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UNLOCKING THE STANDARD MODEL

I . 1 GENERATION OF QUARKS . SYMMETRIES

B. Machet 1 2

Abstract: A very specific two-Higgs-doublet extension of the Glashow-Salam-Weinberg model for one gen-

eration of quarks is advocated for, in which the two doublets are parity transformed of each other and both

isomorphic to the Higgs doublet of the Standard Model. The chiral group U(2)L ×U(2)R gets broken down to

U(1) × U(1)em. In there, the first diagonal U(1) is directly connected to parity through the U(1)L × U(1)R

algebra. Both chiral and weak symmetry breaking can be accounted for, together with their relevant degrees

of freedom. The two Higgs doublets are demonstrated to be in one-to-one correspondence with bilinear quark

operators.

PACS: 11.15.Ex 11.30.Rd 11.30.Hv 12.60.Fr 02.20.Qs

1 Introduction

It is well known that the genuine Glashow-Salam-Weinberg (GSW) model [1] cannot account for both chiral

and weak symmetry breaking. For composite Higgses, the failure of the most simple scheme of dynamical

symmetry breaking bred “technicolor” models [2] [3] [4], in which at least one higher scale and extra heavy

fermions are needed. They unfortunately face themselves many problems. Guided by a long quest [5] for

all complex doublets isomorphic to the Higgs doublet of the Standard Model, I propose here a very simple

and natural two-Higgs-doublet extension in which, in particular, parity is restored to the primary role that it is

expected to play and where the issues evoked above are solved. Last, an isomorphism is demonstrated which

connects the two proposed Higgs doublets and bilinear quark-antiquark operators. This works therefore achieves

a synthesis of two-Higgs-doublet models and dynamical symmetry breaking. The arguments that I present are

essentially based on elementary considerations concerning symmetries. For the sake of simplicity, only the case

of one generation of quarks is dealt with here.
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2 The Glashow-Salam-Weinberg model and its single Higgs doublet

A SU(2)L transformation we shall write

UL = e−iαiT
i
L , i = 1, 2, 3. (1)

Eq. (1) shows that we adopt here the convention of physicists and consider the hermitian T i’s as the generators

of SU(2)L. So defined, they satisfy the commutation relations

[T i
L, T

j
L] = i ǫijkT

k
L, (2)

and they write

~TL =
1

2
~τ , (3)

where the ~τ are the Pauli matrices

τ1 =





0 1

1 0



 , τ2 =





0 −i
i 0



 , τ3 =





1 0

0 −1



 . (4)

The T i
L’s are accordingly

T 3
L =

1

2





1 0

0 −1



 , T+

L = T 1
L + iT 2

L =





0 1

0 0



 , T−
L = T 1

L − iT 2
L =





0 0

1 0



 . (5)

With respect to SU(2)L, left-handed flavor fermions are cast into doublets





uL

dL



, while right-handed

fermions are singlets. These doublets belong to the fundamental representation of SU(2)L and the genera-

tors T i
L act on them accordingly by

T i
L.





uL

dL



 = T i
L





uL

dL



 . (6)

The Higgs doublet H of the GSW model is a complex doublet

H =
1√
2





χ1 + iχ2

χ0 − ik3



 , < χ0 >= v ⇔< H >=
1√
2





0

v



 , (7)

also in the fundamental representation ofSU(2)L. It is built with four real scalar fieldsχ0 = v√
2
+χ, χ1, χ2, k3 ≡

−iχ3. We have set χ3 = ik3 in (7) to emphasize that it is complex. The action of T i
L on H writes

T i
L . H = T i

LH. (8)

H is used to give a mass to the three gauge bosons and also, through Yukawa couplings, to the d-type quarks.

To give a mass to u-type quarks, a second (non-independent) complex doublet H̃

H̃ = iτ2H∗ =
1√
2





χ0 + ik3

−(χ1 − iχ2)



 , < H̃ >=
1√
2





v

0



 , (9)

is used which is also in the fundamental representation of SU(2)L. It has the same law of transformation (8) 1.

1If one considers H̃ = βjT
jH∗ and request that, by a transformation e−iαiT

i
L , δH̃ = −iαiT

i
L.H̃ = −iαiT

i
LH̃ , one gets the

condition β1 = 0 = β3. β2 is undetermined and can be taken to be β2 = 2i.
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We define the transformed T i
L.χ

α, i = 1, 2, 3, α = 0, 1, 2, 3 of the components χα by

T i
L.H =

1√
2





T i
L.χ

1 + iT i
L.χ

2

T i
L.χ

0 − T i
L.χ

3



 (10)

and the same for H̃ . The law of transformation (8), when applied to both H and H̃ , is equivalent to

T 1
L . χ

0 = + i
2
χ2, T 2

L . χ
0 = + i

2
χ1, T 3

L . χ
0 = + 1

2
χ3,

T 1
L . χ

1 = − 1

2
χ3, T 2

L . χ
1 = − i

2
χ0, T 3

L . χ
1 = + i

2
h2,

T 1
L . χ

2 = − i
2
χ0, T 2

L . χ
2 = + 1

2
χ3, T 3

L . χ
2 = − i

2
χ1,

T 1
L . χ

3 = − 1

2
χ1, T 2

L . χ
3 = + 1

2
χ2, T 3

L . χ
3 = + 1

2
χ0.

(11)

Let us make the following substitutions

χ0 → −h3, χ1 → h1, χ2 → −h2, χ3 → h0 (12)

such that, in terms of the hi’s, H and H̃ write

H =





h1 − ih2

−(h0 + h3)



 , H̃ =





h0 − h3

−(h1 + ih2)



 . (13)

Then, the laws of transformation (11) rewrite simply

T i
L . h

j = − 1

2

(

i ǫijkh
k + δij h

0
)

T i
L . h

0 = − 1

2
hi

(14)

which is our main formula.

Acting a second time on the χα according to the rules (11) yields

T i
L.(T

j
L . χ

α)− T
j
L.(T

i
L . χ

α) = −i ǫijkT k
L . χ

α = −[T i
L, T

j
L].χ

α, α = 0, 1, 2, 3. (15)

After (10), it is natural to define (T i
LT

j
L).χ

α by

(T i
LT

j
L).H =

1√
2





(T i
LT

j
L).χ

1 + i(T i
LT

j
L).χ

2

(T i
LT

j
L).χ

0 − (T i
LT

j
L).χ

3



 , (16)

in which T i
LT

j
L stands for the product of the two corresponding matrices. Since they satisfy (2) and by using

(11), one gets straightforwardly 2

[T i
L, T

j
L].χ

α = +i ǫijkT
k
L.χ

α, α = 0, 1, 2, 3. (18)

3 Its two-Higgs-doublet avatar

In analogy with (13), we shall introduce two complex SU(2)L Higgs doublets H and K

K =





p1 − ip2

−(s0 + p3)



 (19)

2Eqs. (15) and (18) require

(T i
LT

j

L
).χα = −T i

L.(T
j

L
.χα). (17)

It is easy to trace the origin of the “−” sign in (17) back to the definition (1) and (3) of the generators of SU(2) as hermitian matrices. If

one instead defines a group transformation without the “i” in the exponential, which yields anti-hermitian generators, one gets identity of

(T i
LT

j

L
).χα and T i

L.(T
j

L
.χα). The “i” in the r.h.s. of the commutation relation (2) is then also canceled.
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and

H =





s1 − is2

−(p0 + s3)



 (20)

in which we defined p± = p1 ± ip2 and s± = s1 ± is2. We shall also indifferently speak of K as of the

quadruplet

K = (s0, p3, p+, p−), (21)

and of H as of the quadruplet

H = (p0, s3, s+, s−). (22)

K and H have the same laws of transformations (14) by SU(2)L, in which, now h stands generically for s or p,

Each component of the type s is hereafter considered as a scalar and each p as a pseudoscalar, such that H and

K are parity transformed of each other.

K and H are also stable by SU(2)R, the generators T i
R of which being defined like in (5), and transform

according to

T i
R . h

j = − 1

2

(

i ǫijkh
k − δij h

0
)

T i
R . h

0 = + 1

2
hi

(23)

Since h0 and ~h have opposite parity, (14) and (23) mix scalars and pseudoscalars.

Last, let us define the action of the generators IL and IR of U(1)L and U(1)R on K and H by (this is true

component by component)

IL.K = −H, IL.H = −K, IR.K = H, IR.H = K (24)

they simply swap parity with the appropriate signs.

From eqs. (14), (23) and (24), one deduces the laws of transformations of K and H by the diagonal U(2)

T i . hj = −i ǫijkhk,
T i . h0 = 0,

I . h0,i = 0. (25)

K and H thus decompose into a singlet h0 + a triplet ~h of the diagonal SU(2). They are stable by SU(2)L and

SU(2)R but not by U(1)L nor by U(1)R. They stay unchanged when acted upon by the diagonal U(1). The

unionK ∪H is stable by the whole chiral group U(2)L × U(2)R.

It is instructive to represent the ~TL, ~TR generators, and also the ~T of the diagonalSU(2)V symmetry in the basis

the elements of which are the four entries (h0, h3, h+, h−) of K and H (see appendix A for explicit formulæ).

The SU(2)L,R generators satisfy the commutation relations

[T+

L,R, T
−
L,R] = −2T 3

L,R, [T 3
L,R, T

+

L,R] = −T+

L,R, [T 3
L,R, T

−
L,R] = T−

L,R, (26)

which become the customary SU(2) commutation relations when the roles of T+ and T−, or of h+ and h−,

are swapped. Left and right generators of course commute. They also satisfy the anticommutation relations

{T i
L,R, T

j
L,R} =

1

2
δijIL,R, (27)

which makes them like 4 × 4 Pauli matrices. The three generators of the diagonal SU(2) have the same

commutation relation but no peculiar anticommutation relation.
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K and H are not eigenvectors of ~TL, ~TR or ~T . Calculating the eigenvectors of the SU(2)L generators ~TL and

~TR given by (A) and (A) leads to 4-vectors gathering the two doublets





h−

−(h0 + h3)



 and





h0 − h3

−h+





isomorphic respectively to H and H̃ (13) of the GSW model.

In this 4-basis, the third generator T 3 = T 3
L + T 3

R of the diagonal SU(2) symmetry coincides with the electric

charge 3 Q, with eigenvalues 0 (twice), +1 and −1. Then, the Gell-Mann-Nishijima relation Y = Q − T 3
L

identifies the weak hypercharge Y with T 3
R.

4 Symmetries and their breaking

In association with a suitable potential, the gauge symmetry gets spontaneously broken by the presence of non-

vanishing vacuum expectation value(s) (VEV(s)). These VEV’s should be electrically neutral. Secondly, even

if, since we deal with a parity violating theory, pseudoscalar fields can also be expected to “condense” in the

vacuum, such VEV’s can reasonably be expected only at higher order such that, classically, it is legitimate to

restrict to scalar VEV’s. This leaves the two s0 in K and s3 in H . We shall write accordingly

s0 =
v√
2
+ s, s3 =

σ√
2
+ ξ, (28)

such that 4

< K >= − 1√
2





0

v



 , < H >= − 1√
2





0

σ



 . (29)

Let us first investigate the breaking of the chiral group U(2)L × U(2)R. Two U(1) groups are left unbroken by

the vacuum. The first is the diagonal U(1), which is the multiplication of fermions by a phase. We have seen

that its generator, the unit matrix, is the sum of IL and IR which swap parities of the scalar fields. The second

is the electromagnetic U(1)em. Indeed, only T 3, that is, the electric charge Q, gives 0 when acting on s0 and

s3. U(2)L × U(2)R gets accordingly spontaneously broken down to U(1) × U(1)em, such that six Goldstone

bosons are expected. Three degrees of freedom should become the three longitudinal ~W‖. The three others are

expected to be physical particles and to acquire mass by a “soft” breaking of U(2)L × U(2)R. This role is held

by the SU(2)L invariant Yukawa couplings (we shall study them more at length in a subsequent work [6] and

only give a few remarks at the end of this section).

The weak group SU(2)L has been considered de facto as a subgroup of the chiral group U(2)L × U(2)R. This

can always be done 5 and creates connections among Goldstone bosons. One among the four Goldstones (two

charged and two neutral) which arise from the breaking of U(2)L×U(2)R down to its diagonalU(2) subgroup

is identical to the neutral Goldstone of the breaking of SU(2)L (which generates three Goldstones) and gets

accordingly eaten by the massive W 3. The spectrum that results is therefore composed of the three massive

~W ’s, of the three remaining physical (pseudo)Goldstone bosons of the breaking U(2)L × U(2)R → U(2)

(which are also those of the breaking of SU(2)L × SU(2)R down to SU(2)), and of two Higgs bosons.

Since, for one generation of fermions, there is no distinction between the diagonal SU(2) and the SU(2) of

flavor, the pseudoscalar triplet inK cannot but be “pion-like” and the pseudoscalar singlet inH be “η-like” (it is

similar to η for one generation but can be the pseudoscalar singlet or another combination for more generations).

3That the electric charge is the 3rd generator of an SU(2) group is a prerequisite for charge quantization.
4The sign of the VEV’s is not relevant, neither for the masses of the gauge bosons, which depend on their squares, nor for the fermions

since, for example, the sign of the Yukawa couplings can always be adapted.
5and it can even always be done when going to N generations and to the chiral group U(2N)L ×U(2N)R . The embedding only needs

to be suitably chosen so as to match the weak Lagrangian and dictates the way chiral and weak symmetries get entangled [5].
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This degree of freedom, which disappears to the benefit of the massive neutral W 3, is presumably the one that

plays a dual role with respect to the chiral and weak symmetry breakings.

The goal being to build a spontaneously broken SU(2)L theory of weak interactions, let us make a few more

remarks concerning the breaking of SU(2)L. All generators T i
L acting non-trivially on s0 (see for example

appendix A), SU(2)L gets fully broken by < K > 6= 0, which yields three Goldstone bosons inside K . In the

genuine GSW model, they would become the three longitudinal ~W‖’s. The situation is now changed as K gets

instead connected to chiral breaking. This is where H enters the game since SU(2)L gets also fully broken by

< s3 > 6= 0, which generates the largest part of the ~W mass. Note that the same argumentation can be applied

to SU(2)R since K and H are also stable multiplets of SU(2)R.

These considerations fix the three Goldstones (p, s+, s−) in H , two charged scalars and one neutral pseu-

doscalar, as the ones doomed to become the three longitudinal W‖’s. This establishes H as the Higgs multiplet

the closest to that of the GSW model and K as the additional “chiral” multiplet. The three ~p in there are

pion-like, and s is a second Higgs boson.

Would parity be unbroken, the two Higgs multiplets H and K would be equivalent. This would entail in

particular that s0 and p0 have identical VEV’s. This is not the case. The two VEV’s v and σ do not belong

to fields that are parity transformed of each other but to the neutral scalars s0 and s3. They are independent

parameters, controlling respectively the chiral and weak symmetry breaking. As far as the diagonal SU(2) is

concerned, it gets broken down to its electromagnetic U(1)em subgroup.

Soft chiral breaking is expected to provide low masses for the three~p. This process is achieved through SU(2)L

invariant Yukawa couplings of fermions to both Higgs multiplets K and H . At high energy (mW ) these are

standard renormalizable couplings between scalar fields and two fermions. At low energy, they can be rewritten

(bosonised) by using the Partially Conserved Axial Current (PCAC) hypothesis [7][8][9]. So doing, they yield

[6] in particular terms which are quadratic in the three ~p Goldstones and which match pion-like mass terms in

agreement with the Gell-Mann-Oakes-Renner relation [10][9].

The situation is therefore different from when one sticks to a unique Higgs doublet in that we have enough

degrees of freedom to accommodate for both chiral and weak physics of one generation of quarks.

This pattern of symmetry breaking also constrains the quartic scalar potential V (H,K) that one introduces as

a spontaneous-symmetry-breaking tool. Since the three ~p in K should match the three Goldstones of the chiral

breakingSU(2)L×SU(2)R → SU(2), no mass difference between the neutral and charged components should

be generated in V . Other constraints arise from the requirement that scalar-pseudoscalar transitions should also

be avoided at this (classical) level. Together, they largely simplify the expression of V (H,K), which also

receives, at low energy, additional contributions from the bosonised Yukawa couplings.

5 The isomorphism between the two Higgs doublets and bilinear quark

operators

Like for SU(2)L, we define a SU(2)R transformation by

UR = e−iβjT
j

L , j = 1, 2, 3, (30)

in which the generators T
j
R are given by the same hermitian matrices as in (5). The U(2)L × U(2)R algebra is

completed by the two generators IL and IR, each one being represented by the unit 2× 2 matrix.

Any quark bilinear car be represented as ψ̄Mψ or ψ̄Mγ5ψ, where M is also a 2 × 2 matrix, or, equivalently, as

“even” and “odd” composite operators ψ̄ 1+γ5

2
Mψ and ψ̄ 1−γ5

2
Mψ.
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The laws of transformations of (even and odd) fermion bilinears by an element U = UL×UR of the chiral group

are defined as follows:

(UL × UR) . ψ̄
1 + γ5

2
Mψ = ψ̄ U−1

L M UR

1 + γ5

2
ψ,

(UL × UR) . ψ̄
1− γ5

2
Mψ = ψ̄ U−1

R M UL

1− γ5

2
ψ, (31)

which gives, by expanding UL = 1− iβjT
j
L + . . . and UR = 1− iκjT

j
R + . . .

T
j
L . ψ̄

1 + γ5

2
Mψ = − ψ̄ T j

M
1 + γ5

2
ψ,

T
j
L . ψ̄

1− γ5

2
Mψ = + ψ̄MT j 1− γ5

2
ψ,

T
j
R . ψ̄

1 + γ5

2
Mψ = + ψ̄MT j 1 + γ5

2
ψ,

T
j
R . ψ̄

1− γ5

2
Mψ = − ψ̄ T j

M
1− γ5

2
ψ. (32)

The T j’s are seen to simply act by left- or right-multiplication on the matrix M. Eqs. (32) give, for scalar and

pseudoscalar bilinears

T
j
L . ψ̄Mψ = −1

2

(

ψ̄ [T j,M]ψ + ψ̄ {T j,M} γ5ψ
)

,

T
j
L . ψ̄Mγ5ψ = −1

2

(

ψ̄ [T j,M] γ5ψ + ψ̄ {T j,M}ψ
)

,

T
j
R . ψ̄Mψ = −1

2

(

ψ̄ [T j,M]ψ − ψ̄ {T j,M} γ5ψ
)

,

T
j
R . ψ̄Mγ5ψ = −1

2

(

ψ̄ [T j,M] γ5ψ − ψ̄ {T j,M}ψ
)

, (33)

in which {, } stands for the anticommutator of two matrices. Then, by using commutation and anticommutation

relations of the Pauli matrices, one notices that the set of 2× 2 matrices (I, ~T ) is stable by these two operations.

One then gets from (33)

T i
L . ψ̄Iψ = −1

2
ψ̄γ52T

iψ,

T i
L . ψ̄γ52T

jψ = −1

2

(

i ǫijk ψ̄γ52T
kψ + δij ψ̄Iψ

)

, (34)

and

T i
L . ψ̄γ5Iψ = −1

2
ψ̄2T iψ,

T i
L . ψ̄2T

jψ = −1

2

(

i ǫijk ψ̄2T
kψ + δij ψ̄γ5Iψ

)

, (35)

which show that the two quadruplets, which are parity-transformed of each other

Φ = (φ0, ~φ) = ψ̄
(

I, 2γ5 ~T
)

ψ (36)
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and

Ξ = (ξ0, ~ξ) = ψ̄
(

γ5I, 2~T
)

ψ (37)

are stable by SU(2)L and have the following laws of transformation (we write them for Φ, the ones for Ξ are

identical)

T i
L . φ

j = − 1

2

(

i ǫijkφ
k + δij φ

0
)

T i
L . φ

0 = − 1

2
φi

(38)

The same considerations can be applied to SU(2)R, which leads to

T i
R . φ

j = − 1

2

(

i ǫijkφ
k − δij φ

0
)

T i
R . φ

0 = + 1

2
φi

(39)

Acting with the generators IL and IR of U(1)L and U(1)R on any scalar S = ψ̄Mψ of pseudoscalar P =

ψ̄Mγ5ψ according to (33) yields 6

IL . S = −P, IL . P = −S, IR . S = P, IR . P = S (41)

Eqs. (38), (39) and (41, being identical to (14), (23) and (24), establish the isomorphism between K and H and

the composite multiplets Ξ and Φ. It is completed by going from Φ and Ξ to multiplets K and H which have

dimension [mass] like K and H :

K =
1√
2

v

µ3





φ1 − iφ2

−(φ0 + φ3)



 =
v
√
2

µ3





d̄γ5u

− 1

2
(ūu+ d̄d)− 1

2
(ūγ5u− d̄γ5d)



 ≡





k1 − ik2

−(k0 + k3)



 ,

< ūu+ d̄d > = µ3,

H =
1√
2

σ

ν3





ξ1 − iξ2

−(ξ0 + ξ3)



 =
σ
√
2

ν3





d̄u

− 1

2
(ūγ5u+ d̄γ5d)− 1

2
(ūu− d̄d)



 ≡





h1 − ih2

−(h0 + h3)



 ,

< ūu− d̄d > = ν3.

(42)

In particular, as far as the Higgs bosons are concerned, the isomorphism writes

s0 ↔ v√
2µ3

(ūu+ d̄d), s3 ↔ σ√
2ν3

(ūu− d̄d). (43)

The components of K and H have of course the same laws of transformations (38) and (39) as the ones of Φ

and Ξ. In this framework, the VEV’s of the scalar bilinear fermion operators ūu and d̄d act as catalysts for both

chiral and weak symmetry breaking.

6 Conclusion and prospects

We advocate for a minimal extension of the Glashow-Salam-Weinberg model for one generation of fermions

which simply endows it with two Higgs multiplets instead of one, the two of them being parity transformed

6At the group level, S and P transform according to

e−iαIL . (S, P ) = cosα(S, P ) + i sinα(P, S),

e−iαIR . (S, P ) = cosα(S, P )− i sinα(P, S).
(40)

As expected since the phases of ψ and ψ̄ cancel, by a transformation e−iαI of the diagonal U(1), any S and P is left invariant.
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of each other 7. This procedure unlocks the Standard Model in the sense that both chiral and weak symmetry

breaking can now be accounted for and that enough degrees of freedom become available to describe the two

corresponding scales of physics: a first Higgs multiplet carries the three would-be longitudinal ~W‖ + a scalar

Higgs boson which is very much “standard-like”, and a second multiplet carries the three (pseudo)Goldstones

of the broken SU(2)L ×SU(2)R chiral symmetry into the diagonal SU(2) + an additional Higgs boson s. The

six Goldstones can be traced back to the breaking of U(2)L × U(2)R down to U(1)× U(1)em. The first U(1),

which is the diagonal subgroup of U(1)L × U(1)R, is tightly related to parity. The eight components of the

two Higgs multiplets are in one-to-one correspondence with the eight scalar and pseudoscalar bilinear quark

operators that can be built with one generation of quarks.

A second work [6] will be devoted to the mass spectrum of fermions, gauge, Higgs and (pseudo)Goldstone

bosons, to their couplings, and to the peculiar properties of the second Higgs boson s. The case ofN generations

will also be evoked; there exist in this case 2N2 Higgs multiplets isomorphic to the one of the GSW model,

which should a priori all be incorporated, like we did above for H and K; fermion mixing can then be taken

care of in a natural way in the embedding of the weak SU(2)L group into the chiral group U(2N)L×U(2N)R

[5].
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Appendix

A Expression of SU(2)L and SU(2)R generators in the basis of the

four components of K or H

They are 4× 4 matrices which act on 4-vectors with basis
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∗ The three SU(2)L generators write
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∗ the three SU(2)R generators write
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∗ the three SU(2)V generators ~T = ~TL + ~TR are accordingly
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