
Branching cells for asymmetric event structures

Samy Abbes

To cite this version:

Samy Abbes. Branching cells for asymmetric event structures. Journal of Theoretical Computer
Science (TCS), Elsevier, 2014, Models of Interaction: Essays in Honour of Glynn Winskel, 546,
pp.32-51. <10.1016/j.tcs.2014.02.044>. <hal-00762598>

HAL Id: hal-00762598

https://hal.archives-ouvertes.fr/hal-00762598

Submitted on 7 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

We introduce branching cells for Asymmetric Event Structures. They

provide a way to decompose maximal configuration in a dynamic way

through elementary steps representing elementary choices made during a

computation run.
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1 Introduction

Asymmetric Event Structures (AES) introduced in [5] are a model for computa-
tional processes involving concurrency, which extends the model of Prime Event
Structures (PES) [7]. They depart from PES mainly by the fact that an event
has not only a set of mandatory causes, but also some possible causes, modeled
by a new type of causality called asymmetric conflict (see the references in [5]
for earlier models with similar aims). The history of an event has a locality
property in AES. Indeed, the actual history of an event will differ according to
the given computation that involves it (configuration, in the event structures
language), since the possible causes of the event may or may not be present
in the given computation. AES are shown to unfold nets with read arcs (also
called contextual nets) in a non-interleaving semantics [5, 8], just as PES unfold
safe Petri nets.

In this paper we introduce branching cells for AES. Branching cells were
originally developed for probabilistic applications for PES. The branching cells
of a AES E are a collection of sub AES of E which capture the elementary
choices that might be encountered by computation runs. Every maximal con-
figuration is decomposed as a concatenation of subruns, where each subrun is
given as a maximal configuration in some branching cell. Branching cells may
be concurrent, meaning that the subruns are parallel, in which case the choices
are independent.

Branching cells provide thus a canonical tiling of each maximal configuration.
The branching cells associated with a given maximal configuration are pairwise
disjoint; but this is not the case in general for the entire collection of branching
cells of an AES. Hence the tiling of a maximal configuration by its branching
cells is dynamic; it is recursively determined and depends at each instant on the
current context which eliminates or on the contrary will keep some events for
next branching cell.

I have developed this theory in order to provide a tool for applications in-
tended in the theory of QoS for orchestration of web services, to be submitted
with coauthors in a journal paper.

2 Asymmetric Event Structures (AES)

In this section we follow the presentation of Asymmetric Event Structures (AES)
from [5]. In view of our application, we restrict ourselves to finite AES; the
extension to a class of infinite AES is discussed in § 7.

For any set X, we denote by Pfin(X) the set of finite subsets of X. A relation
on finite sets of X is a subset R ⊆ Pfin(X), with the intuition that a finite subset
A of elements of X are R-related if A ∈ R.
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2. Asymmetric Event Structures (AES)

If (E,≤) is a partially ordered set we put ⌊x⌋ = {y ∈ E | y ≤ x} for any
element x ∈ E, and more generally ⌊A⌋ =

⋃
x∈A ⌊x⌋ for A ⊆ E. We say that a

subset U ⊆ E is ≤-left closed if x ∈ U ⇒ ⌊x⌋ ⊆ U , or equivalently if ⌊U⌋ = U .
Let (E,≤,ր) be a triple such that (E,≤) is a partially ordered set and ր

is a binary relation on E. A relation R on finite sets of E is said to be a conflict
relation for (E,≤,ր) if:

1. (R is ≤-inherited) ∀A ∈ Pfin(E) ∀x, y ∈ E (A ∪ {x} ∈ R) ∧ (x ≤
y) ⇒ A ∪ {y} ∈ R.

2. (R contains the ր-cycles) For any integer n ≥ 1 and for any elements
x1, . . . , xn ∈ E: x1 ր x2 ր · · · ր xn ր x1 ⇒ {x1, . . . , xn} ∈ R.

If (Ri)i∈I is any nonempty family of conflict relations, then
⋂
i∈I Ri is ob-

viously a conflict relation. Since Pfin(E) is itself a conflict relation, it follows
that there exists a smallest conflict relation, that we call the conflict relation
associated to (E,≤,ր), denoted by ♯ . For a finite set A ∈ Pfin(E), we have
that A ∈ ♯ if and only if for some integer n ≥ 1:

∃e1, . . . , en ∈ A ∃x1 ∈ ⌊e1⌋ , . . . , ∃xn ∈ ⌊en⌋ x1 ր x2 ր · · · ր xn ր x1 .
(1)

Note that E = ∅ is allowed, and that ∅ /∈ ♯ in all cases.

Asymmetric Event Structures are then defined as follows:

Definition 2.1 (AES). Let G = (E,≤,ր) be a triple such that (E,≤) is
a partially ordered set and ր is a binary relation on E. We say that G is
an Asymmetric Event Structure (AES) if it satisfies the following conditions,
denoting by ♯ the conflict relation associated with G:

1. For all e ∈ E, ⌊e⌋ is finite.

2. For all e, e′ ∈ E: e < e′ ⇒ e ր e′, where e < e′ means as usual e ≤ e′

and e 6= e′.

3. For all e ∈ E, ր ∩(⌊e⌋ × ⌊e⌋) is acyclic.

4. For any e, e′ ∈ E: {e, e′} ∈ ♯⇒ eր e′ ր e.

Elements of E are called events, ≤ is called the causality relation and ր is
called the asymmetric conflict relation. If the context makes the causality and
the asymmetric conflict relations clear, we will identify G and the set E.

In Definition 2.1 the relations≤ andր have the following intuitive meanings.
On the one hand, e ≤ e′ means that e is a mandatory cause of e′: event e′ must
be preceded by e in any computation involving e′. Condition 1 is therefore
natural, and is a copy of the equivalent condition for PES. On the other hand,
e ր e′ means that e is a possible cause of e′, the precise meaning of which will
be clarified when considering configurations and their order below. But in the
meantime, we observe that Condition 2 is natural: mandatory causes are some
particular cases of possible causes. A cycle of the form e1 ր · · · ր en ր e1
with all ei ∈ ⌊e⌋ would imply that e1 should precede itself, which prevents e
from ever being reached. This explains Condition 3. Finally, Condition 4 is a
technical condition: if G satisfies Conditions 1–3, one can always complete ր
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2. Asymmetric Event Structures (AES)

while preserving ≤ and ♯ to reach Condition 4 (see [5, §2] for details). It will be
justified when considering configurations of the AES.

Observe that relationր is not reflexive, and actually the relation eր e never
holds, otherwise there would be singletons {e} ∈ ♯ , contradicting Condition 3.
Furthermore, note that ր is not assumed to be transitive; the presence of
cycles together with the impossibility of having eր e is anyway an obstruction
to transitivity. Observe also that one should not think of asymmetric conflict as
a “special case” of conflict as in a PES; since two events in asymmetric conflict
might very well be compatible in an AES; indeed, one is supposed to be a
possible cause of the other.

As in PES, the notion of computational process is captured by configurations,
defined as follows (since we consider finite AES, the definition is slightly simpler
than in [5]).

Definition 2.2 (configurations). Let (E,≤,ր) be a finite AES. A set of events
A ⊆ E is called a configuration of E if:

1. The set A contains all the mandatory causes of all its events; formally:
∀e ∈ A ∀e′ ∈ E e′ ≤ e⇒ e′ ∈ A;

2. ր ∩(A×A) is acyclic.

We denote by Conf(E) the set of configurations of E.

It is worth to observe that, in presence of Condition 1, Condition 2 is equiv-
alent to saying that no finite subset of A belongs to the conflict relation ♯ ,
meeting the usual intuition from PES that configurations are conflict free and
≤-left closed subsets of events.

Note also that Conf(E) 6= ∅, since ∅ ∈ Conf(E) even if E = ∅, and that
{∅}  Conf(E) as soon as E 6= ∅. Indeed, pick any minimal event in (E,≤) if
E 6= ∅ , then {e} ∈ Conf(E).

Finally, Condition 4 in Definition 2.1 can now be explained as follows. If
e and e′ are two events such that e ր e′ and ¬(e′ ր e) both hold, then it
intuitively means that e is a possible cause of e′; one would then expect that
they belong to some configuration C, representing a computation where both
events occur. And indeed, putting C = ⌊e⌋ ∪ ⌊e′⌋, then C is ≤-left closed and
conflict free, otherwise one would have {e, e′} ∈ ♯ and thus eր e′ ր e according
to Condition 4, contrary to the assumption ¬(e′ ր e). Hence Condition 4
reinforces the interpretation of (eր e′) ∧ ¬(e′ ր e) as e being a possible cause
of e′.

In PES, the order on configurations is given by the mere set theoretic inclu-
sion of subsets. This order however does not capture for AES the distinction
between mandatory causes (≤) and possible causes (ր) of events. Indeed, the
fact that an event e may have some possible, non mandatory causes, implies
that e may have different histories. However, a natural requirement is that its
“history cannot change after the event has occurred” [5, §3]. In particular, if
a configuration A contains some event e, one cannot accept as an extension
of the computation represented by A, a configuration B that would contain a
possible cause e′ of e, and that would not already be present in A. Whence the
following definition for the order ⊑E on configurations—the verification that
(Conf(E),⊑E) is indeed a partial order is straightforward.
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2. Asymmetric Event Structures (AES)

Definition 2.3 (extension of configurations). The extension relation ⊑E on
configurations of an AES (E,≤,ր) is defined by:

A ⊑E B ⇐⇒

{
A ⊆ B, and

∀e ∈ A ∀e′ ∈ B e′ ր e⇒ e′ ∈ A.

This definition enlightens the role of the asymmetric conflict relation e′ ր e.
On the one hand, if e′ is not a mandatory cause of e, then one can find computa-
tions of e without e′ in general (⌊e⌋ for instance, as long as e′ /∈ ⌊e⌋). But on the
other hand, if in some computation, both events e and ed appear, then this is no
coincidence, this is really because e has used some resource attached with e′. In
particular, a possible cause of e cannot appear after e has occurred. This leads
to the following other interpretation of e′ ր e: event e has a preemption action
on its possible causes. Since, once e has fired in a computation represented by
a configuration C, all of the possible causes of e not already present in C are
definitively ruled out for the extensions of C. This preemption interpretation
is specially relevant when AES are constructed as unfolding of nets with read
arcs.

Two configurations A,B are said to be compatible, which is denoted by
A ↑ B, if there exists a configuration C such that A ⊑E C and B ⊑E C. The
least upper bound (lub) of two compatible configurations is given as follows,
according to [5, Lemma 3.2]:

A ↑ B ⇒ A ∨B = A ∪B . (2)

Note however that A∪B ∈ Conf(E) does not imply the compatibility A ↑ B
in general, even if A and B are two configurations. We will use several times
the following characterization of compatible configurations.

Lemma 2.4. Let A,B ∈ Conf(E). Then A ↑ B if and only if:

∀a ∈ A ∀b ∈ B (aր b⇒ a ∈ B) ∧ (bր a⇒ b ∈ A). (3)

Proof. Proof of (3) ⇒ A ↑ B. Let C = A ∪ B. We first show that C is
a configuration. Since C is obviously ≤-left closed, it suffices to show that
C does not contain any ր-cycle. Assume for the seek of contradiction that
a1 ր · · · ր an ր a1 are events of C. All ai do not belong to B since B is a
configuration, hence one of them at least, say a1 , belongs to A \ B. Then it
follows from (3), and since a1 ր a2 , that a2 ∈ B ⇒ a1 ∈ B, which shows that
a2 /∈ B, hence a2 ∈ A \ B. We see therefore by induction that all ai belong to
A\B, yielding a ր-cycle in A and contradicting that A is a configuration. This
shows that C is a configuration.

We now check that A ⊑E C and B ⊑E C. Indeed the set theoretic inclusions
A ⊆ C and B ⊆ C are obvious. Assume that a ∈ A and c ∈ C are such that
c ր a. Then c ∈ B ⇒ c ∈ A by (3), and this shows that A ⊑E C. Similarly, if
b ∈ B and c ∈ C are such that c ր b, then c ∈ B by (3) and this shows that
B ⊑E C.

Proof of A ↑ B ⇒ (3). If A ↑ B, it follows from Equation (2) that A ⊑E C
and B ⊑E C with C = A ∪B, from which (3) follows.
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3. Different Kinds of Prefixes for AES

3 Different Kinds of Prefixes for AES

In this section we introduce the notions necessary to the definition of branching
cells in § 4. We first analyze the sources of conflict in an AES, then we introduce
two particular classes of ≤-left closed subsets of an AES and give some of their
properties.

Sources of Conflict. Since we target a fine analysis of choice within AES, we
need some insight on the conflict relation. In view of generalizing the minimal
conflict relation from PES, adapted to binary conflicts, we propose the notion of
source of conflict for AES. We first consider the following pre-order on subsets
of E:

∀A ∈ P(E) ∀B ∈ P(E) A - B ⇐⇒ ⌊A⌋ ⊆ ⌊B⌋ .

(Adding the converse relation ⌊B⌋ ⊆ ⌊A⌋ would lead to the so-called Egli-Milner
order).

Definition 3.1 (source of conflict). A subset X of E is called a source of conflict
if:

1. X is a ր-cycle; and

2. No strict subset of X is a ր-cycle; and

3. If Y is a ր-cycle such that Y - X, then X - Y .

We denote by S (E) the collection of sources of conflict of E.

The relevance of this definition comes form the following result.

Lemma 3.2. For all A ⊆ E, we have:

A ∈ ♯ ⇐⇒ ∃X ∈ S (E) X - A.

Proof. The implication (⇐) is obvious. Conversely, let A ∈ ♯ . According to
Equation (1), there exists a ր-cycle Y such that Y - A. Consider the non
empty set Y of all ր-cycles Z such that Z ⊆ ⌊Y ⌋, and then a minimal element
Z0 in the finite pre-order (Y,-); finally pick in Z0 a minimal ր-cycle X. Then
Condition 2 is fulfilled since X has been chosen minimal in Z0, and Condition 3
follows from --minimality of Z0 , and hence of X.

S (E) is a relation in the sense of § 2. It follows from Lemma 3.2 that a
≤-left closed subset C is a configuration if and only if C does not contain any
source of conflict.

Figure 1 depicts by frames examples of sources of conflict. Note that, if X is
a source of conflict, there still can be a ր-cycle Y such that Y - X and X 6= Y ;
this is the case in Example (b) of Figure 1, where X and Y are framed. This is
of course due to the lack of antisymmetry of relation -.

6



3. Different Kinds of Prefixes for AES

(a) (b)

• //

�� ��@
@

@
@

@
@

@ • //

����

•tt

����

// • // •tt

• •

•

��@
@

@
@

@
@

@
**•oo •oo

•

OOOO X

Y

Figure 1: Examples of sources of conflict. Single arrow arcs depict theր relation
and double arrow arcs depict the immediate successors of relation <.

SubAES and ≤-left closed subsets of AES. Since we will consider several
subsets of AES, it is worth introducing the notion of subAES.

Definition 3.3 (subAES). An AES (U,≤U ,րU ) is called a subAES of an AES
(E,≤,ր) if (a) U ⊆ E; (b) ≤U = ≤ ∩ (U × U); and (c) րU = ր ∩ (U × U).

Evidently, any subset U of E can be equipped with the relations ≤U=≤
∩(U ×U) and րU=ր ∩(U ×U), making (U,≤U ,րU ) a subAES of (E,≤,ր).
We identify therefore the subAES and the subset U . The conflict relation ♯U of
AES U is defined as in § 2 accordingly to ≤U and րU . Obviously, one always
has A ∈ ♯U ⇒ A ∈ ♯ for any A ∈ Pfin(U). Therefore, if C is any configuration
of E, if we put CU = C ∩ U , no finite subset A ⊆ CU belongs to ♯U . Since CU
is also ≤U -left closed, it is actually a configuration of U , whence a mapping:

φU : Conf(E) → Conf(U), C 7→ CU = C ∩ U. (4)

It is immediate to observe that φU : (Conf(E),⊑E) → (Conf(U),⊑U ) is actu-
ally a morphism of partial orders, where ⊑U is the order on Conf(U) defined
according to Definition 2.3. Observe however that CU ⊑E C does not hold in
general, since there could be some events e ∈ CU and e′ ∈ C \ CU such that
e′ ր e.

A particular case where ♯U coincides exactly with the restriction of ♯ to U is
when U is ≤-left closed, as stated in the following lemma.

Lemma 3.4. If U is a ≤-left closed subset of E, then for any finite subset A
of U one has A ∈ ♯U ⇐⇒ A ∈ ♯.

Proof. Let A ∈ Pfin(U). As already observed, one has A ∈ ♯U ⇒ A ∈ ♯.
Assume conversely that A ∈ ♯. Then we pick for each ai ∈ A some ei ∈ ⌊a⌋
such that e1 ր · · · ր en ր e1 . Since U is left closed w.r.t. ≤, the ei belong
to U and therefore e1 րU · · · րU en րU e1 and ei ≤U ai , which implies that
{e1, . . . , en} ∈ ♯U and finally that A ∈ ♯U .

It follows from Lemma 3.4 that if U is a ≤-left closed subset of E, and if C
is a configuration of U , then C is also ≤-left closed in E and conflict free in E,
and thus C is a configuration of E. This defines a mapping:

ψU : Conf(U) → Conf(E), C 7→ ψU (C) = C . (5)

One easily checks furthermore that ψU : (Conf(U),⊑U ) → (Conf(E),⊑E) is a
morphism of partial orders.
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3. Different Kinds of Prefixes for AES

Introducing S-prefixes. Left closure w.r.t. ≤ is not enough however to cap-
ture the notion of an initial view of the execution of computational processes. In-
deed, even if U is ≤-left closed, one still does not have CU ⊑E C for C ∈ Conf(E)
in general since, as we have already observed, there could be some events e ∈ CU
and e′ ∈ C \CU such that e′ ր e, preventing the relation CU ⊑E C from hold-
ing. Therefore such an event e′ should be included in U . This motivates the
introduction of the notion of S-prefix (Strong prefix) for AES defined as follows.

Definition 3.5 (S-prefix). A S-prefix of an AES E is a subset U ⊆ E such
that:

1. ∀x ∈ U ∀y ∈ E (y ր x) ∧ ¬(xր y) ⇒ y ∈ U

2. ∀X ∈ S (E) X ∩ U 6= ∅ ⇒ X ⊆ U .

The first condition corresponds to the former explanation: if x ∈ U and
y ր x and ¬(x ր y), then y is thought of as a possible cause of x. If both
xր y and y ր x hold however, then {x, y} ∈ ♯ and the situation is a bit more
delicate. The purpose of the second condition is to include an element y ∈ U in
this case only if it belongs to some source of conflict involving x; since there is
no need to include events y conflicting with elements of U by inheritance of the
conflict.

Let us state in a separate proposition that S-prefixes are in particular ≤-left
closed, so that Lemma 3.4 applies to S-prefixes.

Proposition 3.6. Any S-prefix U is ≤-left closed. Therefore ♯U is the restric-
tion of ♯ to U and both morphisms φU and ψU are well defined:

Conf(U)
ψU //

Conf(E)
φU

oo .

Proof. Let e ∈ U and e′ ∈ E such that e′ < e. Then e′ ր e thanks to point 2 of
Definition 2.1. The relation e ր e′ does not hold, otherwise ⌊e⌋ would contain
the cycle e ր e′ ր e, contradicting point 3 of Definition 2.1. Therefore e′ ∈ U
since U is a S-prefix.

We show below in Proposition 3.8 that, if U is a S-prefix of E and if C is any
configuration of E, then CU = φU (C) is an approximation of C, i.e., CU ⊑E C.
The proposition is easily derived from the following lemma, which makes use of
the notion of adjunction pair between morphisms of partial orders (the Galois
connections of [6, Ch.O-3]).

Lemma 3.7. If U is a S-prefix of an AES E, then (ψU , φU ) is an adjunction
pair between morphisms of partial orders. In other words:

∀A ∈ Conf(U) ∀B ∈ Conf(E) ψU (A) ⊑E B ⇐⇒ A ⊑U φU (B).

Proof. Let A ∈ Conf(U) and B ∈ Conf(E), and assume that ψU (A) ⊑E B. Then
A ⊆ B and since A ⊆ U this implies that A ⊆ φU (B) on the one hand. On the
other hand, assume that e ∈ A and e′ ∈ φU (B) are such that e′ րU e. Then
e ∈ ψU (A), e

′ ∈ B and e′ ր e, and therefore e′ ∈ ψU (A) since ψU (A) ⊑E B,
and so e′ ∈ A. This shows that A ⊑U φU (B).

Conversely, assume that A ⊑U φU (B) holds. Then clearly the set inclusion
ψU (A) ⊆ B holds. Assume that e ∈ ψU (A) and e′ ∈ B are such that e′ ր e.
We distinguish two cases.

8



3. Different Kinds of Prefixes for AES

1. Case ¬(eր e′). Then, since U is a S-prefix, we derive from Condition 1
in Definition 3.5 that e′ ∈ U , and therefore e′ րU e. But now e ∈ A
and e′ ∈ U ∩ B = φU (B), and since A ⊑U φU (B) this implies that
e′ ∈ A = ψU (A).

2. Case (e ր e′). Then {e, e′} ∈ ♯ . According to Lemma 3.2, there exists
a source of conflict, say X, such that X - {e, e′}, or put differently:
X ⊆ ⌊e⌋ ∪ ⌊e′⌋. Since ⌊e′⌋ is conflict free, we must have X ∩ ⌊e⌋ 6= ∅, and
since ⌊e⌋ ⊆ U it follows that X ∩ U 6= ∅ and thus X ⊆ U by Condition 2
of Definition 3.5. Write X = {x1, . . . , xn} with x1 ր · · · ր xn ր x1 .
Without loss of generality, we may assume that x1 ∈ ⌊e⌋, hence x1 ∈ A.
From xn րU x1, x1 ∈ A and A ⊑U φU (B) follow the implication

xn ∈ φU (B) ⇒ xn ∈ A ,

from which we derive xn ∈ A. Proceeding by induction, we obtain in the
same way that xn−1 ∈ A, . . . , x2 ∈ A, and thus A contains the ր-cycle X
entirely, which is a contradiction. Hence this case can actually not occur.

Since we have obtained that e′ ∈ ψU (A), we have shown that ψU (A) ⊑E B, as
expected.

Proposition 3.8. Let U be a S-prefix of an AES E. Then A ∩ U ⊑E A for
any configuration A ∈ Conf(E).

Proof. Since (ψU , φU ) is an adjunction pair according to Lemma 3.7, the fol-
lowing inequality hods: ψU ◦ φU ⊑E IdConf(E) . Applying it to any A ∈ Conf(E)
yields the desired result since ψU ◦ φU (A) = A ∩ U .

Note that the converse inequality for adjunction pairs, which is IdConf(U) ⊑U
φU ◦ ψU yields here the trivial inequality A ⊑U A for all A ∈ Conf(U).

Introducing CC-prefixes. The decomposition of configurations that we tar-
get aims at capturing the elementary choices made during a computational
process. If e, e′ are two events of some AES related by eր e′, we have already
seen that the choice of including e′ in a computation entails the choice regarding
e as well. Conversely, the choice of including e in a computation also has conse-
quences regarding whether e′ should be included in the computation, specifically
if e has the status of a possible but non mandatory cause of e′. However such
an event e′ may not belong to some S-prefix containing e. Therefore, a S-prefix
does not include in general the complete choices surrounding its events, which
motivates the introduction of the stronger notion of CC-prefix (Choice-Complete
prefix).

Definition 3.9 (CC-prefix). A CC-prefix of an AES E is any S-prefix U satis-
fying the following additional condition:

∀x ∈ U ∀y ∈ E (xր y) ∧ ¬(x ≤ y) ∧ ¬(y ր x) ⇒ y ∈ U.

CC-prefixes share several properties with stopping prefixes defined for PES
in [2]. They are based on the same idea of gathering all local choices, so that the
evolution of the computational process after the local execution in the CC-prefix
is entirely independent of the rest of the CC-prefix. This intuition is captured by

9
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Proposition 3.11 below which analyzes the action of φU on maximal configura-
tions of E, for U a CC-prefix. It is shown on an example in § 5 that this smooth
property of CC-prefixes on maximal configurations does not hold in general for
S-prefixes, justifying a posteriori the introduction of CC-prefixes.

Lemma 3.10. Let U be a CC-prefix of an AES E. Let C ∈ Conf(E) and let
Z ∈ Conf(U). Assume that Z ↑U φU (C), where ↑U denotes the compatibility
relation between configurations of U . Then ψU (Z) ↑ C.

Proof. Considering Z and C as in the statement, we first show the following
claim: Z ∪ C is a configuration. Since Z ∪ C is clearly ≤-left closed, it suffices
to show that Z ∪ C does not contain any source of conflict. For the seek of
contradiction, assume that X ⊆ Z ∪C is a source of conflict. Then X ∩ Z 6= ∅,
otherwise X ⊆ C, contradicting that C is a configuration. Since U is in par-
ticular a S-prefix, and since X is a source of conflict, this implies that X ⊆ U .
Write X = {x1, . . . , xn} with x1 ր · · · ր xn ր x1 . We assume without loss
of generality that x1 ∈ Z. The compatibility relation Z ↑U φU (C) yields the
following implication:

xn ∈ C ⇒ xn ∈ Z ,

from which we derive that xn ∈ Z. Proceeding inductively, we obtain that all xi
belong to Z, and since X is a ր-cycle this contradicts that Z is a configuration.
We have thus shown the above claim.

Now to show ψU (Z) ↑ C, we prove the two implications stated in Lemma 2.4.
For this, pick a ∈ ψU (Z) and b ∈ C, and keep in mind that a ∈ U in particular.

1. Assume a ր b. If a ≤ b then obviously a ∈ C, hence we may assume
without loss of generality that ¬(a ≤ b) holds. Furthermore ¬(b ր a)
holds, otherwise {a, b} ∈ ♯ , contradicting the above claim. Since a ∈ U ,
and since U is a CC-prefix, this implies that b ∈ U and therefore b ∈ φU (C).
We now have a ∈ Z, b ∈ φU (C), a րU b and Z ↑U φU (C). This implies
according to Lemma 2.4 that a ∈ φU (C) and thus a ∈ C.

2. Assume b ր a. Then again ¬(a ր b) holds thanks to the above claim,
and therefore b ∈ U using this time the S-prefix property of U . We now
have a ∈ Z, b ∈ φU (C), b րU a and Z ↑U φU (C). This implies according
to Lemma 2.4 that b ∈ Z, i.e., b ∈ ψU (Z).

The proof is complete.

Proposition 3.11. Let U be a CC-prefix of an AES E. Then for any maximal
element W of (Conf(E),⊑E), φU (W ) is a maximal element of (Conf(U),⊑U ).

Proof. Let Z ∈ Conf(U) such that φU (W ) ⊑U Z. Then in particular Z ↑U
φU (W ) and therefore, applying Lemma 3.10, ψU (Z) ↑W . By maximality of W
in (Conf(E),⊑E), this implies that ψU (Z) ⊑E W . Applying morphism φU to
both sides of this inequality, and taking into account φU ◦ ψU = IdConf(U) we
obtain Z ⊑U φU (W ) and thus Z = φU (W ). This shows that φU (W ) is maximal
in (Conf(U),⊑U ).

10
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Figure 2: An example of AES.

4 Defining Branching Cells for AES

Branching cells aim at decomposing a computational processes through its ele-
mentary choices. First introduced for PES in [2, 3], we study their counterpart
for AES. After having informally described the recursive construction of branch-
ing cells on an example, we introduce the notion of future of a configuration in
an AES, and then we give the formal definition of branching cells. We then state
the main theorem of this section which allows to decompose a maximal config-
uration through elementary choices, captured by branching cells. We then give
small examples illustrating the different notions introduced so far. The proof of
the main theorem is postponed to next section.

Informal Description of Branching Cells on an Example. A first notion
of choice is related to the conflict relation of an AES: if some events are in
(symmetric) conflict, only one of them at most shall belong to a configuration.
Consider for example the AES E depicted in Figure 2. Events {a3, a4} are in
conflict, and therefore a choice between a3 and a4 must be made.

A second notion of choice is related to asymmetric conflict. In the same
example, consider for instance the events a1 and a2 related by a1 ր a2 . This
time, the choice is between both a1 and a2 on the one hand, and a2 only on
the other hand. Since, if a2 has been chosen at some stage without a1 , then
a1 cannot belong to any of its later extensions (in the sense of Definition 2.3).
Hence the choice has been made inside the subAES {a1, a2} once and for all.
Observe that we do not consider the possibility of a1 alone, because then nothing
will prevent a2 to fire at some later stage, and hence a2 will eventually fire.

Furthermore, since the two subAES α1 = {a1, a2} and α2 = {a3, a4} are
not related with one another neither through causality nor through asymmetric
conflict, it is obvious on this example that the choices made inside α1 and α2

are independent from one another. The two subAES α1 and α2 are called the
initial branching cells of E. We observe that α1 and α2 are the two minimal
and non empty CC-prefixes of E. According to Proposition 3.11, if W is any
maximal configuration of E, then Wα1

= α1 ∩ W and Wα2
= α2 ∩ W are

two maximal configurations of α1 and α2 respectively, that correspond to the
choices made inside α1 and α2 . Therefore Wα1

ranges over
{
{a2}, {a1, a2}

}

and Wα2
ranges over

{
{a3}, {a4}

}
.

Continuing with this example, assume for instance that Wα1
= {a2} and

Wα2
= {a4}. Put U = α1 ∪ α2. Since U is in particular a S-prefix, we have

that WU ⊑E W (Proposition 3.8). Therefore the events of W \ W8U range
over the events of E that belong to some continuation of WU . These events

11
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•

����

b3 •b4 •oo b5

•c3 •oo c4

α3 α4

Figure 3: Illustrating the future of WU = {a2, a4} in AES from Figure 2. The
branching cells α3 and α4 are depicted by frames.

form a subAES that we call the future AES of WU . We depict it in Figure 3,
by removing from E events either in WU or not compatible with WU . It is
important to notice that, since WU is maximal, whatever W will eventually be,
we are sure that no new event of W will appear in U ; this expresses that the
choices made in U have been made once and for all, and there is no possible
going back. It implies that events of U are automatically ruled out from the
future of WU . This property of CC-prefixes is essential in our construction.

In the future of WU , we find again two initial branching cells, depicted by
frames in Figure 3 and given by α3 = {b3} and α4 = {b4, b5} . The possi-
ble choices correspond to the maximal configurations of subAES α3 and α4,
which respectively range over

{
{b3}

}
(there is actually non choice in α3) and

over
{
{b4}, {b4, b5}

}
. Finally, whatever choice is made in α4 , the future of

the obtained configuration is the following AES, that coincides with its only
branching cell α5: •c3 •oo c4 . The maximal configurations of E that

we have described by this way are the four maximal configurations that contain
the events a2 , a4 and b3 . They also contain either b4 or b4 and b5 on the one
hand, and either c3 or c3 and c4 on the other hand. It is part of the following
theory that every maximal configuration can be described by its decomposition
through branching cells.

Initial Branching Cells. Assume that E 6= ∅. It is obvious that CC-prefixes
of E are stable by intersection, and that E itself is a non empty CC-prefix. In
other words, CC-prefixes of an AES E form a non empty semi-lattice, which
is finite since E is assumed to be finite. As a consequence, every non empty
CC-prefix of E contains at least a minimal non empty CC-prefix; whence the
following definition.

Definition 4.1 (initial branching cells). The initial branching cells of a non
empty AES E are the minimal non empty CC-prefixes of E. The empty AES
has ∅ as unique branching cell.

Note that any non empty AES always has initial branching cells, which are
non empty by definition. In the above example depicted in Figure 2, the initial
branching cells are α1 and α2 .

Future of a Configuration. Initial branching cells capture the initial choices
made by a process. In order to capture the choices made afterward, we need to
formally define the future of a configuration and to study its properties.

12
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Definition 4.2 (future of a configuration). If C is a configuration of an AES E,
the future of C is the subAES of E defined by:

EC = {e ∈ E | ⌊e⌋ ↑ C} \ C .

Events of EC can be characterized as follows, which is simply a rephrasing
of Lemma 2.4.

Lemma 4.3. Let C ∈ Conf(E). Then an event e belongs to EC if and only if:

(e /∈ C) ∧ ∀(e′, c) ∈ ⌊e⌋ × C (e′ ր c⇒ e′ ∈ C) ∧ (cր e′ ⇒ c ∈ ⌊e⌋). (6)

Observe that if e ∈ EC , then ⌊e⌋ ↑ C and therefore any e′ ∈ ⌊e⌋ satisfies
⌊e′⌋ ↑ C. Therefore, we have:

∀e ∈ EC ∀e′ ∈ ⌊e⌋ e′ /∈ C ⇒ e′ ∈ EC . (7)

If C ′ ∈ Conf(EC), we use the special notation ⊕ for the concatenation of C
and C ′, simply defined by:

∀C ′ ∈ Conf(EC) C ⊕ C ′ = C ∪ C ′ .

Note that futures of configurations “compose” in the following sense:

∀C ∈ Conf(E) ∀C ′ ∈ Conf(EC) EC⊕C′

=
(
EC)C

′

. (8)

We also consider the following sub-partial orders of (Conf(E),⊑E):

∀C ∈ Conf(E) Conf(E)C = {C ′ ∈ Conf(E) | C ⊑E C ′} .

Point 2 in the following proposition shows that Conf(EC) and Conf(E)C are
two isomorphic partial orders. In other words, the extensions of a configuration
C identify with the configurations of the future of C. Note also that point 1 in
the proposition is not a consequence of previous Lemma 3.4, since EC is not a
≤-left closed subset of E in general; and a similar result concerning the sources
of conflict in EC will be given in § 6.3, Lemma 6.2.

Proposition 4.4. Let C be a configuration of an AES E.

1. The conflict in EC is the restriction of ♯ to EC : for A ⊆ EC , we have
A ∈ ♯EC ⇐⇒ A ∈ ♯ .

2. The formula θC(C ′) = C ⊕ C ′ defines a mapping

θC : Conf(EC) → Conf(E)C ,

which is an isomorphism of partial orders. In particular, we have:

∀C ∈ Conf(E) ∀C ′ ∈ Conf(EC) C ⊑E C ⊕ C ′ . (9)

Proof. 1. As for any subAES, we already have that A ∈ ♯EC ⇒ A ∈ ♯ .
Conversely, assume that A = {a1, . . . , an} satisfies A ⊆ EC and A ∈ ♯ .
Pick for each ai some event a′i ∈ ⌊ai⌋ such that a′1 ր · · · ր a′n ր a′1 .
We show that a′i ∈ EC for all i. Seeking a contradiction, assume for
instance a′1 /∈ EC . Then, using the property (7) observed above, since
a′1 ↑ C this implies that a′1 ∈ C. We also have ⌊a′n⌋ ↑ C since ⌊an⌋ ↑ C
and a′n ր a′1 together with a′1 ∈ C: therefore a′n ∈ C (Lemma 2.4).
Proceeding inductively, it follows that a′i ∈ C for all i = 1, . . . , n, and
this contradicts that C is a configuration. This implies that A ∈ ♯EC , as
expected.
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2. We show that C ⊕ C ′ ∈ Conf(E) for C ∈ Conf(E) and C ′ ∈ Conf(EC).
For this, we first show that C ⊕ C ′ is ≤-left closed. Let e ∈ C ⊕ C ′ and
let e′ ∈ E such that e′ ≤ e. If e ∈ C, obviously then e′ ∈ C ⊆ C ⊕ C ′.
Otherwise we have e ∈ C ′. Observe that ⌊e′⌋ ↑ C and therefore we either
have e′ ∈ C or e′ ∈ EC . If e′ ∈ C then e′ ∈ C ⊕ C ′ and we are done.
And if e′ ∈ EC then e′ ∈ C ′ since C ′ ∈ Conf(EC), and we are done. This
shows that C ⊕ C ′ is ≤-left closed.

To see that C ⊕ C ′ ∈ Conf(E) it now suffices to show that C ⊕ C ′ does
not contain a ր-cycle a1 ր · · · ր an ր a1 . Assume for the seek of
contradiction that it does, and put A = {a1, . . . , an}. Since C is conflict
free, we do not have A ⊆ C. All elements of A do not belong to C ′ either,
otherwise by the first point of the proposition, C ′ would not be conflict
free for #EC . Therefore there are some elements a, b ∈ A with a ∈ C,
b ∈ C ′ and b ր a. But then b ∈ EC and therefore b ∈ C by Lemma 4.3,
which is a contradiction. Hence C ⊕ C ′ ∈ Conf(E).

It remains to show that C ⊑E C⊕C ′ . For this, let e ∈ C and e′ ∈ C⊕C ′

such that e′ ր e. Assume that e′ /∈ C. Then e′ ∈ C ′ ⊆ EC , and since
e′ ր e with e ∈ C this implies that e′ ∈ C according to Lemma 4.3, which
is a contradiction. Hence θC is well defined Conf(EC) → Conf(E)C .

It is easy to check that θC is a morphism of partial orders, and that (θC)−1,
given by (θC)−1(D) = D \ C is also a morphism of partial orders, com-
pleting the proof.

Branching Cells. Initial branching cells have been defined above as the min-
imal non empty CC-prefixes of an AES. In order to define branching cells in
general, we consider other CC-prefixes and their associated maximal configura-
tions.

Definition 4.5 (CC-configurations). We denote by CC-Conf(E) the class of
CC-configurations of an AES E, which is defined as the smallest class of con-
figurations such that:

1. ∅ ∈ CC-Conf(E); and

2. for every C ∈ CC-Conf(E), for every CC-prefix U ⊆ EC , and for every
maximal configuration C ′ of U : C ⊕ C ′ ∈ CC-Conf(E).

In other words, CC-configurations are obtained by recursively concatenating
maximal configurations of CC-prefixes, where each CC-prefix is chosen in the
future of the configuration already constructed. Hence any CC-configuration C
is obtained as the last element in an increasing sequence of configurations ∅ =
C0 ⊑E C1 ⊑E · · · ⊑E Cn , where Cj+1 = Cj ⊕Wj+1 , and Wj+1 is a maximal
configuration of some CC-prefix Uj+1 of ECj .

Branching cells are then defined as follows.

Definition 4.6 (branching cells). Let E be an AES.

1. The branching cells enabled at C, for C ∈ CC-Conf(E), are the initial
branching cells of EC .
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2. The branching cells of E are the collection of all branching cells enabled
at C, for C ranging over CC-Conf(E).

3. Notation: we reserve the symbols α,β to denote branching cells, and
we write C ⊢E α to denote that α is a branching cell of E enabled at
C ∈ CC-Conf(E).

By definition, each branching cell is thus an AES. Note that the initial
branching cells of E are the branching cells enabled at ∅ since E∅ = E. If
C ∈ CC-Conf(E), we have by definition:

C ⊢E α ⇐⇒ ∅ ⊢EC α .

This generalizes using Equation (8) to the following:

∀C ∈ CC-Conf(E) ∀C ′ ∈ CC-Conf(EC) C ⊕ C ′ ⊢E α ⇐⇒ C ′ ⊢EC α .

This property implies that any branching cell of EC , for C ∈ CC-Conf(E),
is also a branching cell of E. Finally, we will see in Lemma 6.1 that EW = ∅ if
W is a maximal configuration of E, and therefore W ⊢E ∅, hence ∅ is always a
branching cell of any AES.

Covering of a Maximal Configuration by its Branching Cells. Before
reviewing some examples illustrating the properties of branching cells, we state
the main theorem about branching cells. It will be convenient to adopt a special
notation for the set of maximal configurations of an AES.

Notation. If E is an AES, we denote by Conf(E) the set of maximal configu-
rations of E, that is to say, the set of maximal elements of (Conf(E),⊑E).

It follows in particular from Definition 4.5 that:

∀C ∈ CC-Conf(E) ∀α ∀W ∈ Conf(α) C ⊢E α ⇒ C ⊕W ∈ CC-Conf(E) .
(10)

Theorem 4.7. Let E be an AES. For each W ∈ Conf(E), there is a integer n ≥
0 and a sequence of pairwise distinct and non empty branching cells (α1, . . . ,αn)
of E, and for each αi some Wi ∈ Conf(αi) such that, if (Ci)0≤i≤n are the
configurations of E defined by:

C0 = ∅ , Ci+1 = Ci ⊕Wi+1 (for i = 0, . . . , n− 1),

we have:

∀i = 0, . . . , n− 1 Ci ⊢E αi+1 , and ∅ ⊑E C1 ⊑E · · · ⊑E Cn =W .

The integer n is > 0 if and only if E 6= ∅ . Furthermore, in any such a
decomposition, the branching cells αi are pairwise disjoint and the Wi’s are
necessarily given by:

∀i = 1, . . . , n Wi =W ∩αi .

Finally, the sequence of branching cells that appear in the above decomposition
is unique up to their order of appearance, and therefore so are the Wi’s.
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α1 • //a1 • a2 α2 •
((a3 •hh a4

α3 •b3 α4 •b4 •oo b5
α5 •c3 •oo c4
α6 •c1 •oo c2 α7 •

((
b1 •hh b2

Figure 4: All non empty branching cells of the AES depicted in Figure 2.

In the above theorem, observe that the configurations Ci are CC-configura-
tions of E. For, proceeding by induction, C0 = ∅ is a CC-configuration, and
if Ci−1 ∈ CC-Conf(E), then we deduce from Ci−1 ⊢E αi , Wi ∈ Conf(αi) and
Ci = Ci−1 ⊕Wi that Ci ∈ CC-Conf(E) as in (10). In other words, Theorem 4.7
says that maximal configurations can be decomposed through increasing ap-
proximations by CC-configurations (the Ci’s), whose increments (the Wi’s) are
elementary at the grain of branching cells. The theorem also states the unique-
ness of such a decomposition up to the order of appearance of the branching
cells.

A note on the trivial case E = ∅: then W = ∅ and n = 0 in Theorem 4.7
and the sequence of non empty branching cells is empty; the statement is true.

The statement in the theorem regarding that the distinct branching cells of
the decomposition are actually disjoint is non trivial: indeed, in general distinct
branching cells may not be disjoint, as illustrated below in § 5. Theorem 4.7
states that the branching cells associated to a given maximal configuration,
however, are indeed pairwise disjoint.

The proof of Theorem 4.7 is postponed to § 6, after reviewing some illus-
trating examples.

5 Illustrating Branching Cells through Exam-
ples

In this section we review some properties of branching cells and of CC-configu-
rations through a few examples, which cover the following topics: determination
of branching cells, uniqueness of the decomposition of a maximal configuration
through branching cells (up to the order), need for considering CC-prefixes, need
for considering CC-configurations, and finally the dynamic behavior of branching
cells.

Determining Branching Cells. We keep exploring the example depicted
above in Figure 2, now equipped with rigorous definitions for branching cells.
For the seek of completeness, we depict all non empty branching cells in Figure 4.
They are obtained as follows, by feeding point 1 with E as initial data:

1. Data: H an AES. Find and record all initial branching cells αi of H, and
consider the CC-prefix U =

⋃
iαi .

2. Compute all maximal configurations of U ; for each W ∈ Conf(U), go to
Step 1 with data HW .
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Uniqueness of the Decomposition through Branching Cells. Let W ∈
Conf(E). The uniqueness property of the decomposition of W through branch-
ing cells has as a consequence that the following non deterministic algorithm is
valid to find the decomposition of W ; note that it exactly follows the steps of
the proof of existence given in § 6.1.

1. Data: (E,W ) where E is an AES and W ∈ Conf(E).

(a) Pick any initial branching cell α of E.

(b) ComputeWα = α∩W , the future EWα and the queueW ′ =W \Wα .

2. Go to Step 1 with data (EWα ,W ′).

The branching cells encountered are the branching cells of the decomposition
of W . Thanks to the uniqueness property stated in Theorem 4.7, although the
order of branching cells will change because of the non determinism of the
algorithm, we will always find the same set of branching cells α, and also the
same local configurations Wα .

Need for Considering CC-prefixes. We have show in Proposition 3.11 that
CC-prefixes have the following property: W ∈ Conf(E) ⇒ φU (W ) ∈ Conf(U),
for U a CC-prefix. This property has proved to be essential in the construction
of branching cells.

Although there might be other subAES with this property, we show here on
an example that S-prefixes for instance do not have this property in general.
Consider the simple AES consisting of two events a and b only related by aր b.
Then U = {a} is a S-prefix of E, and W = {b} is a maximal configuration of E.
However φU (W ) = ∅ is not maximal in U .

Need for Considering CC-configurations. Branching cells decompose max-
imal configurations as a concatenation of configurations maximal in CC-prefixes.
Therefore considering the class of CC-configurations, precisely obtained as con-
catenations of such configurations, is natural. One might wander however if it
is really necessary. For instance, maybe for each CC-configuration C, isn’t there
some CC-prefix U such that C ∈ Conf(U)? The answer is negative, basically
because CC-prefixes may split in the future of configurations. More precisely,
it is shown in § 6.3, Lemma 6.4 that U ∩ EC is a CC-prefix of EC if U is a
CC-prefix of E and if C ∈ CC-Conf(E); however U ∩EC might split in EC more
than U did in E.

We illustrate the previous discussion on an example. Consider the AES E
depicted in Figure 5. It contains only two non empty CC-prefixes, which are
pictured by frames. The configuration C = {a1, a3, b1} is thus not a maximal
configuration in any CC-prefix of E, since otherwise it should be maximal in E
itself, but C ⊑E C ∪ {b3}. However, C is a CC-configuration of E, as shown
by the decomposition C = W1 ⊕ W2 , with W1 = {a1, a3} and W2 = {b1}.
Indeed, W1 is maximal in the initial branching cells α1 = {a1, a2, a3}. The
future EW1 consists of the two events b1 and b2 , not related by any relation.
Hence α2 = {b1} is a branching cell of E, initial in EW1 , and W2 ∈ Conf(α2) .
This shows that C ∈ CC-Conf(E), whereas it is not maximal in any CC-prefix
of E.
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Figure 5: An AES with two non empty CC-prefixes which are framed. The
configuration {a1, a3, b1} is a CC-configuration.
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Figure 6: An AES to illustrate overlapping branching cells.

As this example shows, this property is not related to the asymmetric char-
acter of the conflict. And in fact, the very same holds also for PES.

Branching Cells are Dynamic. In general, branching cells are not pairwise
disjoint. Hence, the fact that the branching cells that tile a maximal configura-
tion are indeed disjoint, as stated in Theorem 4.7, is non trivial.

This particular feature can be interpreted as a dynamic behavior, caused by
concurrency and more specifically by the confusion in the sense of [7] found in
event structures. Since the overlapping feature of branching cells already holds
for PES, it is natural to find it also for AES; indeed any PES can be coded as
an AES, and the branching cells for PES correspond to branching cells for AES.

Consider the AES E depicted in Figure 6. The unique initial branching cell
α consists of events a1 and a2 . Therefore both C1 = {a1} and C2 = {a2} are
CC-configurations of E. The future AES of C1 and C2 respectively are given
by EC1 = {b1} and EC2 = {b1, b2}, with unique branching cells respectively
β1 = {b1} and β2 = {b1, b2}. Branching cells β1 and β2 are distinct, yet they
overlap.

6 Proof of Theorem 4.7

We decompose the proof of Theorem 4.7 in four statements, of which the third
one requires the longest proof:

1. Existence of the decomposition (§ 6.1): we prove the existence of branching
cells (αi)1≤i≤n and associated Wi ∈ Conf(αi) for i = 1, . . . , n satisfying
the statement of the theorem.

2. Characterization of the Wi’s (§ 6.2): in case the branching cells αi and
the configurationsWi ∈ Conf(αi) exist as in the statement of the theorem,
then we show that Wi =W ∩αi for i = 1, . . . , n.

3. Uniqueness of the decomposition (§ 6.3): if a sequence of branching cells
(α1, . . . ,αn) exists such that the Wi given by Wi = αi ∩W indeed sat-
isfy the statement of the theorem, then any other sequence of branching
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cells with the same property can be obtained by switching the order of
occurrences of the branching cells in the sequence (α1, . . . ,αn).

4. The branching cells of the decomposition are disjoint (§ 6.3): this is proved
directly (Lemma 6.9), and used as an auxiliary result in the proof of
uniqueness.

6.1 Existence of the Decomposition

We begin with a lemma.

Lemma 6.1. Let C ∈ Conf(E).

1. Let W ∈ Conf(EC) . Then W ∈ Conf(EC) ⇐⇒ C ⊕W ∈ Conf(E).

2. EC = ∅ if and only if C ∈ Conf(E).

Proof. 1. Indeed, since θC : Conf(EC) → Conf(E)
C

defined by θC(C ′) =
C ⊕ C ′ is an isomorphism of partial orders according to Proposition 4.4.

2. Assume that EC = ∅, and let C ′ ∈ Conf(E) such that C ⊑E C ′ . Consid-
ering the inverse mapping of θC , we have that C ′ \ C is a configuration
of EC . But EC = ∅, hence C ′ \ C = ∅ and therefore C = C ′, showing
that C is maximal in Conf(E).

Conversely assume that C is maximal in Conf(E). Let C ′ be a configura-
tion of EC . Then C⊕C ′ is a configuration of E that satisfies C ⊑E C⊕C ′

according to Equation (9) in Proposition 4.4. Since C is maximal, it im-
plies that C ′ = ∅. Hence EC is an AES such that Conf(EC) = {∅}. But
∅ is the only AES with this property, and thus EC = ∅.

The proof of the lemma is complete.

We now prove the existence part of Theorem 4.7. LetW ∈ Conf(E).
We construct by induction on the integer i ≥ 0 a sequence of branching cells
(αj)1≤j≤i and of subsets (Wj)1≤j≤i of E, with associated CC-configurations
(Cj)0≤j≤i , and with the following four properties:

1. Cj−1 ⊢E αj and αj 6= ∅ for j = 1, . . . , i ;

2. Wj ∈ Conf(αj) for j = 1, . . . , i ;

3. C0 = ∅ , and Cj+1 = Cj ⊕Wj+1 for j = 0, . . . , i− 1 ;

4. C0 ⊑E · · · ⊑E Ci ⊑E W .

No bound is given a priori on the sequence thus constructed; but actually
we will see that the construction eventually stops.

We put C0 = ∅. If E = ∅, the construction stops and we put a STOP

mark. If not, we pick α1 an initial branching cell of E: C0 ⊢E α1 . We also
put W1 = α1 ∩W , and we have W1 ∈ Conf(α1) by Proposition 3.11. Putting
finally C1 = C0 ⊕W1 =W1, we obviously have C0 ⊑E C1 , and we furthermore
have C1 ⊑E W by Proposition 3.8. Hence, if the construction has not stopped
already, points 1–4 are satisfied for i = 1.
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Assume that α1, . . . ,αi and W1, . . . ,Wi have been constructed satisfying
the four items above, together with the associated C0, . . . , Ci for some integer
i ≥ 1. We putW ′ =W \Ci and E

′ = ECi . Note that θCi(W ′) =W . If E′ = ∅,
we stop the construction and we put a STOP mark.

Otherwise we repeat the construction already described for i = 1 with W ′

in place of W and E′ in place of E. Hence we pick some initial branching
cell αi+1 of E′, which is non empty since E′ 6= ∅ . We have thus Ci ⊢E αi+1 .
Configuration W ′ is maximal in E′ thanks to Lemma 6.1, point 1, and there-
fore by putting Wi+1 = αi+1 ∩ W ′ we have Wi+1 ∈ Conf(αi+1) thanks to
Proposition 3.11. We put Ci+1 = Ci ⊕Wi+1 , and we have Ci ⊑E Ci+1 thanks
to Equation (9) in Proposition 4.4. We also have Wi+1 ⊑E′ W ′ according to
Proposition 3.8. Applying the morphism θCi(·) = Ci ⊕ · to the later inequality,
we obtain Ci+1 ⊑E W , completing the construction by induction.

Since each branching cell αi is non empty, and since Wi ∈ Conf(αi) , in
particular Wi 6= ∅ and therefore Ci contains at least i events. But since Ci ⊆W
for all i ≥ 0 until the construction stops, there must exist an integer i where
the construction stops. Let n be the integer i preceding the occurrence of the
STOP mark. By construction of n, we have ECn = ∅. It follows therefore from
point 2 of Lemma 6.1 that Cn is a maximal configuration of E. But Cn ⊑E W
and thus Cn = W . This proves the existence of the decomposition as stated in
Theorem 4.7.

Two remarks about the above construction:

1. First, n = 0 if and only if E = ∅.

2. By construction, the branching cells obtained (αi)1≤i≤n are pairwise dis-
joint.

6.2 Characterization of the Wi’s in Theorem 4.7

Let W ∈ Conf(E). Assume that for some integer n ≥ 0 there is a sequence
(α1, . . . ,αn) of branching cells of E, and a sequence W1, . . . ,Wn with Wi ∈
Conf(αi) for all i = 1, . . . , n, such that, by putting C0 = ∅ and Ci = Ci−1 ⊕Wi

for i = 1, . . . , n, we have:

Ci−1 ⊢E αi for i = 1, . . . , n, and Ci ⊑E W for i = 0, . . . , n .

Then we claim that:

Wi = αi ∩W , for i = 1, . . . , n. (11)

Observe that this setting entails the one of Theorem 4.7, and is even a bit
weaker since we do not assume here that Cn =W .

Proof of the claim (11). The case n = 0 is trivial, hence we assume that n ≥ 1.
Let i ∈ {1, . . . , n} . We have Wi ∈ Conf(αi) and Conf(αi) ⊆ Conf(ECi−1) since
αi is assumed to be an initial branching cell of Ci−1 , and thus in particular
αi is a CC-prefix of ECi−1 . Since we have Ci = Ci−1 ⊕ Wi , it follows from
Equation (9) in Proposition 4.4 that Ci−1 ⊑E Ci , which is equivalent to Ci ∈
Conf(E)Ci−1 . We also have Ci−1 ⊑E W , and thus W ∈ Conf(E)Ci−1 .
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We may thus apply the morphism of partial orders

(θCi−1)−1 : Conf(E)Ci−1 → Conf(ECi−1) ,

to both sides of the inequality Ci ⊑E W , and we obtain: Wi ⊑ECi−1 W \Ci−1 .
Since αi is a CC-prefix of ECi−1 , we may consider the morphism of partial orders
φ = φαi

: Conf(ECi−1) → Conf(αi) , and applying it to the later inequality we
get: φ(Wi) ⊑αi

φ(W \ Ci−1) . But φ(Wi) = Wi since Wi is a configuration
of αi ; it is moreover a maximal configuration of αi , hence the inequality turns
into the equality:

Wi = αi ∩ (W \ Ci−1) . (12)

We also observe that αi ∩ Ci−1 = ∅ since, by definition, αi ⊆ ECi−1 and
Ci−1 ∩ E

Ci−1 = ∅ . Therefore Equation (12) rewrites as Equation (11).

6.3 Uniqueness of Branching Cells in Theorem 4.7

We begin with a couple of lemmas. The three first lemmas (Lemmas 6.3, 6.4
and 6.5) are stated in view of the exchange Lemma 6.6, which is the first key for
the uniqueness proved at the end of this subsection. The second key is the fact
that branching cells tiling a maximal configuration are pairwise disjoint; this is
stated in a separate lemma (Lemma 6.9).

Lemma 6.2 (sources of conflict in ≤-closed left subsets and in the future). We
denote by S (E) as in Definition 3.1 the sources of conflict of E.

1. Let U be a ≤-closed subset of E, and let X ⊆ U . Then X ∈ S (U) ⇐⇒
X ∈ S (E).

2. Let C ∈ Conf(E), and let X ⊆ EC . Then X ∈ S (EC) ⇐⇒ X ∈ S (E).

Proof. 1. Obvious.

2. Obviously, if X ∈ S (E) then X ∈ S (EC). Conversely, let X be a source
of conflict of EC . Then X is a ր-cycle and it does not contain any
ր-cycle as a strict subset. Hence to show X ∈ S (E) it suffices to show
that X is --minimal. For this, let Y be a ր-cycle such that Y - X. For
every y ∈ Y there exists some x ∈ X such that y ≤ x, and since ⌊x⌋ ↑ C
we have ⌊y⌋ ↑ C. Write Y = {y1, . . . , yn} with y1 ր · · · ր yn ր y1 .
Assume that Y ∩ C 6= ∅, say for instance y1 ∈ Y ∩ C. Then the relation
yn ր y1 together with the compatibility ⌊yn⌋ ↑ C imply that yn ∈ C.
Proceeding inductively, we obtain by this way that Y ⊆ C, contradicting
that C is a configuration. Hence Y ∩ C = ∅, and therefore Y ⊆ EC .
By --minimality of X in EC , we have thus X - Y , and this shows that
X ∈ S (E).

Lemma 6.3 (heredity of S-prefixes and of CC-prefixes). Let U be a S-prefix
of E and let V ⊆ U .

1. Then V is a S-prefix of U if and only if V is a S-prefix of E.

2. If furthermore U is a CC-prefix of E, then V is a CC-prefix of U if and
only if V is a CC-prefix of E.
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Proof. 1. (⇒) Assume that V is a S-prefix of U .

(a) If e ∈ V and e′ ∈ E are such that e′ ր e and ¬(e ր e′),
then e ∈ U since U is a S-prefix of E, and thus e′ րU e and
¬(eրU e′), from which follows that e′ ∈ V since V is a S-prefix
of U .

(b) If X ∈ S (E) and X ∩ V 6= ∅, then X ∩ U 6= ∅ in particular,
and since U is a S-prefix of E this implies that X ⊆ U . But
then X ∈ S (U) by Lemma 6.2, point 1, and thus X ⊆ V since
X ∩ V 6= ∅ and since V is assumed to be a S-prefix of U .

This shows that V is a S-prefix of E.

(⇐) Same type of proof.

2. Assume furthermore that U is a CC-prefix of E.

(⇒) If V is a CC-prefix of U , then V is a S-prefix of U , and thus of E by
point 1 above. Now if e ∈ V and e′ ∈ E are such that e ր e′ and
¬(e′ ր e) and ¬(e ≤ e′), then e′ ∈ U since U is a CC-prefix of E.
Hence e րU e′ and ¬(e′ րU e) and therefore e′ ∈ V since V is a
CC-prefix of U . This shows that V is a CC-prefix of E.

(⇐) Same type of proof.

Lemma 6.4 (trace of S-prefixes and of CC-prefixes in a future). Let U be a
S-prefix of E, let C ∈ Conf(E) and let V = U ∩ EC .

1. Then V is a S-prefix of EC .

2. Assume furthermore that U is a CC-prefix of E. Then V is a CC-prefix
of EC .

Proof. 1. Referring to Definition 3.5 of S-prefixes, we check the two following
points regarding V .

(a) Let e ∈ V and e′ ∈ E such that e′ րEC e and ¬(e րEC e′) . Then
e′ ր e and ¬(eր e′) and therefore e′ ∈ U since U is a S-prefix of E,
and thus e′ ∈ V .

(b) Let X ∈ S (EC) be such that X ∩ V 6= ∅. Then, according to
Lemma 6.2, point 2, X is a source of conflict in E. Therefore X ⊆ U
and thus X ⊆ V .

This shows that V is a S-prefix of EC .

2. If U is a CC-prefix of E, then U is in particular a S-prefix of E, and thus
V is a S-prefix of EC according to point 1 above. If e ∈ V and e′ ∈ EC

are such that e րEC e′ and ¬(e′ րEC e) and ¬(e ≤ e′) then also e ր e′

and ¬(e′ ր e) and therefore e′ ∈ U since U is a CC-prefix of E, and finally
e′ ∈ V . Hence V is a CC-prefix of EC .

We start gathering the fruit of our efforts.
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Lemma 6.5 (CC-prefixes back to/back from the future). Let U and V be two
disjoint CC-prefixes of E. Let C ∈ Conf(U), and identify C with ψU (C) = C ∈
Conf(E).

1. Then V ⊆ EC , and V is a CC-prefix of EC .

2. If V ′ ⊆ V is a CC-prefix of EC then V ′ is a CC-prefix of E.

Proof. 1. We first show that V ⊆ EC . Let e ∈ V . Then e /∈ C since C ⊆ U
and U ∩ V = ∅ . Let us show that ⌊e⌋ ↑ C. We have ⌊e⌋ ⊆ V since V is in
particular ≤-left closed (Proposition 3.6). Since U ∩V = ∅, it follows that
φU (⌊e⌋) = ∅, hence φU (⌊e⌋) ↑U C . Therefore, applying Lemma 3.10, we
have that ⌊e⌋ ↑ ψU (C), which is our claim. Therefore e ∈ EC , and this
shows that V ⊆ EC .

It follows from point 2 of Lemma 6.4 that V ∩ EC is a CC-prefix of EC ,
and since V ∩ EC = V we are done.

2. Let V ′ ⊆ V be a CC-prefix of EC . Since V is a CC-prefix of EC according
to point 1 above, then V ′ is a CC-prefix of V according to point 2 of
Lemma 6.3. Since V is also a CC-prefix of E by assumption, it implies
that V ′ is a CC-prefix of E, again by point 2 of Lemma 6.3.

Lemma 6.6 (exchange lemma). Let α,β be two distinct initial branching cells
of E, and let W ∈ Conf(α) . Then W ⊢E β .

Proof. By minimality, distinct initial branching cells are disjoint. Therefore α

and β are two disjoint CC-prefixes of E. Since W ⊆ α , it follows from point 1
of Lemma 6.5 that β is a non empty CC-prefix of EW . Let us show that β

is minimal among non empty CC-prefixes of EW . For this, let U 6= ∅ be a
CC-prefix of EW such that U ⊆ β . Then U is also a non empty CC-prefix of
E according to point 2 of Lemma 6.5. Since β is minimal among non empty
CC-prefixes of E, it follows that U = β , and thus β is an initial branching cell
of EW , i.e., W ⊢E β .

Since we are about to manipulate decompositions with the form stated in
Theorem 4.7, it is convenient to introduce a specific terminology.

Definition 6.7 (adapted sequences of branching cells). Let W ∈ CC-Conf(E).
A sequence of branching cells (α1, . . . ,αn) is said to be adapted to W if, by
putting Wi = αi ∩W for i = 1, . . . , n and C0 = ∅ and Ci+1 = Ci ⊕Wi+1 for
i = 0, . . . , n− 1 , we have:

1. Ci−1 ⊢E αi and Wi ∈ Conf(αi) for i = 1, . . . , n ;

2. Cn =W .

Note that the above definition applies to CC-configurations of E, which con-
tain in particular the maximal configurations of E. Although the result we
target deals with maximal configurations, it could actually be similarly stated
for CC-configurations, and in the remaining of its proof it will be helpful to have
a little more flexibility than we would have by restricting ourselves to maximal
configurations only.

Analogously to the composition of futures seen in Equation (8), adapted
sequences of branching cells can be concatenated as follows.
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Lemma 6.8. Let W ∈ CC-Conf(E) and W ′ ∈ CC-Conf(EW ) . Assume that
(α1, . . . ,αn) is a sequence of branching cells of E adapted to W , and that
(β1, . . . ,βn′) is a sequence of branching cells of EW adapted to W ′ . Then the
concatenation (α1, . . . ,αn,β1, . . . ,βn′) is a sequence of branching cells of E
adapted to W ⊕W ′ .

Proof. Obvious.

We state in a separate lemma that branching cells of an adapted sequence
are necessarily disjoint.

Lemma 6.9. If (α1, . . . ,αn) is an adapted sequence of branching cells for
W ∈ Conf(E), then i 6= j ⇒ αi ∩αj = ∅ for i, j ∈ {1, . . . , n}.

Proof. Assuming that the sequence is non empty, we first prove that α1∩αj = ∅
for all j = 2, . . . , n. Let j ∈ {2, . . . , n}. We have αj ⊆ ECj−1 , and ECj−1 ⊆ EC1

since j − 1 ≥ 1. Therefore α1 ∩ αj ⊆ α1 ∩ E
C1 . But C1 = W1 is a maximal

configuration of α1 , and this implies that α1 ∩E
C1 = ∅, and thus α1 ∩αj = ∅.

For the general case, we prove that for all i = 1, . . . , n we have αi ∩αj = ∅
for j > i, which implies the statement of the lemma. Indeed, simply apply the
previous case to W ′ = θCi−1(W ).

Lemma 6.10. Let (α1, . . . ,αn) be a sequence of branching cells of E adapted
to W ∈ Conf(E) . Assume that E 6= ∅ and let α be an initial branching cell
of E . Then there is an integer i ∈ {1, . . . , n} such that αi = α .

Proof. Reasoning by contradiction, assume that α 6= αi for all i = 1, . . . , n . We
consider the sequence of CC-configurations C0, . . . , Cn given as in Definition 6.7.
Then we claim that Ci ⊢E α for i = 0, . . . , n. Proceeding by induction, we have
that C0 = ∅ ⊢E α since α is an initial branching cell of E. Assume that Ci ⊢E α

for some integer 0 ≤ i < n. We also have Ci ⊢E αi+1 . Since αi+1 6= α by
assumption, α and αi+1 are two disjoint initial branching cells of E

Ci . Applying
the exchange Lemma 6.6 in AES ECi and withWi+1 ∈ Conf(αi+1) we have thus

thatWi+1 ⊢ECi α, hence α is an initial branching cell of
(
ECi

)Wi+1
. As already

observed in Equation (8), we have

(
ECi

)Wi+1
= ECi⊕Wi+1 = ECi+1 .

Hence Ci+1 ⊢E α , and the induction is complete.
We now derive a contradiction by considering Cn . Indeed, we have Cn ⊢E α

thanks to the previous induction , but Cn =W is maximal, and therefore α = ∅
since EC = ∅ by point 2 of Lemma 6.1, a contradiction.

Lemma 6.11. Let (α1, . . . ,αn) be a sequence of branching cells adapted to
W ∈ Conf(E). Assume that for some integer i > 1, αi is an initial branch-
ing cell of E. Then the sequence obtained from (α1, . . . ,αn) by switching αi
and αi−1 is adapted to W .

Proof. Thanks to Lemma 6.9, we know that the branching cells in the sequence
(α1, . . . ,αn) are pairwise disjoint.

We first prove the result for the case n = i = 2. If (α1,α2) is a sequence of
branching cells adapted to W , the exchange Lemma 6.6 shows that (α2,α1) is
also adapted to W . The lemma applies since α1 ∩α2 = ∅.
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The case where i = 2 and n > 2 follows then from the previous case
by considering the concatenation of the two adapted sequences of branching
cells, (α2,α1) on the one hand, adapted to C2 = W1 ⊕W2 = W2 ⊕W1 , and
(α3, . . . ,αn) on the other hand, branching cells of EC2 that form a sequence
adapted to (θC2)−1(W ) =W3 ⊕ . . .⊕Wn .

Finally, for the case i > 2, we putW ′ = (θCi−2)−1(W ) . Then (α1, . . . ,αi−2)
is a sequence of branching cells of E adapted to Ci−2 , while (αi−1, . . . ,αn) is
a sequence of branching cells of ECi−2 adapted to W ′ . Applying (i − 2) times
the exchange Lemma 6.6, which is legitimate since the αj are pairwise disjoint,
yields that αi is an initial branching cell of EC1 , EC2 , . . . , ECi−2 . Hence the
case already seen with i = 2 applies to W ′, and thus (αi,αi−1,αi+1, . . . ,αn) is
a sequence of branching cells of ECi−2 adapted to W ′ . Since W = Ci−2 ⊕W ′,
we recompose again the two sequences of branching cells with Lemma 6.8 to
obtain that

(α1, . . . ,αi−2,αi,αi−1,αi+1, . . . ,αn)

is a sequence of branching cells of E adapted to W .

We now prove the uniqueness property of branching cells in Theo-

rem 4.7. We prove by induction on the integer n ≥ 0 the following claim: if W
is a maximal configuration of an AES E, and if (α1, . . . ,αn) and (β1, . . . ,βm)
are two sequences of branching cells of E adapted to W , then m = n and
{α1, . . . ,αn} = {β1, . . . ,βm}.

If n = 0, then E = ∅ and therefore m = 0 as well and we are done.
Assume that n = 1. Then it follows from Lemma 6.10 that α1 is the only

initial branching cell of E. Hence m = 1 and β1 = α1 .
Assume the result is true for some integer n ≥ 1. Then m ≥ 1, necessarily.

Consider the initial branching cell α1 . Then it follows from Lemma 6.10 that
there is some integer 1 ≤ i ≤ m such that βi = α1 . Since βi is then an initial
branching cell of E, we apply (i − 1) times Lemma 6.11 to obtain that the
sequence

(βi,β1, . . . , β̂i, . . . ,βn) = (α1,β1, . . . , β̂i, . . . ,βn)

is adapted to W , where the symbol β̂i means that βi is missing. Putting
C1 = W1 = W ∩ α1 , and W ′ = (θC1)−1(W ), we have thus that (α2, . . . ,αn)

and (β1, . . . , β̂i, . . . ,βm) are two sequences of branching cells of EC1 which are
both adapted to W ′ . The induction hypothesis implies that m − 1 = n − 1
and that {α2, . . . ,αn} = {β1, . . . ,βm} \ {βi}; whence the equalities m = n and
{α1, . . . ,αn} = {β1, . . . ,βm}.

7 Extension to Locally Finite AES

We meet several issues when trying to generalize the previous constructions
to infinite AES. However, infinite AES are natural objects; for instance the
unfolding of a read arc net is an infinite AES as soon as the net contains a loop.
Hence it is worth trying to have some insight on infinite AES.

Although the notion of S-prefix and of CC-prefix have straightforward gen-
eralization with the very same definitions, the existence of minimal non empty
CC-prefix is not always guaranteed. The same phenomenon is observed for infi-
nite PES in general as noted in [1], where stopping prefixes play the same role as
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CC-prefixes for AES. The issue here concerns the possibly infinite concurrency
width of the AES. Fortunately, the unfolding of a finite net with read arc always
has a finite concurrency width, i.e., there is a bound on the number of pairwise
concurrent events.

In other words, when considering an AES obtained as the unfolding of a read
arc net, the existence of non empty minimal CC-prefixes, that is to say, of initial
branching cells, always holds. The remaining issues are the two following:

1. Branching cells might be infinite.

2. The covering of a maximal configuration through branching cells might
not be complete. To entirely cover a maximal configuration by branching
cells, one might need to index the covering branching cells by an ordinal
still countable of course, yet greater than ω. In other words, performing
the covering of W ∈ Conf(E) through branching cells yields in general a
sub-configuration W ′ ⊑E W ; and one might still needs to complete the
covering by additional branching cells for the queue W \W ′ of W . The
latter operation might need to be repeated several times, although only
finitely many times for the unfolding of a read arc net.

Nothing special can be done within branching cells theory about the raw
fact that brings the first issue. The second issue is less problematic than it
first appears, specifically if one adopts a probabilistic point of view; since then
and as shown in [3], the maximal configurations with a problematic behavior,
that is, with an incomplete covering by branching cells, have a statistical rare
occurrence.

There is however a class of infinite PES, with a counterpart in the category
of AES, with a smooth behavior where both difficulties simply vanish, since the
possibly pathological behavior is shown to actually not occur. This class is the
class of locally finite AES.

Definition 7.1 (locally finite AES). Let E be an AES obtained as the unfolding
of a read arc net. Then E is said to be locally finite if for every event e ∈ E,
there is a finite CC-prefix of E that contains e.

As explained above, the assumption in Definition 7.1 that E is the unfolding
of a read arc net guarantees the existence of branching cells. The same property
then necessarily holds for any future EC , where C ranges over finite configu-
rations of E. The property of local finiteness has the following consequences
(where points 3–4 are consequences of Theorem 4.7 applied in finite subAES
of E):

1. Every branching cell is finite.

2. Any maximal configuration W ∈ Conf(E) is obtained as the increasing
countable union

W =
⋃

U

↑ φU (W ) ,

where U ranges over finite CC-prefixes of E. Lemma 3.7 could be a basis
for interpreting both Conf(E) and Conf(E) as limits of projective systems
of finite sets, as developed for PES in [1] and more generally for bifinite
domains in [4].
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3. When considering for W ∈ Conf(E) and for U,U ′ two finite CC-prefixes
of E the decompositions through branching cells of φU (W ) and of φU (W

′),
as stated in Theorem 4.7 applied in finite AES U and U ′, then these
decomposition are coherent with one another. In other words, if U ⊆ U ′,
then the covering of φU (W ) by branching cells is a subset of the covering
of φU ′(W ).

4. Theorem 4.7 extends by considering possibly infinite sequences of non
empty (and finite) branching cells. For W ∈ Conf(E), the ⊑E-increasing
sequence (Ci)i≥0 of CC-configurations that appears in the statement of
the theorem is possibly infinite, in which case it satisfies:

W =
⋃

i≥0

↑ Ci .

Deciding whether a read arc net has a locally finite unfolding is a topic with
no settled answer yet.
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