2, right).

Ultimately the local growth in the Newtonian city is exponential.

Figure 8.2: Evolution of the density observed in a particular �xed set of points through time.

Points are regularly spaced. The local growth is at �rst a power function (line in the log-log plot

on the left) and then reaches an exponential scheme (line in the linear-log plot on the right).

At last we want to assess the celerity of city's border move. The �rst di�culty is to de�ne

the notion of border for a city. We �x an arbitrary threshold c > 0 and look at the evolution



122 CHAPTER 8. MODELS

of f̃−1(c, .). The results for various c are reported in Fig.8.3. In fact whatever the arbitrary

choice of c, the evolution of the "arbitrary" radius of the city ends up to be exponential. In

consequence, this model implies that the "wave front" of a city has an exponential celerity.

Figure 8.3: Distance r0 at which the density pro�le reaches di�erent arbitrary c values in a

linear-log plot. For all values of threshold c, the distance ends up to be an exponential function of

time: the border of the city growth exponentially whatever is the arbitrary de�nition of border.

If the kernel K is not an inverse power function but an exponential, the local growth re-

mains a power law followed by an exponential (Fig.8.2), the border of the city still drifts away

exponentially (Fig.8.3) but the general pro�le is no more a power-law, it is an exponential

which is in agreement with [40].

In conclusion it seems that whatever the pro�le, the border of the city always drifts away

exponentially and the local growth starts as a power-law to ends up as an exponential. On

the contrary, the density pro�le seems to re�ect the shape of the kernel.

8.1.4 Saturation e�ect

In this model, the density tends to∞ locally. To avoid this we modify the evolution equation

to get a "saturation e�ect". The total growth of the city has to remain proportional to the

total wealth of the city. But if in a particular point an upper bound is reached the growth

in this point is set to 0 and the wealth that should have been created in this point is

re-distributed in the rest of the city. Thus:

∂f(~x, t)

∂t
=

Λ(f(~x, t))∫
R2 Λ(f(~y, t))f(~y, t)d~y

∫
R2

f(~y, t)K(||~x− ~y||)d~y (8.11)
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with

Λ(z) =

{
λ if z ≤ c
0 otherwise

(8.12)

keeps the exponential evolution of the whole system, wealth is distributed spatially as in

Eq.8.1 and resources created in saturated regions are re-distributed in the rest of the city

with respect of the distance. This equation creates naturally a saturated "city center" whose

boundary evolves exponentially. The main properties of Eq.8.1 are maintained: the density

pro�le is an inverse power function (whose exponent increase faster) if the kernel is a power-

function, an exponential if the kernel is exponential ; the local growth is a power function

then an exponential ; the integral of f is an exponential.

8.2 Simple network models

From know on we will get particularly interested in the network growth of the city, and

present a few simple models that reproduce street network features. We will show that the

previous result of exponential spatial growth of the city (according to our continuous model)

is coherent with a network model of division / extension of space that reproduces block area

distribution.

8.2.1 Square lattice

Symbol of the planned city, the square lattice is a "very small world": its mean topological

distance between streets tends to a constant (1.5) when the networkdensi�es. This network

exhibits a peaked cell area distribution and all the same for the street length distribution.

8.2.2 Division of space

We now propose coherently with the observation in Fig.8.2 of a locally exponential growth

of infrastructures to study a space division model and look if it recovers the main "street"

properties presented in Ch.5: cell area distribution, street length scaling and small world

behaviour in the street hypergraph.

Several methods to de�ne space division processes are known in mathematics ([95, 41],

Ch.9). Basically, they place in a bounded window, and divide sequentially this window.

They divide it a �rst time, then they apply a measure (perimeter, area...) to each resulting

cell and divide by a random line at the next step a cell with a probability proportional to

its measure.

To adapt this to the city problem and for the sake of simplicity, we chose a window and a

number of iterations. At each iteration a cell is chosen at random with a probability pro-

portional to its area. This is the same as to pick at each iteration a uniformly distributed

random point in the window and divide the cell it lays on. To adapt to local geometry, the

cutting segment is not taken with respect of an angular distribution but is perpendicular to

the edge of the initial cell to which the point is the closest.
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This choice in the orientation of new segments implements the in�uence of previous (struc-

turing) elements. The very �rst structuring elements (Ch.2) are drawn in green in Fig.8.4

where di�erent con�gurations are imposed at the beginning.

To carry out rough calculus we simplify this model by making it "almost deterministic":

the city evolves sequentially, the initial window is a square of area W , at each step each cell

is divided in two by a segment almost at its center but not exactly just to ensure inter-cell

segments are not coherent. Horizontal and vertical segments are alternated. We consider

the resulting structure after n iterations.

Figure 8.4: Division of space easily adapts to structuring elements. For each picture, we have

de�ned a window with primordial curves (in green). Then we have simulated a division process on

this window. A cell is divided with a probability proportional to its area and a new line is always

orthogonal to one of the sides of the cell it appears on.

The number of cells is Kn = 2n. If L is the length of the side of the initial square, the total

length of streets after n iterations is Ln = 2L(1 + 2
√
Kn). Since cuttings are made almost

in the center of cells, the cell area distribution is still peaked around W/Kn

We can �nd by recursive arguments that the maximal topological distance from the border
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of the window is:

rn =

⌊
log2Kn − 1

3

⌋
+ 1 (8.13)

Since Ln is a power function of Kn, rn is a logarithmic function of Ln. And the diameter

of the network dn is such as dn ≤ 2rn (see sec.5.3). Consequently the average topological

distance in the system αn is between two logarithmic functions of the size of the city, we

consider it is a logarithmic function of the size of the city.

8.2.3 Division - extension of space

The division model is not su�cient to explain the distribution of cells area (∝ 1/A2, [79]).

To that purpose we want to test the additional e�ect of the growth of the city.

In a �rst time we implemented this idea: the initial city is a square of area W , at each step

every cell in the city is divided in two parts and a new square of area W is added to the

system at the same time (for instance successive squares are aligned from left to right). The

distribution of cell area after n step was then ∝ 1/A...

This is close to the target but an hypothesis had to be changed. We were led to consider

that successive squares have size increasing as an exponential. It astonishingly turned out

to be a necessary hypothesis to get the good result. As said above, it was not possible to get

data to measure the e�ective growth of cities and we did not �nd literature on this point.

That is why we built the previous continuous model that corroborate this hypothesis.

Thus we want to build a model that implement division of space with exponential growth

of surface.

Figure 8.5: Simple model for the division / extension of space growth of a city network. 1) A

square is built 2) this square is divided in two piece, a new square of the same size is added at is

bottom. Three cells result. 3) Each cell is divided in two with alternated horizontal and vertical

segments; a new square is added on the right of the two �rst squares etc. At each step existing

cells are divided and a new square is added following a logarithmic spiral.

For instance we consider the city is at �rst a square of side length L. We juxtapose to

this square another square of side L and successively at step n we add a square of side

un−1 + un−2 as in Fig.8.5. The sequence of squares creates a particular case of logarithmic
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spiral. Roughly, side of square n is of side φn.L with φ the golden number.

This process only shows it is possible to pave space with squares of geometrically growing

size. At each step every existing cell is also divided in two roughly similar cells. Then at step

n there are n squares, the �rst is divided into 2n cells of area L2/2n... and the m-th with

m ≤ n is divided into 2n−m cells of area φ2mL2/2n−m. There are in whole 2n+1 − 1 ' 2n+1

cells.

The area of the cells of m-th square is

A(n)
m =

L2.(φ2)m

2n−m
(8.14)

and the frequency of this area is:

f (n)
m ' 2n−m

2n+1
= 2.2−m (8.15)

If we write θ = log2(φ2), mixing the two previous equations leads to

A(n)
m '

(
2n.L2/2(1−θ)

)
︸ ︷︷ ︸

C(n)(�m)

(
f (n)
m

)(1−θ)
(8.16)

In other words, after a given number of steps n, there are n di�erent area values and there

is a power relation between each area and its appearance frequency. With the growth factor

φ ' 1.62 we have chosen we have numerically f ∝ A−2.57. This is close to the empirical 2.

In fact the choice of φ was arbitrary to obtain easily a construction with coherent squares,

small deformations of these squares permit to have di�erent growth factors and the factor

23/4 ' 1.68 quite close to φ leads to f ∝ A−2

The overall structure created by squares with their increasing side length allows to keep a

global small-world e�ect.

8.3 Morphogenesis of the City

This section presents a model of the growth and development of a city. The city is reduced

to its streets and we build a dynamical model allowing to add street segments one after

another. We want to measure to what extent the condition of the city - of being constituted

by segment structures - constraints its development. The main purpose is to translate the

idea of division and extension of space in a general and �exible framework (Fig.8.6).

The morphogenesis is only implemented for the organic city: the city is the result of local

non-concerted interactions, time can be seen as discrete, at each interaction a new settlement

(generic term to designate a commercial infrastructure, a private individual...)is produced

to maximize the pro�t of the new settler. Then the settler sees the space around the

city as a potential �eld, each particular location having and economical or geographical

quanti�cation of its attractiveness. When he has chosen his place, he connects to the

network. The resulting new street segments are considered to be �lled fast by other settlers.

Our model is �rst built on three assumptions, two principles (installation and connection)

and a few parameters. The whole gives a coherent and consistent vision of the problem.
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We aim at building a model that can reproduce several limit cases of urban growth but also

point out continuity between them. We will then introduce parameters to build a continuum

between these limit cases.

The principles and parameters we use are meaningful, expressed in an interface language

that allows the mathematical and physical communities to exchange with town planners,

architects and social scientists. As a dynamical system and a geometrical graph, we will

Figure 8.6: Sketch of the division - extension of space idea. From an original frame (in yellow)

the city produces division patterns when it locally densi�es (in red). Sometimes the city produces a

few lines of extension at its outskirts (in blue). And then the global result is re-divided (in green).

see a city as a function C : R+ −→ GC ⊂ Cd with C(t) = {V (t), E(t)}. Then we make the

following postulates on the evolution of C :

P1 A city is the result of a sequence of operations occurring at increasing times (ti)i∈N such

that :

C(t) = C(ti) ∀t ∈ [ti, ti+1[

P2 Infrastructures are conserved:

C(t1) ⊆ C(t2) if t1 ≤ t2

P3 There exist two functions Pt (price) and Vt (potentiality) such that the city is a com-
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promise between them:

C(t+ ∆t) = argmin

c ⊂ C(t)

Pt(c− C(t)) ≤ 0

Vt(C(t), c)

Functions V and P are not obvious to de�ne. They should be in a "microscopic" point of

view aggregation of economical parameters. We can avoid developing them if we observe a

city's growth is determined by "macroscopic" insights:

Its construction The capacity to add new elements to the map and to build new streets.

Its organization From a random settlement to a highly structured one.

Its sprawling A city has to make a compromise between its inner development and outer

growth.

The city C(t) induces a spatial potential �eld describing the attractiveness of any point of

the available space. A new settlement (either an individual settler or a facility) has its own

policy (8.3.3) of choice with respect to this potential. After having chosen its location, it

connects to the existing street system by creating one or several new roads. This model

explicitly decouples the problems of positioning and of connecting.

8.3.1 Potential �eld

For each point x in the available space the potential PC→. quanti�es to what extent x is a

good choice to locate a new center. This potential should mimic the following ideas:

• A large scale behaviour such that the global attraction of a part of the city should

be proportional to the global mass of infrastructures in place and have a long range

(power-law) in�uence with some distance d : PC→x ∝ −
∫
dµC

dγ(x,C)

• A very short scale behaviour that forbids a new center to be located on existing

infrastructures: PC→x = +∞

• A medium scale deduced from the two previous ones, that should display some local

minimum, potentially with a particular geometry favouring a particular geometrical

organization.

Thus among several possible �elds we choose Fig. 8.7:

PC→x =

(
α

dmin(x,C)
− β√

dmin(x,C)

)∫
dµC√
d⊥(c, x)

(8.17)

dmin(x,C) = minc∈C (x, c) is used in Eq.8.17 so that the rejecting zone is hard : there is a

tube around the city streets where new settlements are impossible. The radius of this tube

is λ0 = (α/β)2 (Fig.8.7).

d⊥(x, c) is the ||.||1 norm in the local basis formed by the unitary tangent and the normal

to C in c. The choice of such a distance is purely technical, to simplify explicit integral

calculus compared to Euclidian distance and to produce peaks (Fig.8.7) at the extremities
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of street segments. Towards ∞, PC→x ∼ β
d(x,C) and between those two extreme positions,

interferences between streets segments produce local minima. To choose parameters α and

β, one sets λ0 the hard rejection radius and β the long-range in�uence. The choice of β

in�uences the local geometry of the city but won't be discussed here.

How a new settlement is chosen from this potential �eld will be discussed in sec.8.3.3, the

idea will be to �nd in a more or less hard way a local or global minimum in the �eld.

Figure 8.7: The level lines of the potential �eld for a city reduced to a single segment of length 1

with λ0 = 1 and β = 10.

8.3.2 Connection

Once a settlement is added in a location x, it links to the existing network C. Not all

connections are eligible.

From a point x we de�ne the visible set of points:

Vx|C {x ∈ C, [c x] ∩ C = {c}} (8.18)

This is the set of points in the city graph one can connect to without having to cross other

streets.

The optimal set of points from x of a part E of C is the set of points that locally minimize

the connection distance from x to the existing network:

Ėx = {e ∈ E ∃ε | ∀e′ ∈ E ∩ c⊕Bε, d(x, e) ≤ d(x, e′)} (8.19)

New connections are made between x and points in the optimal visible set ˙Vx|C . This one

being a �nite set included in C∪(x⊥C) where x⊥C is the set of orthogonal projections
of x on the city in the visible set.

To avoid connections too close from each other, we introduce the relative neighbourhood
([10], App.A), a subsampling of the Delaunay neighbourhood. In a general way, if P is a
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point and E a points set. Then s ∈ E is said to be in the relative neighbourhood of P

(s ∈ RN [E||P ]) if and only if

∀u ∈ S, d(P, s) ≤ max{d(u, P ), d(u, s)} (8.20)

ie there is no point both closer to s and to P . All candidates to become new connections

are segments from x to its relative neighbourhood in the optimal visible set RN( ˙Vx|C ||x).

Now that we have found good candidates we will determine in sec.8.3.3 which of them will

become actual new street segments.

8.3.3 Parameters

One of the aim of the morphogenesis model is to reproduce di�erent morphologies of cities.

These morphologies are seen as variation in the political decision made to build the city.

We present in the following sections parameters that permit to di�erentiate politics and to

de�ne the behaviour of new settlers toward the potential �eld of the city and the way they

connect to former streets.

Organization The global �eld induces minima. These minima represent points where it

is the most interesting to settle.

The question is to �nd a parameter Pe that describes whether the city is organized or not.

The idea is that when a city is organized it sticks strictly to optimal settlement places and

when it is purely unorganized, new settlements are added at random without any in�uence

of the potential �eld.

Then a new settlement is selected by a Monte Carlo method with a number n of iterations

and the new point is be chosen as X = Argminn P (Xi). For random cities n is close to 1

and for organized one it is much higher.

Let W be the area of a part of the plan that contains the current city, let X1, ..., Xn be n

points on this part, uniformly and independently chosen. And let X = argmin P (Xi) and

Argmin(P ) the set of local minima of the potential �eld P . Then let

Pe = P(|X −Argmin P | ≤ e) (8.21)

represents the probability that the Monte Carlo method throws a point in a radius e of a

local minimum.

We want to give Pe as an input parameter and traduce it into an iterations number. Let N

be the number of local minima. If e is quite small, comparing the surface of the window W

and of the zone in a distance smaller than e of local minima we obtain:

Pe ≈ 1−
(
W −N.π.e2

W

)n
(8.22)

n ' log (1− Pe)
e2

.
W

N.π
(8.23)

N is estimated roughly by noticing that a local minimum is often due to the interaction

between two close streets segments: N ' 3.]V since 3 is roughly the average connectivity
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number of intersections.

n diverges when Pe = 1. To model very organized populations (Pe = 1), we take at �rst

Pe = 1− 10−10 (for instance) and then apply an additional steepest descent algorithm form

this point to get a point that is exactly in a local (almost all the time global) minimum of

the potential �eld. Such a case is simulated for instance in Fig.8.14.

Connection and construction There are typically about four or �ve possible new street

segments in [x,RN(V+||x)] for a new center x. If the city shapes as a slum it would be tree

like so we link the number of streets segments indeed added with the construction ω ∈ [0, 1]

of the city. We sort segments in [x,RN(V+||x)] by increasing length : (s1, ..., sn). s1 is

drawn with probability 1. We pick n′ at random with a Binomial law: n′ ∼ B(ω, n− 1) + 1

and segments s2, ..sn′ are also added. If ω = 1 every admissible segment is added and if

ω = 0 only the shortest one.

Sprawling When constructing with a rejection radius λ0, the city gets a typical mesh

width. If at a particular urban operation a potential �eld with a rejection radius of Kλ0

with K > 1 is considered then the city's inner meshes will appear as �lled up with the

rejection zone of this potential �eld and new points of interest will position outside of the

city.

With this observation we will consider that in a proportion fext centres are added with

respect to a potential of rejecting radius Kextλ0. This creates foils at the outskirts of the

city and thus an extension of the city that represents for instance an industrial zone which

needs a large surface that might be cut later into o�ces or housing when the city continues

its expansion.

Re�nements To enhance the realism of this model, some empirical parameters are added.

The length of a new street segment is bounded to lmax = klmaxλ0. This can avoid too

long costly connections (possibly lmax =∞).

The windows W out of where new settlements are chosen can be either de�nitely set

Fig.8.8 or dynamically change with the overall city Fig.8.9 and Fig.8.11.

Since a Monte-Carlo method is used to pick new centres, there is a very little probability

that a new settlement is added in line with an existing street. If geometrically this does

not have many consequences, it may strongly change the local topology. That is why, if

an orthogonal projection is in a radius cλ0 with typically c ' 0.3 of an intersection that is

visible from the center then this orthogonal projection is removed and replaced with a

connection with the nearby vertex. This rises the vertex degree and allows longer streets.

8.3.4 A few simulations

To summarize an individual simulation of the city growth we need to provide our algorithm

with the parameters:

1. The number of settlements: N
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Ω \ Pe 0 0.5 0.8 0.99999

1 0.37 0.43 0.46 0.48

0.6 0.26 0.31 0.33 0.36

0.3 0.14 0.16 0.18 0.20

0 0 0 0 0

Table 8.1: Variation of the meshedness coe�cient M4 = 2(]E − ]V + 1)/(2.]V.(1− N̄(2))− 5) for

the 16 simulated cities. Each result is the averaging of 30 simulations. The variation for each case

is almost constant equal to 0.04. M4 is a increasing function of both Pe and ω.

2. The organization probability Pe

3. The radius of the rejecting tube: λ0

4. The long scale in�uence: β

5. The construction: ω

6. The sprawling factor Kext and the sprawling probability fext

Only four parameters will actually shape the simulated city (Pe, β, ω, fext) the others being

scaling parameters and that the in�uence of β won't be discussed here.

Simple patterns Fig.8.8 shows the result of 16 simulations. The organization probability

Pe and the construction ω are varying jointly when the same number of operations N = 80,

the same rejecting radius λ0 = 10m, the same available space (a square with an area of

1.6 km2), the same initial city (a segment of length 20 m at the center of the available

space) and the same extension probability of O are used. The �rst result is that this model

is able to reproduce very di�erent type of growth with very few "physical" parameters.

We observe on this matrix representation that the meshedness M4 (Tab.8.1) is an increas-

ing function of both Pe and ω Tab.8.1. This result has been obtained by averaging the

meshedness coe�cient of 30 simulations for each couple (Pe, ω). Added to that the standard

deviation of M4 for each couple is of 4 percent so that this coe�cient is characteristic of

the conditions of simulation. Contrary to that, the anisotropy coe�cient Ani is almost the

same in each case (between 0.31 and 0.46) with a large standard deviation of 20 percent.

This Ani is quite large in the absolute: for the �rst iterations some directions have to be

arbitrary chosen, which creates favoured directions. But it is the same order of weight as

for the most isotropic French towns. Of course the organic ratio rN is in every case close to

1.

When ω ' 0, the resulting simulations are to be compared to the Sa�man-Taylor instability.

It seems when ω ' 0 that only a bounded number of rami�cations are possible from the

initial segment (4 on this �gure) as if �rst created branches shielded the initial center from

newer ones. When ω > 0, the resulting cities are to be compared to crack patterns: their

dynamics follows a logic of division / subdivision of space.

A city built with constant parameters Fig.8.9 presents a city evolving with λ0 = 10m,

K = 10, Kf = 0.1, Pe = 0.8, ω = 0.7. The regular need of larger surface for activities
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Figure 8.8: Simulations of the morphogenesis model with for various constant organization Pe
and the construction ω. On each thumbnail, the rejecting radius is λ0 = 10m, there is no sprawling:

k = 0, the number of settlements is N = 80 and the available space is bound in a square with sides

of 400m. The red and bold segment represents an initial street-segment and a scale of 20 meters.

such as industries, big institutions, etc. is well reproduced here. During the history, as

the development of the city center progresses, it eventually absorbs the peripheral larger

surfaces, to split them into smaller surfaces, with thus new larger places appearing at the

new periphery. This reproduces and explains the situation of economical zones always

outside at the periphery of towns. It explains as well the successive subdivision of space

that leaves so many traces, �rst in the log normal distribution of streets length but also in

the hierarchical distributions of streets Fig.8.10. For this simulation, the ratio rN is equal

to 0.93 so that the term "organic" �ts. The meshedness coe�cient M4 = 0.48 is quite close

to Amien's (between 0.41 and 0.54) as the anisotropy (0.69 to be compared to 0.71 in the



134 CHAPTER 8. MODELS

center of Amiens).

Figure 8.9: (a, b, c, d) : four steps in the development of the city (e )with 600 urban operations.

For this simulation, λ0 = 10m, K = 10, Kf = 0.1, Pe = 0.8, ω = 0.7 and the windows is adapted to

the size of the current city. The main phenomenon at work is the dynamics between the inner

development and the extension of the city that creates two hierarchical scales.

Fig. 8.10 shows that the morphogenesis reproduces the small topological radius and the

log-scaling of street lengths observed in real cities (Ch.5). This shows the morphogenesis

model reproduces non trivial emergent behaviours in the city map.

A city built with varying parameters Constant parameters are not realistic to model

a real city, this one being shaped by its history which is from the morphogenesis point of

view a variation of input parameters.

We represent the history of a city by a piecewise constant function t→ (Pe, ω, lmax, fext,K, β, λ0).

For instance, the city of Fig.8.11 has been obtained by simulating at �rst a city with a low

construction and no sprawling (ω = 0.2 and fext = 0) and then changed to a sprawling and

constructed city (ω = 0.8 and fext = 0.15). The simulation starts with two perpendicular

streets with a length 20 times larger than λ = 10m. These pre-existing streets are structur-

ing elements as could be a river or long distance crossing roads. This kind of variation in

parameters recalls Casbah in Morocco where the historical center of the city is a souk.

8.4 Object Morphogenesis of the City

A problem with the model presented above is that simulated cities are too "circular". We

want to emphasize in the simulation engine the importance previous line streets becoming

structuring elements and favouring particular developments like �ngers along primitive long
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Figure 8.10: The distribution of the logarithm of streets length for two synthetic cities (top) and

the topological street distance to the center (bottom) for the resulting city of simulation Fig. ??.

As for real cities (Amiens), the street topology presents a bounded hierarchical representation of

the city and the streets length is well-�tted by a mixture of log-normal random variables.

streets. To this we make a paradigm shift. The previous potential was the result of the sum

of in�nitesimal potentials. This caused us technical problems to propose a distance that

produces peaks at the extremities of a street.

Here we change of paradigm: the potential is not the sum of in�nitesimal potentials but

the sum of potentials induced by objects. Then a river or a street will have an in�uence

all around it but the weight of this in�uence will not depend on the size of the object. A

longer street will have more in�uence not in a particular place but this in�uence expresses

in a larger zone.

This idea will not be studied theoretically, we just present a simple principle and observe

visually its repercussions on the city's geometry.

We de�ne the potential function V (largely inspired from Lennard-Jones potential) by:

Vα,β,n(r) = α.

((
β

r

)2.n

−
(
β

r

)n)
(8.24)

The mathematical parameters α, β, n of this function can be tuned via physical parameters

as the rejecting radius: r0 = β, the optimal radius rnm = 2.βn and the minimal
potential Vm = −α.

(
2n−1

4n

)
. In [0, r0] the potential is positive (as an approximation of
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Figure 8.11: A city developing with varying parameters from two perpendicular long structuring

elements. The historic center of the city has been built with a low construction parameter and no

sprawling (ω = 0.2 and fext = 0) to recall the tree aspect of a central souk in the Casbah. Then

parameters are changed to ω = 0.8 and fext = 0.15 which products an industrial crown. The

resulting town is very circular, even with primitive long structuring elements.

+∞, the idea is to forbid settlements at a distance smaller than r0). rm is the optimal

distance to settle and Vm describes the relative attractiveness of that optimal radius. The

shape of this potential will allow a displacement of the local minimal potential from the

optimal radius to make a global compromise when several infrastructures interfere.

Two exponents are involved in Eq.8.24. To be more general they should have been m and

n with no a priori link. We have chosen to take m = 2n since it allows simple calculus and

we only try to �t 3 physical parameters (r0, rm and Vm) thus 3 parameters in the formula

are enough.

To induce the geometry we want around a street, we add to the potential an angular e�ect.

An object h produces an unitary potential Ph(x) which depends not only on the distance

of x to h but also on the angle the segment limited by x and its projection on h makes with

h:

Ph(x) = V (d(h, x)). cos (2.|](h, x)|) (8.25)

The angle in the cosine function is double to ensure the spatial continuity of the unitary

potential. It has the positive consequence to penalize points that make an angle of π/4 with

a street segment and to favour those which are in the alignment (Fig.8.12, Left). The global

potential of the network is simply the sum of unitary potentials (Fig.8.12, Right).

We can keep the same philosophy for tuning simulation by introducing as in sec.8.3 an

organization, a construction, an extension factor, an extension probability and some re�ne-

ments. We want to test with this model the in�uence of axis in the current layout of a

city. We thus de�ne a simulation routine: a few random lines are made on the plane. Then

we apply the object morphogenesis model to �ll these primitive structuring elements with
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Figure 8.12: Potential �eld for a single segment (left) and a collection of connected segments

(right).

inhabitants. The results are various as shown in Fig.8.13. We observe through these four

simulations that the global shape of the cities are no more circular, new street segments

spouse and emphasize the shape of long lines. The curvature of some streets in the �rst

(Top-Left) simulation has been for us astonishing, for the coherence they reveal. An other

striking characteristic is to present large �uctuation of the density with clusters. Do the

size of these clusters follow Zipf's law?

Fig.8.14 shows several steps in the construction of a city �rst constituted of an "very or-

ganized" population (Pe = 1) to which follows a laxer one. A strong dense square-shaped

center appears without more constraints.

8.5 Conclusion

In this chapter we have presented a collection of nested models to test the in�uence of

constitutive elements of the city on its development (spatiality, streets).

The �rst continuous model is above all the mathematical translation of a principle in ac-

cordance with Zipf's law. We postulate that there is a general scale-free principle in city

growth. This principle is admitted and observed when considering systems of cities. We

claim that it is also in action at the scale of a particular city. We only obtain numerical re-

sults but the generic mathematical problem of the evolution of a density function according

to an integro-di�erential equation is of simple and �exible formulation. The �ts of numer-

ical results are very good and robust, it is clear that they could be reached theoretically.

We have studied it in the mono-centric, radial case. But it should be studied the same

way by adding anisotropy in space, several initial center, noise... This will show how cities'

proximity in�uence the shape of each other.

The division and division/extension models are simple sketch of a city evolution that allow

explicit calculus. The two morphogenesis models can only be simulated. They reproduce

both city maps' hallmarks and a quite large diversity of layout. The simple morphogenesis

makes too regular systems when they are large but the object morphogenesis puts the notion

of axis at the center of its principles which makes emerge spontaneous intricate shapes and
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Figure 8.13: A few realizations of the object morphogenesis. For each of these four cities,

random long lines are at �rst drawn, creating primordial structuring elements and then the city

grows with constant parameters, a high construction and a high organization. The variety of

global shapes is explained by the randomness of �rst lines, the

Figure 8.14: History of a city starting from random lines as structuring elements, knowing a

period of high organization producing a square like dense center and then a softer period.

local clustering in the distribution of infrastructure.

We want again to emphasize the distinction between global optimization of a system created
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in one piece and sequential local optimization of a system naturally evolving and produces

"organic" shapes.

Our models are coherent. For instance in the extension/division model, new squares are

added in places where they optimize their distance to existing infrastructures. The age and

thus the development of former squares make naturally the new square spin as a spiral.

The large scale evolution of the city is "snail-like". The morphogenesis model is able to

spontaneously produce clusters that distribute with di�erent sizes: Fig.8.15 displays the

evolution of a city growing on the interior border of a square structuring element. The

connection rule forbids two distant segments to connect. Several clusters appear on the

di�erent sides of the structuring square but they end up to melt and are no more observable

in the �nal city. This simulation can be seen as the assimilation of faubourgs by a main city

core.

Figure 8.15: Simulation of the morphogenesis in an area surrounded by a square structuring

element. Connections of a too large distance are not allowed. Several centres emerge (b, c and d),

their size is sparsely distributed (maybe a Zipf's law?). From (e) di�erent clusters start melting,

the distribution of clusters' size is no more observable.

In fact in the chronology of this thesis preparation models have came in the inverse order

than we have presented them here. At �rst we wanted to work on a segment space: �nd

the segment that at one time optimize the growth of the city. But there were continuity

problems induced by the connectivity constraint. We then had to uncouple the choice of

a position and the connection to the network. We wanted not to have to impose a priori

probability distribution for the choice of centres (as done in correlated percolation [87, 20],

L-Systems [104, 37] or topological network growth [8, 10]). The probability density had to

be determined by the actual geometry of the city and change with time. We �rst based on

centrality in the existing network but we remarked that Euclidian distance is for an outer

point a good approximation of shortest path distance. From the structure of our data into
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segments the most natural thing was to propose a potential induced by street segments. But

we had a metaphysical problem: two aligned segments of length l and a single segment of

length 2l did not produce the same potential �eld... We then proposed to see the potential

as the integral of contributions of in�nitesimal roads. We studied in depth this model which

reproduced the city features (small-world and street scaling).

But this model was too intricate and we were not able to make calculus on it. Notably

studying the distribution of cells area asked for a lot of tedious computing work. We then

went back to the very �rst sketch we had made at the beginning of our work when we were

particularly interested to structuring elements: division of space. But division of space was

not su�cient to obtain a power law distribution of cell area. We had to add the notion

of extension in this model. We �rst tried to add sequentially squares and divide previous

square. But the distribution was not the good one. We had to make the hypothesis that new

squares grow geometrically. This hypothesis has �rst shocked us. We looked for literature

on this subject and asked to town-planners "at what speed does a city's boundaries drift

away?". They did not know. It was impossible with our data to measure these information.

And we proposed the continuous model. The idea was "city will evolve as in Newtonian

systems, every thing will interact with every thing but instead of making other object move,

interactions will make objects grow". And �nally this model is in accordance with Zipf's

law, and the boundary of a city (whatever its arbitrary de�nition is) indeed drifts away

exponentially.

At last our work on simplest distance and simplest centrality made us understand that the

cutting of the city network was essential and that in fact our �rst idea for the morphogenesis

model was better. We re-worked on it and the contradictions we had found in a �rst time

erased.
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Sketching a city with Stochastic Geometry: Synthesis
The morphogenesis model has the physical interest to exhibit the principal mechanisms

that shape a city. But this model is not "operational". In this chapter we are going to

present more simple models from stochastic geometry that sketch a city map. Certainly

less realistic, they allow solving fast optimization problems occurring in urban engineering

whose solutions are strongly constrained by the road network.

We place in the continuity of [57] in stochastic geometry. A map extraction being under

consideration we seek to identify a random tessellation to substitute statistically to

the actual street pattern.

Our contribution is modest, the purpose is to reconsider the work that has already been

done, choose better models by the light of the previous chapters' results, simplify and

"robusti�cate" the identi�cation procedure.

We propose to consider a map as a superposition of two scales. The upper scale is

identi�ed to a Poisson Gabriel Graph (we study here the statistics of this graph),

and the lower to a Crack STIT or a Poisson Line Tessellation according to the actual

morphology of the map. The lower tessellation is completed by a Poissonian Dead-
end Process we de�ne and statistically study. We provide an identi�cation method

robust and fast to run based on simplest centrality �ltering and model selection with

intrinsic parameters.

Contributions of this chapter

1. Short review on stochastic geometry and its utilization to statistical optimization.

2. Study of the mean features of the Poisson Gabriel Graph by the simulation of its

typical vertex.

3. De�nition and study of a dead-end process via the calculus of the mean distance of

the typical point of a stationary Poisson Process and a random stationary tessella-

tion.

4. Rewriting of identi�cation criteria and speci�cation of a fast and robust identi�ca-

tion algorithm.
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9.1 Principles

We aim at replacing a map extraction such as in Fig.9.1 by a random graph statistically

equivalent to make the resolution of telecommunication problem easier . We �rst present

main principles of stochastic geometry [122] and their applications to telecommunication

network forecasting [61, 62, 60, 59, 57]. A more theoretical review on stochastic geometry

can be found in App.C and the basic notions related to geometry such as Voronï and

Delaunay tessellations are presented in App.A.

Figure 9.1: An extraction of the city of Troyes. The purpose of this section is to model this city

graph by a stationary model of random geometry

9.1.1 Basics and intuition in Stochastic Geometry

Poisson Point Process A spatial Poisson Point Process of intensity Λ a measure on Rd is
an in�nite countable random set of (distinct) points of Rd: Ψ = {X1, X2, ...} which respects:

1. (]Ψ ∩ A1)...(]Ψ ∩ An) are independent discrete variables when A1,..., An are disjoint

bounded Borel sets.

2. P(]Ψ ∩A) = e−Λ(A)
(Λ(A))k

k! where A is a bounded Borel set

It is important to admit the existence of such processes and picture them as the represen-

tation of total randomness.

A point process is said stationary and isotropic if when T is a translation and R is a rotation

then Ψ, T Ψ and RΨ are equal in distribution: the translated or rotated process behaves

the same way. If a process is stationary and if W is a compact window then

∃λ > 0 the "intensity" E(]Ψ ∩W ) = µ2(W ).λ (9.1)

A Poisson Point Process whose intensity writes Λ(.) = λ.µ2(.) is an homogeneous Poisson

Point Process. It is both stationary and isotropic.

Simple Random Tessellations A tessellation is an in�nite sequence (C1, C2, ...) of com-

pact polygons such as ∪Ci = R2 and if i 6= j, Int(Ci) ∩ Int(Cj) = ∅. It is somehow an

in�nite planar graph with no vertices of degree 1. The term "random tessellation" has to
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be de�ned properly but the practical idea is to de�ne some construction rules of tessellation

from a random set of points. The classical models taken into account in city modelling are

(Fig.9.2):

Poisson Line Tessellation: a Poisson Point process is dropped on the real line. To each

point is associated a line with a random orientation.

Poisson Voronoï Tessellation: A planar Poisson Process is dropped and the Voronoï

diagram of that set is drawn

Poisson Delaunay Tessellation: A planar Poisson Process and its Delaunay diagram is

drawn

These tessellations are "stationary" and "isotropic".

Figure 9.2: Simulation in a bound window of a Poisson Line Tessellation, a Poisson Voronoï

Tessellation and a Poisson Delaunay Tessellation.

A tessellation process Ξ = (C1, ...) induces other random object processes: the point process

of vertices, the segment process of edges, the point process of edges' mid point, the point

process of cells'centroid. If the tessellation is "stationary" then all the above listed process

also are. And one can consider the associated intensities λ0 of vertices, λ1 of edges' mid

points, λ2 of cells' centroïd and LA which is the expectancy of the total length of the

tessellation's edges in a window of area 1. For convenience we will write LA = λ3 and

consign these four intensities in a vector ~λ called the intensity vector.

The statistics of the resulting topology of each model only depends on the single parameter

γ (Tab.9.1) which de�nes the stationary underlying Poisson Point Process.

PLT PVT PDT

λ0
γ2

π 2.γ γ

λ4
2.γ2

π 3.γ 3.γ

λ2
γ2

π γ 2.γ

λ3 γ 2.
√
γ 32

3.π .
√
γ

Table 9.1: Intensities of stationary tessellation features for classical models generated from an

homogeneous Poisson Point Process of intensity γ.

Iterated tessellations Let Ξ(1) = (C
(1)
1 , C

(1)
2 , ...) a random tessellation and Ξ(2) another,

with Ξ(2),1,Ξ(2),2... an in�nite sequence of independent random tessellations that are equal to
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Figure 9.3: A sample of the iteration of a PLT (in red) followed by a PDT (in black).

Ξ(2) in distribution. Then the new random tessellation written Ξ = Ξ(1)/Ξ(2) is constructed

by simulating Ξ(1) and �lling each cell Ck by a truncated tessellation Ξ(2),k ∩ Ck. If Ξ(1)

and Ξ(2) are stationary Ξ(1)/Ξ(2) also is. Its intensity vector is written ~λ1/2. If at least one

of the tessellation is isotropic, ~λ1/2 can be simply calculated from ~λ(1) the intensity vector

of Ξ(1) and ~λ(2) the intensity vector of Ξ(2):

λ
1/2
0 = λ

(1)
0 + λ

(2)
0 +

4

π
.λ

(1)
3 .λ

(2)
3

λ
1/2
1 = λ

(1)
1 + λ

(2)
1 +

6

π
.λ

(1)
3 .λ

(2)
3 (9.2)

λ
1/2
2 = λ

(1)
2 + λ

(2)
2 +

2

π
.λ

(1)
3 .λ

(2)
3

λ
1/2
3 = λ

(1)
3 + λ

(2)
3

Cox Processes A Poisson Cox Process is a point process which is Poissonian with respect

of a random variable: the intensity of the process is itself random.

For instance let Ξ be a random tessellation and Ψ a random Poisson point process on the

edges of this tessellation. With respect of a realization of Ξ, Ψ is a linear Poisson Point

Process and the variable integrating all realization of Ξ: Ψ is said to be a Poisson Cox

Process.

Typicality Intuitively, if you have a collection of homogeneous objects O = (Oi), the

"typical" object of this collection is an object that have all the properties of O. For instance

if O is a family of rabbits, the "ideal" rabbit has two ears and one tail. But the "typical"

rabbit has let's say 1.99 ears on average and 0.98 tails... In fact the typical rabbit has a

distribution of number of tails and a distribution of number of ears and a joint distribution

of these two features. Consider it is a rabbits family from Chernobyl, each rabbit has a

chance p to have been irradiated. If he has been irradiated is a a certain probability to

lose on ear, the other and/or the tail. The typical rabbit is then a "random" rabbit which

reproduces in distribution all the characteristics of the rabbits' family. In average we said

the typical rabbit has 1.99 ears and 0.98 tails, he is irradiated with probability p and if so

he correlates the lake of ears and tail...

Typical object is a process on the set of objects that has "in average" "all" the properties

of the set and their correlations. It can be seen as a "well sampled" object. If you "pick"

a rabbit at random you get a realization of the typical rabbit, if you pick a ear at random
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you do not get a realization of the typical rabbit... you get the rabbit to whose belongs the

typical ear!!

To formalize this idea we have to clearly de�ne the context, the notion of object, picking,

average and property. We will restrict now to geometry and stationary processes that is

to say process that respects the Lebesgues measure. If O = (oi) is a stationary process of

object on a measurable space Ω in R2 then there exist a typical process o∗ such that for all

bounded window W and for all f measurable functional on Ω that is translation invariant,

E
(∑

oi∈O∩W f(oi)

]O ∩W

)
= E(f(o∗) (9.3)

this de�nition is not convenient because of the fraction in the expectancy of the �rst term.

The above formula is then replaced by:

1

λ.µ2(W )
E

 ∑
oi∈O∩W

f(oi)

 = E(f(o∗)), λ = E
(
O ∩W
µ2(W )

)
,∀W bounded (intensity)

(9.4)

Similarly, if you pick an object uniformly at random in a random realization of O ∩W : ω

then

E(f(ω))→W→R2 E(f(o∗)) (9.5)

The distribution of o∗ is the Palm distribution of O.

You take a tessellation process and extract it in a large window. If you number each cell,

pick a number and look at the associated cell you obtain a random variable: the typical cell

of the tessellation. If you pick a point at random in W and look at the cell it belongs to

you do not get the same random variable.

In a city graph context, let us take the following example. You consider all streets of a city,

take uniformly at random one of them and look at its length. Then the random measure

resulting of this procedure is "the length of the typical street", we have seen that it follows

a log-normal law. Contrary to that if you pick a point at random on the street network and

look at the length of the street it belongs to, you get a di�erent random variable, shifted

to higher length values. In fact, if f is the distribution of length of the typical street,

g(k) = 1
Ef .lf(l) is the distribution of the length of the street of a random point.

When in addition we suppose the process is Poissonian, it is possible to simulate the process

around the typical point without having to simulate the whole process. In fact if X is a

stationary Poisson Point Process with intensity λ,

E

(∑
x∈X

f(x,X)

)
= λE(f(0, X + {0})) (9.6)

Thus the Palm distribution of a stationary point process X is P0(X ∈ .) = P(X ∪ 0 ∈ .) .

More general if X is not stationary but has a di�use measure Λ(.):

E

(∑
x∈X

f(x,X)

)
=

∫
E(f(x,X + {x}))dΛ(x) (9.7)

This is known as the Mecke's or Slivnak's formula and expresses the idea that you do

not disrupt a Poisson Point Process by adding a point to it. In fact it is a characteristic
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property of Poisson Processes [5]. As a consequence you can measure the landscape created

by the process and observed in a point of this process by placing in 0. The main technical

consequence is that to assess a functional on a typical cell of a tessellation, you can place its

center in 0 and construct iteratively the closest neighbours. Since tessellations are generally

de�ned by local interaction rules you do not have to simulate all the neighbours but all until

you know further points will not interact with the cell.

9.1.2 Telecommunication assessment

Generally speaking, a telecommunication network is constituted of several layers (L1, L2, ...)

of routers hierarchically ordered. Then each router in Lk has to be connected to an upper

router in Lk+1. The cost of the whole network is an increasing function of the number of

routers and the total length of cable used to link the whole system. Hence a router of Lk
is linked to the closest router of Lk+1. Moreover in a urban context, routers and cable can

solely be laid on the road system. So minimizing the cost of a network is equivalent to

optimize a combinatorial problem on a city graph with a lot of variables. Engineers have to

prospect for a network that performs a good compromise between cost (total cable length)

and Quality Of Service (number of routers). They have to test a lot of scenarios to make

their choice. Calculate an optimal network for each scenario is much too time greedy. [57]

proposed to solve the problem statistically:

1. Consider the road network is in fact the result of a Poissonian Random Tessellation

2. Consider that each router layer is a Poisson point process dropped on the previous

tessellation (Cox Process Fig.9.4)

3. Assess statistically the distribution of cable length

Figure 9.4: The road network is replaced by a PLT (in red). The routers of the higher layer L1

are replaced by a Poisson Point Process on the PLT (in green) which is a Poisson Cox Process. In

black, the Euclidian serving zone of each router. From Catherine Gloaguen's.
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Figure 9.5: A telecommunication network is constituted of several layers of routers here

L0, L1, L2, L3. Routers are put on the road network and are connected with respect of that

network. From Catherine Gloaguen's.

We consider at �rst the problem with a road network Ξ, a low router layer Ψ0 and a high

router layer Ψ1, Ξ being the support of each layer. The problem is to know for each element

of Ψ0 its shortest path distance to the closest router of Ψ1. Statistically we only seek out

for the distribution of these distances. This problem is the simplest and in fact provides the

fundamental element for the solution of general case. We want to assess the distribution

dΨ0→Ψ1(.) of length of a typical point of Ψ0 to the process Ψ1. This distribution does not

depend on λ0. As an approximation we consider x connects to y ∈ Ψ1 iif x ∈ Vor(y||Ψ1), the

Voronoï cell being de�ned in the Euclidian meaning. Scaling arguments show that dΨ0→Ψ1(.)

only depend on the shape of the road tessellation Ξ and a scale parameter κ:

κ =
Mean total road network length per unit area

Linear intensity of H (per unit length)
=
λ3

λl
(9.8)

we the write dΨ0→Ψ1(.) = dκ,Ξ(.). It is possible to simulate exactly (and with no runtime or

memory problems) [62] a typical node of Ψ1, its serving zone (Voronoï cell) and the portion

of Ξ that belongs to this zone. dκ,Ξ(.) is also the distribution of distances of all points of

Ξ ∩ C∗ to the center of C∗. The general features of the simulated curves and the exact

calculus in the cases κ → 0 and κ → ∞ leads to �t the general density by the positive

function f ([62]):

f(x|κ, α = α(κ), β = β(κ)) = C0(κ) (x+ C1(κ))β−1 e(−α(x+C1(κ)))β (9.9)

with C0 and C1 known constants that depend on κ (and α, β) and the shape or "type" of

Ξ.

9.1.3 Identi�cation procedure

The routine to identify an urban extraction to a stochastic tessellation presented in [57] is:

1. Pre-processing of the map
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(a) Choice of a convex window

(b) Erasing of dead-ends

(c) Erasing of squares and roundabouts

(d) Recti�cation and underscaning of points �tting streets' curves.

2. Calculus of ~λ(C)C the real topological vector of the studied city C.

3. Calculus for each model i ∈ { PLT, PVT, PDT } or their iteration of

γi = argmin
γ

d(~λ(i)(γ), ~λC) with d(~a,~b) =

√√√√ N∑
j=0

(
~aj −~bj
~bj

)2

(9.10)

4. Choice of the best model I from I = argmin
i

γi

5. Validation of this choice by a sequence of Monte-Carlo simulations

9.1.4 Problems with the method

The above described procedure presents some problems:

1. The algorithm calls for a very time consuming preprocessing

2. Tessellations models have been chosen for their (relative) simplicity but are they rel-

evant to model cities?

3. There is a symmetry in the formula Eq.9.2: it is impossible to make a distinction

between H/K and K/H

4. 2 parameters are assessed from 3 independent measures which is not robust

5. Parameter assessments are strongly dependant of map's quality, sampling and the

choice of window

In the following, we will choose stochastic tessellations that are suitable to model cities. We

propose to see the city as a superimposition of two scales. At each scale a few models emerge

naturally. We present a fast identi�cation method based on intrinsic criteria rather than on

average criteria and break the symmetry of the iteration formula (Eq.9.2) by introducing a

simplest centrality �ltering.

9.2 Low scale models

If a city is planned it is essentially locally constituted of long streets intersecting in vertices

of degree 4. In the organic case, we have seen that the map is essentially the result of a

space division process with vertices of degree 3.

Two well documented tessellation models that simply reproduce these features are the Pois-

son Line Tessellation and the Crack STIT tessellation. Besides in both model an isotropy
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Figure 9.6: Matricidal representation of the four models we consider to model the lowest scale of

a street network. Each depends only on one parameter tuning its intensity. Models are identi�ed

by crossing a topological and an anisotropy criterion.

function can naturally be introduced which is very interesting to consider the in�uence of

structuring elements. In the following we present the mathematical formulation of these

models and their main properties. To end with, we propose a geometrical construction that

allows adding simply "Poissonian" dead ends to the tessellations.

9.2.1 Poisson Line Tessellations

LetX = {Xi}i∈N be a homogeneous Poisson Point Process of intensity λ on the real line, (θi)

a sequence of independent random variable following φ a probability measure on [0, 2π[. To

a couple (Xk, θk) one associates the line Hk perpendicular to the circle of radius [o,Xk] and

passing through the point Rθk(Xk). The set {Hk} is said to be a Poisson Line Process. If φ

is uniform the result is isotropic: and Poisson Line Tessellation and if φ is constituted by two

atoms separated by π/2 the result is maximally anisotropic, it is a Manathan tessellation

(Fig.9.6).

In both cases, the resulting topology is lonely compounded of degree 4 vertices.
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9.2.2 Crack STIT

There are several possibilities to de�ne a tessellation resulting from division of space.

And [41] proposes a generic framework. Every construction is iterative and the �nal tessella-

tion is always the limit of a division process on a bound window that is dilated progressively.

A measure on compact bodies is chosen: area, perimeter... At a given step, each cell of the

current tessellation is divided by a random line (with respect of an isotropy function φ) with

a probability proportional to its measure. The new resulting tessellation is dilated and the

process restarts.

The Crack STIT tessellation is obtained by choosing the perimeter as the selection measure.

It is more classically obtained by another construction process: [90, 95, 95, 112] and has

some particularities that make it appealing. The resulting topology is compound of degree

3 vertices.

The tessellation is stable under iteration (in distribution). The interior of typical cell of a

Crack STIT is equal (in distribution) to the one of a PLT with the same isotropy function

and linear intensity.

9.2.3 Dead-ends

Tessellations models do not allow to represent a very common phenomenon on city maps:

dead-ends (around 10 percent of vertices). In real cities and especially in country zones,

dead-ends organize into trees. Nonetheless we will approximate these trees by a single

segment which is accurate in urban zones.

In a stochastic framework, we consider a stationary tessellation Ξ with linear intensity λ3

and a Poisson Point Process X of intensity γ. We consider the Point Process connects to the

tessellation by making a segment between each point and its projection on the tessellation.

The tessellation with the addition of the Dead-End process is a stationary random graph.

We are interested in its vector of intensities ~ζ = t(ζ0, ζ1, ζ2, ζ3). The three �rst components

are obvious and some scaling considerations with the use of the Mecke formula shows that

the mean length of such a segment is

ζ3 =
γ

λ3
αΞ (9.11)

where αΞ is a constant parameter depending only on the shape of the tessellation Ξ. α is the

mean distance of the origin to the same stationary dilated tessellation with edge intensity

1. In general α is an integral non calculable, here are nonetheless particular results for the

models under consideration:

PLT The PLT of intensity 1 is generated by a Poisson Point Process P of intensity 1 on

the real-line and by picking for each of this point a direction at random. Consequently the

distance of 0 to the tessellation is a random variable Z whose distribution is:

1− P([−x, x] ∩ P = ∅) (9.12)

The density of Z is 2e−2x and αPLT = 2 whatever the anisotropy distribution: αMan = 2.
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Crack STIT: The interior of the typical cell of a Crack STIT is equal in distribution

to the PLT's one. Consequently their 0-cells are also the same and αCrack = αPLT = 2

whatever the anisotropy distribution.

9.3 High scale model: Gabriel Graph

To the scale previously described superposes most of the time an upper scale. This scale can

be an original frame such as a former rampart or an additional non coherent structure to

improve tra�c such as Haussman's streets in Paris. These streets provide an e�cient access

to strategically points in the city: it is somehow a relational geometrical graph. Which leads

to think of a Poisson Delaunay Tessellation to model it. But the mean degree of PDT is 6

which is too much. We propose thus to study a sub-sampling of the Delaunay graph: the

Gabriel graph.

9.3.1 Construction

Let S = {x1, ..., xk, ...} a discrete set of points. To construct the Gabriel Graph of S we

consider all element of S is a vertex. For each pair of vertices (xi, xj) an edge is drawn if

and only if the circle of diameter [xi, xj ] contains no points of S excepted from xi and xj .

Figure 9.7: Realization in a bound window of a Poisson Gabriel Graph.

9.3.2 Properties

The Gabriel Graph is planar, it is a sub graph of the Delaunay graph. If we replace the

deterministic point set S by a Poisson Point Process and construct the associated Gabriel

Graph, we obtain a Poisson Gabriel Graph. This graph is connected with probability 1
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since the Minimum spanning tree is connected with probability 1 [97] and is a subgraph of

Gabriel. We will see that this graph is not necessarily a tessellation.

9.3.3 Typical node

To assess mean formulae of a PGT we simulate the edges emanating from the typical point

of the tessellation.

Radial Simulation of a Poisson Point Process We �x a point o = (0, 0) and simulate

radially from it a Poisson Point Process Ψ of intensity γ. o We consider the random points

P1, P2, ..., Pn being the n-th closest point of Ψ to o. We write Rn = ||Pn|| the distance of
Pn to the origin and Θn the angle between oPn and a reference vector, let us say t(0, 1). Θn

are independent variables uniformly distributed on [0, 2π[. Rn+1 = Rn + Xn+1 where Xn

are positive random variables, independent and with the same distribution than a variable

X:

P(X > r) = e−λπr
2
, fX(r) = 2πλre−λπr

2
(9.13)

X can be simulated from a variable Y uniformly distributed with the variable change:

X =

√
− ln (1− Y )

2πλ
, Y ∼ U([0, 1]) (9.14)

Simulation of the edges emanating from the typical node P1 is necessarily con-

nected to o. Then we draw P2 will he be connected ? P2 is connected if an only if

‖P2‖2 <
∥∥∥∥P1 −

P2

2

∥∥∥∥2

(9.15)

a short calculus with an appropriate basis rotation leads to consider the line H1 that passes

through P1 and is tangent to the circle of center o and radius R1 and the half plane delimited

by H1 that contains o: ∆o
1. P2 is connected iif P2 ∈ ∆o

1. More generally to each point Pi
we associate Hi and ∆i. Remark that only P1, ..., Pn can prevent Pn+1 from connecting to

o. Thus Pn+1 connects iif

Pn+1 ∈
n⋂
i=1

∆o
i = Polyn

Note that Pn ∈ ∆o
k iif (< Pn|Pk >) < ||Pk||⋂

∆o
i is a polytope that contains o and is decreasing with n. In the beginning the polytope

is in�nite, then it ends up to close with probability 1. We writeMn = maxx∈∩∆o
i
||x||. From

these remarks and notations results an algorithm simulating the edges emanating from the

typical node of a PGT:

It ends with probability 1 and a large number (10000) of independent simulations permits

to estimate the mean degree of a typical node n̄02 = 3.043 and the mean length of edges

emanating from the typical node: l̄0 = 3.3013/
√
γ.
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Figure 9.8: Radial simulation of the edges emanating from the typical node of a Poisson Gabriel

Graph.

Remark that we do not get a tessellation but a graph since nodes can have degree 1 with

a probability of about 0.04: PGG. In this very exceptional case, we transform a PGG to a

PGT: if x is a node of degree 1 in PGG, we can for instance add to the graph its Delaunay

edges; the graph stays planar and there is no more nodes of degree 1.

9.3.4 Mean Formulae

From n̄02 ' 3.043 and l̄0 ' 3.3013√
γ classical formulae permits to get the value of components

of the intensity vector of a PGG:

λ0 = γ

n̄02 = 2 +
2λ2

λ0
=⇒ λ2 ' 0.5215γ

λ1 = λ0 + λ2 =⇒ λ1 = 1.5215γ

l̄0 =
2LA
λ0

=⇒ λ3 = LA = 1.6507
√
γ
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Algorithm 10 Simulation of edges emanating from the typical vertex of a Gabriel

Graph

1: n=0

2: Set Mn =∞, set Polyn =R2, set Edges = ∅
3: Rn = 0

4: while Rn < Mn do
5: n=n+1

6: Generate Pn
7: if
8: thenEdges = Edges ∪ [oPn]

9: end if
10: Compute

11: Polyn = Polyn−1 ∩∆o
n

12: Mn = maxx∈Polyn ||x||
13: end while
14: OUTPUT: ]Edges, length(Edges)

9.4 Identi�cation

We propose to see the city as an iterated tessellation. The upper tessellation is a Gabriel

graph, the lower either a Crack or a PLT. At �rst we compute a simplest centrality and

threshold it to an arbitrary quantile to select the upper scale. The parameter of the PGT is

then assessed. We propose to select low models with a matrix, by classifying them according

to the Anisotropy and the Topology of the street network. Once the model selected, we will

assess its intensity with an additional dead end process.

9.4.1 Rewriting of intensity vectors as feature vectors

We de�ne the modi�ed intensity vector:

~Λ =
t
(λ0, λ1, λ2, λ

2
3) (9.16)

If we write

L = λ2
3 (9.17)

then there exists for each stationary tessellation of type i a feature vector ~vi such as

~Λi = L.~vi (9.18)

For the models under consideration Tab.9.2 gathers vectors ~vi: exactly when possible and

numerically. We can also calculate ~Λ for the iteration of two models(at least one have to be

isotropic) and deduce from it the feature vector of the iteration:

~Λ(1/2) = L1~v1 + L2~v2 +
√
L1L2

~I (9.19)

where

~I =
t( 4

π
,

6

π
,

2

π
, 0

)
(9.20)

is an interference vector that does not depend on the particular tessellation models used.
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Comp. PVT PDT PLT Manathan Crack IsoCrack Gabriel

0
1/2 9π2/1024 1/π 1 2/π 1 ?

0.5 0.0867 0.3183 1 0.6366 1 0.3670

1
3/4 27π2/1024 2/π 2 3/π 3/2 ?

0.75 0.2602 0.6366 2 0.9549 1.5 0.1914

2
1/4 9π2/512 1/π 1 1/π 1/2 ?

0.25 0.1735 0.3183 1 0.3183 0.5 0.5584

3 1 1 1 1 1 1 1

Table 9.2: Feature vectors for the random graph models under consideration (exact value when

known and numerical value). The normalization of the last component allows to compare the

topology of models.

9.4.2 Identi�cation

Let u be the real feature vector of a map extraction. The classical identi�cation of simple

models can then be done through the criterion:

Ci = ||L.~vi − ~u||2 (9.21)

The minimum is reached for

L =
< ~vi, ~u >

||~vi||2
and is Cmini = ||~u||2 − < ~vi, ~u >

2

||~vi||2
= ||~u||2. sin2(~u,~vi) (9.22)

To consider relative distances rather that absolute ones, we are lead to optimize criteria of

the form:

Ci =< L.~vi − ~u|A|L.~vi − ~u > A = diag(~u)−1 (9.23)

Similarly the minimum is reached for

L =
< ~vi|A|~u >
< ~vi|A|~vi >

and is Cmini =< ~u|A|~u > −< ~vi|A|~u >2

< ~vi|A|~vi >
=< ~u|A|~u > . sin2(~u,A.~vi)

(9.24)

9.5 Algorithm

We now have models and basic methods to choose the best one in a practical context. Rather

than using directly the formulae in [57] that average information quite brutally and present

symmetry problems, we �rst separate each scale of the city and identify the best model via

intrinsic parameters before assessing their intensity. The algorithm we present here is not

the single method respecting the general philosophy.

In a �rst time we compute simplest centrality on the map to threshold the most central

streets as the upper scale of the system. This subgraph is identi�ed to a PGG with linear

intensity LUp. The rest of the network (lower scale) is identi�ed to a Crack STIT or to a

PLT (Fig.9.6) from its morphology (intrinsic parameters). The choice is �rstly made on the

mean degree of the lower scale. To this we calculate the organic ratio R which essentially



9.6. CONCLUSION 159

depends on the number of degree 3 vertices N(3) which is biased because of the interference

between upper and lower scales. There are 4
π

√
LUp(

√
L −

√
LUp) interference vertices of

degree 3.

When the model class is chosen, we decide if the lower scale is rather isotropic or anisotropic

with the calculus of the anisotropy coe�cient.

The last thing is to assess the intensities of the lower scale tessellation and of the dead-ends

process. This can be robustly with various methods in the same time or dead-ends �rst and

tessellation after.

Algorithm 11 Choice of similar iterated random tessellation

1: Extract the map, L is the total street length

2: Compute the simplest centrality on the road network

3: Extract the sub graph Up constituted of roads whose centrality > c (arbitrary aroud 10

percent for instance).

4: Compute LUp the square of the linear intensity of the upper scale.

5: Compute R = Ñ(3)/(Ñ(3) +N(4) where Ñ(3) = N(3)−N(1)− 4
π

√
LUp(

√
L−

√
LUp)

the organic ratio of the lower scale (the degree 3 interference vertices are subtracted).

6: if R ≤ 0.5 then
7: Model class is CRACK

8: elseModel class is LINE

9: end if
10: Compute the anisotropy A

11: if A ≤ 0.5 then
12: model is isotropic

13: elseModel class is anisotropic.

14: end if
15: Compute N(1) the number of dead ends.

16: Estimate parameters of the tessellation.

9.6 Conclusion

For dead ends, we can either consider that it projects to the iteration of high and low scale

either that it only projects to the low scale. In the �rst case we must approximate αiteration
by αLow scale, in the second case we must admit that because of a very few occurrences the

graph is not planar. Also, the subgraph resulting from the truncation of highly central

streets may not be connected which induces a bias. An other fundamental assumption in

this chapter is zones under consideration are stationary. It is obviously not the case when

looking at whole cities or agglomerations. The stable condition of the network is modi�ed by

an intensity modulation, cultural di�erences inside the city and structuring elements. But

one could consider that locally the city is stationary. The next step is then to �nd a way to

cut a map into a small number of zones where the street network can indeed be considered

as stationary. This can be done "by hand" as in Fig.9.9 but the result is subjective, not
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trustable, not accurate and painful to get. The next chapter presents an algorithm that

realizes in a satisfactory fashion this task.

Figure 9.9: Hand segmentation of the city of Bordeaux. From Catherine Gloaguen's.
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Map Segmentation: Synthesis
The stochastic geometry models only apply to regions where the map can be considered

as "stationary". Nonetheless a whole map is in any way stationary or homogeneous.

The purpose of this chapter is to build and assess the performances of algorithm to segment

a map in a given number of zones one can consider as "morphologically homogeneous". We

deal with morphological segmentation and not functional segmentation. The �exibility of

the recent Spectral Clustering has caught our attention: it uses graph formalism, allows

incorporating varied segmentation criteria, generates non linear boundaries between zones

contrary to the well known K-means algorithm.

Roughly, the principle of Spectral Clustering is to operate a change of representation

space on the data, to apply then K-means which makes linear boundaries and re project

these boundaries on the �rst space, the result presenting varied shapes adapted to data.

At �rst we will present Spectral Clustering: heuristically its principle in terms of matrix

perturbation, more rigorously but also more obscurely we will see it minimizes some

criteria. In a second part we will present our re�nements to Spectral Clustering for city
segmentation. To end with, we will study the tuning and the relevance of our algorithm

with toy cases and real cities.

Contributions of this chapter

1. A review and an understanding on spectral clustering .

2. A spectral clustering based algorithm to morphologically cluster city maps.

3. The tuning of this algorithm with representative toy cases and real cities; its imple-

mentation in linear time.

4. Its application to equivalent stationary tessellation identi�cation.
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10.1 Spectral Clustering

Before presenting Spectral Clustering, we have to say a few words on the more classical

K-means algorithm. K-Means is a clustering algorithm which classi�es data with linear

separators. Spectral Clustering is an evolution of K-Means producing non linear separators

and using K-Means as an element. If not recalled in the text, our presentation of K-means

and spectral clustering is based on [7, 130, 94, 99, 65].

10.1.1 K-Means

Let (x1, ..., xn) be n samples of d-dimensional data in a metric space. The purpose of K-

means is to partition these data into K classes or clusters such as samples in a same class

are "close" and samples of di�erent classes are "distant".

For instance if (x1, ..., xn) is sampled from a Gaussian mixture, classes should contain sam-

ples from the same Gaussian generator.

More formally, we aim at �nding the partition S:

S = (S1, ..., SK) = argmin
s=(s1,...,sK)

K∑
i=1

∑
xj∈si

||xj − µi||2, µi =
1

]Si

∑
x∈Si

x (10.1)

The problem as formulated here is NP-hard. The K-means algorithm is a fast to run heuristic

to solve that problem. Expectation-Minimization like, it divides into 2 steps and is iterative.

To start with, K vectors (µ
(0)
i )i are chosen at random (in a set adapted to data, for instance

their convex hull). A sample is a�ected to the i-th cluster if its belongs to the Voronoï cell

of µ
(0)
i relatively to the sequence (µj): Vor(µ

(n)
i |µ

(n)
1 , ..., µ

(n)
K )) (Assignment). Each µ

(n)
i is

updated to the mean of all sample in its Voronoï cell (Update). And so on till the clusters

stabilize.

Algorithm 12 K-means

1: n=1

2: µ
(n)
1 , ..., µ

(n)
K at random

3: repeat
4: S

(n)
i = {xj , xj ∈ Vor(µ

(n)
i |µ

(n)
1 , ..., µ

(n)
K )} . Assignment Step

5: ∀i, µ(n+1)
i = 1

]S
(n)
i

∑
x∈S

(n)
i

x . Update Step

6: until clusters stabilize

10.1.2 Principle of Spectral-Clustering

The K-Means algorithm is based on Voronoï diagrams and thus cannot produce non linear

separators. The basic idea of Spectral Clustering is to carry out a change of representation

space and to use a linear separation in this new space. The resulting segmentation in the

initial space is not linear and can adopt more intricate shapes.

To this Spectral Clustering starts by transforming data into a weighted graph and operates

its changes via the eigenspaces of the Laplacian matrix.
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Similarity graph Let (x1, ..., xn) be the d-dimensional samples to cluster. Let w(., .)

be a positive function intended to measure to what extent data xi and xj are "close" or

"similar". The similarity graph of (x1, ..., xn) is the graph having these samples as vertices

and that make an edge between xi and xj of weight w(xi, xj) (xi and xj are not connected

if w(xi, xj) = 0).

Laplacian Matrix If G = (V,E) is a graph, with a weighted adjacency matrix W and if

D is the ]V × ]V diagonal matrix whose entry dii is the degree of vertex i, the Laplacian

matrix L of G is de�ned as

L = D−W (10.2)

Theorem 10.1.1

The Laplacian L checks:

1. If f ∈ Rn,
tfLf =

1

2

∑
i,j

wij(fi − fj)2

2. L is symmetric and positive semi-de�nite, all its eigenvalues are positive

3. 0 is eigenvalue of L with t(1, ..., 1) as eigenvector

4. The multiplicity of the eigenvalue 0 is the number of connected components in the

graph

Ideal case If the data is compounded of k obvious clusters i.e k connected components

then modulo a basis change, the Laplacian is a square block diagonal matrix:

L =


L1

L2

. . .

Lk

 (10.3)

Li runs from index li to li+1. 0 is eigenvalue of multiplicity k. The associated eigenspace is

spanned by vectors

~1k = t(0, ..., 0, 1, ...1,︸ ︷︷ ︸
indices lk to lk+1

0, ..., 0)/(lk+1 − lk) (10.4)

which form an orthonormal basis. Let V the n × k matrix that contains the orthonormal

eigenvectors spanning the eigenspace of 0. V cannot be de�ned in an univocal way but since

(~1k)k is an orthogonal basis, there exist an orthogonal matrix R such that:

V = R


~11

~12

. . .
~1k

 (10.5)
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Figure 10.1: A graph constituted of 3 connected components

let us write (ui)i=1:n the lines of V. Then two points xi and xj are in the same cluster if

and only if ui = uj . Thus clustering (xi) is the same than clustering (ui).

This equivalence remains if the data is not ideal: the Laplacian L is a little "perturbed"

but if xi and xj are strongly connected, ui and uj keep being close as shown by the example

bellow.

Exemple We show here the di�erent matrix W, L and V of the graph in Fig.10.1:

W =



1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1


(10.6)

L =



2 −1 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
−1 −1 2 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 0 3 −1 −1 −1
0 0 0 0 0 −1 3 −1 −1
0 0 0 0 0 −1 −1 3 −1
0 0 0 0 0 −1 −1 −1 3


(10.7)

The eigenvalues are 0, 0, 0, 2, 3, 3, 4, 4, 4 with eigenvectors:

V =



0.5774 0 0 0 0.2673 0.7715 0 0 0
0.5774 0 0 0 −0.8018 −0.1543 0 0 0
0.5774 0 0 0 0.5345 −0.6172 0 0 0

0 −0.7071 0 −0.7071 0 0 0 0 0
0 −0.7071 0 0.7071 0 0 0 0 0
0 0 −0.5000 0 0 0 −0.1296 0.7344 −0.4402
0 0 −0.5000 0 0 0 −0.6130 −0.5745 −0.2101
0 0 −0.5000 0 0 0 0.7785 −0.3226 −0.1996
0 0 −0.5000 0 0 0 −0.0359 0.1627 0.8499


(10.8)

Let us now pretrubate W by introducing loose links between each pair of vertices:

W =



1.0000 1.1914 1.1760 0.1959 0.0505 0.1475 0.0024 0.0398 0.1323
1.1045 1.0000 1.0938 0.1977 0.0847 0.0668 0.0452 0.1521 0.1281
1.0346 1.0130 1.0000 0.0760 0.1362 0.1136 0.0118 0.0101 0.0610
0.0543 0.1166 0.1567 1.0000 1.0030 0.1942 0.1578 0.0997 0.1287
0.1751 0.1031 0.0922 1.1536 1.0000 0.1920 0.0824 0.0536 0.1867
0.0273 0.0866 0.1588 0.1980 0.1453 1.0000 1.0425 1.1258 1.0414
0.1788 0.1160 0.1206 0.0877 0.1489 1.1678 1.0000 1.1260 1.1150
0.0597 0.1060 0.0831 0.0428 0.0880 1.0268 1.0741 1.0000 1.0088
0.0569 0.0418 0.1749 0.0640 0.1367 1.1214 1.0903 1.0054 1.0000


(10.9)

L =



2.6913 −1.1914 −1.1760 −0.1959 −0.0505 −0.1475 −0.0024 −0.0398 −0.1323
−1.1045 2.7743 −1.0938 −0.1977 −0.0847 −0.0668 −0.0452 −0.1521 −0.1281
−1.0346 −1.0130 3.0561 −0.0760 −0.1362 −0.1136 −0.0118 −0.0101 −0.0610
−0.0543 −0.1166 −0.1567 2.0157 −1.0030 −0.1942 −0.1578 −0.0997 −0.1287
−0.1751 −0.1031 −0.0922 −1.1536 1.7932 −0.1920 −0.0824 −0.0536 −0.1867
−0.0273 −0.0866 −0.1588 −0.1980 −0.1453 4.0300 −1.0425 −1.1258 −1.0414
−0.1788 −0.1160 −0.1206 −0.0877 −0.1489 −1.1678 3.5064 −1.1260 −1.1150
−0.0597 −0.1060 −0.0831 −0.0428 −0.0880 −1.0268 −1.0741 3.6124 −1.0088
−0.0569 −0.0418 −0.1749 −0.0640 −0.1367 −1.1214 −1.0903 −1.0054 3.8020


(10.10)
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Figure 10.2: The lines of the matrix constituted of the tree �rst eigenvectors (V ) of the

similarity matrix (W ) as columns. On the LEFT: the ideal case where green, red and blue

subgraphs are not connected at all. On the RIGHT: the perturbated case where these subgraphs

are loosely connected. In both cases the clusters resulting from K-means algorithm are surrounded

by the color corresponding to the subgraph of Fig.10.1.

Eigenvalues: 0, 0.879, 1.0646, 2.9919, 3.8798, 4.006, 4.666, 4.7556, 5.0386

V =



−0.3240 −0.5080 0.2970 0.0239 0.6785 0.4444 0.0251 −0.0626 0.0041
−0.3147 −0.4603 0.2688 0.0039 −0.7260 0.3240 −0.0480 0.0160 0.0479
−0.2604 −0.4185 0.2335 −0.1042 0.0469 −0.8205 0.0414 −0.0012 −0.0258
−0.3330 0.1253 −0.5494 0.7146 0.0477 0.0506 0.0156 0.0103 −0.0098
−0.3748 0.1245 −0.6628 −0.6901 −0.0495 −0.0375 0.0079 −0.0382 −0.0019
−0.3277 0.2699 0.0757 0.0387 −0.0297 −0.0374 −0.8379 0.1607 −0.1809
−0.3827 0.2993 0.1212 0.0074 0.0542 0.0961 0.2003 −0.5639 0.6975
−0.3339 0.2870 0.1152 0.0101 −0.0397 0.0595 0.1035 −0.2782 −0.6758
−0.3340 0.2809 0.1008 −0.0044 0.0175 −0.0792 0.4920 0.7571 0.1448


(10.11)

10.1.3 Formal approach

Graph cut The graph cut problem for a weighted graph G (weight w) consists in dividing

G into two or more disjoint subgraphs that minimize a criterion. This criterion expresses the

idea that vertices in a same subgraph should be highly connected and vertices in di�erent

subgraphs should be loosely connected. For a graph cut into two components, the simplest

criterion to work on is the minimization of the Cut2 of a partition:

Cut2(A,B) =
∑

i∈A,j∈B
w(xi, xj) (10.12)

This problem can be solved in O(]V 2]E) with the Edmonds Karp algorithm. Nonetheless,

the result is somewhat unbalanced, the solution of the problem being mainly the isolation

of a few vertices. Another criterion based on the RatioCut2 minimization gets around this

problem by introducing a regularization factor:

RatioCut2(A,B) = Cut2(A,B)(
1

]A
+

1

]B
) (10.13)

the RatioCut2 being put up if a subgraph is small. Finding the solution of the RatioCut2
problem is NP -hard. The purpose of the spectral clustering algorithm is to set up an

heuristic that approximates its solution.
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The two criteria can be generalized to cuts into k subgraphs:

Cut(A1, ..., Ak) =
1

2

∑
i

Cut2(Ai, Āi) (10.14)

RatioCut(A1, ..., Ak) =
1

2

∑
i

Cut2(Ai, Āi)

]Ai
(10.15)

Resolution with two clusters Given a subsetA ofG, we de�ne the vector f = t(f1, ..., fn)

by:

fi =


√
]A/]A if xi ∈ A

−
√
]A/]A if xi ∈ A

(10.16)

then

RatioCut(A,A) =
1

]A
tfLf (10.17)

furthermore,

||f || =
√
n (10.18)

and

f ⊥ t(1, ..., 1) (10.19)

The problem of minimization of RatioCut can be equivalently rewritten as

Find f as de�ned in 10.16 that minimizes 10.17 which respects 10.18 and 10.19

This problem is still NP -hard. But we are on the verge to use the theorem:

Theorem 10.1.2 (Rayleigh-Ritz (1))

If A is a positive de�nite symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn associated

to normalized eigenvectors V1, ..., Vn then

min
x,||x||=

√
C

txAx = C.λ1

and that minimum is reached for x =
√
C.V1.

min
x,||x||=

√
C,

x⊥V1,...,x⊥Vk

txAx = C.λk+1

and the minimum is reached for x =
√
C.Vk+1

If we relax the 10.16 condition (on discrete values of f), the problem rewrites in the hy-

pothesis of the theorem and thus its solution is the second eigenvector V2 of the Laplacian

matrix.

The only thing left to do is to transform the solution V1. The idea is to cluster its components

into two groups, for instance by using a K-means algorithm.
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General resolution with k clusters Similarly we rewrite the RatioCut criterion with

the Laplacian matrix. Given a partition A1, ..., Ak we de�ne the vectors hj = t(h1,j , ..., hn,j)

by:

hi,j =

{ √
1/]Aj if xi ∈ Aj
0 otherwise

(10.20)

and H is the n× k matrix containing the vectors (hj) as columns. H is orthonormal :

tH H = I (10.21)

and a short calculus leads to express the RatioCut as:

Tr(tHLH) = RatioCut(A1, ..., Ak) (10.22)

Minimizing the ratiocut is equivalent to minimizing 10.22 with H as de�ned in
10.20 and the constraint 10.21.

If we relax the condition on the discrete form of H: 10.20, the problem can be easily solved

by invoking a second form of the Rayleigh-Ritz theorem:

Theorem 10.1.3 (Rayleigh-Ritz (2))

IfA is a positive de�nite symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn associated

to normalized eigenvectors V1, ..., Vn then

min
H∈Rn×k,tHH=I

t
HAH = λ1 + ...+ λk

and that minimum is reached for H = [V1, ..., Vk]

The only thing left to do is to cluster the lines of V by using K-Means (for instance).

10.1.4 Algorithm

Here is the simple code to implement Spectral Clustering in the general case once the

similarity function w(., .) has been chosen.

Algorithm 13 Spectral Clustering

1: INPUT Data (x1, ..., xn), Similarity Function w(., .), Number of Clusters k

2: Compute the similarity graph G of (x1, ..., xn)

3: Compute L the Laplacian of G

4: Compute the k �rst eigenvectors of L: v1, ..., vk
5: Let V ∈ Rn × Rk the matrix containing v1, ..., vk as columns

6: Let u1, ..., un ∈ Rk be the lines of V
7: Apply k-means on (ui): (ui) are clustered into C1, ..., Ck
8: Clusters A1, ..., Ak are de�ned by Ai = {j, uj ∈ Ci}
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10.2 City Segmentation Algorithm

In the following section we present a Spectral Clustering based algorithm to segment a city

graph G = (V,E) into a given number of clusters. We seek out to divide the map into regions

where it can be considered as "morphologically homogeneous" this expression needing to be

de�ned.

To this we start by "pixellating" the city graph into elementary regions. The topology of
this pixellization induces a graph whose vertices are elementary regions and edges are drawn

between two regions if they are adjacent. We weight this graph with a positive function

quantifying the morphological likeness between two regions. This function is the linear

aggregation of likeness criteria based for instance on the density, topology or anisotropy of

regions.

To end with we run spectral clustering on the resulting weighted graph.

The stake of our work is then (1): To de�ne a relevant pixelling (2): To de�ne a
relevant criterion to measure similarity.

10.2.1 Elementary region graphs

Let N ∈ N and x1, ..., xn be N random points on G. To each point xi we associate the

subgraph or region Vi that is the Voronoï cell of xi relatively to x1, ..., xn calculated on G

that is to say the set of edges whose mid-point is closer to xi than to any other xj .

There are several interests to use a Voronoï pixellization. (1): The pixellization is much more

isotropic than a square grid and this avoids directional artefacts. (2): The pixellisazation

adapts to the structure of the city. Since centres are chosen uniformly at random on the

map the mean length of streets inside a pixel is constant: each pixel contains the same

amount of information which would not be the case with a Euclidian Voronoï with centres

picked at random on a window (convex hull) containing the map. (3): This Voronoï is easily

computed in O(n]E), E the number of edges in the map. This is much more simple than an

Euclidian Voronoï in O(n log n) with an intricate implementation followed by the extraction

of the map in each cell (which can be fast but needs the creation of a new heavy structures).

Let W be a positive function de�ned for each couple (Vi, Vj). The idea will be to de�ne

W to take high value if two regions are morphologically the same and a value close to 0

otherwise.

From regions (Vi)i we de�ne various region graphs. The full region graph has for vertices

the Vi and is fully connected, each edge (Vi, Vj) is weighted by W (Vi, Vj). The adjacent
region graph has (Vi) as vertices but the edge (Vi, Vj) is drawn only if the two regions

are adjacent i.e if they share at least one edge. The edge is then weighted by W . We also

introduce the mixed region graph as the complete graph with a positive o�set on edges

between two adjacent elementary regions. Fig.10.3 illustrates the adjacent region graph for

a little number of regions in Angoulême.
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Figure 10.3: The city of Angoulême divided into 5 elementary regions. Superimposed to it, the

associated adjacent region graph.

10.2.2 Similarity function

To each elementary region Vi we extract a feature vector ~Fi = (Fi)k where each component

is a real number

For two real numbers, we de�ne Kσ(., .) as the non normalized Gaussian kernel of standard

deviation σ:

Kσ(x, y) = exp (−(x− y)2

2.σ2
) (10.23)

Two regions are compared by mean of a distance D: the similarity function that aggregates

linearly the di�erence between the features. D applies to feature vectors and the weight on

the region graph W is canonically associated.

W (Vi, Vj) = D(Fi, Fj) =
∑

k a feature

αk.Kσk((Fi)k, (Fj)k) (10.24)

The features taken into account here are: the density, the anisotropy, the ratio be-
tween intersections of degree ≤ 3 and intersections of degree ≥ 4 and the propor-
tion of dead ends.

~Fi = (λi, Ni,DEi,Anii, ) (10.25)

10.2.3 Algorithm

We sum up in the following the algorithm implementing the idea presented above to segment

a city map.

10.2.4 Tunning

Scale parameters in the similarity function The density varies quite smoothly on

a map. Thus the standard deviation of the intensity on di�erent Voronoï zones is a good

assessment for the scale parameter of the intensity likeness function. It could be auto tuned

but for real French cities this parameter is typically 0.0055m−1.
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Algorithm 14 Map Segmentation Algorithm

1: INPUT Graph C, Similarity Distance D, Number of Regions N , Number of Clusters k

2: Pick N points at random on C

3: Compute the Voronoï cell of these points V1, ..., VN : the elementary regions

4: Compute a region graph G

5: For each cell calculate the feature vector ~Fi = (λi, Ni,DEi,Anii, )

6: Weight each edge in G, eij by D(Fi, Fj)

7: Run Spectral Clustering on G for k clusters

Contrary to that, standard deviation for other parameters highly depends on the city under

consideration. A city can be homogeneous and thus present an almost null variance: the

standard deviation of these features is not a good fashion to tune the scale parameter. It

has to be arbitrary chosen to set a relevant variation on features. The parameter 0.02 is

quite satisfactory for the other parameters.

Number of regions There is a compromise to do with the number of regions. If this

number is too small, the resulting segmentation will strongly depend on the initial Voronoï

graph and will be rough. Conversely, if the number is too large, parameter estimation on

each zone will be unstable.

Regions centres are drawn uniformly on the street network rather than on the available space.

This choice permits to have an almost constant amount of information among regions.

Heuristically, we found that one region for 10 km of streets is a good compromise. It

corresponds to 60 to 80 regions for an average large town.

10.3 Results

In this section we asses the quality of the City Segmentation Algorithm, at �rst in toy cases,

secondly in real maps (Lyon Fig.10.7 and Lille Fig.10.8).

In real cases, it is not easy to judge qualitatively of the goodness of segmentation (which

shows the interest of our algorithm: to carry out a task an operator cannot objectively do).

Thus for each simulation we introduce the reordered similarity matrix. It is simply

the result of a permutation applied on rows and columns of the similarity matrix in such

a way that elementary regions in the same cluster follow each other. If the algorithm is

relevant, this matrix should be compounded of diagonal blocks with high values and low

values elsewhere. It is displayed with a color scale on a square grid n× n.

10.3.1 Toy cases

In a �rst time, to validate the method and chose the type of graph (adjacency, complete,

mixed) we created toy cases. The �rst case is a Gabriel Graph whose underlying vertex

process follows spatial Gaussian law. The topology and the anisotropy of this graph is thus
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stationary and the intensity is radially modulated.

The second case is compounded of 4 morphologically di�erent parts (Tab.10.1):

Topology: 4 Topology: 3.3

Density: high, Density: low
Anisotropy: no Anisotropy: yes
Topology: 4 Topology: 4

Density: high Density: low
Anisotropy: yes Anisotropy: yes

Table 10.1: A toy case constituted of 4 morphologically di�erent square zones.

Intensity segmentation Let us start with a single parameter: the density. We created

a spatially modulated Gabriel Graph and applied the City Segmentation Algorithm with

the three kinds of elementary region graphs under consideration: the adjacency graph, the

complete graph and the mixed graph. The density is the only feature used to de�ne the

similarity function. The scale parameter is set to the standard deviation of the intensity

on elementary regions and we are looking for let us say 3 clusters. The expected result is

three crowns of approximately equal areas Fig.10.4. The result with a adjacency graph is

not radial, with the complete graph, the central cluster is small than the others. The best

result is obtained by the mixed region graph.

Figure 10.4: Segmentation of a Gabriel Graph modulated in intensity into 3 zones. A: the result

with an adjacency graph, B: the result with a complete graph, C: the result with a mixed graph

General segmentation We use the toy case of Tab.10.1 is di�erent scenarios.

In Fig.10.5 we want to cluster the toy case into three regions discriminated only on the

density and the anisotropy. The result is satisfactory whatever the region graph. We just
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have to notice expected little smudges at the boundary between di�erent zones, they are

inevitably caused by the non zero size of the elementary regions.

Figure 10.5: Segmentation of the toy case into 3 clusters with two criteria: density and

anisotropy. The likeness function is calculated on the full graph of 80 Voronoï zones. On the left

the toy geometrical graph and its 3 found clusters into 3 di�erent colours. On the right the

likeness matrix reordered according to the clusters.

In Fig.10.5 we want to cluster the toy case its for arti�cial regions. The displayed result is

obtained with complete region graph. We notice more smudges and in fact here their causes

are multiple. The region size at �rst but also a edge-e�ect between the two zones on the

right: at the border the topology is three which introduces a bias in the feature vector. This

problem can be solved by using rather an adjacent region graph.

10.3.2 Real cities

Eventually, in real city cases Fig.10.7 and Fig.10.8, adjacent graph appears to be the most

e�cient option. It provides the most spatially coherent results. Furthermore it is faster to

compute. The overall result is di�cult to judge visually, the notion of homogeneity being

Figure 10.6: Segmentation of a toy case into 4 clusters with three criteria: density, topology and

anisotropy. The likeness function is calculated on the full graph of 80 Voronoï zones. On the left

the toy geometrical graph and its 4 found clusters into 4 di�erent colours. On the right the

similarity matrix reordered according to the clusters.
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not really accessible to our senses. But the reordered similarity matrix exhibit diagonal

block which shows the algorithm has succeeded.

The result segmented map is robust with respect of the random Voronoï diagram that is used

if it has been chosen with an appropriated number of centres. One of the main di�culty

is to chose a relevant number of clusters. For the moment we do it "by hand", running

the algorithm with a variable number of clusters and assessing their results visually via the

segmented map and its reordered similarity matrix.

Once the segmentation is obtained, we want to identify each homogeneous zone to a sta-

tionary random tessellation (Ch.9).

At �rst we compute the hypergraph (Ch.4) and then the simplest centrality (Ch.6) of the

map. We consider the subgraph constituted of the 5 percent more central streets. They form

the upper scale of the city which is identi�ed to a Poisson Gabriel Graph whose intensity

is calculated with the ratio between the total upper scale length and the city's convex hull

area.

Then each zone is identi�ed to a Poisson Line Tessellation or a Crack Tessellation (isotropic

or anisotropic) model with an additional dead ends process. Once the model is chosen on

each zone, its intensity is determined with Sec.9.4.2 method, the mean parameters being the

ration between the features of subgraph on each zone and the area of its convex hull.

Fig.10.9 shows another representation of the segmentation of Lille. In bold blue we have

emphasized the upper scale graph, each zone is delimited by its convex hull polygon drawn

in bold red.
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Figure 10.7: Segmentation into 6 zones of the city of Lyon (Left) and the reordered similarity

matrix (Right).
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Figure 10.8: Segmentation into 6 zones of the city of Lille (Left) and the reordered similarity

matrix (Right).
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Figure 10.9: Post processing of Fig.10.8. For each found cluster we compute the convex hull (in

red). We compute for the wall city the simplest centrality and �lter the 5 percent more central

streets (in blue). The blue network is identi�ed to a Poisson Gabriel Graph and each zone is

identi�ed to a Poisson Line Tessellation or a Crack Tessellation (with or without anisotropy)

completed by a dead-end process.
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Chapter 11
Conclusion

In this thesis we have adopted a "hard science" approach to study a central object from

social sciences: the City.

We have de�ned the city as a system of people and infrastructures spatially distributed

to produce wealth that at least allows the continued existence of the community. Cities

organize next to structuring elements or resources such as rivers or former cities to have a

semi-optimal use of these local resources. The resulting structure is a more or less intricate

network of streets that allows communication, transport, exchange of goods and people. We

wanted to understand how this network structure organizes and how it jointly constraints

the further development of a city and the use of space by people.

Under complex network study, the map of a city is represented as a topological graph.

Not to loose the geometrical information on the shape of streets, we propose to see a map

not as a plain graph but as a geometric graph, a continuum we provide with a Borelian

measure and its associated integral operator. It is possible to sample a geometric graph into

a straight graph arbitrary close to the original. The topological structure of the straight

graph is su�cient to recover its geometry.

The graph of the city seems to display only trivial features. The topology indeed is strongly

constrained by the planarity of the map. The distribution of block or cell area A is

proportional to 1/A2.

The particularity of city graphs is that their edges are coherently arranged into separated

lines called streets. We represent these streets by an additional hypergraph structure.
And all happens in this hypergraph or street graph.

The length of streets is distributed as a mixture of log-normal laws, which implies a wide

diversity of street lengths but also that the distribution admits an average and a variance.

The street hypergraph exhibits a small-world behaviour that is to say the number of

time one has to change of street to go from a random point in the city to another is small

compared to the size of the city.

The dual of the city graph is the set of cells induced by the street system. When the city

evolves, cells are divided to produce streets or axes that are to be coherent long alignments.

The relation between division and alignment is not trivial and thus constraints the devel-
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opment of cities.

Contrary to classical crack patterns, block divisions in cities are correlated; highly in the

planned case, loosely in the organic case. There is certainly a continuum between organic

and planned regimes.

In the planned case, the city is built of one piece, optimizing an overall structure. There

exist globally optimal networks depending on the purpose of the city: the square grid if the

resources are distributed and the radial scheme if the city is organized around a center of

dominating importance. These patterns can adapt to the local constraints. We picture a

simple homotopy adapted to the geography transforms a planned city next to an intricate

relief to a planned city in a �at ground.

In the organic case the city is constituted by the progressive addition of local patterns

that are optimal for the settlement of new infrastructures. When the place available inside

the city is not su�cient (saturation or need of large infrastructure), the city extends making

long streets and large cells at the outskirts that will be re-divided latter in smaller pieces.

We have tried to understand organic cities from simple generic principles. City is above
all a running process of division and extension of space. This process is the macro-

description of the sum of local micro-interactions between independent agents, infrastruc-

tures and authority's regulation.

We have presented a coherent set of continuous and network growth models. In the

continuous model, each place on a city produces a quantity of wealth proportional to its

current wealth. This wealth is dispatched on all the space. It is coherent with Zipf's law:

we consider a city as a distribution of in�nitesimal centres in interaction. Some results of this

model are independent of technical hypothesis we have to make: the local growth of wealth

is exponential, the border of the city drifts exponentially and the wealth gradient becomes

smoother with time. A morphogenesis model complement these results by considering

the street network as an essential element of the urban growth. The current layout of the

city induces a potential �eld on the whole space, an arriving agent chooses an available place

to settle with respect of a politic toward the potential �eld. When he has chosen the place,

he connects to the existing network. This endogenous model via a few parameters recover

a large number of morphologies (as much in the network structure as in the overall shape)

and reproduces hallmarks on the street network.

This understanding of cities' phenomenology has allowed us to propose a corpus of e�cient
algorithms dedicated to map related problems.

The streets in the city can be recovered fast without other information than the

topology of the map and based on this recovering we propose an algorithm providing a good

approximation of the point to point shortest path problem in a logarithmic time.

The simplest centrality and its display with an adaptive color scale presents a robust

automatic method to analyse a map, emphasizing main axes and ill-deserved zones.

We have shown its interest in town planning and analysis with two concrete cases.

Based on previous works on stochastic geometry, we have proposed relevant models and

fast methods to identify a map to a "statistically equivalent" random geometric graph. Our

contribution is the selection of low scale models, the addition of a dead-end process, the

proposal of a Poisson Gabriel Graph as a high scale model, the simulation of its typical

vertex and a simple fast and robust procedure to make the identi�cation. Since these models

are stationary, amorphological segmentation step is performed by a Spectral Clustering
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based algorithm.

One of the �rst socials scientist we presented our morphogenesis model to confronted us

with the intrinsic freedom of humans. How do we consider in our model the choice for a

family to settle in a place because of the beauty of the landscape, the color of the sun at

dusk? I would like to provide three arguments to answer this remark. (1): This level of

detail does not intervene in our model. We aim at sketching generically the growth of a

city. Our model does not include crucial information such as elevation, sun, climate. But

this model has been thought to be �exible and for instance one can easily add relief to the

framework by a plain curvature of the plane. In addition models do not pretend to reproduce

the totality of situations, they are synthetic tools to exhibit minimal set of hypothesis that

explain a trend. (2): In fact we can consider the human freedom to choose a place for non

apparent reasons is included tacitly in our model. Indeed in the potential generated by a

city there are symmetries or points with the same attractiveness. A strong hypothesis we

have made is that settlements are made sequentially, at discrete times, one after another.

The new settler has then to choose between locations of similar potential. Once the choice

is made, at random, a symmetry break appears on the map of the potential. And the follow

of the city history reinforce this arbitrary choice: potential is higher next to places where

pioneers have settled. (3): To come to the human freedom, freedom would be the ability

to make decisions that outwardly seem to be random choices. Human enjoy thinking they

escape from the determinism of physical objects and animals. But are not town-planners,

engineers, independent pioneer agents of Nature as elements of an overall project? Is not

the sum of our acts a path to the trap that Nature has set to us? Simulations from the

morphogenesis model have been shown to town-planners and social scientists. Some of them

have mixed up these arti�cial maps to real maps which we consider as a success. All the

same they appreciated the map view generated by simplest centrality. In the same time this

centrality put in light some obviousness of the city network and presents element that were

not obvious but that make sense.

Originally, the subject of this PhD was "Darwinian network synthesis". The stepping-stone

was the previous works performed on stochastic geometry. The project was limited to map

segmentation with evolutionary algorithms. A set of baroque in�uences and the di�culty

to start the work made us think there was a prior need to generate a synthetic knowledge

on cities. That is what we have done, specifying tools to handle and to understand cities.

In the end we have presented a coherent mathematical framework dedicated to city map and

a few observations on the city's phenomenology. These naturally conduct to the de�nition

of useful adapted algorithms. For instance we have presented a very simple procedure to

solve the point to point problem on a city graph logarithmically. When this work had been
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done, stochastic geometry modelling and maps segmentation became easier to comprehend.

The literature on cities was in the same time very large and let me dare to say a little poor.

Added to that it is to point out the cultural gap between di�erent disciplines that make

social science articles hard to access for physicists and conversely. Sometimes I was close to

reinvent the wheel. For instance for a long time we did not know our simplest centrality was

very close to Space Syntax or the "Dual Graph" theory. We were very disappointed when

updating the state of the art to discover that what we thought was our main contribution was

in fact already known and our work was to be discarded. But in fact working on the subject

as if it was brand new bared fruits. The success is not only in results but in approach that

creates bene�ts. The state of mind our approach put us into permitted to read critically the

literature, to understand obscurity, errors and approximations in it and to add our personal

contribution in a coherent fashion. For instance contrary to Space Syntax, we have insisted

on the computational optimality of simplest centrality, its robustness and we do not try to

justify it by "human perception" arguments: it naturally and simply comes mathematically

as a boundary e�ect free version of the shortest path centrality.

A lot of outcomes and questions rise now.

Among them are obviously how to make the di�erent growth models more robust, and study

them theoretically. Morphogenesis should be implemented in an e�cient framework allowing

interactions with an operator. The geography around the city could be placed or adapted

to real situations. Morphogenesis could be run on actual cities or situations to assess if it

could be a relevant tool for town-planning.

We have started to study the distribution of path lengths in a city for random points.

It seems that beta distributions are natural and relevant to model distances. When the

size of a city increases with some technical hypothesis, these distributions are similar to

Weibull distributions. And the thing is that Weibull distributions are stable with respect

of minimum. A direct consequence is that the local e�ciency of a point and its global

e�ciency are quanti�ed with a single parameter. Integrating the whole points in every

situation provides a single parameter description of the pace of the city.

Another study axis would be the link between centrality, random walk and tra�c forecasting.

We have the intuition that for each normalized centrality there exists a Markovian process

whose stationary distribution is the centrality. Our idea for simplest centrality is to say

that looked from the sky a pedestrian seems to adopt a biased random walk: when at an

intersection he chooses its new direction with a probability proportional to the angle it

makes with its current direction. The stationary distribution of this walk integrated on each

street could provide a result close to simplest centrality.
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Appendix A
Geometry

A.1 Some basis on Euclidian planar geometry

Topology de�nes the notion of continuity of applications between sets and gets interested in

the properties of a set that do not change with respect of a continuous application. It can be

done more abstractly but a convenient way to work on topology is to deal with the notion

of distance in metrical spaces or metrical vector spaces. Geometry seeks out to characterize

subsets of a set locally (di�erential geometry) or globally (integral geometry) with the notion

of measure and especially of Lesbesgues's measures or volumes. Since geometry is interested

in intrinsic features of subsets, an interesting distance is Euclidian distance that derives

from a scalar product and which is in a vector space context independent of the coordinate

system. The typical frame of geometry is thus Euclidian geometry: the metrical study of

subsets (curves, manifolds, volumes) on Rd equipped with a scalar product with d = 2

or d = 3. Rd can be curved by tensors or replaced by manifolds (for instance hyperbolic

geometry).

A.1.1 Balls and spheres

In dimenstion Rd, the ball of radius r is Bd(r) = {x, ||x|| ≤ r} and the sphere is Sd−1 =

{x, ||x|| = r}. They are respectively a d and d − 1 dimensional object whose Lesbesgue's

measures are:

µd(Bd(r)) =
πn/2Rn

Γ(n/2 + 1)
µd−1(Sd−1(r)) =

2πn/2Rn−1

Γ(n/2)
(A.1)

A.1.2 Minkowsky's sum

If X is a set and Y another set, the Minkowski's sum of X and Y

X ⊕ Y =
⋃
x∈X

(Y + x) = {x+ y, x ∈ X, y ∈ Y } (A.2)
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A.1.3 Connectivity and convexity

Connectivity is a topological property to describe a set that is of a single component. For-

mally a set is connected if it cannot be written as the union of two disjoints open sets. A

set A is convex if for x, y ∈ A, 0 ≤ λ ≤ 1 (λx+ (1− λ)y) ∈ A

A.1.4 Convex hull

Let S be a set of points in Rd then the convex hull of S: ConvHull(S) is the smallest convex

set of Rd that contains S.

ConvHull(S) =

{
k∑
i=0

αixi, αi ≥ 0,
∑

αi = 1, xi ∈ S, k ∈ N

}
(A.3)

If S is a �nite collection of points then ConvHull(S) is a polygon and it can be computed

for d = 2 in O(]S log ]S) with a divide and conquer algorithm [43].

A.2 Polygons

In geometry, a simple polygon is a closed polygonal chain of line segments in the plane

which do not have points in common other than the common vertices of pairs of consecutive

segments.

A convex polygon is a polygon delimiting a convex zone of Rd.
Let Π be a simple polygon with ordered vertices P0, P1, ..., Pn−1, Pn = P0 of coordinates

((xi, yi))i.

The area of Π is easily calculated from:

A =

∣∣∣∣∣12
n−1∑
k=0

(xiyi+1 − xi+1yi)

∣∣∣∣∣ (A.4)

And if x is a point, d a half-line of random direction and passing through x. Then

x ∈ Int(P )⇐⇒ ]P ∩ d ∈ (2.Z + 1) (A.5)

A.3 Tessellations

A.3.1 Basic de�nitions

A tessellation on a set (let's say locally compact) A ⊂ Rd is a collection at least countable

of sets (also locally compact) (Ci) such as:

• int(Ci) 6= ∅∀i

• int(Ci) ∩ int(Cj) = ∅ if i 6= j
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• ∪Ci = A

A practical tessellation case is when A is a convex locally compact subset and every Ci a

�nite convex polygon. Then one can derive from the tessellation a set of edges (Ei) and a

set of vertices (Vi). Then the tessellation is equivalent to a planar graph (possibly in�nite).

Thus we will mix the notion of tessellation and planar graph with no dead ends.

Dual tessellation

Let (C1, ...) be a convex tessellation. To each Ci is associated a centroid ci ∈ Ci (for instance
the barycentre of the cell). We create a new graph by linking two centroids ci and cj if and

only if Ci and Cj share an edge. The resulting graph is planar with no dead ends: it is the

dual tessellation ("the" dual in a topological sense but "a" dual in the geometrical sense).

A.3.2 Voronoï tessellations

We give the main de�nitions and results relatively to Voronoï graphs in Rd, the basic idea
can be generalized to subsets of Rd but we have to beware of irregularities emerging from

side e�ects. If x is a point of a discreet point set (germ set) X = (Xi), we associate to x its

Voronoï cell with respect to X:

Vor(x||X = (x1, x2, ...)) = {y ∈ Rd, ||x− y|| ≤ ||xi − y||,∀xi 6= x} (A.6)

The set of closed cells {Vor(xi||X)} is a tessellation called the Voronoï Tessellation of X.

This tessellation has some remarkable properties: each cell is a polytope, each cell is convex;

if X is not too regular (i.e the realization of Poisson Point Process for instance), each vertex

is of degree 3. Some variations have been investigated [137] such as the power diagram. To

each xi is associated a positive real number pi (its power) and the power function of (xi, pi)

is de�ned for a point y in the space as σi(y) = ||xi − y||2 − p2
i . The cell associated to xi is

the set of points y such as σi(y) ≤ σj(y)∀j 6= i. We can also mention anisotropic Voronoï

diagrams, Möbius or Apollonius diagrams. We can also consider a set of geometrical objects

rather than a set of points as germs.

A.3.3 Delaunay tessellations

When taking the germ set as centroid set, the dual of the Voronoï Tessellation is the Delau-
nay tessellation. Each cell of the Delaunay tessellation is a triangle. A direct construction

of Delaunay is possible. If X is a discrete point set, and xi, xj , xk three di�erent points of

X, the triangle xixjxk is drawn if and only if there is no other points of X inside the cir-

cumcircle of xixjxk. Relative neighbourhood and Gabriel graph are planar subgraph

of the Delaunay triangulation that are not in general tessellations. They all belong to the

class of neighbourhood graphs. An edge xixj is drawn in the relative neighbourhood graph

if no point of X is both closer to xi or xj : if the intersection of circles of centres xi and xj
and of radius ||xi−xj || is empty. An edge is drawn in the Gabriel graph if there is no other

points of X in the circle of diameter xixj .
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A.4 Fractal

Fractals have been a trendy object to model cities. They are very convoluted objects, they

have been introduced in the 70's by Benoît Mandelbrot as a class of non trivial shapes that

contravene human intuition of shape. Indeed, in dimension d, a simple object O such as a

ball, a polytope etc... are such that

µd−1(aO) = ad−1µd−1(O) (A.7)

fractal objects are objects that do not respect this intuition:

µd−1(aF ) = aαµd−1(F ) (A.8)

with d − 1 < α ≤ 2 is the "fractal dimension" of F . A consequence is that F has no

characteristic scale: it is the same whatever the observation scale is. In fact the above

equation makes no sense: the measure of F is in�nite, one cannot rectify it and de�ne

properly a measure. But the idea is that given a reference length, a measure of the fractal

dilated by a diverges as aα−d−1 To be more formal, we have to introduce the Hausdor�'s

dimension. If F ⊂ Rd, r, s ≥ 0:

Hs
r (F ) = inf

diam(Ai)<r
{
∑

diam(Ai)
s|
⋃
Ai ⊇ F} (A.9)

As a function of r, Hs
r (F ) is decreasing. We can thus consider

Hs(F ) = lim
r→0

Hs
r (F ) (A.10)

If there exist s0 such as Hs0 is �nite then Hs<s0 = ∞ and Hs>s0 = 0. Thus there exist a

number dimH intrinsic to F called the fractal dimension of F such as:

dimH = inf{s,Hs(F ) = 0} = sup{s,Hs(F ) =∞} (A.11)

This de�nition is mathematically rigorous and allows theoretical calculus. Nonetheless it

is not utilizable to measure the dimension of real curves. Thus in practice we use the

Minkowski's dimension also known as box counting method.

dim+
M = lim sup

r→0

logµd(F ⊕Br)
log r

dim−M = lim inf
r→0

logµd(F ⊕Br)
log r

(A.12)

A typical and well known case of fractal is auto a�ne shapes such as Sierpinski carpet, Von

Kock's curve, Peano's curve. These shapes are de�ned as the limit of a recursive construction

process. A generator shape is given, and on that shape are chosenm similar seeds, the shape

is initialized to that generator. Then each seed is replaced by a rotation translation of the

generator shaped reduced by a factor h. This process is iterated, the shape of generation

n + 1 is obtained by replacing each seed in the shape of generation n by a reduction of a

factor nh of the generator shape. The fractal dimension α of a shape resulting of such a

constriction is simply:

α =
logm

log h
(A.13)



Appendix B
Complex Networks'theory

This additional chapter synthetizes main notions and results from Complex Network's theory

that has been an emerging �eld from the 60's. It is based on the reports [1, 23, 98] for general

complex networks and [9] for the particular question of planarity.

B.1 What is a complex network ?

In physical, biological or social science network is a conceptual representation of homoge-

neous entities (vertices) and their interactions (edges). Vertices can be for instance people

in the scienti�c community, Facebook pro�les, web sites, softwares, neurons... Edges do

not have to exist physically. They only express a link or relation between entities (re�exive

most of the time). To follow up the vertex example above, edges can be co-authorship, "be

friend with", "point out to", "have a package dependency", "share an axon". The vertices

linked to a given vertex constitute its neighbourhood: they directly communicate with it.

Network is a purely topological representation. A generic problem on a network is to assess

how information spread from neighbourhood to neighbourhood, how a signal is regularized

from an input vertex to an output vertex with possibly feedbacks. Network can be natural

and science is to describe and understand them. They can also be engineered.

Typically in physical science, a complex network is a large graph resulting from a dynam-
ical process from which emerges some non trivial global features.
If G = (V,E) is a network then n = ]V is the number of vertices and m = ]E is the number

of edges. If two vertices i and j are adjacent we write i ∼ j.

B.2 Analysis of complex networks

B.2.1 Size

The size of the network is generally de�ned as n the number of its vertices.

191
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B.2.2 Degree distribution

To each vertex i of the network, we associate its degree ki that is to say the number of edges

that are incident to it. Then we consider the degree distribution among all vertices P (k).

P (k) may be peaked (spatial networks, random graphs) or display a long tail (scall-free net-

works). The features of P (k) are summarized by: the average degree, < k >=
∑
k.P (k) =

m
n , the �uctuation < k2 >=

∑
k2.P (k) and their ratio κ =< k2 > / < k > plays a role in

dynamical processes on a complex network.

B.2.3 Clustering

The clustering coe�cient is a measure that tends to quantify if the network is transitive.

For instance in social networks it is a quantitative answer to the question "are the friends

of someone also friends".

C = 3.
]{(x, y, z) ∈ V 3, (xy) ∈ E, (xz) ∈ E(yz) ∈ E}

]{(x, y, z) ∈ V 3, (xy) ∈ E, (yz) ∈ E}
(B.1)

B.2.4 Degree correlation

The question is to know if high degree vertices connect to each other (assortative) or

rather connect to low degree vertices (disassortative) and conversely. To this is introduced

the average degree in the neighbourhood of vertex i: Ki and then the average degree of

neighbours of nodes of degree k: K(k). This function is globally increasing if the network

is assortative, decreasing if its disassortative and constant if not correlated. A numerical

measure is presented in [33].

B.2.5 Robustness

We want to measure to what extent a network is robust to failures or attacks, that is to say

if information transport in the network can e�ectively adapt if some vertices of the network

are removed. To this we consider we remove at random a proportion f of vertices and

after that operation we compute the relative size of the largest connected component of the

network: S(f). To be smooth S has to be calculated in average for several random removal.

The curve S(f) is decreasing. The robustness of the network is de�ned as fc = S−1(Sc)

where Sc is arbitrary chosen.

Two kinds of robustnesses are can be distinguished: the resilience when vertices are chosen

uniformly and robustness properly speaking when that choice is biased with the degree of

vertices or a measure of their centrality (B.2.7).

B.2.6 Distances

The shortest path distance or geodesic distance from a vertex i to a vertex j is written dij .

It can be computed in polynomial time. The diameter of the network is maxi,j dij . But this
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measure is very sensitive to noise. We seek out to de�ne an average measure of the total

amount of distances in a network. For instance < dij >ij but if the network is split into

several connected component this mean is ∞. A solution is to consider the harmonic mean

of geodesic distance, l de�ned by:

l−1 =
2

n(n− 1)

∑
i>j

d−1
ij (B.2)

B.2.7 Centrality

A centrality is a measure calculated on each vertex of a network. It is to quantify to what

extent a vertex is important: a hub necessary to cross, a place easy to reach. In the literature

one can �nd very classical centralities such as: The closeness centrality of a node i:

CCi =
N − 1∑
j∈V
j 6=i

dshortij

(B.3)

The betweenness centrality of a node i:

CBi =
1

(N − 1)(N − 2)

∑
j,k∈V
j 6=k 6=i

njk(i)

njk
(B.4)

where njk is the number of geodesic from j to k and njk(i) the number of geodesics from

j to k that pass trough i. When the network is embedded in an Euclidian space, one can

de�ne the Euclidian distance between to vertices and the straightness centrality of a node i:

CSi =
1

N − 1

∑
j∈V
j 6=i

deuclij

dij
(B.5)

We can also consider that the stationary distribution of a Markov chain on the network is

a centrality.

B.3 Canonical complex networks

B.3.1 Random graphs

Random graphs are used as a 0 model to test relevance of observations in real networks.

Consider n points and a number 0 ≤ p ≤ 1. To form the random graph Gn,p, we consider

for instance that a possible edge in the graph is indeed drawn with probability p .

The degree distribution of a resulting graph is binomial, it can be approximated by a Poisson

Law when n is large, with mean pn. What is striking is that for a given property exists

most of the time a critical probability pc(n) such as the property is almost surely true for

higher probabilities and almost surely false for lower.

For instance there is a percolation probability pc = 1/n such as
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• If p < pc, the graph as no component of size greater than O(log n).

• If p = pc, the graph's largest component size is O(n2/3).

• If p > pc, the graph has a single giant component of size O(n) and no other component

has a size greater than O(log n).

If the graph is e�ciently connected (p > pc)the diameter of the graph (after exclusion of

small connected component) is O(log n). The clustering coe�cient is simply p, that is to say

that for a �xed mean degree < k > the clustering coe�cient tends to 0 when n→∞. There

exist several modi�cations of the random graph de�nition that are more or less convenient

to work theoretically or computationally with.

B.3.2 Scale-free networks

A scale-free network is a network whose degree distribution asymptotically exhibits a power

law: P (k) ∼ k−γ .
It means that the network has a wide variety of degrees (the distribution is long-tailed) and

that one can observe this diversity at any scale (power laws are the only functions such that

f(ax) = g(a)f(x), ∀a, x).
Some author even impose the condition 1 < γ ≤ 3 so that variance does not exist and the

diversity is wide.

B.3.3 Small-world networks

A small-world network is a network whose diameter or average geodesic length is "very

small" compared to the size of the network. The notion of very small can only be de�ned

if there exist several realizations of the network with di�erent sizes or in an evolutionary

context: if the network G = G(n) grows then it is a small world if

l(G(n)) = O(log n) (B.6)

Some authors also impose to small world networks to have an high clustering coe�cient.

B.3.4 Simulation

Barabàsi and Albert In the continuity of Price's model and the preferential attachment

principle: "a new vertex will have tendency to connect to vertices with high degree" ("the

rich gets richer"), Barabàsi and Albert propose a growth model for network that exhibit a

scale free behaviour. They consider that a network evolves: at each time a new vertex j

is added and connects to m existing vertices. But the choice of these vertices is biased by

their degree: P(j → i) ∝ ki. Then they show that after a large number of iterations,

P(ki = k) =
2m(m+ 1)

(k + 2)(k + 1)k
∼ 2m(m+ 1)k−3 (B.7)
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Some modi�cations of the model allow to get exponent di�erent from 3. Preferential at-

tachment is thus an appealing model to explain the emergence of scale free networks in

nature.

Small World network Simulating a small world is much more easy and thus it is harder

to �nd a quasi universal model to explain them.

For instance a random graph can present small-world behaviour, a fully connected graph or

a scale free network. It is even possible to design sequentially a small world network with

a predetermined objective mean path function. The Watts and Strogatz model permits to

construct a small world network with an high clustering coe�cient.

An interesting problem is to design a graph with a particular diameter and a maximal

degree. In fact it has been shown that the number of nodes in such a graph is bounded by

the "Moore Bound".

B.4 Spatial embedding

A case of practical importance is the case of spatial networks. Loosely speaking a spatial

network is a network whose vertices are embedded in an Euclidian space. The idea is that

a spatial connection between two points has a cost that is an increasing function of their

distance. In a general way, a spatial network is equivalent to a weighted network, with

a weight 0 if two vertices are not connected and a weight increasing with their distance

otherwise.

Planar networks are a particular class of spatial networks: their vertices are embedded in

an Euclidian space and their edges are geometrical paths across the space that bind two

vertices and that do not intersect outside of vertices.

Planar networks will display particular features due to the important physical constraints

that are applied on them:

• Vertices are distributed on space and an edge creation has a real cost. Connections

are then mainly local.

• Degree of vertices are bounded by the Euler's equality: there are at most 3n−6 edges

and thus the mean degree cannot exceed 2(3n− 6)/n ∼ 6.





Appendix C
Measure and probability theory for

stochastic geometry

The aim of this document is to present the basis in measure and probability theory to tackle

stochastic geometry. If there is a lot of literature on the two �rst, stochastic geometry is

more discrete and there is no global textbook available with simple explanations. We aim

at providing the reader with the major structure of the theory, the main proofs the whole

being illustrated with simple example.

This text is based on Mazet's Intégration [89] and Measure theory by V. Liskevich [78]

both available on the Internet, with also the reference books Stochastic geometry and its

application by Stoyan [122], Markov point processes and their applications by M. N. M.

van Lieshout [129], New Perspectives in Stochastic Geometry by Wilfrid S. Kendall [76] the

textbooks Stochastic Geometry and Wireless Networks by F. Baccelli [5, 6] and the lecture

notes A short course on stochastic geometry by G. Last available on the Internet.

Particular tanks to Pr. Pierre Calka for his time and wise advises.

C.1 Measure and integration theory

C.1.1 Measure space

σ-algebra and measurable spaces Let Ω a set and A ⊂ P(Ω) if added to that

1. Ω ∈ A

2. If A ∈ A then Ac ∈ A

3. If A1, A2, ... ∈ A then
⋃
Ai ∈ A

then A is a σ-algebra on Ω and [Ω,A] is a measure space.

Measures On a measurable space, one can de�ne a measure µ that is a function A → R̄+

that holds:

1. µ(∅) = 0

2. µ(
⋃
Ai) =

∑
µ(Ai) if A1, A2, ... ∈ A and i 6= j ⇒ Ai ∩Aj = ∅

197



198
APPENDIX C. MEASURE AND PROBABILITY THEORY FOR
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With such a measure, [Ω,A, µ] is called a measured space.

A measure whose image is reduced to [0, 1] with µ(Ω) = 1 is called a probability measure.

Complete measure space Ameasure space [Ω,A, µ] is complete if for allN ∈ A, µ(N) =

0, every subset of N is measurable (then its measure is 0).

It is always possible to extend a measure space [Ω,A, µ] to a complete measure space

[Ω,A0, µ0]. To this:

1. De�ne the upper measure of µ on P(Ω):

µ∗(A) = inf
∑

A⊆∪Ei, Ei∈A
µ(Ei)

2. Remark that if A ∈ A, µ∗(A) = µ(A).

3. De�ne the Catrathèdory measurable sets: a set A is called measurable if for any

E ∈ P(Ω),

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)

4. Invoke the Carathèdory theorem: the set of measurable sets is a σ-algebra and the

restriction of µ∗ to this σ-algebra is a complete measure.

Measurable functions If [Ω1,A1] and [Ω2,A2] are two measurable spaces, a function

f : Ω1 → Ω2 is measurable iif ∀A2 ∈ A2, f
−1(A2) ∈ A1.

A measurable function allows to transform measures: if µ1 is a measure on [Ω1,A1] then

µ2(.) = µ1(f−1(.)) is a measure on [Ω2,A2]

C.1.2 Classical σ-algebra on topological spaces

σ-algebra generated by a part If S is a subset of P(Ω), the σ-algebra generated by S

is the smallest σ-algebra that contains S. This σ-algebra always exists and is written σ(S).

σ-algebra generated by a function If f is a function from [Ω1,A1] to Ω2 then (f(A), A ∈
A is a σ-algebra on Ω2. (f(A), A ∈ A is the smallest σ-algebra that makes the mapping f

measurable.

Similarly, If f is a function from Ω1 to [Ω2,A2] then (f−1(A), A ∈ A is a σ-algebra on Ω1.

Product σ-algebra If [Ω1,A1] and [Ω2,A2] are two measurable spaces, A1 × A2 =

A1 ×A2, A1 ∈ A1, A2 ∈ A2 is a σ-algebra for Ω1 × Ω2.

Borelian IfX is a topological space, the Borelian σ-algebra ofX is the σ-algebra generated

by the set of the opens of X. The elements of that σ-algebra are called Borelians of X.

For instance think of R and the σ-algebra generated by {]a, b[, a, b ∈ mathbbR} written B1.

We de�ne recursively the Borelian σ-algebra of Rd: Bd
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C.1.3 Classical measures

Mass measures If x is a particular point in Rd then: δx : A 7→ 1 if x ∈ A, 0 otherwise is

a measure on [Rd,B] called the Dirac measure.

All the same, if X = (x1, x2, ...) ∈ Rd, δX : A 7→ ](A∩X) is a measure on [Rd,B] called the

counting measure.

Borel measure The Borelian set of Rd is generated by open PAVE. So ]a1, b1[×...×]ad, bd[7→
(b1 − a1)...(bd − ad) can be extended into a measure on [Rd,Bd]. It is written µd and called

the Borelian measure on Rd.

Lebesgue measure It is the completion of the Borel measure to the σ-algebra generated

by {A ∪N} where A ∈ B and N is a negligible part µd (Lebesgue σ-algebra).

It is the only invariant by translation measure.

Product of measures If [Ω1,A1, µ1] [Ω2,A2, µ2] are two measure space then (µ1
⊗
µ2)(A1×

A2) = µ1(A1)× µ2(A2) is a measure on [Ω1 × Ω2,A1 ×A2].

C.1.4 Integral

In the following sections, we work on a measure space [Ω,A,m].

Every positive measurable function writes f =
∑

i∈N ai.1Ai it is then natural to de�ne∫
fdµ =

∑
i∈N ai.µ(Ai).

In the case of Rd, this integral called the Lebesgue's integral extend the notion of Riemann?s

integral. Thus classical calculus methods can be applied.

Convergence theorems

Beppo-Lévi If (fn) is an increasing sequence of strictly positive measurable functions and

if fn → f simply, then ∫
fndm→

∫
fdm

Monotonous convergence If (fn) is an increasing sequence of measurable functions and

if fn → f simply, then if
∫
fndm is upper bounded then f is measurable and

∫
fndm →∫

fdm.

Dominated convergence If (fn) is an increasing sequence measurable functions that

tends simply to f and if there exist an integrable function g such that |fn| < g then
∫
fdm

exists and
∫
fndm to

∫
fdm
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C.1.5 Radon-Nikodym theorem

If µ1 and µ2 are two measures on [Ω,A] and if there exist a function f such that ∀A ∈
A, µ2(A) =

∫
f(x)dµ1(x) then µ2 is said to be absolutely continuous with respect to µ1

(µ2 � µ1) and f is a density function written f = dµ2

dµ1
. The Radon-Nikodym theorem states

that µ2 � µ1 if and only if µ1(A) = 0⇒ µ2(A) = 0.

C.2 Real random variables

C.2.1 De�nition

Random variable If [Ω,A,P] is a measure space with P a probability measure (called re-

spectively sample space, event space and of course probability), then a measurable function

X : [Ω,A]→ [Rd,B] is called a random variable.

We will write F the image measure of P by X.

[Ω,A] is never explicitly de�ned, in fact one postulates their existence to model the obser-

vation we get. We know them only on their capacity to make some result of interesting

random variables measurable.

Probability distribution, density The function F : x 7→ P(X(.) ∈] − ∞, x] is the

probability distribution of X. It contains the same information as F.
If F is derivable almost everywhere, f = F ′ is called the density of X. f is then the

Radon-derivative of F by µd.

C.2.2 Expectancy

If X is a random variable its expectancy is de�ned by:

E(X) =

∫
Ω
X(ω)dP(ω) =

∫
R
x.d(F(x))

If the random variable is real and admits a density,

E(X) =

∫
R
x.d(F(x)) =

∫
R
x.f(x).dx

Markov's inequality:

P(|X| > a) ≤ E(|X|)
a

C.2.3 Moments

The n-th order moment of a random variable X is (if it exists):

E ((X − E(X))n)
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The second-order moment, called the variance is of particular interest since it describe the

variability of a random variable and appears in the Central Limit theorem. It is written

V(X).

Moreover, the set of random variables that admit a variance (L2)is a vector space with an

Euclidian structure induced by the scalar product

< X,Y >= E(XY )

which make L2 a pleasant space to work in.

Chebyshev's inequality: The existence of an expectancy and a variance induces a

constraint on the dispersion of the values taken by a random variable X expressed by the

Chebyshev's inequality:

P(|X − E(X)| > a) ≤ V(|X|)
a2

C.2.4 Conditional distribution

Let (X,Y ) be a random variable on Rd × Rc with probability PX,Y .
PX(A) = mathbbPX,Y (A,Ω) is a probability function called the marginal probability of

X. One de�nes similarly PY . For all A, PX,Y (A, .) is absolutely continuous with respect to

PY (.) so there exist P(X = .|Y = y) a probability such that:

PX,Y (A,B) =

∫
B
P(X ∈ A|Y = y)dPY (y)

this probability is called the conditional probability.

If PX,Y is a discrete probability with distribution p(X = nx, Y = ny) then P(.|Y = ny) is a

discrete probability with distribution

p(X = nx|Y = ny) =
pX,Y (X = nx, Y = ny)

pY (ny)

All the same if PX,Y admits a density fX,Y then PX admits a density fX and P(.|Y = y),

f(.|Y = y) with

f(X = x|Y = y) =
fX,Y (X = x, Y = y)

fY (Y = y)

Conditional expectancy There is an only random variable σ(Y )-measurable Z such that

for every random variable U σ(Y )-measurable, E(XU) = E(ZX). It is called the conditional

expectancy of X with respect of Y and written E(X|Y ).

If E(X|Y = y) = e(y) then E(X|Y ) = e(Y ) and if X and Y are independent then E(X|Y ) =

E(X).

The conditional expectancy can be seen as the best guess one can make about X when

knowing the result Y .

In L2, E(X|Y ) is the closest random variable to X that is σ(Y )-measurable.
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C.2.5 Independence

Two random variables X and Y are said to be independent if:

P(X ∈ A1|Y ∈ A2) = P(X ∈ A1)

it is the same than P(Y ∈ A2|X ∈ A1) = P(Y ∈ A2) or than

P(X ∈ A1, Y ∈ A2) = P(X ∈ A1)P(Y ∈ A2)

and conditions of the same shape are true for distributions or density when possible to write

them.

Intuitively, it means that the realizations of X and Y do not in�uence on each other.

C.2.6 Classical laws

We describe here the most common discrete distributions and continuous densities used in

modeling of "random" phenomena.

We say "random" in quotes since randomness is not an intrinsic attribute of phenomena, it

is a convenient point of view a scienti�c takes to reduce complexity.

These law can be used as parametric families to �t data or their use can be justi�ed by

theoretical considerations.

Discrete laws

Uniform
P(X = k) = 1

b−a+11[|a,b|] E(X) = a+b
2

V(X) = (b−a+1)2−1
12

Geometric
P(X = k) = (1− p)k−1p E(X) = 1

p

V(X) = 1−p
p2

The geometric distribution is the solution of the problem "I repeat in�nitely an experiment

that as a probability p to succeed, when is the �rst time I may succeed?".

Binomial
P(X = k) =

(
n
k

)
pk(1− p)n−k E(X) = np

V(X) = np(1− p)
This distribution is the solution of the problem "I repeat n times an experiment with a

probability p of success, how many times may I may I succeed?".

Poisson
P(X = k) = e−λ λ

k

k!

If the delay between two events follows an exponential law of parameter λ then the number

of events in a given interval of length l follow a Poisson distribution with parameter lλ.
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Continuous laws

Uniform
f(x) = 1

b−a1[a,b] E(X) = a+b
2

V(X) = (b−a)2

12

Exponential
f(x) = λe−λx1[0,∞[ E(X) = 1

λ

V(X) = 1
λ2

A random variable X exponentially distributed as the "no memory" property: P(X >

t+ s|X > t) = P(X > s).

The exponential law is in practice used to model life times of various objects (bulbs, bacteria)

or waiting periods in queue theory due to that property.

Normal
f(x) = 1√

2πσ2
exp (− (x−µ)2

2σ2 ) E(X) = µ

V(X) = σ2

Due to the Central Limit Theorem, the Normal law is one of the most common. It appears

on physics when a macroscopic phenomenon is the result of a large number of additive

independent microscopic phenomena.

The information theory [] that is not studied here tells that when knowing only the average

tendency of a phenomenon and its dispersion, the normal law is the only model that do not

introduce additional information.

Log-Normal

f(x) = 1

x
√

2πσ2
exp (− (lnx−µ)2

2σ2 ) E(X) = eµ+σ2/2

V(X) = (eσ
2 − 1)e2µ+σ2

If X ∼ N (µ, σ2) then lnX follows a log-normal law whose density is:

As the normal law appears naturally to model additive phenomena, the log-normal is to be

used for multiplicative phenomena.

Gamma
f(x) = 1

Γ(k)θk
xk−1e−x/θ E(X) = kθ

V(X) = kθ2

The function gamma is the extension of the factorial to R: Γ(x) =
∫ +∞

0 tx−1e−tdt and

Γ(n ∈ N∗) = (n − 1)!. The Gamma law is stable under addition and the exponential law

is a particular case of Gamma law. Thus the use of Gamma law is in general necessary to

carry out calculus when basic phenomena are exponentially distributed.
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Weibull
f(x) = k

λ

(
x
λ

)k−1
e−(x/λ)k E(X) = λΓ(1 + 1

k )

V(X) = λ2Γ(1 + 2
k )− E(X)2

With k = 2 the Weibull law is the Rayleight law.

Considering that when k = 1 the Weibull law is an exponential law, we can use Weibull to

model durations in a more general case, with possibly a "memory".

C.3 Stochastic geometry

C.3.1 General Point processes

A great topological space to work on

Let (χ, d) be a metric space.

It is said to be complete if every Cauchy sequence converges in χ or in an equivalent way

if every sequence of decreasing non empty closed subsets has a non-empty intersection.

It is said to be separable if there exist a sequence of points that is dense in the overall.

It is said to be compact if from each of its cover by opens can be extract a �nite subcover.

If added to that χ is a �nite dimensional vector space, a compact is closed bounded subset

of χ. A compact is complete and separable.

The framework to work on stochastic geometry is a complete separable metric space on

which it is always possible to de�ne a Borelian σ-algebra: [χ,B].

For instance one can take Rd, N, a compact of R2 (the case in most of the applications), a

geometrical graph in the sense of [102], [0, 1] mod 1.

De�nition

A point process on [χ,B] is a mapping Φ from a probability space [Ω,A,P] to N, the set of

locally �nite and simple sets of points in χ such that for B ∈ B bounded, Φ(B) is a random

variable counting the number of points in Φ that lay on B.

N is the smallest σ-algebra that makes the mappings ΦB(ω) = (Φ(ω))(B) measurable when

B is a bounded Borel set.

An element N of N can be seen both as a countable set of random points: N = {X1, ..., }
or a random counting measure: N =

∑
δXi ,

∫
f(x)dN(x) =

∑
f(Xi).

Remark that since Φ is simple, P(Φ({x} > 1) = 0.

Distributions, void probability

The distribution of a point process is the function

P(. ∈ N )
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The �nite dimensional distribution is the function

(Bi), (ni)→ P(Φ(B1) = n1, ...,Φ(Bk) = nk)

To end with, the void probability is the function

B → P(Φ(B) = 0)

.

The void probabilities determine the �nite dimensional distribution that de-
termines the distribution. For the �rst implication it is su�cient to remark that the sets

{} forms a semi-ring generating N (since it is de�ned as the smallest σ-algebra such mappings

ω → Φ(ω)(A) ∈ B are measurable) and thus their probabilities (the �nite dimensional distribu-

tions) fully de�ne the distribution of Φ.

To come to the second part, we will show that P(Φ(A1) ≤ n1, ...,Φ(Ak) ≤ nk can be written with

ν : A→ ν(A) = P(Φ(B) = 0).

To start with we only consider a bounded Borelian A. Since χ is separable, we can de�ne on it a

sequence of nested partition (Ξ(n))n with Ξ(n) = {Ξ(n)
k }1≤k≤n and µ(Ξ

(n)
k )→ 0 when n→∞.

We write A
(n)
k = A ∩ Ξ

(n)
k and H(A

(n)
k ) = 1

Φ(A
(n)
k )≥1

. Hn(A) =
∑
H(A

(n)
k ) counts the number of

sets in the n-th partition and in A that contain points of Φ. Hn is increasing and since Φ is simple,

from a particular rank Hn(A) = Φ(A).

P(Hn(A) = N) =
∑

P(H(A
(n)
1 = i1, ...H(A

(n)
nk ) = ink

) with ij ∈ {0, 1} and
∑
ij = N .

When passing to the limit, we get an expression of P(Φ(A) = n) as a function of ν.

Intensity The mean value of points for a bound Borelian B writes: Λ(B) = E(Φ(B)) it

is called the intensity measure.

E(

∫
f(x)dΦ(x)) =

∫
f(x)dΛ(x)

which is more or less the principle of the Monte-Carlo method: if Φ is a 1-dimensional

stationary Poisson Point Process of intensity λ and f(x) = x21[−1,1](x) then

E(

∫
f(x)dΦ(x)) = λ

∫ 1

−1
x2dx =

2

3
λ

Proof : First consider functions of the form f(x) = 1A(x) then E(
∫
f(x)dΦ(x)) = E(f(A)) =

Λ(A) =
∫
f(x)dΛ(x) by linearity of the expectancy and the integral, this result is also true for �nite

sums of indicator function and when passing to the limit, true for every measurable function f .

Stationarity, isotropy

A point process Φ is stationary if its distribution is invariant under translation: P(ΘxΦ) =

P(Φ), ∀x ∈ Rd.

It is invariant under rotation or isotropic if for every rotation matrix R, P(R(Φ)) = P(Φ).

A stationary point process is such that Λ(B) = λ.µ(B) and λ is then the intensity of the

process.
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Marked point processes

A marked point process is a point process when to each point is associated a random mark

in a measurable space [M,M]. In fact it can be de�ned as a simple point process Ψ in

[χ×M,B ⊗M] where Ψ(.×M) has to be a point process also.

Its intensity is then simply de�ned on a σ-algebra B ⊗M by Λ(B × L) = E(Φ(B × L)).

And we can also consider the intensity measure of the point process without marks Λp(.) =

Λ(.×M). Then we observe that Λ(.×L) is absolutely continuous with respect of Λp whatever

L and thus there exist a measure Mx:

Λ(B × L) =

∫
B
Mx(L)Λp(dµ(x))

. Mx(.) can be seen as the probability distribution of marks knowing there is a point in x.

We have the Campbell formula for marked point processes:

E(
∑

(x,y)∈Ψ

f(x, y) =

∫ ∫
f(x, y)dMx(y)dΛp(x)

If Ψ is a marked point process, the shifted process ΘxΨ, x ∈ Rd is de�ned by ΘxΨ(B×L) =

Ψ((B + x) × L) if Ψ and every ΘxΨ are equal in distribution, the marked point process is

stationary.

If Ψ is stationary, the mark distribution Mx do not depend on x and thus writes M and

Λp(x) = λµ(x). The Campbell formula then simpli�es to

E(
∑

(x,y)∈Ψ

f(x, y) = λ

∫ ∫
f(x, y)dM(y)dµ(x)

Palm distribution

Let Φ be a point process of intensity Λ.

Then one de�nes the Campbell distribution of this process as the measure on B× N

C(B, Y ) = E(Φ(B)1(Y ))

that is to say the mean number of points in B when Φ has property Y . It generalizes the

notion of intensity. C(.× Y ) is absolutely continuous with respect to Λ so we can write for

any property Y :

C(B × Y ) =

∫
B
Px(Y )dΛ(x)

which is interpreted as the sum of the probabilities that Φ respects Y when Φ has a point

in x times the probability that Φ has a point in an in�nitesimal ball centred in x.

E(
∑
x∈Φ

h(x,Φ) =

∫
h(x, φ)dC(x, φ) =

∫ ∫
h(x, φ)dPx(φ)dΛ(x)

If Φ is stationary then Px(Y ) = P0(T−xY ) which is of practical interest: one can evaluate
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P0(Y ) on a single realization φ of Φ by averaging: We have just de�ned the notion of "typical

point" of a point process. The typical point of a process is another process giving a point

-centred- and its neighbourhood. Its distribution provides for a property A the probability

that the process has property A when it has a centred point.

If we have a particular realization of the point process, we can estimate the probability of

the typical point by taking a sequence of bounded windows whose size tends to in�nity.

When taking a point at random in these windows (which is possible since it is bounded

and the process is locally �nite), the distribution of the process centred on that point is the

Palm distribution.

For a point process, this concept is trivial but it will show its interest for objects processes:

for instance we will speak of tessellation processes. We will not mix up the "typical" cell and

the 0-cell. They are both polygon random variables. To de�ne the "typical" one imagine you

take a large but bounded window, number each cell it contains, pick a number at random

and then look at the cell with that number. Then you get a "typical" cell with its "typical"

distribution. To get the 0-cell you simulate a large number of process and look at the cell

containing the origin on each simulation. Then you get the 0-cell. Generally speaking, the

0-cell is larger than the typical cell.

C.3.2 Poisson Point processes

De�nition and existence

If Λ(.) is a given locally �nite measure, there exist a point process Φ called the Poisson-

process of intensity measure Λ that checks:

1. Φ(A1), ..Φ(Am) are independent random variables when A1, ..., Am are measurable and

pairwise disjoint

2. P(Φ(A) = n) = e−Λ(A) Λ(A)n

n! when (A) is measurable

If Λ(dµ) = λdµ we will talk of an homogeneous Poisson process of intensity λ.

Simulation

Let A be a bounded Borel set and Φ a Poisson point process of intensity Λ. Conditional

on {Φ(A) = n}, Φ|A = (X1, .., Xn) where (Xi) are independent Λ-uniformly distributed

random variables in A.

Then to simulate a Poisson Point process in A, one has to pick a number of points N as a

Poisson random variable and then dispatch n points in A, at random with respect to Λ.

Similarly, Poisson processes are the only point process that provides a uniform distribution of

points on each bounded Borelian, which make them be the "most random point processes".
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Characterization

The Laplace functional characterization If Λ is a locally �nite measure on Rd, then
a point processΦ is a Poisson point process with intensity Λ iif

E(exp (−
∫
f(x)dΦ(x))) = exp(−

∫
(1− ef(x))dΛ(x))

Mecke's formula If Λ is a locally �nite measure on Rd, then a point processΦ is a Poisson

point process with intensity Λ iif

E(

∫
f(x,Φ)dΦ(x)) = E(

∫
f(x,Φ + δx)dΛ(x))

The Palm distribution for stationary point processes

P0
Φ(.) = P(Φ + δ0 ∈ .)

C.3.3 Finite point processes

De�nition by distributions

They are a useful for applications since generally speaking a statistician only accesses to a

limited region of observation, "a window" W .

To de�ne a �nite point process on W , one can de�ne:

1. A probability p(n) giving the number of points in W

2. A family of symmetric probabilities jn : Wn → [0, 1] giving the position of each point

conditionally to the number of points.

In fact we do not de�ne directly a point process from this de�nition but a random variable

on W ∪W 2 ∪ .... Nonetheless since jn is chosen to be symmetric, it is possible to "forget"

the order of points and to get a point process.

De�nition by density

Let Φλ be an homogeneous Poisson Point Process with intensity λ and probability distri-

bution πλ. Let W be a window and Nf the set of �nite point processes on W . Nf is

N -measurable. A positive measurable function p such that∫
Nf
p(~x)dπ(~x) = 1

is a density function.

Point processes de�ned this way can be simulated by a Metropolis algorithm.

For instance p(~x) = Csteβn(~x)γs(~x) with β, γ > 0, Cste a normalization constant (incalcula-

ble), n(~x) = number of points in ~x and s(~x) = number of pairs of points with a distance >
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ε is called a Strauss process. Its behaviour depends on 0 < γ < 1 (points are "repulsed" by

each others) or γ > 1 (points are "attracted" by each others).

C.3.4 Tessellation process

If a tessellation process is stationary, its associated nodes, edges mid-points, cell centroids

are stationary point processes. We can also consider the mean geometrical parameters of

the typical cell :

λ0 Mean number of nodes per unit area

λ1 Mean number of side mid points per unit area

λ2 Mean number of cell centroids per unit area

λ3 Mean length of side per unit area

l̄ Length of the typical side

Ū Perimeter of the typical cell

Ā Area of the typical cell

n̄02 Number of sides from a typical node the same as number of cells touching the typical node

n̄20 Number of node on the boundary of the typical cell

These various parameters are linked by the following relationships:

λ1 = λ3 + λ2

λ2Ū = 2λ1 l̄

λ2Ā = 1

n̄02 = 2 + 2
λ2

λ0

n̄20 = 2 + 2
λ0

λ2
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