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Distances in the highly supercritical percolation

cluster

Anne-Laure Basdevant, Nathanaël Enriquez, Lucas Gerin

October 1, 2012

Abstract

On the supercritical percolation cluster with parameter p, the dis-
tances between two distant points of the axis are asymptotically increased
by a factor 1 + 1−p

2
+ o(1 − p) with respect to the usual distance. The

proof is based on an apparently new connection with the TASEP (totally
asymmetric simple exclusion process).

Keywords: first-passage percolation, supercritical percolation, TASEP.

1 Introduction

First passage percolation is a model introduced in the 60’s by Hammersley and
Welsh [6] which asks the question of the minimal distance D(x) between the
origin 0 and a distant point x of Z

2, when edges have i.i.d. positive finite
lengths. One can prove by subadditivity arguments that in every direction such
distances grow linearly: for each y ∈ Z

2\{0}, D(ny)/n converges almost surely
to a constant µ(y). The particular value of µ((1, 0)) =: µ is called the time
constant. It is unknown except in the trivial case of deterministic edge lengths.
We refer the reader to [7] for an introduction on first passage percolation.

In this article we study the extreme case where edges have lengths 1 with
probability p ∈ (0, 1), +∞ with probability 1 − p. Then, the distance D(x)
coincides with the distance between the origin and x in the graph induced
by bond percolation on Z

2: each edge of Z
2 is open with probability p and

closed with probability 1 − p. When p > 1/2, it is known (see [5] Chap.1 for
an introduction to bond percolation) that there exists almost surely a unique
infinite connected component of open edges. We write x ↔ y if x, y belong to
the same connected component, and x ↔ ∞ if x is in the infinite cluster.

Gärtner and Molchanov ([4] Lemma 2.8) were the first to rigorously prove
that if 0 and x belong to the infinite component, D(x) is of order x. Garet
and Marchand ([3], Th.3.2) improved this result and showed that, even if the
subadditivity argument fails, the limit still holds: for each y ∈ Z

2\{0}, there
exists a constant µ(y) such that, on the event {0 ↔ ∞}, we have a.s.

lim
n→∞

0↔(n,0)

D(ny)

n
= µ(y).

The aim of the present paper is to give an asymptotics of the time constant
when p is close to one. One clearly has D(n, 0) ≥ n. On the other side, among
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the n edges of the segment joining 0 to (n, 0), about n(1−p) of them are closed
but with high probability the two extremities of each such edge can be joined
by a path of length three. This naive approach suggests an upper bound of
1 + 2(1 − p) for the time constant. To our knowledge, the best known upper
bound comes from Corollary 6.4 of [3] and is equal to 1+ (1− p). We obtain in
the present paper a sharp asymptotics of the time constant when p goes to one.

Theorem 1. On the event {0 ↔ ∞}, we have a.s.1

µp
def
= lim

n→∞
0↔(n,0)

D(n, 0)

n
= 1 +

1− p

2
+ o(1− p).

Our result says that the graph distance and the L1 distance asymptotically
differ by a factor 1 + (1 − p)/2. Note that Garet and Marchand ([3] Cor.6.4)
observed that these two distances coincide in all the directions inside a cone
containing the axis {y = x}. The angle of this cone is characterized by the
asymptotic speed of oriented percolation of parameter p, studied by Durrett [1].

The key ingredient of the proof relies on a correspondance between the syn-
chronous totally asymmetric simple exclusion process (TASEP) on an interval
and the graph distance on the percolation cluster inside an infinite strip.

2 First bounds on µp

We denote by Pp the product measure on the set of edges of Z2 of length 1 under
which each edge is open independently with probability p. Since p > 1/2, we
have Pp{0 ↔ ∞} > 0, so we can also define P̄p the probability Pp conditioned
on the event {0 ↔ ∞}.

P̄p{A} =
Pp{A ∩ {0 ↔ ∞}}

Pp{0 ↔ ∞} .

When no confusion is possible, we will omit the subscript p.
The origin is in the infinite cluster, unless there is a path of closed edges

in the dual lattice surrounding 0. In the whole paper, we take p close enough
to one so that this occurs with high probability (to fix ideas, with probability
greater than 1− 2(1− p)4).

Because of the conditioning, it is not possible to apply directly subadditive
arguments to the sequence D(n, 0). To overcome this difficulty, we adapt the
ideas of [3] and consider the sequence of points of the axis which lie in the
infinite cluster. This enables us to derive bounds on µp.

For n ≥ 1, let (Tn(k), 0) be the k-th intersection of the infinite cluster and
the set {(in, 0), i ∈ N}.
Proposition 1. We have for all n ≥ 1,

lim
k→∞

E

(

D(T1(k), 0)

k
1l{0↔∞}

)

= µp ≤ E

(

D(Tn(1), 0)

n
1l{0↔∞}

)

.

1 We use notations introduced in [3]: the subscript 0 ↔ (n, 0) means that we only take n’s
for which (n, 0) is in the infinite component. More precisely, if (T1(n), 0) stands for the n-th

point of the half-line N× {0} belonging to the infinite component, then lim n→∞

0↔(n,0)

D(n,0)
n

:=

limn→∞

D(T1(n),0)
T1(n)

.
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Proof. This proposition is mainly a direct consequence of Lemma 3.1 of [3].
Indeed, this lemma states that, for all n ≥ 1, there exists a constant f such that

lim
k→∞

D(Tn(k), 0)

nk
= f P̄ a.s. and in L1(P̄). (1)

Moreover, by subadditivity, we have nf ≤ E (D(Tn(1), 0)| 0 ↔ ∞) and besides

µp = P{0 ↔ ∞}f.

Combining these two facts, we get the upper bound. For the left equality, we
now use the L1 convergence in (1) with n = 1. This gives

lim
k→∞

E

(

D(T1(k), 0)

k

∣

∣

∣
0 ↔ ∞

)

= f =
µp

P{0 ↔ ∞} .

For p close to 1, the upper bound can be simplified using the following
proposition.

Proposition 2. For all δ > 1, there exists cδ > 0 such that for all n ≥ 10 and
p ∈ (5/6, 1), we have

E(D(Tn(1), 0)1l{0↔∞}) ≤ E(D(n, 0)1l{0↔(n,0)↔∞}) + cδ(1− p)2nδ.

To prove this proposition, we first show two lemmas.

Lemma 1. For all δ > 1, there exists a constant Cδ > 0 such that, for n ≥ 1
and for p ∈ (5/6, 1), we have

E(D2(n, 0)1l{0↔(n,0)↔∞}) ≤ (Cδn
δ)2.

Proof. We have

E(D2(n, 0)1l{0↔(n,0)↔∞}) ≤ n2δ +

∞
∑

i=n2δ

P{D(n, 0) ≥
√
i,0 ↔ (n, 0) ↔ ∞}.

Fix some q ∈ (0, 1
2δ ) such that q + 1

2δ ≤ 1
2 and for i ≥ n2δ, let Γi be the

box [−i
1
2δ , n + i

1
2δ ] × [− iq

6 ,
iq

6 ]. A self avoiding path in Γi has less than |Γi| =
iq

3 (n+ 2i
1
2δ ) ≤

√
i steps. Thus

P{D(n, 0) ≥
√
i,0 ↔ (n, 0) ↔ ∞} ≤ P{0 = (n, 0) in Γi,0 ↔ (n, 0) ↔ ∞}.

The event {0 = (n, 0) in Γi,0 ↔ (n, 0) ↔ ∞} implies the existence in the dual
of a path of closed edges starting from the border of Γi, and having at least iq

3

steps since it must disconnect 0 and (n, 0). Using that |∂Γi| ≤ 6i
1
2δ , we get

P{D(n, 0) ≥
√
i,0 ↔ (n, 0) ↔ ∞} ≤ 6i

1
2δ (3(1− p))

iq

3 .

This yields, for p ∈ (5/6, 1),

E(D2(n, 0)1l{0↔∞}) ≤ n2δ + 6
∞
∑

i=n2δ

i
1
2δ

(

1

2

)
iq

3

≤ (Cδn
δ)2.
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Lemma 2. Recall that Tn(1) denotes the first point among {n, 2n, 3n, . . .} which
is in the infinite component. There exists C > 0 such that for any p ∈ (5/6, 1),
any n ≥ 10 and j ≥ 2

P {Tn(1) ≥ jn} ≤ C(1 − p)4+
√
j−2. (2)

Proof. For j = 2, the left-hand side in (2) is simply P{(n, 0) is disconnected } ≤
C(1 − p)4. For 3 ≤ j ≤ 10, the event {Tn(1) ≥ jn} is included in {(n, 0) = ∞
and (2n, 0) = ∞}. These two points are either disconnected by two different
paths, or by the same path (which then has length ≥ 2n). The latter case has a
much smaller probability, and then P{Tn(1) ≥ jn} ≤ C′(1− p)8, and (2) holds.

We now do the case j ≥ 10. For each integer i, let Ai be the event that
(ni, 0) is disconnected, and let

Ai,r = {(ni, 0) is disconnected by a path included in [ni− r;ni + r]× [−r; r]} .
One plainly has that each Ai,r ⊂ Ai and that Ai,r, Aj,r are independent as soon
as the corresponding boxes are disjoint, namely if 2r ≤ n|j − i|. For j ≥ 2, set
J = ⌊√j⌋, we write

P{Tn(1) ≥ jn} = P{A1, A2, . . . , Aj−1} ≤ P{AJ , A2J , A(J−1)×J}

≤
J−1
∏

ℓ=1

P{AℓJ,nJ/2}+P{∃ℓ ≤ J − 1;AJ \AℓJ,nJ/2}

≤ (1− p)4(J−1) + J
∑

i≥nJ

i(3(1− p))i

≤ (1− p)4(J−1) + 4nJ2(3(1− p))nJ

≤ C(1− p)4+
√
j−2,

since a path disconnecting (nℓJ, 0) which is not included in the box [nℓJ −
nJ
2 ;nℓJ + nJ

2 ]× [−nJ
2 ; nJ2 ] has at least nJ edges.

We are now able to prove Proposition 2.

Proof of Proposition 2. We write, using Lemmas 1 and 2:

E(D(Tn(1), 0)1l{0↔∞}) =

∞
∑

j=1

E(D(jn, 0)1l{Tn(1)=jn}1l{0↔∞})

≤ E(D(n, 0)1l{0↔(n,0)↔∞})

+

∞
∑

j=2

E(D(jn, 0)21l{0↔(jn,0)↔∞})
1/2P{Tn(1) = jn}1/2

≤ E(D(n, 0)1l{0↔(n,0)↔∞}) +
∞
∑

j=2

Cδ(jn)
δP{Tn(1) ≥ jn}1/2

≤ E(D(n, 0)1l{0↔(n,0)↔∞}) + C′
δn

δ(1− p)2
∞
∑

j=2

jδ
(

1

6

)(j−2)1/4

≤ E(D(n, 0)1l{0↔(n,0)↔∞}) + cδ(1 − p)2nδ.
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3 Percolation on a strip and TASEP

As a first step towards our main result, we shall study distances in percolation on
an infinite strip. We will reduce this problem to the analysis of a finite particle
system, this allows explicit computations from which will result the bounds in
Theorem 1.

Here is the context we will deal with in the whole section. Fix an integer K
and ε ∈ (0, 1). Let ZK be the infinite strip Z × [[−K,K]], with three kinds of
edges :

• Vertical edges {(i, j) → (i, j + 1), i ∈ Z, j ∈ [[−K,K − 1]]};

• Horizontal edges {(i, j) → (i + 1, j), i ∈ Z, j ∈ [[−K,K]]};

• Diagonal edges {(i, j) → (i + 1, j + 1) and (i, j) → (i+ 1, j − 1)}.

We now consider a random subgraph of ZK equipped with distances:

Cross Model . (i) Vertical and horizontal edges have length 1, whereas di-
agonal edges have length 2.

(ii) Diagonal and vertical edges are open.

(iii) Each horizontal edge is open (resp. closed) independently with probability
1− ε (resp. ε).

For i ≥ 0 and j ∈ [[−K,K]], let DK,d(i, j) be the distance between (0, 0) and
(i, j) inside ZK in the Cross Model (see an example in Fig. 1), the ’d’ stands for
the addition of diagonal edges. Sometimes we also need to consider the distance
between two vertices x, y of ZK , which will be denoted by DK,d(x → y).

Since vertical and diagonal edges are open, every point in ZK is connected
in the Cross Model to 0, hence DK,d(i, j) is finite for every i, j. We also set

D
K,d
i =

{

DK,d(i, j), j ∈ [[−K,K]]
}

. By construction, we have along each vertical
edge |DK,d(i, j)−DK,d(i, j + 1)| = 1.

0
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2
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2
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3

3

5

3

4

4

4 5

6

6

5

5

6

7
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8

6

7

8

8

9

9

8

9

9

10

10

Figure 1: A configuration of percolation in ZK for K = 2 and the associated
distances DK,d. Note the importance of diagonal edges: DK,d(3, 0) = 5 instead
of 7 if there was none.
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The main goal of this section is to estimate DK,d(n, 0), when K,n are large.

To do so, we introduce a particle system associated to the process (DK,d
i )i≥0.

Let us consider the state space {•, ◦}2K (identified to {1, 0}2K), and denote its
elements in the form

(y−K+1, y−K+2, . . . , y0, y1, . . . , yK).

Let (Yi)i≥0 be the process with values in {•, ◦}2K defined as follows :

∀j ∈ [[−K + 1,K]], Y j
i =

{

• = 1 if DK,d(i, j) = DK,d(i, j − 1)− 1.

◦ = 0 if DK,d(i, j) = DK,d(i, j − 1) + 1.

Let say that the site j is occupied by a particle at time i if Y j
i = • and empty

otherwise.

0

1

1

2

2

3

2

2

3

3

5

3

4

4

4 5

6

6

5

5

6

7

7

8

6

7

8

8

9

9

8

9

9

10

10

Figure 2: The same configuration with particles.

Definition 1. The synchronous Totally Asymmetric Simple Exclusion Process
(TASEP) on [[−K + 1,K]] with jump rate α, exit rate β and entry rate γ is the

Markov chain with state space {•, ◦}2K defined as follows:

β γα

• at time t + 1, for each j, a particle at position j = −K + 1, . . . ,K − 1
moves one step forward if the site j+1 is empty at time t, with probability
α and independently from the other particles.

• at time t+1, a particle enters the system at position −K+1 if site −K+1
is empty at time t, with probability β.

• at time t+ 1, if there were a particle at position K at time t, it exits the
system with probability γ.

Proposition 3 (The particles follow a TASEP). The processes (DK,d
i )i≥0 and

(Yi)i≥0 are Markov chains. Moreover, (Yi)i≥0 has the law of discrete time
synchronous TASEP on [[−K + 1,K]] with jump rate ε and exit and entry rate
ε.
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Proof of Proposition 3. Let us note that since all the vertical edges are open,
the optimal path from 0 to (i, j) ∈ ZK , i ≥ 0 never does a step from right

to left. Moreover, the vector D
K,d
i+1 depends only on D

K,d
i and on the edges

{(i, j) → (i+ 1, j), j ∈ [[−K,K]]}, hence it is Markov.
Let us now prove that the displacement of particles follows the rules of

TASEP. We detail the case in which there is a particle on the edge (i, j − 1) →
(i, j) but no particle on the edge (i, j) → (i, j + 1), i.e. at time i there is a
particle in position j and no particle in position j + 1.

This means that if DK,d(i, j) = ℓ then DK,d(i, j−1) = DK,d(i, j+1) = ℓ+1.
Then, whether the horizontal edges (i, j−1) → (i+1, j−1) and (i, j+1) → (i+
1, j+1) are open or closed, we have DK,d(i+1, j−1) = DK,d(i+1, j+1) = ℓ+2
(this is because the two diagonal edges starting from (i, j) are open), see the
left part of the figure below:

l

l+1

l+1

l

l+1

l+1

l

l+1

l+1 l+2

l+2
l+2

l+2

l+2

l+2

l+1

l+3

ε

ε1−

?

?

?

?
?

?

?

?

?

Now, DK,d(i + 1, j) depends only on the edge (i, j) → (i + 1, j): it is equal
to ℓ + 1 if this edge is open and the particle lying at j stays put. If the edge
(i, j) → (i + 1, j) is closed, DK,d(i + 1, j) = ℓ + 3, which corresponds for the
particle lying at j to a move to j + 1.

We leave the cases in which a particle is followed by an other particle and
in which an empty edge is followed by an empty edge, which are similar, to the
reader.

We do the bottom boundary case (when a particle may enter the system,
see the figure below). Assume that there is no particle at time i in position
−K + 1. This means that if we set ℓ = D(i,−K) then D(i,−K + 1) = ℓ+ 1. If
the edge (i,−K) → (i+ 1,−K) is open then D(i+ 1,−K) = ℓ+ 1 and there is
no particle at time i + 1 in position −K + 1. Otherwise D(i + 1,−K) = ℓ + 3
and a particle appears at time i+ 1 in −K + 1.
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ε

1−ε

l+1

l

l+2

l+1

l+1

l

l

l+2

l+2

l+3

l+1

?

?

?

?

?

?

The right-boundary case (when a particle exits) is similar.

We have thus seen in the proof that the knowledge of (Yi)i≥0 fully determines
the metric DK,d using the following recursive identity:

DK,d(i+ 1, j) = DK,d(i, j) + 1 + 2.1l{Y j
i =•,Y j+1

i =◦,Y j
i+1

=◦,Y j+1

i+1
=•}.

Let νK,ε be the stationary measure of the synchronous TASEP (Yi)i≥0. Let

νK,ε(•, ◦) def

= νK,ε(y
0 = •, y1 = ◦).

Proposition 4. We have the following asymptotics for the distances on ZK in
the Cross Model:

lim
n→∞

1

n
E(DK,d(n, 0)) = 1 + 2ενK,ε(•, ◦).

Proof of Proposition 4. We have seen in the proof of Proposition 3 that

DK,d(i+ 1, 0) = DK,d(i, 0) + 1,

unless a particle has moved at time i from position 0 to 1, in which caseDK,d(i+
1, 0) = DK,d(i, 0) + 3. This shows that

E(DK,d(i+1, 0)) = E(DK,d(i, 0))+1+2P
{

Y 0
i = •, Y 1

i = ◦, {(i, 0) → (i+ 1, 0) is closed}
}

,

thus

E(DK,d(n, 0)) = n+ 2ε

n−1
∑

j=0

P
{

Y 0
j = •, Y 1

j = ◦
}

,

which gives, by the Markov chain ergodic theorem, the proof of the proposition.

We thus need an estimate of νK,ε(•, ◦). It turns out that the stationnary
measure of the synchronous TASEP was studied in detail by Evans, Rajewsky
and Speer [2] using a matrix ansatz.

Proposition 5. The following identities relative to νK,ε(•, ◦) hold:

(i) For all K, ε,

νK,ε(•, ◦) =
Aε(K)

εAε(K) +Aε(K + 1)
,

with Aε(K) = 1
K

∑K
k=1

(

K
k

)(

K
k+1

)

(1− ε)k.

8



(ii)

lim
K→∞

νK,ε(•, ◦) =
1−

√
1− ε

2ε
.

(iii) For all α > 0,

lim
ε→0

νε−α,ε(•, ◦) =
1

4
.

Proof. The first two assertions are consequences of (4.24), (8.21) and (10.13) of

[2]. For (iii), we are led to prove that limε→0
Aε(ε

−α+1)
Aε(ǫ−α) = 4.

Denote

a(K, k)
def

=

(

K

k

)(

K

k + 1

)

(1− ε)k.

The ratio
a(K, k + 1)

a(K, k)
= (1− ε)

(K − k)(K − k − 1)

(k + 1)(k + 2)
(3)

is asymptotically equal to (1−ε)(K−k
k )2 for large values of k and K−k. There-

fore the sequence (a(K, k))1≤k≤K increases from 1 to some kmax(K) and de-
creases after. Moreover, kmax(K) ∼ K(12 − ε

8 ).
For K > 0 and β ∈ (0, 1), let us decompose the sum KAε(K) into

K( 1
2
−εβ)−1
∑

k=1

a(K, k) +

K
2

∑

k=K( 1
2
−εβ)

a(K, k) +

K( 1
2
+εβ)

∑

k=K
2
+1

a(K, k) +

K
∑

k=K( 1
2
+εβ)+1

a(K, k)

and denote by A−
β (K), B−

β (K), B+
β (K), A+

β (K), the four successive sums. Note

first, from the analysis of the ratio (3), that A−
β (K) and A+

β (K) are both sub-

geometric sums with rate 1− Cεβ . This implies,

A+
β (K) ≤ Cε−βa(K,K(

1

2
+ εβ))

A−
β (K) ≤ Cε−βa(K,K(

1

2
− εβ)).

In the same time, from the variations of the sequence (a(K, k))1≤k≤K , we deduce

B+
β (K) ≥ Kεβa(K,K(

1

2
+ εβ))

B−
β (K) ≥ Kεβa(K,K(

1

2
− εβ)).

Therefore, as soon as the K ≫ ε−2β, the ratio KAε(K)

B−

β (K)+B+

β (K)
goes to 1.

Now, for all k,

a(K + 1, k)

a(K, k)
=

(K + 1)2

(K − k)(K − k + 1)
.

This ratio is between 4(1 − cεβ) and 4(1 + Cεβ) when k is between K(12 − εβ)

and K(12 + εβ). This implies that, for all β > 0, the ratio
B−

β (K+1)+B+

β (K+1)

B−

β
(K)+B+

β
(K)

converges to 4 as ε goes to 0 and K goes to ∞. Consequently, the same occurs

also for (K+1)Aε(K+1)
KAε(K) , as soon as K ≫ ε−2β . We choose β = min

{

1, α4
}

to

prove the result.
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We will need further the following bounds on E(DK,d(n, 0)).

Proposition 6. For n ≥ 0, we have

n(1 + 2ενK,ε(•, ◦)) ≤ E(DK,d(n, 0)) ≤ n(1 + 2ενK,ε(•, ◦)) + 2K.

Proof. By subadditivity of (E(DK,d(n, 0)))n≥0, the sequence E(DK,d(n, 0))/n
is decreasing. Together with Proposition 4, this proves the left inequality.

For the right inequality, the idea is to start the Markov chain (Yi)i≥0 from

its stationary distribution. Let Ỹ0 = (Ỹ j
0 , j ∈ [[−K+1,K]]) with law νK,ε. Take

D̃K,d(0, 0) = 0 and define inductively D̃K,d(0, j) for each j such that

D̃K,d(0, j) =

{

D̃K,d(0, j − 1)− 1 if Ỹ j
0 = •.

D̃K,d(0, j − 1) + 1 if Ỹ j
0 = ◦.

If (D̃K,d
i ) is a realization of the chain starting from D̃K,d

0 then, by Proposition
3, we have

E(D̃K,d(n, 0)) = n(1 + 2ενK,ε(•, ◦)).
By construction of the chain, there is a (random) J such that

D̃K,d(n, 0) = DK,d ((0, J) → (n, 0)) + D̃K,d(0, J),

where DK,d is, as before, the true distance after percolation in ZK . Using
triangular inequality, we get

DK,d(n, 0) ≤ K +DK,d ((0, J) → (n, 0))

≤ K + D̃K,d(n, 0)− D̃K,d(0, J)

≤ 2K + D̃K,d(n, 0).

Taking expectation gives the expected bound.

If we gather the results obtained so far in this section, we roughly obtain
that for the Cross Model,

E(DK,d(n, 0)) ≈ n(1 + 2ενK,ε(•, ◦)) ≈ n
(

1 +
ε

2

)

.

In order to apply this result to usual percolation on strips (with horizontal and
vertical edges open with probability 1 − ε), we have to prove that distances in
both models differ very little. Fortunately, it happens that distances in both
models are quite similar as soon as there are no contiguous closed edges, which
is the case with high probability in any fixed rectangle, when ε is small.

We first choose in the Cross Model a particular path among all the minimal
paths:

Lemma 3. For the Cross Model, for each K,n, there exists a path from (0, 0)
to (n, 0) of minimal length that only goes through horizontal and diagonal edges,
except possibly through the vertical edges of the first column {0} × [[−K,K]].

Proof. Consider one of the minimal paths from (0, 0) to (n, 0), we will modify
this path P to get one which satisfies the desired property. Among all the
vertical edges of P , let E = (i, j − 1) → (i, j) be the one for which
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1. i is maximal,

2. among them, j is minimal.

In this way, there is no vertical edges neither to the right of E nor below it.
There are three cases according to whether the other edge joining (i, j− 1) in P
goes to (i− 1, j− 1), to (i− 1, j) or to (i− 1, j− 2). In each of these three cases
we can do a substitution that removes the vertical edge or moves it to the left:

(i,j) (i,j) (i,j) (i,j)(i,j)

(i,j−1)

(i,j)

(i,j−1) (i,j−1) (i,j−1) (i,j−1) (i,j−1)

This substitution does not change the length of the path, it is thus still
optimal. After iterating the process, there may remain vertical edges only on
the first column.

Proposition 7. Consider a standard percolation on ZK where each horizontal
and vertical edge is open with probability 1 − ε. Denote DK the associated
distance. Let A = A(K,n, ε) be the event ”in each square of area 1 of [[0;n]] ×
[[−K;K]] i.e. of vertices {(i, j), (i, j + 1), (i + 1, j + 1), (i, j + 1)}, at most one
edge is closed”. Then, for each n,K,

E(DK(n, 0) | A) ≤ E(DK,d(n, 0)) + 3K.

Proof. On the event A, adding diagonal edges with length 2 does not decrease
the length of optimal paths since either the path (i, j) → (i, j+1) → (i+1, j+1)
or (i, j) → (i + 1, j) → (i + 1, j + 1) is open and moreover, there is at most a
distance 3 between the two extremities of any edge of [[0;n]]× [[−K;K]].

Thanks to Lemma 3, there is always for the Cross Model a path of minimal
length using only horizontal and diagonal edges except maybe on the at most
K vertical steps along the first column {0} × [[−K,K]]. Thus, on the event A,
we get

DK(n, 0) ≤ DK,d(n, 0) + 3K.

This yields
E(DK(n, 0) | A) ≤ E(DK,d(n, 0) | A) + 3K.

Let us note now that A is an increasing event and −DK,d(n, 0) is an increasing
random variable. Thus, the FKG inequality (see [5]) yields

E(−DK,d(n, 0)1A) ≥ E(−DK,d(n, 0))P{A}

which can be rewritten

E(DK,d(n, 0) | A) ≤ E(DK,d(n, 0)).

11



4 The lower bound

We now return to the original model and consider percolation on Z
2 where each

edge is closed independently with probability ε = 1 − p. Recall that D(i, j)
denotes the distance between the origin and (i, j) ∈ Z

2. Using Proposition 1, in
order to prove the lower bound in Theorem 1, we just need to show that

lim
k→∞

1

k
E(D(T1(k), 0)1l{0↔∞}) ≥ 1 +

ε

2
+ o(ε).

Let Dd(x) be the distance between the origin and x in Z
2, with diagonal and

vertical edges all open. Adding edges decreases the distances: Dd(x) is always
smaller than D(x). Thus, we have,

E(D(T1(k), 0)1l{0↔∞}) ≥ E(Dd(T1(k), 0)1l{0↔∞})

≥ E(Dd(k, 0)1l{0↔∞}),

since T1(k) ≥ k and the sequence (Dd(n, 0)) is increasing (thanks to vertical
edges).

Note that every minimal path from the origin to (k, 0) (with diagonal and
vertical edges open) has a length less than 2k and lies in the strip Zk. Therefore

E(Dd(k, 0)1l{0↔∞}) = E(Dk,d(k, 0)1l{0↔∞}).

Using Proposition 6, we have E(Dk,d(k, 0)) ≥ k(1 + 2ενk,ε(•, ◦)). Besides,

E(Dk,d(k, 0)(1− 1l{0↔∞})) ≤ 2kP{0 = ∞} ≤ 4kε4.

We get
E(D(T1(k), 0)1l{0↔∞}) ≥ k(1 + 2ενk,ε(•, ◦)− 4ε4).

Letting k tends to infinity, we obtain with Proposition 5 the desired lower bound.

5 The upper bound: a short path

As in the previous section, we consider standard percolation on Z
2 where each

edge is closed with probability ε = 1− p. Recall that Proposition 2 states that
for any δ > 1 there exists a cδ > 0 such that, for all ε small enough and n ≥ 10,

µp ≤ E(D(n, 0)1l{0↔(n,0)↔∞})

n
+ cδε

2nδ−1. (4)

So to prove Theorem 1, it is sufficient to find n = n(ε) ≥ 10 such that εnδ−1 =
o(1) and

E(D(n, 0)1l{0↔(n,0)↔∞}) ≤ n(1 +
ε

2
+ o(ε)).

Fix ℓ > 1 and K,n > 2ℓ and define the boxes (Ci)i≥0 by

Ci = [ℓ, n− ℓ]× [(2i− 1)K + 1, (2i+ 1)K].

Let Ei denote the event ”in each square of area 1 ofCi i.e. of vertices {(i, j), (i, j+
1), (i + 1, j + 1), (i, j + 1)}, at most one edge is closed”. Let us note that the
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events (Ei)i≥0 are independent and have the same probability. Moreover, we
have

P {Ec
i } ≤ |Ci|P{more than 2 edges are closed in a given square}

≤ 2Kn(6ε2 + 4ε3 + ε4) ≤ 22Knε2.

Hence, if I = inf{i ≥ 0, Ei}, I + 1 is geometrically distributed with parameter
P{E0}.

C0

Ci

K

0

εi ε
′

i

n

ci
c
′

i

ℓ

Figure 3: The sketch of an almost optimal path, on the event Bi ∩ {I = i}.

Let ci, c
′
i denote the vertical boundaries of Ci i.e. ci

def

= {ℓ} × [(2i − 1)K +

1, (2i+ 1)K] and c′i
def

= {n− ℓ} × [(2i− 1)K + 1, (2i+ 1)K] and εi, ε
′
i the boxes

defined by

εi = [−ℓ, ℓ]× [−K, (2i+ 1)K],

ε′i = [n− ℓ, n+ ℓ]× [−K, (2i+ 1)K].

Let Bi be the event

Bi = {0 ↔ ci in εi} ∩ {(n, 0) ↔ c′i in ε′i}.

We have

E(D(n, 0)1l{0↔(n,0)↔∞}) ≤
∞
∑

i=0

E(1l{I=i}∩Bi
D(n, 0))+

∞
∑

i=0

E(D(n, 0)1l{I=i}∩Bc
i ∩{0↔(n,0)↔∞}).

(5)
Let χ1(i) (resp. χ′

1(i)) denote the distance between 0 and the segment ci
inside the box εi (resp. (n, 0) and the segment c′i inside the box ε′i). Denote
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also χ2(i) the distance between (ℓ, 2iK) and (n− ℓ, 2iK) inside the box Ci. We
have

D(n, 0) ≤ χ1(i)+χ′
1(i)+χ2(i)+max

x∈ci
D(x → (ℓ, 2iK))+max

y∈c′i

D(y → (n−ℓ, 2iK)).

(6)
Moreover, on the event {I = i} ∩ Bi, the r.h.s. of this inequality is finite and
we have

χ1(i) ≤ |εi| = 4ℓ(i+ 1)K χ′
1(i) ≤ |ε′i| = 4ℓ(i+ 1)K (7)

max
x∈ci

D(x → (ℓ, 2iK)) ≤ 3K max
y∈c′i

D(y → (n− ℓ, 2iK)) ≤ 3K. (8)

To bound χ2(i), let us note that χ2(i) only depends on the edges inside the box
Ci. Thus, we have

E(χ2(i)1l{I=i}∩Bi
) ≤ E(χ2(i)1l{I=i})

= E(χ2(i) | I = i)P{I = i}
= E(χ2(0) | I = 0)P{I = i}.

Moreover, the event {I = 0} coincides with the event A(K,n− 2ℓ, ε) defined in
Proposition 7. This yields, using Proposition 6 and Proposition 7,

E(χ2(0) | I = 0) ≤ E(DK,d(n− 2ℓ, 0)) + 3K ≤ n(1 + 2ενK,ε(•, ◦)) + 5K. (9)

Combining (6),(7),(8),(9), we get

∞
∑

i=0

E(1l{I=i}∩Bi
D(n, 0)) ≤ n(1+2ενK,ε(•, ◦))+ 5K+K(8ℓE(I+1)+6). (10)

For the second term in the right hand side of (5), using Hölder inequality, we
get

E(D(n, 0)1l{I=i}∩Bc
i∩{0↔(n,0)↔∞})

≤ P{Bc
i ∩ {I = i} ∩ {0 ↔ (n, 0) ↔ ∞}}1/2E(D2(n, 0)1l{0↔(n,0)↔∞})

1/2.
(11)

Lemma 1 yields
E(D2(n, 0)1l{0↔(n,0)↔∞})

1/2 ≤ Cδn
δ.

Besides, we have

P{Bc
i ∩ {I = i} ∩ {0 ↔ (n, 0) ↔ ∞}} ≤ 2P{{0 = ci in εi} ∩ {0 ↔ ∂εi} ∩ {I = i}}

= 2P{{0 = ci in εi} ∩ {0 ↔ ∂εi}}P{I = i},

since the two first events only depend on the edges inside the box εi and the
event {I = i} only depends on the edges inside the box Ci. If 0 ↔ ∂εi but is
not connected to ci in the box εi, then there exists in the dual graph a path of
closed edges with at least 2ℓ edges. Hence

P{{0 = ci in εi} ∩ {0 ↔ ∂εi}} ≤ 2K(i+ 1)2ℓ(3ε)2ℓ.
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Plugging this into (11) gives

∞
∑

i=0

E(1l{I=i}1lBc
i
D(n, 0)1l{0↔(n,0)↔∞}) ≤ (8ℓK)1/2(3ε)ℓCδn

δ
∞
∑

i=0

P{I = i}1/2(i+1)1/2.

(12)
Recall now that I +1 is a geometric random variable with parameter P{E0} ≥
1− 22Knε2. Thus, there exists C < ∞ such that, for any K,n, ε are such that
22Knε2 ≤ 1

2 , we have

∞
∑

i=0

P{I = i}1/2(i + 1)1/2 ≤ C and E(I) ≤ C.

Combining (4), (5), (10) and (12), we get, for ε ∈ (0, 1
6 ), K,n ≥ 2ℓ and such

that 22Knε2 ≤ 1
2

µp ≤ (1 + 2ενK,ε(•, ◦)) + Cδ,ℓ(n
δ−1εℓK1/2 +

K

n
+ ε2nδ−1)

where Cδ,ℓ is a constant depending only on ℓ and δ > 1. Take now ℓ = 3,
n = ε−3/2, K = ε−1/4 and δ = 3/2. We get

µp ≤ 1 + 2ενε−1/4,ε(•, ◦) + Cε5/4.

We conclude by using Proposition 5.
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