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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47099769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://halshs.archives-ouvertes.fr/halshs-00746301


Constraints on anaphoric functions

R. Zuber, Rayé des cadres du CNRS∗

Abstract

Some constraints on functions from sets and relations to sets are

studied. Such constraints are satisfied by anaphoric functions, that is

functions denoted by anaphoric determiners. These constraints are gen-

eralisations of anaphor conditions known from the study of simpler cases

of nominal anaphors. In addition a generalisation of the notion of con-

servativity as applied to anaphoric functions is proposed. Two classes of

anaphoric determiners found in NLs are discussed as examples.

1 Introduction

Progress in the study of the logical properties of NLs (Natural languages) is
closely related to the study of various constraints that must be satisfied by
functions interpreting functional expressions in NLs. We know that such ex-
pressions do not denote arbitrarily and thus that functions interpreting them
obey various specific constraints of a logical nature. The most prominent results
obtained in this context are results obtained in generalised quantifiers theory
and they concern functions corresponding to various types of quantifiers. The
constraint on quantifiers which has been extensively studied from theoretical
and empirical points of view is the constraint of conservativity concerning the
denotations of various determiners found in NLs.

The purpose of this paper is to exhibit some specific properties of anaphoric
functions, that is functions denoted by anaphoric determiners. Some anaphoric
functions have been studied in the context of (nominal) anaphors (Keenan 1988,
2007, Keenan and Westerst̊ahl 1997). In the simplest case anaphors are NP-
like expressions which occur as grammatical objects of sentences referentially
dependent on their subjects, as Every poet admires himself. Here himself is the
anaphoric NP and can be correctly interpreted as the function SELF , which
maps a binary relation like ADMIRE to the set {x : 〈x, x〉 ∈ ADMIRE}.
Then EV ERY (POET ) maps that set to TRUE iff POET is a subset of it, as
usual. Crucially the above mentioned authors show that the SELF function
is not a natural extension of a generalised quantifier that maps unary relations
(properties) to truth values - that is, the possible denotations for subjects in
one place predicates. Complex anaphors such as everybody except himself or
five students including herself also denote anaphoric functions that lie outside
the class of generalised quantifiers.

∗Thanks to Ross Charnock, Ed Keenan and Yoad Winter for basically reasonable com-

ments on the previous version of this paper
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The primary focus of the present study is that of ”anaphoric determiners”
and their denotations. Anaphoric determiners combine with common nouns
(like non-anaphoric determiners) to build complex NPs which denote anaphoric
functions, ones like the simple cases above, that lie outside the class of the
standard conservative functions that build generalised quantifier denoting ex-
pressions. An example from Polish illustrating such an anaphoric determiner
is in (1a), which contrasts with the non-anaphoric one in (1b):

(1a) Piotr nienawidzi swego sa̧siada
(Piotr hates his+own neighbour)

(1b) Piotr nienawidzi jego sa̧siada
(Piotr hates his neighbour), (’his’= not the one of Piotr)

We show that, in addition to properly ”anaphoric properties”, the deter-
miner swego (his+own) satisfies a natural generalisation of the conservativity
property characteristic of non-anaphoric determiners.

In the next section a detailed description of anaphoric determiners and of
their denotations, anaphoric functions, is provided. Then, in the next section
two important classes of anaphoric determiners are discussed. Finally, a gen-
eralisation of conservativity is proposed and discussed in the context of these
examples.

2 Anaphoric functions

In this section we provide some formal notions allowing us to clarify the prop-
erties and functions which we are going to discuss. We will be interested in
functions which are not quantifiers though they can be seen as related to quan-
tifiers. They are not generalised quantifiers since they do not map properties
(unary relations) to truth-values, though like generalised quantifiers they do
map n+2-ary relations to n+1-ary ones (Keenan and Westerst̊ahl 1997). More
generally the type of functions we study will be noted 〈1n, k : k-1〉, for n ≥ 0
and k ≥ 2. Thus these are functions which have n sets and a k-ary relation as
arguments and a k−1-ary relation as results.

To be more precise, we will be interested in the particular case when k = 2
and thus we will study basically functions of type 〈1, 2 : 1〉 and functions of
type 〈12, 2 : 1〉. Such functions, when satisfying some specific constraints to be
specified, will be called anaphoric functions.

From the empirical point of view anaphoric functions are denoted by anaphors
and by anaphoric (unary or n-ary) determiners. Anaphoric determiners are ex-
pressions which take common nouns as arguments and give NP-like expressions,
or anaphors, as result. These NPs are not typical NPs because in particular
either they do not occur in subject positions at all or if they do, they are not
interpreted as anaphors bound to non-subject arguments of the verb. This is
related to their anaphoric character. Semantically they are referentially depen-
dent on the extensions of the subject NPs. More precisely they denote functions
from relations to sets which satisfy the anaphor condition (Keenan 2007) and
thus they are nominal (accusative) anaphors. In fact nominal anaphors even
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satisfy an additional condition: the functions that they denote are not exten-
sions of quantifiers. In that sense they are ”proper” anaphors.

So in this paper we do not discuss anaphors as such but determiners form-
ing anaphors when applied to common nouns. The functions that they denote
also satisfy specific conditions. The reason is precisely that they form anaphors
which, as indicated, satisfy specific anaphoric conditions. In order to formu-
late anaphoric conditions for anaphoric determiners let me define the anaphor
condition (AC) which characterises anaphors in more detail. We are interested
in the interpretation of simple sentences of the form NP1 TV P NP2. In such
sentences NP1 is interpreted by a type 〈1〉 quantifier, which is a set of sets,
and TV Ps is interpreted by a binary relation. Concerning NP2 there are two
possibilities; it can be interpreted either by a function which is an accusative
extension of a type 〈1〉 quantifier or by a function (from binary relations to sets)
which is not an accusative extension of a type 〈1〉 quantifier. An accusative
extension Qacc of a type 〈1〉 quantifier Q is defined as follows (Keenan 1988):

Definition 1: For R a binary relation over the universe E and a ∈ E, write
aR for {b : 〈a, b〉 ∈ R}. Then for each type 〈1〉 quantifier Q, Qacc(R) = {a :
Q(aR) = 1}.

Thus the accusative extension of a quantifier is a function from binary relations
to sets induced by the quantifier in the way indicated in definition 1. Accusative
extensions of quantifiers permit one to compute directly denotations of verb
phrases formed from transitive verb phrases and a noun phrase in the position
of the direct object.

Functions which are accusative case extensions are specific in the sense that
they satisfy the following accusative extension condition:

AEC: A function F from binary relations to sets satisfies the AEC iff for R and
S binary relations, and a, b ∈ E, if aR = bS then a ∈ F (R) iff b ∈ F (S).

The following two simple conditions can be used to decide whether func-
tions from binary relations to sets to satisfy or not the AEC condition:

Fact 1: A function F from binary to unary relations does not satisfy the AEC
if there exists a set B and a, b ∈ B such that a ∈ F (E × B) ∧ b /∈ F (E × B)
Fact 2: If a function F from binary relations to sets satisfies AEC then for any
A ⊆ E one has F (E × A) = ∅ or F (E × A) = E.

Not every function from binary relations to sets satisfies AEC. The best
known example is the function SELF which can be used to interpret the re-
flexive pronoun himself/herself. This function satisfies the anaphor condition
AC, which is weaker than AEC:

AC: A function F from binary relations to sets satisfies the anaphor condition
iff for R and S binary relations, and a ∈ E, if aR = aS then a ∈ F (R) iff
a ∈ F (S).
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Obviously, functions which are accusative extensions of some quantifiers
also satisfy AC. This means that anaphoric functions should not satisfy AEC:

Definition 2: A function from binary relations to sets (i.e. a function of type
〈2 : 1〉) is anaphoric iff it satisfies AC and fails AEC.

One can check (Keenan 2007) that SELF is an anaphoric function of type
〈2 : 1〉 as is the function NOBODY -EXCEPT -SELF .

The AC applies to functions of type 〈2 : 1〉. We need a similar condition
for functions denoted by unary and binary anaphoric determiners, which are
functions of type 〈1, 2 : 1〉 and functions of type 〈12, 2 : 1〉 respectively. A class
of type 〈1, 2 : 1〉 functions is given by the accusative extension of type 〈1, 1〉
quantifiers. Thus if D is a type 〈1, 1〉 quantifier then the function F (X, R) =
D(X)acc(R) is a type 〈1, 2 : 1〉 function.

Similarly, a class of type 〈12, 2 : 1〉 functions is given by the accusative
extension of type 〈12, 1〉 quantifiers. Such quantifiers are functions which take
two sets as arguments and give a type 〈1〉 quantifier as result (Keenan and Moss
1985). For instance the function denoted by the binary determiner More...then
... is a type 〈12, 1〉 quantifier. Now, if D is a type 〈12, 1〉 quantifier then
the function G(X1, X2, R) = D(X1.X2)acc(R) is a type 〈12, 2 : 1〉 function.
In the next section we will briefly discuss anaphoric type 〈12, 2 : 1〉 functions
denoted by Polish binary anaphoric determiners obtained by the combination
of ”ordinary” binary determiners with the pronoun swoj.

For functions of type 〈1, 2 : 1〉 we have the following condition:

ACD1: A function F of type 〈1, 2 : 1〉 satisfies anaphor condition for unary
determiners (ACD1) iff for any a ∈ E, X ⊆ E and R,S binary relations, if
a((E × X) ∩ R) = a((E × X) ∩ S) then a ∈ F (X, R) iff a ∈ F (X, S).

The following property gives a justification of condition ACD1:

Fact 3: If the function F of type 〈1, 2 : 1〉 satisfies ACD1 then the function GA

of type 〈2 : 1〉 defined as GA(R) = F (A,R) satisfies AC.

What fact 3 informally says is that functions satisfying ACD1 are those from
which we get functions satisfying AC when fixing their set argument. For in-
stance as long as anaphoric determiner such as swego (cf. (1a) above) satisfy
ACD1, then the complex anaphoric NPs such as swego sşiada ’his own neigh-
bour’ are guaranteed to satisfy the AC condition just as lexical reflexive like
himself satisfy that condition.

We have a similar condition for type 〈12, 2 : 1〉 functions:

ACD2: A function F of type 〈12, 2 : 1〉 satisfies anaphor condition for binary
determiners (ACD2) iff for any a ∈ E, X, Y ⊆ E and R,S binary relations, if
a((E × X) ∩ R) = a((E × X) ∩ S) and a((E × Y ) ∩ R) = a((E × Y ) ∩ S) then
a ∈ F (X, Y,R) iff a ∈ F (X, Y, S).

We have a similar ”justifying” property for ACD2 condition given above:
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Fact 4: If the function F of type 〈12, 2 : 1〉 satisfies ACD2 then the function
GA,B of type 〈2 : 1〉 defined as GA,B(R) = F (A,B,R) satisfies AC.

We can use the same method of fixing ”nominal” arguments to define
anaphoric functions of type 〈1, 2 : 1〉 and of type 〈12, 2 : 1〉. Thus we have:

Definition 3: A function F of type 〈1, 2 : 1〉 is anaphoric iff it satisfies the
condition ACD1 and the function GA of type 〈2 : 1〉 is anaphoric (in the sense
of D2) for A 6= ∅ (where GA(R) = F (A,R)) .
Definition 4: A function F of type 〈12, 2 : 1〉 is anaphoric iff it satisfies the
condition ACD2 and the function GA,B of type 〈2 : 1〉 is anaphoric for any
A 6= ∅ and B 6= ∅ (where GA,B(R) = F (A,B, R)).

In the above definitions anaphoricity of type 〈1, 2 : 1〉 and type 〈12, 2 : 1〉
functions is reduced to anaphoricity of type 〈2 : 1〉 functions defined in D2.
The condition for A and B to be non-empty is necessary because otherwise
F (∅, R) and F (∅, ∅, R) would satisfy AEC and thus there would be no anaphoric
functions of type 〈1, 2 : 1〉 and of type 〈12, 2 : 1〉 . In the next section various
examples of anaphoric determiners denoting anaphoric functions are given.

3 Anaphoric determiners

To illustrate some of the properties discussed above we present in this section
two classes of anaphoric determiners and at the end of the section a ”natural”
type 〈1, 2 : 1〉 function which is not anaphoric.

An example belonging to the first class of anaphoric determiners have al-
ready been briefly mentioned. This is the expression every... but himself/herself
as it occurs in (2a). A similar example with no...except himself is given is (2b)

(2a) Leo shaved every student but himself.
(2b) Lea admires no linguist except herself.

Let us show that the function NO...BUT -SELF interpreting the anaphoric
determiner in (2b) is anaphoric. In order to show that a function from binary
to unary relations does not satisfy the AEC, the condition given in fact 1 can
be used. We want to show first that the function NO(A)-BUT -SELF , as
specified in (3), does not satisfy the AEC for any A 6= ∅:

(3) NO(A)-BUT -SELF (R) = {x : A ∩ xR = {x}}

If A = E we get the type 〈2 : 1〉 function NOBODY -BUT -SELF which is
anaphoric. Suppose now that A 6= ∅ and A 6= E. Choose as B a supersubset
of A which differs from A just by one element: that is A ⊂ B and for some
a ∈ E, A′ ∩ B = {a} (where A′ is the complement of A. Obviously for some
b ∈ A one has a, b ∈ B (and a /∈ A). It follows from this and from (3) that (4)
is true:
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(4) a ∈ NO(A)-BUT -SELF (E × B) ∧ b /∈ NO(A)-BUT -SELF (E × B)

Thus NO(A)-BUT -SELF does not satisfy the AEC for non trivial A.
It remains to show that this function satisfies the AC condition. But this is

obvious given the description in (3). Indeed, suppose that aR = aS for some
binary relations S and R and that a ∈ {x : A ∩ xR = {x}}. This means
that A ∩ aR = {a}. Since aR = aS, we have also A ∩ bR = {b} and thus
b ∈ {x : A ∩ xR = {x}}.

The above examples of anaphoric determiners can be informally charac-
terised as those which are obtained from the combination of the reflexive him-
self/herself with the exclusive determiners. We can add here many other ex-
amples in which the exclusion clause is a Boolean compound in which one of its
Boolean components is himself/herself. Thus every...except himself and Bill,
no...but Lea or himself, etc. are other examples of anaphoric determiners. Some
properties of functions denoted by such determiners are discussed in section 5.

Along with exclusive determiners natural languages display a kind of par-
allel determiner called inclusion determiners (Zuber 1998). These are complex
determiners like Most...including Leo, five...including Leo, three other... in ad-
dition to Leo and Lea, Leo and some other/five other/most other.... We can
also use these determiners to form anaphoric determiners, as in the following
examples:

(5) Leo talked to five other linguists in addition to himself.
(6) Lea hates most vegetarians including herself
(7) Martin washed no student, not even himself.

Inclusive anaphoric determiners, like the one in (6), along with their seman-
tics, are discussed in the next section. Complex anaphoric determiners formed
from parts of non-anaphoric determiners (basically exclusion and inclusion de-
terminers) and the pronoun himself/herself will be called self -type anaphoric
determiners in what follows.

We are not going to specify the exact way in which self is combined with
determiners to form anaphoric determiners. Obviously such a combination can-
not be arbitrary. For instance we would not consider that Some... and himself
or No... and not even himself are anaphoric determiners when they occur in
the following examples:

(8) Leo washed some logicians and himself.
(9) Leo admires no logician and not even himself.

Semantically speaking in these examples we have Boolean meets of functions
from binary to unary relations (such functions form a Boolean algebra) and
thus not functions taking unary and binary relations as arguments. One ob-
serves in this context that when we have anaphoric determiners then not only
are the noun phrases they form referentially dependent on the subject NPs
but also that they indicate in addition that both NPs, the subject NP and the
object NP share a common property. Consider the following examples from
this point of view:

6



(10) Leo washed some logicians in addition to/besides himself.
(11) Leo washed no logician, not even himself.
(12) Five logicians admire ten other vegetarians in addition to themselves

Sentences in (10) and in (11), in opposition to those in (8) and (9) entail that
Leo is a logician. Similarly (12) entails that there are five logicians who are
vegetarians. Thus in all cases the (denotations) of the anaphoric NPs and their
antecedent NPs share a (non-trivial) property.

Anaphoric determiners belonging to the first class of determiners, the self -
type anaphoric determiners, are in some sense language independent since simi-
lar examples can presumably be constructed in any language having a reflexive
pronoun. For instance in Polish, using the reflexive pronoun siebie one can
construct virtually all self -type anaphoric determiners discussed above.

We are going now to present briefly a second type of examples of anaphoric
determiners. They will be called Slavic anaphoric determiners.

Observe that self -type anaphoric determiners are not morphologically sim-
ple determiners: they are specific compositions of the nominal anaphor self
with parts ”ordinary” determiners. Some languages, apparently in opposition
to English, have, however, morphologically simple anaphoric determiners. This
is in particular the case of some Slavic and Scandinavian languages, of Latin,
etc. Such determiners in addition involve a possession relation, in opposition to
self -type determiners. In what follows we illustrate this class of determiners by
the lexical anaphoric determiner SV OJ found in Polish. For a more detailed
description of see Zuber (2010a).

In Polish, the third person possessive pronoun swoj takes common nouns
as arguments and forms (nominal) anaphors. So it behaves in some respects
as a determiner. Its meaning is roughly, though not exactly, his/her/their
own. It will be glosed by HOWN. Since the expressions formed with swoj form
nominal anaphors they cannot be used in NPs occuring in subject positions
and consequently they are not used in Polish in the nominative case.

In addition the Polish determiner (pronoun) swój can combine with virtu-
ally any ”ordinary” determiner to form a complex anaphoric determiner which,
when applied to a common noun, gives a nominal anaphora. Such complex
anaphoric determiners also involve in their semantics a possession relation.
Thus one has wiȩkszość swoich.../most HOWN, 10 swoich.../10 HOWN, żaden
ze swoich.../no HOWN, conajmniej 5 swoich.../at least 5 HOWN, wszystkie
swoje... oprócz Kazia/every HOWN, except K., niektóre swoje..., w la̧cznie z
Kaziem/ some HOWN, including K., etc. These lexically complex determin-
ers have a Boolean structure, and consequently one can form their Boolean
compounds. In particular bare swój has the negative form nieswój /NOT-
HOWN. The negative forms in their turn can combine with ”ordinary” deter-
miners to give complex anaphoric determiners. Both bare, negative and pos-
itive, forms can occur in such complex anaphiric determiners. Thus we have
Niektóre nieswoje.../some NOT HOWN, 5 swoich i 6 nieswoich.../5 HOWN
and 6 NOT-HOWN, etc.

As indicated in the introduction NLs also have binary or even n-ary deter-
miners. These are expressions which take two or more CNs as arguments and
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which form NPs. There are two types of such determiners (cf. Keenan and
Moss 1985, Beghelli 1994): reducible and non-reducible ones. The Polish de-
terminer swój can also combine with binary (or even n-ary) determiners to give
binary (or n-ary) anaphoric determiners of both types. For instance the de-
terminer swój can combine with binary irreducible determiners corresponding
to the English more ...than.... Thus, swój combined with the binary deter-
miner wiecej...niż (more...then) gives the binary anaphoric determiner wiecej
swoich... niż swoich... (more HOWN... than HOWN...). In (13) and (14) we
have Polish examples of such binary quantifiers:

(13) Piotr spali l wiȩcej swoich obrazów niż (swoich) listów.
Piotr burnt more HOWN paintings than (HOWN) letters

’Piotr burnt more of his own paintings than (his own) letters’
(14) Leon sprzeda l proporcjonalnie wiȩcej swoich obrazów niż ksia̧żek.

Leon sold proportionally more OWN paintings than books
’Leon sold proportionally more of his (own) paintings than books’

Let us briefly present the semantics of the unary anaphoric determiner swój
(HOWN) and of complex determiners containing swój. To account for the pos-
sessive nature of such determiners we need in addition the binary relation POS,
which expresses the possessor relation (which needs not to be just ownership
or authorship relation). Such a relation, contextually determined, is needed for
the semantics of ”ordinary” possessives as well (Peters and Westerst̊ahl 2006).
We will suppose that POS is anti-reflexive: for evey x, 〈x, x〉 /∈ POS. In other
words no object is in a possessor relation with itself.

Our goal now is to represent the possessive aspects of the semantics of simple
and complex anaphoric determiners whose empirical properties we have seen.
Concerning bare determiners, it is necessary to analyse separately the meaning
of the singular and plural forms. The semantics of swȯj in singular is simple if
one supposes that the singular presupposes the unicity of the possessed object.
Consider (15):

(15) Piotr admires HOWN neighbour

On its most natural reading (15) entails (presupposes) that Piotr has just
one neighbour. Formally we express such unicity of objects having a specific
property using the description operator iota ι. More specifically, the descrip-
tion noted ιx(x ∈ A) designates the unique object x which has the property A,
if such an object exists. With the help of this notation the semantics of bare
singular swój can be represented as follows:

(16) SV OJ(A,R) = {x : |xPOS ∩ A| = 1 ∧ 〈x, ιy(y ∈ xPOS ∩ A)〉 ∈ R}

It is not difficult to show that SV OJ is anaphoric. First, it obviously
satisfies the anaphor condition ACD1. Furthermore, using Fact 2 we can show
that SV OJ(A,R) is not an extension of a type 〈1〉 quantifier for any A 6= ∅.

Let us see now the semantics of complex Slavic anaphoric determiners.
Suppose that Let D is a type 〈1, 1〉 quantifier, the denotation of some unary
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determiner Det. DS is the denotation of the anaphoric determiner Det swój
obtained by combining Det with swój according to the rules underlying the
above examples. Such a determiner applies to a CN and gives an anaphor.
Thus DS can be considered as a function taking two arguments, a set and a
relation, and giving as result a set (the denotation of the whole VP). Then:

(17) DS(A,R) = {x : xPOS ∩ A 6= ∅ ∧ D(xPOS ∩ A)(xR) = 1}

The clause xPOS ∩ A 6= ∅ expresses the existential presupposition that pos-
sessives induce. The remaining part shows how the anaphoricity is expressed
by the accusative case extension of the type 〈1〉 quantifier formed with D
applied to A which is modified with the help of POS. Thus Kazio hates
most of his mistresses is true if K is a member of the set {x : xPOS ∩ M 6=
∅ ∧ MOST (xPOS ∩ M)(xH) = 1}.

Thus (17) indicates that one can associate with any type 〈1, 1〉 quantifier
(and a possessor relation POSS) a Slavic type anaphoric function.

Given the above analysis one can show that the function FA(R) = DS(A,R)
is not an extension of a type 〈1〉 quantifier (for any A 6= ∅) and that it sat-
isfies anaphor condition AC. Thus NP-like expressions formed from complex
anaphoric determiners (that is NPs formed from anaphoric determiners applied
to CNs) are proper anaphors.

All anaphoric determiners we have considered ”contain”, in some sense, an
”ordinary” determiner or part of it. In the next section we show how one can
associate a class of anaphoric determiners to a specific class of non-anaphoric
determiners.

To conclude this section let me give an example of an expression which
looks as if it could denote a type 〈1, 2 : 1〉 anaphoric function but the function
it denotes does not satisfy the ACD1 condition. Consider the determiner the
greatest number of as it occurs in (18). The type 〈1, 2 : 1〉 function NSUP
interpreting this determiner is given in (19). Since (18) is equivalent to (20)
one could think that the function in (19) is anaphoric:

(18) Leo knows the greatest number of languages.
(19) NSUP (X, R) = {x : ∀y(y 6= x → |xR ∩ X| > |yR ∩ X|}
(20) Leo knows more languages than anybody else.

It is easy to check that for no A 6= ∅ the function FA(R) = NSUP (A,R) sat-
isfies the AC condition. For instance suppose that Leo studies precisely those
languages that he knows. It does not follow from this that Leo studies the great-
est number of languages is equivalent to (18). Thus NSUP is not an anaphoric
function. However, this function satisfies the constraint of argument invariance
(Keenan and Westerst̊ahl, 1997) proper to comparatives and superlatives.

4 Generalising conservativity

Conservativity is a property of some classes of quantifiers. A non-trivial notion
of conservativity applies to functions from sets or/and relations to truth-values
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which take at least two arguments. Many quantifiers are precisely such func-
tions. In particular quantifiers denoted by unary and n-ary determiners can
be said to be conservative. We have seen that anaphoric functions (that we
consider here) are systematically related to quantifiers (of type 〈1, 1〉 or of type
〈〈1, 1〉1〉). So it is quite natural to ask whether and in what sense anaphoric
functions are conservative.

Let us recall first the notion of conservativity for type 〈1, 1〉 quantifiers. A
well-known by now definition is as follows:

Definition 5: F ∈ CONS iff for any property X, Y one has F (X)(Y ) =
F (X)(X ∩ Y )

Conservativity of type 〈1, 1〉 quantifiers can additionally be formulated in two
different ways:

Fact 5 (cf. Keenan and Faltz 1986) : F is conservative or F ∈ CONS iff for
any property X, Y and Z if X ∩ Y = X ∩ Z then F (X)(Y ) = F (X)(Z)
Fact 6 (Zuber 2005): F ∈ CONS iff for any property X, Y one has F (X)(Y ) =
F (X)(X ′ ∪ Y )

It is also possible to define conservativity for the whole class of type 〈1, 1, 2〉
quantifiers. In this case we have the following definition (cf. Westerst̊ahl 2004):

Definition 6: A type 〈1, 1, 2〉 quantifier F is conservative iff for any sets A,B
and any binary relation R one has F (A,B,R) = F (A,B, (A × B) ∩ R)

As in the case of ”simple” type 〈1, 1〉 quantifiers it is possible to give an
equivalent defining condition for conservativity of type 〈1, 1, 2〉 quantifiers to
hold. Thus we have:

Proposition 1: A type 〈1, 1, 2〉 quantifier is conservative iff F (A,B,R1) =
F (A,B,R2) whenever (A × B) ∩ R1 = (A × B) ∩ R2

Clearly none of the above definitions of conservativity applies directly to an
anphoric function. However, proposition 1 and fact 5 give us a hint as to what
form the definition of conservativity of type 〈1, 2 : 1〉 functions should take.
Here is the definition:

Definition 7: Let F be a type 〈1, 2 : 1〉 function. Then F is conservative iff for
all X ⊆ E and R1, R2 binary relations, if (E × X) ∩ R1 = (E × X) ∩ R2 then
F (X, R1) = F (X, R2).

By analogy with fact 1 and definition 1 conservativity of type 〈1, 2 : 1〉
functions can be defined equivalently as the following proposition shows:

Proposition 2: A function F of type 〈1, 2 : 1〉 is conservative iff F (X, R) =
F (X, (E × X) ∩ R)
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The following property gives additional plausibility to the above definitions
of generalised conservativity:

Proposition 3: Let D be a type 〈1, 1〉 quantifier and F a type 〈1, 2 : 1〉 function
defined as: F (X, R) = D(X)acc(R). Then F is conservative iff D is conserva-
tive.

Proof :
Suppose a contrario that F is conservative and D is not. Thus for some
X, Y ∈ E, D(X)(Y ) 6= D(X)(X ∩ Y ). Let R = E × Y . Then:

F (X, R) = D(X)acc(R) = {a : D(X)(aR) = 1} = {a : D(X)(a(E × Y )) = 1}
F (X, (E×X)∩R) = D(X)acc(E×(X∩Y )) = {a : D(X)(a(E×(X∩Y ))) = 1}
Since D(X)(a(E×Y )) = D(X)(Y ) and D(X)(a(E×(X∩Y ))) = D(X)(X∩Y ),
this means that F (X, R) 6= F (X, (E ×X)∩R), which is impossible given that
F is conservative.
Suppose now that D is conservative. Then:
F (X, R) = D(X)acc(R) = {a : D(X)(aR) = 1}=
={a : D(X)(X ∩ aR) = 1}, since D is conservative
={a : D(X)(a((E×X)∩R)) = 1}, since X = a(E×X) and a(R∩S) = aR∩aS)
=D(X)acc((E × X) ∩ R) = F (X, (E × X) ∩ R)

Thus the generalised conservativity of functions induced by type 〈1, 1〉 quanti-
fiers, when they are used in the accusative extension of a type 〈1〉 quantifier,
is strictly related to the ”classical” conservativity of the inducing quantifier.

Let us recall now some properties of denotations of binary determiners, that
is quantifiers of type 〈〈1, 1〉1〉. We have the following definition of conservativ-
ity (Keenan and Moss 1985, Zuber 2005):

Definition 8: A type 〈〈1, 1〉1〉 quantifier is conservative iff for any X1, X2, Y1, Y2 ⊆
E, if X1 ∩ Y1 = X1 ∩ Y2 and X2 ∩ Y1 = X2 ∩ Y2 then F (X1, X2)(Y1) =
F (X1, X2)(Y2).

The following proposition shows the equivalent way to define conservativity
for type 〈〈1, 1〉1〉 quantifiers:

Proposition 4: A type 〈〈1, 1〉1〉 quantifier is conservative iff for any X1, X2, Y ⊆
E one has F (X1, X2)(Y ) = F (X1, X2)(Y ∩ (X1 ∪ X2)).

Definition 8 and proposition 4 can be used as basis for generalising conser-
vativity to type 〈12, 2 : 1〉 functions:

Definition 9: A type 〈12, 2 : 1〉 function F is conservative iff for any X1, X2 ⊆ E
and any binary relations R1 and R2, if (E × X1) ∩ R1 = (E × X1) ∩ R2 and
(E × X2) ∩ R1 = (E × X2) ∩ R2 then F (X1, X2, R1) = F (X1, X2, R2).

The corresponding equivalent property is indicated in the following proposition:
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Proposition 5: A type 〈12, 2 : 1〉 function F is conservative iff for any X1, X2 ⊆
E and binary relation R one has F (X1, X2, R) = F (X1, X2, (E×(X1∪X2))∩R).

It is easy to check that various examples of type 〈1, 2 : 1〉 anaphoric func-
tions and type 〈12, 2 : 1〉 anaphoric functions discussed above are conservative.
In the next section we discuss in more detail two sub-classes of self -type con-
servative anaphoric functions which are denotable (in English). Now I would
like to present briefly a class of self -type anaphoric conservative functions
denoted by anaphoric inclusive determiners. These determiners are expres-
sions of the form Det, including himself/herself or of the form Det, including
NP and himself/herself, where Det is ordinary unary determiner denoting a
type 〈1, 1〉 quantifier which is monotone increasing on the second argument.
Thus the following expressions are examples of anaphoric inclusion determin-
ers: Every...including herself, Most...including some Albanians and himself,
Five...including herself and ten Japanese, etc. Obviously the semantics of such
expressions depends on the semantics of the determiner Det : if Det denotes
D then the anaphoric determiner of the form Det, including himself/herself
denotes the function in (21) and the anaphoric determiners of the form Det,
including NP and himself/herself, denote the function in (22), where Q is the
denotation of the NP :

(21) F (X, R) = {x : x ∈ (X ∩ xR) ∧ D(X)(xR) = 1}
(22) G(X, R) = {x : x ∈ X ∧ D(X)(xR) = 1 ∧ Q(xR) = 1}

It is easy to check that if D is conservative, functions in (21) and (22) are
conservative

Concerning ”Slavic” unary anaphoric determiners denoting the function DS

given in (17) we have the following general result:

Proposition 6: If a type 〈1, 1〉 quantifier D is conservative then type 〈1, 2 : 1〉
function DS is conservative (where DS(A,R) = {x : xPOS∩A 6= ∅∧D(xPOS∩
A)(xR) = 1}).

When the determiner D is not conservative the ”Slavic” anaphoric deter-
miner to which it gives rise may denote a non-conservative type 〈1, 2 : 1〉
function. For simplicity consider the English example in (23):

(23) Leo likes only his own students.

This sentence is probably ambiguous: depending on whether the focus is on
”only” or on ”own”, it can mean that either Leo likes his own students and
nothing else or that Leo likes his own students and not other students. Thus
the following two type 〈1, 2 : 1〉 functions are involved in the semantics of (23):

(24a) F (A,R) = {x : xR ⊆ xPOS ∩ A}
(24b) G(A,R) = {x : xR ∩ A ⊆ xPOS ∩ A}

One can check that the function in (24b) is conservative and that the one in
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(24a) is not.
Consider now a type 〈12, 2 : 1〉 function F = MORE-HOWN -THAN ,

which is involved in the semantics of examples like the one in (13); it is defined
in (25):

(25) MORE-HOWN -THAN(X1, X2, R) = {x : |xPOS∩xR∩X1| > |xPOS∩
xR ∩ X2|}, where POS is the possessor relation.

Again, it is easy to check that this function is conservative.

5 Other constraints

Generalised conservativity introduced in the previous section in definitions 7
and 9 concerns type 〈1, 2 : 1〉 and type 〈12, 2 : 1〉 functions in general and not
only anaphoric functions. As we have seen some non anaphoric functions (in the
sense defined here) also satisfy the generalised conservativity. Moreover gen-
eralised consevativity is independent of anaphor conditions ACD1 and ACD2
proper for anaphoric functions. What is interesting is the fact that anaphoric
functions satisfy in addition other constraints, some of which are stronger than
generalised conservativity.

It is well-known that various natural language quantifiers can satisfy stronger
constraints than conservativity (Keenan and Westerst̊ahl, 1997). In particular
they can be intersective or co-intersective. The question thus arises whether
one can generalise the notion of intersectivity or co-intersectivity to anaphoric
functions as well. In what follows I show briefly how it can be done.

Recall (Keenan and Westerst̊ahl, 1997) that a type 〈1, 1〉 quantifier D
is intersective (resp. co-intersective) iff D(X1, Y1) = D(X2, Y2) whenever
X1 ∩ Y1 = X2 ∩ Y2 (resp. X1 ∩ Y ′

1
= X2 ∩ Y ′

2
). This leads to the following

definition of intersective or co-intersective anaphoric functions (Zuber 2010b):

Definition 10: A type 〈1, 2 : 1〉 function is intersective (resp. co-intersective)
iff F (X1, R1) = F (X2, R2) whenever (E × X1) ∩ R1 = (E × X2) ∩ R2 (resp.
(E × X1) ∩ R′

1
= (E × X2) ∩ R′

2
).

The following proposition, similar to Proposition 3, can be considered as
justifying the above definition:

Proposition 6: Let D be a type 〈1, 1〉 quantifier and F a type 〈1, 2 : 1〉 func-
tion defined as: F (X, R) = D(X)acc(R). Then F is intersective (resp. co-
intersective) iff D is intersective (resp. co-intersective).

In order to give various examples of denotable intersective and co-intersective
functions let us first recall some examples of ”ordinary” determiners denoting
type 〈1, 1〉 intersective or co-intersective quantifiers. Anaphoric determiners
will be based on such ”ordinary” determiners in the way already suggested
above.

Intersective and co-intersective type 〈1, 1〉 quantifiers form atomic Boolean
algebras. Atoms of these algebras are uniquely determined by sets. More pre-
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cisely atoms of the intersective algebra are functions AtA such that AtA(X)(Y ) =
1 iff X ∩ Y = A and atoms of the co-intersective algebra are functions AtB
such that AtB(X)(Y ) = 1 iff X ∩ Y ′ = B, (A,B, X, Y ⊆ E).

In NLs there are many expressions denoting (various) atoms of intersective
and co-intersective algebras. Thus, roughly speaking, exception determiners
with No (and No itself) denote atoms of the intersective algebra and exception
determiners with Every (and Every itself) denote atoms of the co-intersective
algebra. For instance the determiner No...except Leo denotes the atomic inter-
sective quantifier determined by the singleton {L} whose only element is Leo
and the determiner No...except Albanians (as it occurs in No student except Al-
banians (albanian students) danced) denotes the atom of intersective functions
determined by the set ALBANIAN . Similarly, the determiner Every denotes
the atom (of co-intersective quantifiers) which is determined by the empty set.

We can give now various examples of intersective and co-intersective anaphoric
functions and anaphoric determiners which denote them. Let AtA be the (in-
tersective or co-intersective) atom determined by the set A. The type 〈1.2 : 1〉
function FAtA

given in (26) is an anaphoric function based on the atomic quan-
tifier AtA. Furthermore, if AtA is intersective then FAtA

is intersective and if
AtA is co-intersective then FAtA

is co-intersective:

(26) FAtA
(X, R) = {x : x /∈ A ∧ AtA∪{x}(X)(xR) = 1}

The fact that functions in (26) are anaphoric is easy to establish. Let us see
some functions which are instances of (26) for illustration. Consider the type
〈1, 1〉 quantifier NO. It is the atomic intersective quantifier determined by the
empty set. Thus A = ∅, At∅ = NO and consequently, given the values of NO,
the anaphoric function FNO based on NO is given in (27):

(27) FNO(X, R) = {x : X ∩ xR = {x}}

The function in (27) is the same as the one in (3) above and thus is the deno-
tation of the anaphoric determiner No...except himself/herself.

If AtA = NO-BUT -{L} then the anaphoric function based on NO-BUT -
{L} is given in (28). This function is the denotation of the anaphoric determiner
No... except Leo and himself (if Leo refers to L):

(28) FNO−BUT−{L}(X, R) = {x : X ∩ xR = {x, L}}

In the similar way by considering atoms of co-intersective quantifiers we
obtain from (26) anaphoric functions denoted by the anaphoric determiners
like Every...except himself, Every...except herself and Leo, etc. Thus we can say
that (26) gives us a class of anaphoric intersective or co-intersective functions
which are denotable (say, in English).

It is possible to further restrict the conservativity of type 〈1, 2 : 1〉 anaphoric
functions and define anaphoric cardinal or co-cardinal functions with the help
of the cardinal and co-cardinal type 〈1, 2 : 1〉 functions (see Zuber 2010b). We
will not attempt here to make such generalisations considering that they should
be preceded by some empirical justifications.
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Examples of self -type anaphoric determiners discussed above suggest that
functions they denote satisfy a constraint stronger than conservativity. Observe
that anaphoric functions given in (21), (22) and (26) all have the property given
in (29):

(29) F (A,R) ⊆ A.

This is also true of denotations of anaphoric determiners formed with self
and other connectives than except or including. It is easy to see that the
determiner like Five..., in addition to Lea and himself denotes a function which
satisfies the condition given in (29).

Interestingly, the anaphoric condition ACD1, (generalised) conservativity
and the condition given in (29) entail a specific version of conservativity, anaphoric
conservativity (or a-conservativity) , specific to self -type anaphoric determin-
ers. It is defined as follows:

Definition 11: A type 〈1, 2 : 1〉 function F is a-conservative iff F (X, R) =
F (X, (X × X) ∩ R).

The following proposition makes clearer what a-conservativity is:

Proposition 7: A type 〈1, 2 : 1〉 function F is a-conservative iff for any X ⊆ E
and any binary relations R1 and R2 if (X × X) ∩ R1 = (X × X) ∩ R2 then
F (X, R1) = F (X, R2).

Obviously any a-conservative function is conservative. For anaphoric and
conservative functions satisfying condition in (29) we have the following propo-
sition:

Proposition 8: A type 〈1, 2 : 1〉 anaphoric and conservative function F such
that F (X, R) ⊆ X is a-conservative.

Proof : Suppose a contrario that for some X ⊆ E, F (X, R) 6= F (X, (X×X)∩R)
and thus that (by conservativity) F (X, (E×X)∩R) 6= F (X, (X×X)∩R). This
means that for some a ∈ X, a ∈ F (X, (E×X)∩R) and a /∈ F (X, (X×X)∩R)
(or a /∈ F (X, (E × X) ∩ R) and a ∈ F (X, (X × X) ∩ R)). This is, how-
ever, impossible given that F is anaphoric and the fact that in this case
a((E × X) ∩ R) = a((X × X) ∩ R)).

We can thus suppose that self type anaphoric determiners denote a-conservative
functions. This is not the case with with Slavic type anaphoric determiners.
However, if we suppose that the possessor relation POS is anty-reflexive, func-
tions denoted by Slavic anaphoric determiners satisfy the condition given in
(30):

(30) G(A,R) ⊆ {x : xPOS ∩ A}′

There is thus an important formal difference between self -type anaphoric
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determiners and Slavic ones.

6 Conclusion

In this article we have studied some simple properties of functions needed for the
semantic description of (complex) anaphors in simple syntactic constructions.
To be more precise, we have considered anaphoric functions applied to binary
relations and giving sets as output. The case of anaphoric functions applied
to relations of higher arity was not taken into consideration since a priori one
cannot exclude some additional technical problems for such cases (cf. Ben
Shalom 2003)

The existence of anaphors in NLs shows that the expressive power of En-
glish (and other languages) would be less that it is if the only noun phrases we
need were ones interpretable as subjects of main clause intransitive verbs. The
reason is that anaphors like himself, herself must be interpreted by functions
from relations to sets which lie outside the class of generalised quantifiers as
classically defined (Keenan 1987, 1988, 2007). This does not mean, however,
that the semantics of NLs necessitates the whole class of functions from re-
lations to sets since functions denoted by anaphors satisfy specific constraints
belonging to the group of invariance conditions (Keenan and Westerst̊ahl 1997).
In this paper we extended such constraints to functions denoted by unary and
binary anaphoric determiners. These constraints are not trivial and can be
considered as giving rise to specific inference patterns (cf. Keenan 2007 for the
case of nominal anaphors).

We also proposed a second type of restrictions on anaphoric functions: they
are conservative, in a generalised sense, and their conservativity is related to
the conservativity of quantifiers which are ”parts” of them. The notion of
generalised conservativity proposed here applies to all type 〈1, 2 : 1〉 functions,
not just anaphoric ones. For instance it is easy to show that the non-anaphoric
function NSUP defined in (19) is conservative.

Conservativity is a very natural property. In simple cases it has both em-
pirical and theoretical justifications. It is well-known that generalised conser-
vativity, and related notions, are needed anyway in order to account for some
semantic peculiarities of NLs (cf. Kuroda 2008, Zuber 2004). In that respect,
our use of non-English examples should not be considered as accidental if we
want to talk non-metaphorically about differences between specific natural lan-
guages.
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