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A semantic constraint on binary determiners∗

R. Zuber, CNRS, Paris

Abstract

A type 〈12, 1〉 quantifier F is symmetric iff F (X, X)(Y ) = F (Y, Y )(X).
It is shown that quantifiers denoted by irreducible binary determiners in
natural languages are both conservative and symmetric and not only
conservative.

1 Introduction

It is generally admitted that in natural languages nominal unary determin-
ers, that is functional expressions which form noun phrases when applied to a
common noun, denote not arbitrarily type 〈1, 1〉 quantifiers (binary relations
between sets) but only those which satisfy the constraint of conservativity. This
constraint, stated somewhat imprecisely, indicates that to determine the truth
conditions of sentences with such determiners it is not necessary to take into
account all sets determined by the arguments of the function; in particular
the complement of the first set-theoretic argument does not matter. It follows
from this that some type 〈1, 1〉 quantifiers are not ”naturally” denotable even
by complex unary determiners.

The conservativity of natural language determiners is sometimes considered
as a language universal: all types of determiners in all natural languages are
conservative in the sense that they denote only conservative functions. Even
though some non-conservative determiners are known, it appears that they are
rare and not arbitrary since they are systematically related to conservative
determiners (cf. Zuber 2004a).

It has also been established that NLs display binary or even n-ary deter-
miners, that is functional expressions which form noun phrases with more than
one common noun (cf. Keenan and Moss 1985). A simple example of such a
binary determiner is given by the comparative determiner more... than as it
occurs in the noun phrase more students than teachers. Such n-ary determiners
denote higher type quantifiers which are n+1-ary relations between sets.

∗The basic content of this paper was presented at The Semantics Research Group meet-

ing in Tokyo, in April 2008. Thanks to Makoto Kanazawa, Ed Keenan, Ross Charnock,

Maryvonne Daguenet-Teissier Bernard Teissier and the referee of the journal for some cor-

rections and suggestions. Makoto in particular suggested a simplification of the definition

of symmetric quantifiers and Maryvonne and Bernard helped me with some combinatoric

problems. Ross, as usually, corrected my English
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The notion of conservativity has been extensively discussed mainly in the
context of unary determiners and type 〈1, 1〉 quantifiers (Keenan and Stavi
1986, Keenan and Westerst̊ahl 1997, Peters and Westerst̊ahl 2006). However,
it easily generalises to higher type quantifiers denoted by n-ary determiners.
Consequently the universalistic claim concerning conservativity of n-ary deter-
miners extends implicitly as well. Thus one considers as a language universal
the claim that n-ary, or more specifically binary, determiners in all NLs are
conservative.

Since higher type quantifiers take more arguments than ”simple” type 〈1, 1〉
quantifiers, there are obviously ”many more” higher type quantifiers. For in-
stance in the finite universe with n elements there are 24

n

of all type 〈1, 1〉
quantifiers and 28

n

of all type 〈1, 1, 1〉 quantifiers (that is functions from 3 set
arguments to truth-values). A striking empirical observation is, however, that
the set, or at least the number of patterns, of expressions denoting type 〈1, 1, 1〉
quantifiers seems to be very limited, as we will see. This means very likely that
there are additional constraints governing the semantics of such ”higher type”
determiners.

The purpose of this paper is to show that binary determiners in addition to
conservativity satisfy the natural constraint of symmetry. In the case of unary
determiners symmetry just means that in simple sentences with such deter-
miners one can permute verbal and nominal arguments without changing the
truth-value of the whole. The notion of symmetry can be generalised to quan-
tifiers denoted by binary (or even n-ary) determiners (Zuber 2007). It appears
than that a huge majority of binary determiners, if not all of them, denote
symmetric quantifiers. For instance the comparative determiner more...than
denotes a symmetric quantifier because in particular sentences in (1) are equiv-
alent:

(1a) More students than teachers are Buddhists.
(1b) More Buddhists are students than teachers.

So in this paper we are interested in a sub-set of monadic quantifiers, that
is, specific relations between sets. A unary monadic quantifier, or type 〈1〉
quantifier, is a function from sets to truth-values. It is a denotation of a noun
phrase (used in subject position in a sentence). The type of n+1-ary monadic
quantifiers is often noted as 〈1, 1, ..., 1〉 (”n+1-times” ”1”) or 〈1n+1〉. We will
not quite follow this notation. In order to distinguish between ”nominal” (or
”restrictive”) and ”verbal” (or ”predicative”) arguments of a quantifier we will
make a difference between type 〈1n, 1〉 and type 〈1, 1n〉 n + 1-ary monadic
quantifiers. The former class corresponds to monadic quantifiers which have
n nominal arguments and one verbal argument whereas the latter class corre-
sponds to monadic quantifiers which have one nominal argument and n verbal
arguments. This notation partially indicates different structure (”syntax”) of
expressions denoting quantifiers. More importantly, it accounts for the fact that
some properties of quantifiers may depend on the type - nominal or verbal- of
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the argument. We will see, for instance, that the cardinality of conservative
type 〈12, 1〉 quantifiers is not the same as the cardinality of conservative type
〈1, 12〉 quantifiers.

Binary monadic quantifiers, that is type 〈1, 1〉 quantifiers, will be called
simple quantifiers. Quantifiers of type 〈1n, 1〉 or of type 〈1, 1n〉, for n > 1, will
be called higher type quantifiers.

Final introductory remark. As already stated, we will distinguish quan-
tifiers from determiners. Determiners, as understood here, are linguistic ex-
pressions which denote quantifiers or give rise to other expressions denoting
quantifiers. They are functional expressions, often discontinuous, which apply
to one or many arguments of the same category. Their arguments all denote
either nominal or verbal arguments of a quantifier. This means that the arity
of a determiner is one less than the arity of the quantifier they denote. Thus
a unary determiner is a functional expression taking one argument, a common
noun. It denotes a binary monadic quantifier since it induces a binary relation
between the denotation of its argument and the denotation of the verb phrase
of the sentence in which it occurs. For instance the determiner all denotes
a simple quantifier which corresponds to a binary relation ALL between sets
such that ALL(X)(Y ) holds iff X ⊆ Y . Similarly the binary determiner more...
than..., when occurring in a NP on subject position, denotes a ternary monadic
type 〈12, 1〉 quantifier since its two ”nominal” arguments denote sets and the
verb phrase of the sentence in which the determiner occurs (in the NP on the
subject position) also denotes a set (as assumed here).

As we will see, the syntactic status of determiners is not always so clear,
in particular with respect to binary determiners taking verbal arguments (the
so-called identity comparatives discussed in section 4 below). This fact does
not prevent us, however, from making some semantic generalisations based on
clearer syntactic cases.

The paper is organised as follows. First, I will recall some basic properties
of simple, type 〈1, 1〉, quantifiers, focusing on symmetric ones, and their duals,
contrapositional quantifiers. It will be generally assumed that the universe of
discourse is finite. Then in the next section I will show how various properties,
in particular conservativity and symmetry, extend to higher type quantifiers.
Finally various known types of binary determiners will be examined in order
to show that all of them are symmetric (denote symmetric quantifiers). All
this will be done using the framework of Boolean semantics (Keenan and Faltz
1986) since, as will be shown, various involved classes of quantifiers have the
Boolean structure. This fact will be used to make more precise various formal
claims about denotations of binary determiners. They will be stated precisely
though (usually simple) proofs will be omitted

2 Varieties of simple quantifiers

In this section we are interested in the denotations of (unary) nominal de-
terminers. These are expressions (like every, no, some...including Lea, most)

3



which combine with common nouns to form noun phrases. Thus, semantically,
they are functions from P (E) onto type 〈1〉 quantifiers, where E is the uni-
verse of discourse and a type 〈1〉 quantifier is a set of sub-sets of E. They
are type 〈1, 1〉 quantifiers and will be called here simple quantifiers. These
quantifiers can be viewed as binary relations on sets. Indeed a type 〈1, 1〉
quantifier F , which is a function in [P (E) → [P (E) → {0, 1}]], corresponds to
the binary relation Q between sets defined by QXY ⇔ F (X)(Y ) = 1. The
set of all type 〈1, 1〉 quantifiers, or the set of unrestricted functions belonging
to [P (E) → [P (E) → {0, 1}]] will be denoted by PDET . This set forms an
atomic Boolean algebra. Any member F of PDET has a Boolean complement
¬F and a post-complement F¬ defined in the usual way.

It has been noticed that the class PDET is too ”large” to be the set of
possible denotations for unary determiners since all functions denoted by such
determiners satisfy various constraints. One of the best known such constraints
on possible denotations of determiners is conservativity. By definition:

D1: F is conservative or F ∈ CONS iff for any property X, Y and Z if
X ∩ Y = X ∩ Z then F (X)(Y ) = F (X)(Z)

Conservativity of type 〈1, 1〉 quantifiers can additionally be formulated in two
different ways:

Fact 1 (cf. Keenan and Faltz 1986) F ∈ CONS iff for any property X, Y one
has F (X)(Y ) = F (X)(X ∩ Y )
Fact 2 (Zuber 2005): F ∈ CONS iff for any property X, Y one has F (X)(Y ) =
F (X)(X ′ ∪ Y )

The constraint of conservativity considerable reduces the number of con-
servative functions in comparison with the number of unrestricted functions.
Thus we have (Beghelli 1992):

Proposition 3: If |E| = n then |PDET | = 24
n

and |CONS| = 23
n

It follows from Proposition 3 that in the universe with just two elements we
have 65,536 of unrestricted type 〈1, 1〉 quantifiers among which there are only
512 conservative ones.

There are various empirically and theoretically important sub-classes of the
CONS algebra. Thus CONS has two sub-algebras, the algebra INT of inter-
sective functions, and the algebra CO-INT of co-intersective functions (Keenan
1993). By definition:

D2: F ∈ INT , iff for all properties X, Y , Z and W , if X ∩ Y = Z ∩ W then
F (X)(Y ) = F (Z)(W ).
D3: F ∈ CO-INT iff for all properties X, Y , Z and W , if X − Y = Z − W
then F (X)(Y ) = F (Z)(W ).
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Intersective and co-intersective type 〈1, 1〉 quantifiers can be defined in four
equivalent ways as indicated by the following facts (Zuber 2007):

Fact 4: The following four conditions are equivalent:
(i) F ∈ INT
(ii) F (X)(Y ) = F (X ∩ Y )(X ∩ Y )
(iii) F (X)(Y ) = F (E)(X ∩ Y )
(iv) F (X)(Y ) = F (X ∩ Y )(E)
Fact 5: The following four conditions are equivalent:
(i)F ∈ CO-INT
(ii) F (X)(Y ) = F (X − Y )(X ′ ∪ Y )
(iii) F (X)(Y ) = F (X − Y )(∅)
(iv) F (X)(Y ) = F (E)(X ′ ∪ Y )

Both sets, INT and CO-INT , form atomic (and complete) Boolean algebras
(sub-algebras of CONS). Atoms of INT and of CO-INT are determined by
a property. Exclusion determiners denote atoms of these algebras: no...except
Leo and Lea denotes an atom of the algebra of intersective function determined
by the set composed of two elements, Leo and Lea (Zuber 1998).

The algebra INT contains a sub-algebra CARD of cardinal determiners:
they are denotations of, roughly speaking, various numerals. By definition:

D4: F ∈ CARD iff for all properties X, Y , W and Z, if |X ∩ Y | = |W ∩ Z|
then F (X)(Y ) = F (W )(Z).

Any cardinal number determines an atom of CARD. The determiner exactly
n denotes an atomic cardinal function.

As might be expected the algebra CO-INT has an analogous sub-algebra.
This is the algebra CO-CARD of co-cardinal functions (Keenan 1993):

D5: F ∈ CO-CARD iff for all properties X, Y , W and Z, if |X−Y | = |W −Z|
then F (X)(Y ) = F (W )(Z)

Determiners like every...except five denote co-cardinal functions. Moreover,
every post-complement of a cardinal quantifier is a co-cardinal quantifier.

Unary determiners whose semantics also involves cardinality of sets denoted
by their arguments are those denoting proportional quantifiers PROPORT .
They are defined as follows (Keenan 2002):

D6: F ∈ PROPORT iff for all sets X, Y,W,Z ⊆ E if |W | × |X ∩ Y | =
|X| × |W ∩ Z| then F (X)(Y ) = F (W )(Z)

Proportional quantifiers form an atomic Boolean algebra (Zuber 2005).
A classical example of a proportional quantifier is the quantifier denoted by
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the determiner most (in the sense of more than half ).
Let me mention in addition the algebra of so-called generalised cardinals or

GCARD introduced in Keenan and Faltz 1975 (under the name of cardinality
dependent) and, independently in Zuber 2004b and studied in more detail in
Zuber 2005. By definition:

D7 F ∈ GCARD iff for all properties X, Y, Z if |X ∩ Y | = |X ∩ Z| then
F (X)(Y ) = F (X)(Z).

What definition D7 says intuitively is that a generalised cardinal is a func-
tion which cannot distinguish among properties Y1 and Y2 at the argument X
if X ∩ Y1 and X ∩ Y2 have the same cardinality.

Obviously the algebra GCARD is a proper sub-algebra of CONS and con-
tains as proper sub-algebras CARD and, only in finite universes, CO-CARD.
Moreover the following fact is also true (Zuber 2005):

Fact 6: PROPORT is a sub-algebra of GCARD.

Proof : It is enough to show that any proportional quantifier is a generalised
cardinal. Suppose that D is proportional and that for arbitrary X, Y and Z one
has |X ∩Y | = |X ∩Z|. Then it is also true that |X| × |X ∩Y | = |X| × |X ∩Z|.
Since D is proportional this means that F (X)(Y ) = F (X)(Z) and thus D is
generalised cardinal.

I mentioned the algebra GCARD because, as indicated by above properties,
many classes of conservative quantifiers are generalised cardinals. Let us see
some examples. Quantifiers NO and FIV E are generalised cardinals because
they are cardinals. Similarly EV ERY and EV ERY...EXCEPT 10 are gener-
alised cardinals because they are co-cardinals. Notice that this last claim is true
only for finite universes since only in this case is it true that |X∩Y1| = |X∩Y2|
iff |X ∩ Y ′

1 | = |X ∩ Y ′
2 | (where Y ′

1 and Y ′
2 are Boolean complements of Y1 and

Y2 respectively).
Consider now the determiner the n. It denotes the quantifier THE n defined

as follows: THE n(X)(Y ) = 1 iff |X| = n and X ⊆ Y . Observe that THE n is
neither cardinal nor co-cardinal. One can also check that it is not proportional:
to see this (for n = 1) take X, Y,W,Z such that |X| = 1, |W | = 2, X ⊆ Y and
W ⊆ Z. It is easy to see, however, that the n denotes a generalised cardinal
quantifier.

Similarly one can show that the determiners like most but less than 10 or
most or at least 10 denote (proper, that is neither cardinal, nor co-cardinal, nor
proportional) generalised cardinals. We show now that the quantifier MOST
OR AT -LEAST (10) is neither cardinal nor proportional. We show first that it
is not cardinal. Suppose for this that |X∩Y | = |W∩Z| < 10, |X∩Y | ≤ |X∩Y ′|
and |W∩Z| > |W∩Z ′|. In this case MOST (X) OR AT -LEAST (10)(X)(Y ) =
0 and MOST (W ) OR AT -LEAST (10)(W )(Z) = 1 which means that MOST
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OR AT -LEAST (10) is not cardinal.
Suppose now that |X ∩ Y | = |X ∩ Y ′| = 10, |W ∩ Z| = 8, |X| = 20 and

|W | = 16. In this case |W × |X ∩ Y | = |X| × |W ∩ Z|. However in this
case MOST (X) OR AT -LEAST (10)(X)(Y ) = 1 and MOST (W ) OR AT -
LEAST (10)(W )(Z) = 0 which means that the considered quantifier is not
proportional. It is, however, a generalised cardinal because it is a join of two
generalised cardinals.

The important point in the context of unary determiners in the above ex-
amples is that not all of them denote generalised cardinals. To see this it
is enough to take a properly intersective (non-cardinal) quantifier or a prop-
erly co-intersective (non-co-cardinal) quantifier. For instance No...except Leo,
most/some ...including Leo and every... except Leo are not generalised cardi-
nals. We will see, however, that many binary determiners denote (appropriately
generalised to the higher type case) generalised cardinals.

We can now introduce two other classes of type 〈1, 1〉 quantifiers: symmetric
and contrapositional ones. When extended to higher type quantifiers they will
play an essential role in our analysis of binary determiners. In addition they
allow us to better understand the relationship between conservative quantifiers
in general and their various sub-classes.

Symmetric and contrapositional type 〈1, 1〉 quantifiers are defined as follows
(Zuber 2007):

D8: F ∈ SY M iff for all properties X, Y one has F (X)(Y ) = F (Y )(X)
D9: F ∈ CONTR iff for all sets X, Y one has F (X)(Y ) = F (Y ′)(X ′).

Both sets, SY M and CONTR form atomic Boolean algebras. Their elements
need not to be conservative. In addition SY M and CONTR are not disjoint.
For instance for any set A, the set of pairs {〈A,A〉, 〈A′, A′〉} corresponds to a
non-conservative simple quantifier which is symmetric and contrapositional at
the same time.

The following propositions show when symmetric and contrapositional quan-
tifiers are conservative (Zuber 2007):

Proposition 7: CONS ∩ SY M = INT
Proposition 8: CONS ∩ CONTR = CO-INT

It follows from Propositions 7 and 8 that under conservativity type 〈1, 1〉 sym-
metric quantifiers are the same as the intersective ones and contrapositional
quantifiers are the same as co-intersective ones. As we will see this is not the
case for higher order quantifiers.

Interestingly, we have similar relations between algebras GCARD, CARD,
CO-CARD and SY M and CONTR. More precisely, the following proposi-
tions hold (Zuber 2007):

Proposition 9: GCARD ∩ SY M = CARD
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Proposition 10: GCARD ∩ CONTR = CO-CARD

Thus cardinal and intersective quantifiers are symmetric. For example FIV E,
SOME, SOME..., INCLUDING LEA and NO, ..., EXCEPT LEO are sym-
metric quantifiers.

It is interesting that one can define symmetric quantifiers in the format we
use in other definitions and which can be easily generalised to quantifiers of
higher types. The following trivial proposition which indicates such an equiv-
alent definition will be used as a convenient handle for generalising symmetry
to higher types (Zuber 2007) :

Proposition 11: F ∈ SY M iff there exists a commutative binary function ”⊗ ”
taking sets as arguments such that for all X, Y,W,Z if X ⊗ Y = W ⊗ Z then
F (X)(Y ) = F (W )(Z).

A similar property holds for contrapositional quantifiers:

Proposition 12: F ∈ CONTR iff there exists a commutative binary function
”⊗ ” taking sets as arguments such that for all X, Y,W,Z if X ⊗ Y ′ = W ⊗Z ′

then F (X)(Y ) = F (W )(Z).

Propositions 11 and 12 will allow us to generalise the notion of symmetry
and contraposition to quantifiers of higher types. We will see, however, that in
this case the distinction between symmetry and contraposition disappears.

3 Quantifiers of higher types

In the previous section we presented various properties of type 〈1, 1〉 quanti-
fiers. They are denotations of unary determiners. Since we are going to make
some claims about constraints on denotations of binary determiners we need
to consider how to extend various properties discussed in the previous section
to a more general case of higher type quantifiers. Though we are basically
interested in denotations of binary determiners, in most definitions we propose
we will not limit the number of arguments corresponding to the arguments of
the determiner. Thus we define various properties of higher type quantifiers
so that they are applicable to denotations of n-ary determiners in general, for
arbitrary n. This move will allow us to understand better the basic ideas un-
derlying various definitions. Thus most definitions to be given concern type
〈1n, 1〉 quantifiers, that is binary relations whose first argument is an element
of an n-ary relation between sets and the second argument is a set.

Most of the definitions we will use have already been suggested (cf. Keenan
and Moss 1984, Beghelli 1994, Keenan 2003, Zuber 2005). After the discussion
from the previous section we have a relatively clear intuition of how to define
conservative quantifiers of higher types. Here are two general definitions: the
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definition of conservative quantifiers and the definition of straightforwardly re-
lated generalised cardinals (Zuber 2005):

D10: D ∈ CONS〈1n,1〉 iff ∀Xi, Y1, Y2, D(X1, ..., , Xn)(Y1) = D(X1, ..., Xn)(Y2)
if Xi ∩ Y1 = Xi ∩ Y2, for every 1 ≤ i ≤ n.
D11: D ∈ GCARD〈1n,1〉 iff ∀Xi, Y1, Y2, D(X1, ..., Xn)(Y1) = D(X1, ..., Xn)(Y2)
if |Xi ∩ Y1| = |Xi ∩ Y2|, for every 1 ≤ i ≤ n.

As in the case of simple quantifiers, conservative type 〈1n, 1〉 quantifiers can
be defined in two other ways. This is indicated by the following facts;

Fact 13: D ∈ CONS〈1n,1〉 iff D(X1, ..., X2)(Y ) = D(X1, ..., Xn)(Y ∩
⋃

n Xi),
for every 1 ≤ i ≤ n.
Fact 14: D ∈ CONS〈1n,1〉 iff D(X1, ..., X2)(Y ) = D(X1, ..., Xn)(Y ∪

⋂
n X ′

i),
for every 1 ≤ i ≤ n.

Notice that conservativity of type 〈1n, 1〉 quantifiers does not mean that
we can replace the predicative argument by its meet with subject forming ar-
guments without changing the truth-value. In particular the conservativity of
the quantifier denoted by more... than... (thus for n = 2) means that (2a) is
equivalent to (2b) and not to (2c):

(2a) More females than males are students.
(2b) More females than males are among female or male students.
(2c) More females than males are male and female students.

As in the case of simple quantifiers it is not difficult to establish that:

Fact 15: GCARD〈1n,1〉 ⊂ CONS〈1n,1〉

Both sets, GCARD〈1n,1〉 and CONS〈1n,1〉, form atomic Boolean algebras.
More specifically we have (Zuber 2005):

Proposition 16: Let 1 ≤ i ≤ n, Pi ⊆ E and P ⊆
⋃

i Pi. Then the func-
tion FP1,...,Pn,P such that FP1,...,Pn,P (X1, ..., Xn)(Y ) = 1 iff Xi = Pi and
P = Y ∩

⋃
i Xi is an atom of CONS〈1n,1〉. All atoms of CONS〈1n,1〉 are

of this form.

Comparing the above definitions with the definitions of intersective, co-
intersective, cardinal and co-cardinal simple quantifiers we see how to define
higher type intersective, co-intersecive, cardinal and co-cardinal quantifiers of
type 〈1n, 1〉. Thus:

D 12: D ∈ INT〈1n,1〉 iff ∀Xi, Yi, Z1, Z2, if Xi∩Z1 = Yi∩Z2 then D(X1, ..., Xn)(Z1) =
D(Y1, ..., Yn)(Z2), for every 1 ≤ i ≤ n.
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D 13: D ∈ CO-INT〈1n,1〉 iff ∀Xi, Yi, Z1, Z2, if Xi − Z1 = Yi − Z2, for every
1 ≤ i ≤ n then D(X1, ..., Xn)(Z1) = D(Y1, ..., Yn)(Z2)
D14: D ∈ CARD〈1n,1〉 iff ∀Xi, Yi, Z1, Z2, if |Xi ∩ Z1| = |Yi ∩ Z2|, for every
1 ≤ i ≤ n then D(X1, ..., Xn)(Z1) = D(Y1, ..., Yn)(Z2)
D15: D ∈ CO-CARD〈1n,1〉 iff ∀Xi, Yi, Z1, Z2, D(X1, ..., Xn)(Z1) = D(Y1, ..., Yn)(Z2)
if |Xi − Z1| = |Yi − Z2|, for every 1 ≤ i ≤ n.

Various classes of quantifiers specified in these definitions are related be-
tween themselves. We have in particular (Keenan and Moss 1984, Zuber 2005):

Fact 17: CONS〈1n,1〉, GCARD〈1n,1〉, INT〈1n,1〉, CO-INT〈1n,1〉, CARD〈1n,1〉,
CO-CARD〈1n,1〉 form Boolean algebras.
Fact 18: CARD〈1n,1〉 ⊆ INT〈1n,1〉 ⊆ CONS〈1n,1〉

Another relation (holding in finite models) which is easy to establish, and
which is analogous to that established in the previous section concerning quan-
tifiers of type 〈1, 1〉, is indicated in:

Fact 19: CARD〈1n,1〉 ∪ CO-CARD〈1n,1〉 ⊆ GCARD〈1n,1〉 ⊆ CONS〈1n,1〉

To be more precise, the above set inclusions can in fact be replaced by
statements indicating that included sets are sub-algebras of sets in which they
are included.

It is easy to check that the quantifier MORE...THAN... denoted by the
binary determiner more ...than... (occurring in NPs on the subject position) is
a type 〈12, 1〉 cardinal quantifier. We will discuss many other examples in the
next section.

All the above definitions specify various classes of type 〈1n, 1〉 quanti-
fiers. Natural languages also have clear cases of type 〈1, 1n〉 quantifiers or
at least of type 〈1, 12〉. An example of such a quantifier is the quantifier
MORE...ARE...THAN... (as the denotation of the determiner occurring in
More students are Buddhists than shogi players. This means that various classes
of type 〈1, 1n〉 quantifiers should be distinguished and defined as well. We give
here only definitions of conservativity and intersectivity for such quantifiers.
These definitions, in conjunction with other definitions given above show how
to define other properties of type 〈1, 1n〉 quantifiers (cf. Zuber 2005):

D16: D ∈ CONS〈1,1n〉 iff for all X, Yi, Zi if X∩Yi = X∩Zi, for every 1 ≤ i ≤ n
then D(X)(Y1, ..., Yn) = D(X)(Z1, ..., Zn)
D17: D ∈ INT〈1,1n〉 iff for all X1, X2, Yi, Zi, D(X1)(Y1, ..., Yn) = D(X2)(Z1, ..., Zn),
whenever X1 ∩ Yi = X2 ∩ Zi, for every 1 ≤ i ≤ n.

The following fact shows that conservativity for type 〈1, 1n〉 quantifiers can
be defined in an equivalent way:
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Fact 20: A type 〈1, 1n〉 quantifier D is conservative iff for any X, Yi ⊆ E one
has D(X)(Y1, ..., Yn) = D(X)(Y1 ∩ X, ..., Yn ∩ X).

When we compare definition D10 of conservativity for type 〈1n, 1〉 quanti-
fiers with the definition D16 of conservativity for type 〈1, 1n〉 quantifiers and
fact 13 with fact 20 we observe that they do not correspond to the same truth
conditions. This means that the cardinality of the set of conservative type
〈1n, 1〉 quantifiers is not the same as the cardinality of the set of conservative
type 〈1, 1n〉 quantifiers. In particular (cf. Beghelli 1994) in the universe with n
individuals there is 27

n

of type 〈12, 1〉 conservative quantifiers and 25
n

of type
〈1, 12〉 conservative quantifiers.

We want now to define symmetry and contraposition for quantifiers of higher
types. Obviously, in such definitions we cannot just permute nominal and ver-
bal arguments of the corresponding relation since in this case such a permu-
tation would change the type of quantifier. Consequently we cannot define
symmetric higher type quantifiers by comparing relations with permuted ar-
guments as in definition D8 for simple quantifiers. It is possible, however, in
this case to use the equivalence indicated in Proposition 11 and 12 and define
symmetric and contrapositional quantifiers of higher types in the definitional
format mostly used here (Zuber 2007):

D 19: A type 〈1n, 1〉 quantifier D is symmetric iff there exists a binary commu-
tative function ⊗ on pairs of sets such that ∀Xi, Yi, Z1, Z2, D(X1, ..., Xn)(Z1) =
D(Y1, ..., Yn)(Z2) if Xi ⊗ Z1 = Yi ⊗ Z2, for every 1 ≤ i ≤ n.
D 20: A type 〈1n, 1〉 quantifier D is contrapositional iff there exists a binary
commutative function ⊗ such that ∀Xi, Yi, Z1, Z2, if Xi ⊗ Z ′

1 = Yi ⊗ Z ′
2 then

D(X1, ..., Xn)(Z1) = D(Y1, ..., Yn)(Z2), for every 1 ≤ i ≤ n.

Similarly for type 〈1, 1n〉 quantifiers:

D 21: A type 〈1, 1n〉 quantifier is symmetric iff there exists a binary commu-
tative function ⊗ on pairs of sets such that for all X1, X2, Yi, Zi, if X1 ⊗ Yi =
X2 ⊗ Zi, then D(X1)(Y1, ..., Yn) = D(X2)(Z1, ..., Zn), for every 1 ≤ i ≤ n.
D 22: A type 〈1, 1n〉 quantifier is contrapositional iff there exists a binary com-
mutative function ⊗ on pairs of sets such that for all X1, X2, Yi, Zi, if X1⊗Y ′

i =
X2 ∩ Z ′

i, for every 1 ≤ i ≤ n then D(X1)(Y1, ..., Yn) = D(X2)(Z1, ..., Zn).

The following propositions partially justify the above definitions of higher type
symmetric or contrapositional quantifiers (Zuber 2007):

Proposition 21: Let F ∈ PDET〈1n,1〉 and G ∈ PDET〈1,1n〉 such that F (X1, ..., Xn)(Y ) =
G(Y )(X1, ..., Xn). Then F is symmetric iff G is symmetric.

Thus, roughly, proposition 21 says that if two functions have ”symmetric
types” and are equal then they are both symmetric.
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From now on, we will talk about higher type quantifiers which are denota-
tions of binary determiners, that is we will suppose that n = 2. Most of the
discussed properties will be explicitly given for type 〈12, 1〉 quantifiers though
it will be obvious that they also hold for the ”symmetric” type 〈1, 12〉.

Definitions D19 and D20 are ”ineffective” in the sense that they involve
quantification over binary commutative functions. They can be simplified due
to the following observation (for which I am indebted to Makoto Kanazawa,
pc.). Consider binary operation ⊖ on ordered pairs of sets defined as follows:
X ⊖ Y = {X, Y }. This commutative operation is minimal in the following
sense: for any commutative binary operation ⊗ the equality X1⊖Y1 = X2⊖Y2

entails the equality X1 ⊗ Y1 = X2 ⊗ Y2. It follows from this that in the def-
inition of symmetry or contraposition we can use just the minimal operation
defined above. Consequently we have the following ”simplified” but equivalent
definition of symmetric type 〈12, 1〉 quantifiers:

D23: A type 〈12, 1〉 quantifier F is symmetric iff for all X1, X2, Y1, Y2, Z1, Z2, if
{X1, Z1} = {Y1, Z2} and {X2, Z1} = {Y2, Z2} then F (X1, X2)(Z1) = F (Y1, Y2)(Z2)

This simplified definition allows us to prove easily various properties of
symmetric quantifiers. First, symmetry is preserved under the permutation of
nominal arguments. Call Per(F ) a permutation of a type 〈12, 1〉 quantifier F
the quantifier defined as: Perm(F )(X1, X2)(Y ) = F (X2, X1)(Y ). Then:

Fact 22: A type 〈12, 1〉 quantifier F is symmetric iff Perm(F ) is symmetric.

We can also now easily prove the following proposition which allows us to
understand what symmetry for type 〈12, 1〉 quantifiers means:

Proposition 23: A type 〈12, 1〉 quantifier F is symmetric iff for any set X, Y
one has F (X, X)(Y ) = F (Y, Y )(X).
Proof:
if-part: Suppose F is symmetric. Since for any X, Y ⊆ E one has {X, Y } =
{Y,X}, we have F (X, X)(Y ) = F (Y, Y )(X).
only-if-part: Suppose F (X, X)(Y ) = F (Y, Y )(X). Let (i) hold: (i) {X1, Z1} =
{Y1, Z2} and {X2, Z1} = {Y2, Z2}. We consider four cases in which equalities
in (i) hold:
(1) X1 = Y1, Z1 = Z2, and X2 = Y2. In this case trivially F (X1, X2)(Z1) =
F (Y1, Y2)(Z2).
(2) X1 = Y1, Z1 = Z2, X2 = Z2 and Z1 = Y2. Thus X2 = Y2 = Z1 = Z2 and
X1 = Y1 and consequently F (X1, X2)(Z1) = F (Y1, Y2)(Z2).
(3)X1 = Z2, Z1 = Y1, X2 = Y2 and Z1 = Z2. Thus X1 = Y1 = Z1 = Z2 and
X2 = Y2 and consequently F (X1, X2)(Z1) = F (Y1, Y2)(Z2).
(4) X1 = Z2, Z1 = Y1, X2 = Z2 and Z1 = Y2. Thus X1 = X2 = Z2

and Y1 = Y2 = Z1. From this and from the supposition it follows that
F (X1, X2)(Z1) = F (Y1, Y2)(Z2).

12



Using Proposition 23 one shows that symmetric quantifiers form a Boolean
algebra with Boolean operations defined pointwise.

The property indicated in Proposition 24 concerns symmetric quantifiers in
general, not necessarily conservative ones. Since the operation of the meet on
sets is a commutative we have obviously the following fact:

Fact 24: If F ∈ INT〈12,1〉 or F ∈ INT〈1,12〉 then F is symmetric.

Moreover for conservative symmetric quantifiers the following is true:

Proposition 25: If a type 〈12, 1〉 quantifier F is conservative then F is symmet-
ric iff F (X, X)(Y ) = F (X ∩ Y, X ∩ Y )(X ∩ Y )

Notice that in the above proposition symmetry cannot be replaced by intersec-
tivity which means that under conservativity symmetry and intersectivity do
not coincide, as is the case for simple quantifiers. Thus there are conservative
quantifiers which are symmetric but not intersective. Here are two examples
of such quantifiers.

First consider the quantifier F defined as follows: F (X1, X2)(Y ) = 1 iff
X1 ∩ X2 6= ∅ and |X1 ∩ Y | = |X2 ∩ Y | 6= 0. One can check that this quantifier
is conservative and symmetric but not intersective.

As a second example consider atoms of conservative type 〈12, 1〉 quantifiers.
Recall that according to proposition 16 atoms of conservative type 〈12, 1〉 quan-
tifiers are functions FA1,A2,B such that B ⊆ A1∪A2 and FA1,A2,B(X1, X2)(Y ) =
1 iff Ai = Xi and B = Y ∩ (A1 ∪ A2). One can show now, using the simplified
definition of symmetry, that such atomic functions are symmetric if A1∪A2 = E
and A1 6= A2 and among them the intersective ones are only those for which
B = E.

In fact the quantifiers indicated in the second example above constitute
atoms of the algebra of conservative symmetric quantifiers. More specifically:

Proposition 26: Conservative symmetric type 〈12, 1〉 quantifiers form an atomic
Boolean algebra. For any set A1, A2, B such that A1 ∪ A2 = E functions
FA1,A2,B such that FA1,A2,B(X1, X2)(Y ) = 1 iff (if A1 6= A2 then Ai = Xi and
Y = B) and (if A1 = A2 then Ai = Xi and Y = E) are atoms of this algebra.

Proposition 26 allows us to calculate the number of symmetric type 〈12, 1〉
quantifiers. One calculates that in the universe with n individuals there are
6n − 2n + 1 atomic symmetric and conservative type 〈12, 1〉 quantifiers. So in
particular in the universe with 2 elements we have 233 symmetric type 〈12, 1〉
quantifiers among which 216 are intersective. The number of all type 〈12, 1〉
conservative quantifiers equals in this case 249 and the number of all ”unre-
stricted” type 〈12, 1〉 quantifiers equals 264.

In the next section we will see some binary determiners denoting conserva-
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tive symmetric but not intersective quantifiers.
There remain some important issues to be mentioned concerning contra-

positional quantifiers and their relationship to symmetric ones. Recall that
in the case of simple conservative quantifiers we have different classes of con-
trapositional and symmetric quantifiers. They are respectively intesective and
co-intersective and only constant simple conservative quantifiers are at the same
time intersective and co-intersective. The situation is quite different in the case
of higher type quantifiers since it appears that in this case the distinction be-
tween symmetric and contrapositional quantifiers is not very interesting. Let
us see this in the case of type 〈12, 1〉 quantifiers.

Observe first that, given that the equality {X, Y } = {X, Y ′} never holds,
we have the following property:

Proposition 27: If F is symmetric or contrapositional type 〈12, 1〉 quantifier
then for any X, Y ∈ E the following holds: F (X, X)(Y ) = F (X, X)(Y ′)

Proposition 27 allows us to prove the following important fact:

Proposition 28: F is symmetric type 〈12, 1〉 quantifier iff F is contrapositional.

Thus the distinction between symmetric and contrapositional quantifiers has
no theoretic basis in the case of higher type quantifiers.

The last class of type 〈12, 1〉 quantifiers that we will mention is the class of
proportional quantifiers. They are defined as follows (Zuber 2005):

D24: D ∈ PROPORT〈12,1〉 iff for all X1, X2, Y1, Y2, Z1, Z2, D(X1, X2)(Z1) =
D(Y1, Y2)(Z2) whenever |Y1| × |Y2| × |X1 ∩ Z1| = |X1| × |X2| × |Y1 ∩ Z2| and
|Y1| × |Y2| × |X2 ∩ Z1| = |X1| × |X2| × |Y2 ∩ Z2|.

One checks by calculation that according to D 24 determiners like propor-
tionally as many... as... denote proportional type 〈12, 1〉 quantifiers.

For proportional quantifiers the following is true (Zuber 2005):

Proposition 29: PROPORT〈12,1〉 is a sub-algebra of GCARD〈12,1〉.

To conclude this section let me mention some differences between simple
and higher type quantifiers. One important difference concerns simple and
binary proportional quantifiers; only the former are closed with respect to
post-complement. Other differences, more important for our analysis, concern
intersective and symmetric quantifiers. We have seen that under conservativity
these two notions are co-extensive. Furthermore, we have also seen that the
intersectivity of simple quantifiers can be defined in four equivalent ways (cf.
Fact 4). This is not the case for intersectivity of type 〈12, 1〉 or type 〈1, 12〉
quantifiers. In particular there are symmetric conservative type 〈12, 1〉 quanti-
fieres which are not intersective. Finally, we observe that in the case of higher
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type quantifiers the class of symmetric quantifiers coincides with the class of
contrapositional quantifiers.

4 Denotations of binary determiners

As already indicated in the introduction, binary determiners are discontinuous
functional expressions which take two arguments. Syntactically, they are not
necessarily ”nominal” because their arguments can be of two categories. First,
they can take two common nouns and form a noun phrase. Though such NPs
can occur on various positions we will consider only the case when they occur
in subject position. Thus determiners of the first category form a sentence
with two common nouns and a verb phrase. Consequently, semantically, they
denote type 〈12, 1〉 quantifiers. Second, binary determiners can take two verb
phrases and form with one common noun a sentence. In this case they denote
〈1, 12〉 quantifiers. Our proposal here concerns basically binary determiners of
the first category.

From the formal point of view it is useful to distinguish two types of quan-
tifiers denoted by binary (or n-ary) determiners (cf. Keenan and Moss 1985):
Booleanly reducible quantifiers and irreducible quantifiers. Reducible quanti-
fiers are defined as follows (Beghelli 1994):

D25: A type 〈12, 1〉 quantifier F is (Booleanly) reducible iff there exist simple
(type 〈1, 1〉) quantifiers Q1 and Q2 and a binary Boolean function h such that
F (X1, X2)(Y ) = h(Q1(X1)(Y ), Q2(X2)(Y ))

Determiners which denote reducible (irreducible) quantifiers will also be called
reducible (irreducible).

We will say that Q1 and Q2 are Boolean components of the reducible quan-
tifier F . In the simplest case Q1 = Q2 and in practice F has often the same
lexical form as its component Q (but not the same category). For instance
numerals, which basically denote simple quantifiers, can also be considered as
denoting reducible type 〈12, 1〉 quantifiers when their first argument is a con-
junction or a disjunction of two common nouns. For instance since (3) has a
natural reading corresponding to the conjunction in (4), the numeral five can
be considered as a binary determiner denoting a reducible quantifier:

(3) Five students and teachers are dancing.
(4) Five students and five teachers are dancing.

Various examples of reducible quantifiers are studied in Keenan and Moss 1985.
It is clear that many properties of reducible quantifiers are induced by their

components. In particular we have the following:

Proposition 30: A reducible type 〈12, 1〉 quantifier F is intersective (in its type)
iff its components Q1 and Q2 are both intersective.
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Given that simple conservative quantifiers are symmetric iff they are inter-
sective we obtain the following important consequence from proposition 30:

Fact 31: Any symmetric reducible type 〈12, 1〉 quantifier is intersective.

Thus if a type 〈12, 1〉 quantifier is symmetric but not intersective then it is not
reducible. Furthermore, if a reducible quantifier has non intersective compo-
nents then it can be non symmetric. So we will consider basically non-reducible
quantifiers.

Often discussed in the literature ”natural” higher type quantifiers are so-
called comparative binary quantifiers. These are quantifiers denoted in the
simplest case by discontinuous (binary) determiners like more... than or as
many... as. As we have already seen, when these determiners form subject
NPs (in sentences with ”simple” VPs) then they denote quantifiers of type
〈12, 1〉. These quantifiers can be said to be genuine higher type since they
cannot be reduced (in the sense of definition D25) to a Boolean combination of
simple quantifiers (Keenan and Moss 1985, Beghelli 1994). Furthermore, they
are ”natural” in the sense that the determiners by which they are denoted have
a categorial status of syntactically justified binary determiners (Keenan 1989).

Beghelli (1994) distinguishes various sub-groups of comparative determin-
ers. Usually they exhibit a complex syntax which can be ignored for our pur-
poses. The simplest and in some sense basic group of determiners may be
called simple comparatives. They include determiners like more...than..., ex-
actly as many... as..., the same number of..as.., , etc. It is easy to see that
these determiners denote cardinal quantifiers and thus, given fact 18 and fact
24, they are symmetric and, at the same time, generalised cardinals. Let us
show this for illustration on one example. Consider for instance the quantifier
FEWER...THAN... denoted by the determiner occurring in the noun phrase
fewer students than teachers. Its semantics is given in (5):

(5) FEWER(X1)THAN(X2)(Y ) = 1 iff |X1 ∩ Y | < |X2 ∩ Y |

To show that it is cardinal, suppose that (6) and (7) hold. We have to show
that (8) holds as well:

(6) |X1 ∩ Z1| = |Y1 ∩ Z2| and |X2 ∩ Z1| = |X2 ∩ Z2|
(7) FEWER(X1)THAN(X2)(Z1) = 1
(8) FEWER(Y1)THAN(Y2)(Z2) = 1

The result is obvious given the semantics in (5): the equalities in (6) allow us
to make replacements making (8) true.

Since cardinal quantifiers (of any type) form a Boolean algebra, they are
closed with respect to Boolean operations. This means for instance that AT -
LEAST -AS-MANY...AS... is also cardinal because it is the complement of
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FEWER...THAN.... Similarly the complex determiner at least 10 more but
not more than 20 more... than ... (as in at least ten more but not more then
20 students more then teachers) denotes the meet of two quantifiers denoted
respectively by at least 10 more... than... and not more than 20 ...than....
Since both these quantifiers are cardinal the whole quantifier is also a cardinal
and consequently symmetric and generalised cardinal. The symmetry of many
other quantifiers can be established in the same way (see Beghelli 1994).

One observes in addition that for many simple comparative determiners
mentioned above there exist logically equivalent syntactically more complex
ones. For instance a lesser number of... than... is semantically equivalent to
fewer...than... and exactly as many... as... is equivalent to exactly the same
number of... as.... Their semantic status is however the same.

There is a class of binary determiners which denote intersective but not
cardinal quantifiers. These are determiners which may be called modified com-
paratives. They can be modified by adjectives (as in more male... than female...
or by possessives (as in more Leo’s... than Bill’s...). What is interesting is the
fact that though such modified comparatives are in some sense derived from
cardinal ones they are not cardinal. In other words the modification does not
preserve the property of being cardinal. However, modification preserves inter-
sectivity. Let us see this in more details.

Observe first that the modifiers we are talking about denote absolute func-
tions (absolute modifiers). A function M from sets to sets is absolute (Keenan
and Faltz 1985) iff for any set X, M(X) = X ∩ M(E). Absolute adjectives
(male, female) and (some) possessives denote absolute modifiers. Thus, roughly
female students are students and female objects and Bill’s bicycles are bicycles
and Bill’s objects.

Let us define now an intersective type 〈12, 1〉 quantifier restricted (modified)
by two sets:

D26: Let A and B be sets and D a type 〈12, 1〉 quantifier. Then DA,B is a type
〈12, 1〉 quantifier defined as follows: DA,B(X1, X2)(Y ) = D(A∩X1, B∩X2)(Y )

For such modified quantifiers it is easy to establish the following fact:

Fact 32: If D ∈ INT〈12,1〉 then DA,B ∈ INT〈12,1〉, for any set A,B.

It follows from fact 32 that modified comparative binary determiners de-
note intersective quantifiers (because they are obtained by the modification of
cardinal, and thus of intersective quantifiers). Consequently modified compar-
ative binary determiners also denote symmetric (but not generalised cardinal)
quantifiers.

Beghelli (1994) also mentions existence of the class of binary determiners
he calls identity comparative. These determiners do not involve comparison of
cardinalities or quantities but rather a comparison of identities of individuals.
Syntactically, they combine one common noun with two VPs to form a sen-
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tence and thus they denote type 〈1, 12〉 quantifiers. Here are some (Beghelli’s)
examples of sentences with such determiners:

(9) The same students came early as left late.
(10) Whatever students came early left late.
(11) The same five students came early as left late.

The determiners in the above sentences denote the following quantifiers respec-
tively:

(12) THE-SAME(X)(Y1, Y2) = 1 iff X ∩ Y1 = X ∩ Y2

(13) WHATEV ER(X)(Y1, Y2) = 1 iff X ∩ Y1 ⊆ X ∩ Y2

(14) THE-SAME-5(X)(Y1, Y2) = 1 iff X ∩ Y1 = X ∩ Y2 ∧ |X ∩ Y1| = 5

Thus sentence (10) is true iff the set of students who came early is included
in the set of students who left late. It is easy to show that quantifiers in (12),
(13) and (14) are all intersective and thus symmetric.

Recall that type 〈1, 12〉 quantifiers can also be denoted by ”ordinary” com-
parative determiners as in the following examples:

(15) More vegetarians are students than teachers.
(16) More students came early than left early.

The binary determiners in these examples denote intersective, and thus sym-
metric quantifiers.

There remains a last type of determiners we need to examine. It is rep-
resented by the proportional binary determiners as the one found in (17). It
denotes a type 〈12, 1〉 quantifier which has the semantics given in (18):

(17) Proportionally as many students as teachers danced.
(18) PROP -AS-MANY (X1, X2)(Y ) = 1 iff |X1 ∩ Y |/|X1| = |X2 ∩ Y |/|X2|

The quantifier in (18) is proportional in the sense of D24. It is not intersective.
We show, not quite explicitly, that it is symmetric. According to D19 we have
to show that there exists a binary operation on sets ⊗ which is commutative
and such that if (19) holds then (20) holds:

(19) X1 ⊗ Z1 = Y1 ⊗ Z2 and X2 ⊗ Z1 = Y2 ⊗ Z2

(20) PROP -AS-MANY (X1, X2)(Z1) = PROP -AS-MANY (Y1, Y2)(Z2)

Chose ⊗ as: X ⊗ Y = |X ∩ Y |/(|X| × |Y |). This operation is obviously com-
mutative. A somewhat tedious simple arithmetic operation on fractions in
conjunction with necessary substitutions of equals by equals leads to the re-
quired equivalence in (20).
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One shows in the same way that determiners like proportionally more...than...
denote symmetric quantifiers.

In addition, the symmetry of some quantifiers can be established using fact
22, that is the fact that the permutation of nominal arguments preserves sym-
metry. For instance since the quantifier denoted by the determiner proportion-
ally more...than... is related by the relation of permutation to the quantifier
denoted by proportionally less...than..., the symmetry of one follows from the
symmetry of the other. Thus proportional comparative determiners also denote
(conservative) symmetric quantifiers.

5 Conclusion

In this paper I have been concerned with the constraint of symmetry on quan-
tifiers which are denotations of binary determiners. Symmetric type 〈12, 1〉
quantifiers F are those and only those quantifiers which have the property in-
dicated in (21a); they entail the property indicated in (21b):

(21a) F (X, X)(Y ) = F (Y, Y )(X)
(21b) F (X, X)(Y ) = F (X, X)(Y ′)

So the claim defended here entails that all irreducible binary determiners denote
quantifiers which satisfy (21a) and (21b). And this indeed seems to be the case.

Obviously not all type 〈12, 1〉 quantifiers have such properties and the con-
straint of symmetry severely constrains the number of possible denotations for
binary determiners. This constraint makes unary determiners different from
binary ones. More specifically in this paper, using the generalised notion of
symmetry, I insisted on the following difference: under conservativity not all
symmetric type 〈12, 1〉 quantifiers are intersective. It was shown in this context
that all proper (that is Booleanly irreducible) binary determiners discussed
in literature denote conservative symmetric quantifiers. Roughly speaking bi-
nary comparative determiners denote cardinal quantifiers. They are symmetric
precisely because being cardinal they are intersective. Some comparative bi-
nary determiners, those where their arguments are modified by absolute adjec-
tives, are not cardinal but they are still intersective (cf. fact 32). Finally pro-
portional comparative determiners denote symmetric (and conservative) type
〈12, 1〉 quantifiers which are not intersective.

We also considered from the point of view of symmetry, so-called identity
comparative determiners. They are syntactically different from other compar-
ative determiners since they form a sentence with one common noun and two
verb phrases. They denote intersective type 〈1, 12〉 quantifiers and thus are
also symmetric. We also indicated that some ”ordinary” comparative binary
determiners can denote irreducible type 〈1, 12〉 quantifiers which are symmetric.

It is important to keep in mind that the claim defended here concerns bi-
nary determiners denoting irreducible quantifiers. One observes for instance
that the determiner most when applied to a conjunction of two common nouns
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can have a reading under which it denotes a type 〈12, 1〉 quantifier. Thus (22a)
has a natural reading under which it is equivalent to (22b):

(22a) Most students and teachers danced.
(22b) Most students danced and most teachers danced.

It is easy to show that under this reading most denotes a conservative type
〈12, 1〉 quantifier which is not symmetric. But this quantifier is Booleanly
reducible and thus is not a counter-example to the claim.

Notice in this context that the claim defended here is obviously meant to
be language independent. We know that there are cross-linguistic variations
concerning the possibility for unary determiners to have their type shifted to
the type of binary determiners in some conjunctive expressions. So the restric-
tion of the claim to irreducible binary determiners, which seem less language
dependent, should not be surprising.

When speaking about counter-examples let me mention another claim which
could be made about the semantic constraint on the denotations of binary deter-
miners. Given the various properties discussed above, one might be tempted to
claim that binary determiners always denote generalised cardinals. Indeed car-
dinal quantifiers denoted by comparative determiners are generalised cardinals.
Similarly with proportional comparative determiners: they also denote gener-
alised cardinals. There are, however, two classes of counter-examples. First,
identity comparatives denote intersective quantifiers and intersective quanti-
fiers are not generalised cardinals. Maybe the fact that such determiners are
syntactically different from others might be used to save the clam by reducing
its domain to binary determiners denoting only type type 〈12, 1〉 quantifiers.
There is, however another class of counter-examples: these are modified com-
parative determiners like more male... than female.... They denote intersective
type 〈12, 1〉 quantifiers which are not generalised cardinals.

Let me conclude with the following negatively oriented remark: what I have
done up to now can be considered as just an empirical generalisation based on
various examples of determiners, most of which are known from the relevant
literature. Two important things remain to be done. First, the claim has to be
explained and some reasons why binary determiners denote symmetric quanti-
fiers given. Second, how the claim is related to various aspects of expressibility
in natural languages. Any attempt to answer such questions necessitates ad-
ditional technical notions such as universe independence, relativization of type
〈1〉 quantifiers, etc. Peters and Westerst̊ahl 2006 discuss symmetry and related
notions of simple quantifiers in the context of these additional notions. Their
extensions and various generalisations are needed to get some answers to such
general questions.
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Ch. (eds.) Dynamics, Polarity, and Quantification, CSLI Publications,
119-145

[3] Keenan, E. L. (1987) Multiply-headed NPs, Linguistic Inquiry 18, pp.
481-491

[4] Keenan, E. L. (1993) Natural Language, Sortal Reducibility and Gener-
alised Quantifiers, Journal of Symbolic Logic 58:1, pp. 314-325.

[5] Keenan, E.L. (2002) Some Properties of Natural Language Quantifiers:
Generalized Quantifier Theory, Linguistics and Philosophy 25:5-6, pp.627-
654

[6] Keenan, E. L. and Faltz, L. M. (1985) Boolean Semantics for Natural
Language, D. Reidel Publishing Company, Dordrecht.

[7] Keenan, E. L. and Moss, L. (1985) Generalized quantifiers and the ex-
pressive power of natural language, in J. van Benthem and A. ter Meulen
(eds.) Generalized Quantifiers, Foris, Dordrecht, pp.73-124

[8] Keenan, E. L. and Stavi, J. (1986) A semantic characterisation of natural
language determiners, Linguistics and Philosophy 9, pp.253-326

[9] Keenan, E. L. and Westerst̊ahl, D. (1997) Generalized Quantifiers in Lin-
guistics and Logic, in van Benthem, J. and ter Meulen, A. (eds.) Handbook
of Logic and Language, Elsevier, pp. 837-893.

[10] Peters, S. and Westerst̊ahl, D. (2006) Quantifiers in Language and Logic,
Clarendon Press, Oxford

[11] Zuber, R. (1998) On the Semantics of Exclusion and Inclusion Phrases, in
Lawson, A. (ed.) SALT8, Cornell University Press, pp. 267-283

[12] Zuber, R. (2004a) A class of non-conservative determiners in Polish, Lin-
guisticae Investigationes, XXVII : 1, pp. 147-165

[13] Zuber, R. (2004b) Some remarks on syncategorematicity, in L. Hunyadi et
al.: The Eighth Symposium on Logic and Language: Preliminary Papers,
Debrecen 2004, pp. 165-174

[14] Zuber, R. (2005) More Algebras for Determiners, in P. Blache and E.
Stabler (eds.) Logical Aspects of Computational Linguistics 5, LNAI, vol.
3492, Springer-Verlag, pp. 363-378

[15] Zuber, R. (2007) Symmetric and Contrapositional Quantifiers, Journal of
Logic, Language and Information 16:1, pp. 1-13

21


