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Abstract: We consider linear inverse problems in a nonparametric statis-
tical framework. Both the signal and the operator are unknown and subject
to error measurements. We establish minimax rates of convergence under
squared error loss when the operator admits a blockwise singular value de-
composition (blockwise SVD) and the smoothness of the signal is measured
in a Sobolev sense. We construct a nonlinear procedure adapting simulta-
neously to the unknown smoothness of both the signal and the operator
and achieving the optimal rate of convergence to within logarithmic terms.
When the noise level in the operator is dominant, by taking full advan-
tage of the blockwise SVD property, we demonstrate that the block SVD
procedure outperforms classical methods based on Galerkin projection [14]
or nonlinear wavelet thresholding [18]. We subsequently apply our abstract
framework to the specific case of blind deconvolution on the torus and on
the sphere.
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1. Introduction

1.1. Motivation

Consider the following idealised statistical problem: estimate a function f (a
signal, an image) from data

yn = Kf + n−1/2Ẇ , (1.1)
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where

K : H → G

is a linear operator between two Hilbert spaces H and G. The observation of the
unknown f ∈ H is challenged by the action of the linear degradationK as well as
contaminated by an experimental Gaussian white noise Ẇ on G with vanishing
noise level n−1/2 as n → ∞. Alternatively, in a density estimation setting, we
observe a random sample (Z1, . . . , Zn) drawn from a probability distribution1

with density Kf . In each case, we do not know the operator K exactly, but we
have access to

Kδ = K + δḂ, (1.2)

where Ḃ is a Gaussian white noise on H×G thanks to preliminary experiments
or calibration through trial functions. This setting has been discussed in details
in [14, 18]. In this paper, we are interested in operators K admitting a singular
value decomposition (SVD) or a blockwise SVD. In essence, we know the typical
eigenfunctions of K but not the eigenvalues. We cover two specific examples of
interest: spherical and circular deconvolution.

Spherical deconvolution. Used for the analysis of data distributed on the celes-
tial sphere, see Section 4.1 below. One observes a random sample (Z1, . . . , Zn)
with

Zi = εiXi, i = 1, . . . , n

where the εi are random elements in SO(3), the group of 3×3 rotation matrices,
and the Xi are independent and identically distributed on the sphere S2, with
common density f with respect to the uniform probability distribution µ on
S2. In this setting, if the εi have common density g with respect to the Haar
measure du on SO(3), we have

Kf(x) = g ⋆ f(x) =

∫

SO(3)

g(u)f(u−1x)du, x ∈ S
2.

We are interested in the case where the exact form g is unknown. However, K
is block-diagonal in the spherical harmonic basis.

Circular deconvolution. Used for restoring signal or images, see Section 4.2 be-
low. We take H = G = L2(T) the space of square integrable functions on the
torus T = [0, 1] (or [0, 1]d) appended with periodic boundary conditions. We
have

Kf(x) = g ⋆ f(x) =

∫

T

g(u)f(x− u)du, x ∈ T.

The degradation process K = g ⋆ • is characterised by the impulse response
function g which we do not know exactly. However, K is diagonal in the Fourier
basis.

1In that setting, Kf must therefore also be a probability density .
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Although the problem of estimating f is fairly classical and well understood
when K is known (a selected literature is [36, 8, 12, 1, 17, 33, 32] and the
references therein), only moderate attention has been paid in the case of an
unknown K despite its relevance in practice. When the eigenfunctions of K
are known solely, we have the results of Cavalier and Hengartner [5], Cavalier
and Raimondo [6] but they are confined to the case where the error in the
operator is negligible δ ≪ n−1/2. In a general setting with error in the operator,
Efromovitch and Kolchinskii [14] and later Hoffmann and Reiß [18] studied the
recovery of f when the eigenfunctions and eigenvalues of K are unknown. In
both contributions, a marginal attention is paid to the case of sparse or diagonal
operators, but it is shown in both papers that unusual rates of convergence can
be obtained when n−1/2 ≪ δ. In a univariate setting, Neumann [28], Johannes
[20] and Comte and Lacour [9] consider the case of deconvolution with an error
density, known only through an auxiliary set of m learning data. This formally
corresponds to having δ = m−1/2 in our setting. Minimax rates and adaptive
estimators are derived in both regimes m ≪ n and n ≪ m. We address in the
paper the following program:

i) Construction of a feasible procedure f̂n,δ estimating f from data (1.1) and
(1.2) that achieves optimal rates of convergence (up to inessential loga-

rithmic terms). We require f̂n,δ to be adaptive with respect to smoothness
constraints on f and K.

ii) Identification of best achievable accuracy for f under smoothness con-
straints on f and K so that the interplay between n−1/2 and δ can be
explicitly related in the asymptotic δ → 0 and n → ∞; this includes the
comparison with earlier results of [28, 14, 18] in the context of blockwise
SVD.

iii) Application to spherical deconvolution on S2 or circular deconvolution
on the torus; this includes the discussion of our findings in terms of the
existing literature on the topic [7, 29, 26] and some practical aspects of
numerical implementation.

1.2. Main results and organisation of the paper

In Section 2, we present an abstract framework that allows for operators K
to admit a so-called blockwise SVD. This property is simply turned into the
existence of pairs of increasing finite dimensional spaces (Hℓ, Gℓ) that are stable
under the action of K. The blockwise SVD property is further appended with a
smoothness condition quantified by the arithmetic decay of the operator norm
ofK and its inverse on Hℓ (resp. Gℓ) (the so-called ordinary smooth assumption,
see e.g. [36]). By means of a reconstruction formula, we obtain in Section 2.2

an estimator f̂n,δ of f by first inverting Kδ on Hℓ with a thresholding tuned
with δ and then filter the resulting signal by a block thresholding tuned with
n−1/2. As for i) and ii), we establish in Theorems 1 and 3.4 of Section 3 the
minimax rates of convergence for Sobolev constraints on f under squared error
loss and we demonstrate that f̂n,δ is optimal and adaptive to within logarithmic
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terms. The explicit interplay between δ and n−1/2 is revealed and discussed in
the case of a sparse operator when n−1/2 ≪ δ, completing earlier findings in
[14, 18] and to some extent [28] in the univariate case for density deconvolution.
In particular, we exhibit a certain parametric regime when the smoothness of
the signal dominates the smoothing properties of the operator. Concerning iii),
the method is applied to the case of spherical and circular deconvolution in
Section 4 where harmonic Fourier analysis enables to provide explicit blockwise
SVD for the convolution operator. We illustrate the numerical feasability of f̂n,δ
and the phenomena that appear in the case n−1/2 ≪ δ. Section 5 is devoted to
the proofs.

We choose to state and prove our results in the white Gaussian model gener-
ated by the observation of yn and Kδ defined by (1.1) and (1.2). The extension
to the case of density estimation, when yn is replaced by the observation of a
random sample of size n drawn from the distribution Kf , like for instance in
[28, 9, 20] readily carries over in the context of circular deconvolution, as proved
in the discussion Section 3.2. The extension to a general blockwise setting is a
bit more involved, due to the intrinsic heteroscedasticity that appears when en-
forcing a formal analogy with the Gaussian setting (1.1), see Section 3.2. Finally
an anonymous referee is greatly acknowledged for pointing out the similarities
of the present work with the independent recent paper of Johannes and Schwarz
[22], see also [21] and the discussion Section 3.2.

2. Estimation by blockwise SVD

2.1. The blockwise SVD property

Let G denote a family of linear operators

K : H → G

between two Hilbert spaces H and G that shall represent our parameter set of
unknown K.

A fundamental property (Assumption 1 below) is that an explicit singular
value decomposition (SVD) or blockwise SVD is known for all K ∈ G simultane-
ously. More specifically, we suppose that there exist two explicitly known bases
(eλ, λ ∈ Λ) of H and (gλ, λ ∈ Λ) of G, as well as a partition of Λ = ∪ℓ≥1Λℓ
with Λℓ ∩ Λℓ′ = ∅ if ℓ 6= ℓ′, and a constant d ≥ 1 such that:

ℓd−1 . |Λℓ| . ℓd−1, (2.1)

where . means inequality up to a multiplicative constant that does not depend
on ℓ. Here |Λℓ| is a short-hand notation for the cardinality of the set Λℓ.

In our examples as well as in the rates of convergence that we will exhibit
later, d plays the role of a dimension. In particular, d = 1 includes the standard
SVD case of diagonal operators, whereas d > 1 creates increasing blocks with
ℓ and deserves the name of ‘blockwise SVD’. However, there is no need in the
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paper to assume that d is an integer. Set

Hℓ = Span{eλ, λ ∈ Λℓ} and Gℓ = Span{gλ, λ ∈ Λℓ}.

The Galerkin projection of K onto (Hℓ, Gℓ) is denoted by Kℓ and defined by
Kℓ = PℓK|Hℓ

, where Pℓ is the orthogonal projector onto Gℓ. We denote by
‖Kℓ‖Hℓ→Gℓ

= supv∈Hℓ,‖v‖H=1 ‖Kℓv‖G the operator norm of Kℓ.

Assumption 1 (Blockwise SVD). For every K ∈ G, and every ℓ ≥ 1, we have

K|Hℓ
= Kℓ.

Moreover, Kℓ is invertible and there exists ν ≥ 0 such that

Q1(K) = sup
ℓ≥1

ℓ−ν‖(Kℓ)
−1‖Gℓ→Hℓ

<∞

and
Q2(K) = sup

ℓ≥1
ℓν‖Kℓ‖Hℓ→Gℓ

<∞.

For every f ∈ H, we have a decomposition associated to (eλ, λ ∈ Λ)

f =
∑

ℓ≥1

∑

λ∈Λℓ

〈f, eλ〉 eλ

where 〈•, •〉 denotes the inner product (either in H or G) and a scale of Sobolev
spaces defined by

Ws =
{
f ∈ H, ‖f‖2Ws =

∑

ℓ≥1

ℓ2s
∑

λ∈Λℓ

〈f, eλ〉2 <∞
}
, s ∈ R. (2.2)

For every g ∈ G, we have a decomposition g =
∑

ℓ≥1

∑
λ∈Λℓ

〈g, gλ〉 gλ associated
to (gλ, λ ∈ Λ), likewise. For ν ≥ 0, Assumption 1 implies that

K : W−ν/2 → W̃ν/2

is continuous, where W̃s =
{
g ∈ G, ‖g‖2

W̃s
=

∑
ℓ≥1 ℓ

2s
∑
λ∈Λℓ

〈g, gλ〉2 < ∞
}
.

In particular, when ν > 0, the operator K is (mildly) ill-posed with degree ν,
see for instance [30].

2.2. Blockwise SVD reconstruction with noisy data

Under Assumption 1 we have the inversion formula

f =
∑

ℓ≥0

(Kℓ)
−1

∑

λ∈Λℓ

〈Kf, gλ〉 eλ for every f ∈ H . (2.3)

However, since the observation of both Kℓ and 〈Kf, gλ〉 is blurred by noise, for-
mula (2.3) is ineffective for the reconstruction process, unless some appropriate
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regularisation is operated. By the observed blurred version Kδ of K in (1.2),
we obtain a family of estimators of (Kℓ)

−1 from data (1.2) by considering the
operator

1{
‖(Kδ,ℓ)−1‖Gℓ→Hℓ

≤κ
}(Kδ,ℓ)

−1, (2.4)

where κ > 0 is a cutoff level, possibly depending on ℓ. Likewise, the coefficient
〈Kf, gλ〉 can be estimated by

zn,λ = 〈yn, gλ〉. (2.5)

Mimicking (2.3) with the estimates (2.5) and (2.4), we finally obtain a (family
of) estimator(s) of f by setting

f̂n,δ =
∑

0≤ℓ≤L

(
Kδ,ℓ

)−1( ∑

λ∈Λℓ

zn,λeλ1{∑
λ∈Λℓ

z2n,λ≥ τ2
ℓ

})1Eδ,ℓ(κℓ)

where
Eδ,ℓ(κℓ) =

{
‖(Kδ,ℓ)

−1‖Gℓ→Hℓ
≤ κℓ

}
.

The procedure is specified by the maximal frequency level L and the threshold
levels

κℓ =
(
λ0|Λℓ|−1/2

(
δ2| log δ|

)−1/2
)∧

n1/2 (2.6)

and
τℓ = µ0|Λℓ|1/2

(
n−1 logn

)1/2
, (2.7)

for some prefactors λ0, µ0 > 0. The threshold rule we introduce in both the
signal (with level τℓ) and the operator (with level κℓ) is inspired by classical block
thresholding [24, 4, 3] and will enable to adapt with respect to the smoothness
properties of both the signal f and the operator K, see below.

3. Main results

3.1. Minimax rates of convergence

We assess the performance of the estimator f̂n,δ defined in Section 2.2 over
the Sobolev spaces linked to the basis (eλ, λ ∈ Λ) defined in (2.2). Define the
Sobolev balls Ws(M) = {f ∈ Ws, ‖f‖Ws ≤M} for M > 0 and let

Gν(Q) =
{
K ∈ G, Qi(K) ≤ Qi, i = 1, 2

}
. (3.1)

for Q = (Q1, Q2) with Q1 > 0, Q1Q2 ≥ 1, where the mapping constants Qi(K)
are defined in Assumption 1.

Theorem 1 (Upper bounds). Let G be a class of operators satisfying Assump-
tion 1. Assume we observe (yn,Kδ) given by (1.1) and (1.2), with n ≥ 1 and

δ ≤ δ0 < 1. Specify f̂n,δ with

L = ⌊(δ2)−1/(2ν+d−1)⌋
∧

⌊n1/(2ν+d)⌋ (3.2)
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and κℓ, τℓ as in (2.6) and (2.7). For sufficiently small λ0 and sufficiently large
µ0, for every s,M > 0, Q = (Q1, Q2) with Q1 > 0 and such that Q1Q2 ≥ 1, we
have

sup
f∈Ws(M),K∈Gν(Q)

E

[∥∥f̂n,δ − f
∥∥2
H

]

.
(
δ2| log δ|

)1∧
2s/(2ν+d−1) ∨(

n−1 log n
)2s/(2(s+ν)+d)

(3.3)

where . means inequality up to a multiplicative constant that depends on
d, s, ν,M,Q and µ0, λ0 only.

The bounds for µ0 and λ0 are explicitly computable. In the model generated
by yn in (1.1) and Kδ in (1.2), they depend on the dimension d and on the
absolute constants c0 and c1 of the concentration lemmas 5.3 and 5.6 below.
However, they are in practice much too conservative, as is well known in the
signal detection case [13] or the classical inverse problem case [1], see the nu-
merical implementation Section 4. Our next result shows that the rate achieved
by f̂n,δ is indeed optimal, up to logarithmic terms.

Theorem 2 (Lower bounds). Let G be a class of operators satisfying Assump-
tion 1. Assume we observe (yn,Kδ) given by (1.1) and (1.2). For every s,M > 0,
Q = (Q1, Q2) with Q1 > 0 and Q2 > 1/Q1, for sufficiently small δ and large n,
we have

inf
f̂

sup
f∈Ws(M),K∈Gν(Q)

E

[∥∥f̂ − f
∥∥2
H

]
&

(
δ2
)1∧

2s/(2ν+d−1) ∨
n−2s/(2(s+ν)+d)

(3.4)
where & means inequality up to a positive multiplicative constant that depends
on d, s, ν,M and Q only.

Combining (3.3) together with (3.4) and the results of [30], we conclude that

f̂n,δ is minimax over Ws(M) to within logarithmic terms in n and δ, and that
this result is uniform over the nuisance parameter K ∈ Gν(Q).

3.2. Discussion

The case of diagonal operators and relation to other works

It is interesting to notice that the condition Q2 > 1/Q1 in Theorem 2 excludes
the case where K is diagonal. In this particular case, considered especially in
the deconvolution example of Section 4.2 below, a closer inspection of the proof
of the upper bound shows that the rate

n−s/(2(s+ν)+d)
∨
δ1

∧
s/ν

can be obtained (up to some extra logarithmic factors) as in the case where
d = 1, which improves on the rate

n−s/(2(s+ν)+d)
∨
δ1

∧
2s/(2ν+d−1)
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provided by Theorem 1. This sheds some light on the role of the number d. It
is in fact twofolds: it acts as a ‘dimension’ in the term n−s/(2(s+ν)+d); in the
term involving error in the operator δ, it reflects the distance to the diagonal
case expanding from δ1

∧
s/ν in the diagonal case, to δ1

∧
2s/(2ν+d−1) in the

case Q2 > 1/Q1. It is very plausible, though beyond the scope of this paper,
to express conditions on K leading to rates of the form 2s/(2ν + α), with α
continuously varying from 0 to d − 1. Note that in the case d = 1, we recover
the minimax rate of density deconvolution with unknown error as proved by
Neumann [28], see also [9, 20, 22].

While the present work was under completion, Johannes and Schwarz re-
leased a preprint [22] that shares interesting similarities with our approach in
the restricted case of diagonal operators. Indeed, Johannes and Schwarz study
the adaptive estimation by model selection of f under the same observation
scheme (1.1) and (1.2). While we confine ourselves to the loss in the H-metric
‖f‖H =

∑
ℓ≥0〈f, eλ〉2, Johannes and Schwarz consider weighted metrics of the

form ‖f‖ω =
∑

ℓ≥0

∑
λ∈Λℓ

〈f, eλ〉2ωλ, where the ωλ ≥ 0 are given weights. and
include severly ill-posed operators when the behaviour of behaviour Kℓ and
(Kℓ)

−1 can be exponential with ℓ in operator norm, leading to logarithmic rates
of convergence. Such extensions could presumably be obtained in our case, at
an additional technical cost. The framework of Johannes and Schwarz is how-
ever restricted to the special case of diagonal operators: this imposes d = 1 and
moreover |Λℓ| = 1. It excludes in particular the interesting example of spherical
deconvolution.

Relation to other works in the case of sparse operators

For an unknown signal f with smoothness s > 0 and unknown operator with
degree of ill-posedness ν ≥ 0, the optimal rates of convergence are

n−α(s,ν)/2
∨
δβ(s,ν), (3.5)

up to inessential logarithmic terms. The exponents α(s, ν) and β(s, ν) are linked
respectively to the error in the signal yn and the error in the operator Kδ.
Efromovitch and Kolchinskii [14] established that under fairly general conditions
on the operator K, the optimal exponents are given by

α(s, ν) = β(s, ν) =
2s

2(s+ ν) + d
.

They noted however that if certain sparsity properties on K are moreover as-
sumed (and that we shall not describe here, for instance if K is diagonal in an
appropriate basis) then the exponent β(s, ν) = 2s

2(s+ν)+d is no longer optimal,

while α(s, ν) remains unchanged. In the related context of operators acting on
Besov spaces Bsp,p([0, 1]

d) of functions with smoothness s measured in Lp-norm,
Hoffmann and Reiß [18] introduce an ad hoc hypothesis on the sparsity of the
unknown operator (that we shall not describe here either), expressed in terms
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of the wavelet discretization of K. They subsequently obtain new rates of con-
vergence for a certain nonlinear wavelet procedure, and these rates overperform
(3.5) as expected from the results by [14]. In particular, if one considers the
estimation of f ∈ Bs2,2, in the extreme case where the operator K is diagonal in
a wavelet basis, the procedure in [18] achieves the rate

n−α(s,ν)/2
∨

(δ2)1
∧
(s−d/2)/ν (3.6)

up to extra logarithmic terms. We may compare our results with the rate (3.6).
In our setting, if we pick (eλ, λ ∈ Λ) as the Fourier basis described in Section
4.2, then we have Ws = Bs2,2([0, 1]

d). Assuming K to be diagonal in the basis
(eλ, λ ∈ Λ) which is the exact counterpart of the approach of Hoffmann and Reiß
with K being diagonal in a wavelet basis, then by Theorem 1, our estimator
f̂n,δ (nearly) achieves the rate

n−α(s,ν)/2
∨

(δ2)1
∧

2s/(2ν+d−1)

which already outperforms the rate (3.6) whenever the error in the signal yn is
dominated by the error in the operator and s is small compared to ν, as follows
from the elementary inequality

2s/(2ν + d− 1) > (s− d/2)/ν for 2ν + d− 1 ≥ 2s.

The superiority of the blockwise SVD in this setting is explained by the fact that
the wavelet procedure in [18] is agnostic to the diagonal structure of K in the

wavelet basis, in contrast to f̂n,δ that takes full advantage of the block structure
of K. As already explained in the preceding section, one could actually improve
further this result in the specific case of K being diagonal in (eλ, λ ∈ Λ) and

show that f̂n,δ (nearly) achieves the rate n−α(s,ν)/2
∨
(δ2)1

∧
s/ν , thus deleting

the ‘dimensional effect’ of d for the error in the operator.

Adaptation over the scales {Ws, s > 0} and {Gν , ν ≥ 0}

The estimator f̂n,δ is adaptive over the family {W s(M), s > 0,M > 0} (in

the sense that f̂n,δ does not require the knowledge of s nor M). However, the
knowledge of the degree of ill-posedness ν of K is required through the choice of
the maximal frequency L in (3.2). This restriction can actually be relaxed further
in dimension d ≥ 2. Indeed, setting formally ν = 0 in (3.2), one readily checks

that f̂n,δ becomes adaptive over {Ws(M), s > 0,M > 0} and {Gν(Q), ν ≥
0, Q = (Q1, Q2), Q1Q2 ≥ 1} simultaneously. In dimension d = 1 however, setting
ν = 0 in (3.2) is forbidden, but an alternative adaptivity result can be obtained

by taking L = ⌊(δ2)−1/s0⌋∧n for some s0 > 0, in which case f̂n,δ is fully adaptive
over the scale {Gν(Q), ν ≥ 0, Q = (Q1, Q2), Q1Q2 ≥ 1} and the restricted family
{W s(M), s ≥ s0,M > 0}.
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Extension to density estimation

Suppose that instead of yn we observe a random sample Z1, . . . , Zn drawn from
Kf assumed to be a probability density w.r.t. some measure µ over a domain
D ⊂ Rd. We take G = L2(D, µ). By analogy to (2.5), we have an estimator of
〈Kf, gλ〉 replacing zn = 〈yn, gλ〉 in (2.5) with

n−1
n∑

i=1

gλ(Zi).

Writing

n−1
n∑

i=1

gλ(Zi) = 〈Kf, gλ〉+ n−1/2ηn,λ,

with ηn,λ = n1/2
(
n−1

∑n
i=1 gλ(Zi) − 〈Kf, gλ〉

)
, an inspection of the proof of

Theorem 1 reveals that an extension to the density estimation setting carries
over as soon as the vector (ηn,λ, λ ∈ Λℓ) satisfies a concentration inequality,
namely

∃β1 > 0, c1 > 0, ∀β ≥ β1, P

(
|Λℓ|−1

∑

λ∈Λℓ

η2n,λ > β2
)
≤ exp

(
−c1β2|Λℓ|

)
, (3.7)

as follows from (5.6) in Lemma 3. In order to obtain (3.7), we may apply a
concentration inequality by Bousquet [2] as developed for instance in Massart
[27], Eq (5.51) p. 171. The precise control of this extension requires further
properties on the basis (gλ, λ ∈ Λ) and on the density Kf via the behaviour of∑
λ∈Λℓ

Var
(
gλ(Z1)

)
, see Eq. (5.52) p. 171 in [27]. There is however one instance

when (3.7) is easily obtained: suppose that the basis (gλ, λ ∈ Λ) associated with
the class G satisfies

max
ℓ≥1,|λ|=ℓ

sup
x∈D

|gλ(x)| <∞ and max
ℓ≥1

|Λℓ| <∞. (3.8)

Note that the second part of (3.8) simply amounts to assume that d = 1 in
(2.1). In that case, we obtain the following extension of Theorem 1.

Corollary 1. Let G be a class of operators satisfying Assumption 1. Assume
we observe a drawn (Z1, . . . , Zn) with density Kf w.r.t. a measure µ on D ⊂ Rd

and Kδ given by (1.2), with n ≥ 1 and δ ≤ δ0 < 1. Assume that G = L2(D, µ)
is equipped with a basis that satisfies (3.8). Put zn = n−1

∑n
i=1 gλ(Zi) in the

definition of f̂n,δ, specified further by (3.2) and κℓ, τℓ as in (2.6) and (2.7). For
sufficiently small λ0 and sufficiently large µ0, for every s,M > 0, Q = (Q1, Q2)
with Q1 > 0 and such that Q1Q2 ≥ 1, we have (3.3).

The proof is given in Section 5.3. The assumptions of Corollary 1 are sat-
isfied in the case of circular deconvolution, see Section 4.2, where (gλ, λ ∈ Λ)
is the trigonometrical basis and D = T is the torus. This framework is in ac-
cordance with Neumann [28], Comte et Lacour [9], Johannes [20] and Johannes
and Schwarz [22].
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4. Application to blind deconvolution

4.1. Spherical deconvolution

Scientific context. A common challenge in astrophysics is the analysis of com-
plex data sets consisting of a number of objects or events such as galaxies of a
particular type or ultra high energy cosmic rays (UHECR) and that are gen-
uinely distributed over the celestial sphere. Such objects or events are distributed
according to a probability density distribution f on the sphere, depending it-
self on the physics that governs the production of these objects or events. For
instance, UHECR are particles of unknown nature arriving at the earth from
apparently random directions of the sky. They could originate from long-lived
relic particles from the Big Bang. Alternatively, they could be generated by
the acceleration of standard particles, such as protons, in extremely violent as-
trophysical phenomena. They could also originate from Active Galactic Nuclei
(AGN), or from neutron stars surrounded by extremely high magnetic fields.
As a consequence, in some hypotheses, the underlying probability distribution
for observed UHECRs would be a finite sum of point-like sources. In other hy-
potheses, the distribution could be uniform, or smooth and correlated with the
local distribution of matter in the universe. The distribution could also be a
superposition of the above. Identifying between these hypotheses is of primor-
dial importance for understanding the origin and mechanism of production of
UHECRs. The observations, denoted by Xi, are often perturbated by an ex-
perimental noise, say εi, that lead to the deconvolution problem described in
Section 1.1. Following van Rooj and Ruymgart [37], Healy et al. [16], Kim and
Koo [26], Kim, Koo and Luo [25] and Kerkyacharian et al. [29], we assume the
following model: we observe an n-sample (Z1, . . . , Zn) with

Zi = εiXi, i = 1, . . . , n

where the Xi are distributed on the sphere S2, with common density f with
respect to the uniform probability distribution µ(dω) on S2 and independent
of the εi that have a common density g with respect to the Haar probability
measure dr on the group SO(3) of 3×3 rotation matrices. One proves in [16, 26]
that the density of the Zi is

Kf(ω) = g ⋆ f(ω) :=

∫

SO(3)

g(r)f(r−1x)dr, ω ∈ S
2 (4.1)

and we are interested in the case where the exact form g of the convolution
operator K = g ⋆ • is unknown, due for instance to insufficient knowledge of the
device that is used to measure the observations. However, we assume approxi-
mate knowledge of g through Kδ as defined in (1.2).

Checking the blockwise SVD Assumption 1. We closely follow the exposition of
[16, 26, 29] for an overview of Fourier theory on S2 and SO(3) in order to
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establish rigorously the connection to Theorem 1 and 3.4. Define

u(ϕ) =



cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


 and a(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




where ϕ ∈ [0, 2π), θ ∈ [0, π). Every rotation r ∈ SO(3) has representation
r = u(ϕ)a(θ)u(ψ) for some ϕ, ψ ∈ [0, 2π), θ ∈ [0, π). Define the rotational
harmonics

Dl
mn(r) = Dl

mn(ϕ, θ, ψ) = e−i(mϕ+nψ)P lmn
(
cos(θ)

)

for l ∈ N,−l 6 m,n 6 l where P lmn are the second type Legendre functions
described in details in [38]. The Dl

mn are the eigenfunctions of the Laplace-
Beltrami operator on SO(3) hence the family (

√
2l+ 1Dl

mn) forms a complete
orthonormal basis of L2(dr) on SO(3), where dr is the Haar probability measure.
Every h ∈ L2(dr) has a rotational Fourier transform

F(h)lmn =

∫

SO(3)

h(u)Dl
mn(u)du, l ∈ N,−l 6 m,n 6 l,

and for every h ∈ L2(dr) we have a reconstruction formula

h =
∑

l∈N

∑

−l≤m,n≤l

F(h)lmnD
l
mn

=
∑

l∈N

∑

−l≤m,n≤l

F(h)lmnD
l
mn(•

−1)

An analogous analysis is available on S2. Any point ω ∈ S2 is determined by
its spherical coordinates ω =

(
sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)

)
for some θ ∈

[0, π), ϕ ∈ [0, 2π). Define

Y lm(ω) = Y ml (θ, ϕ) = (−1)m
√

2l+1
4π

(l−m)!
(l+m)!P

l
m

(
cos(θ)

)
eimϕ (4.2)

for l ∈ N,−l 6 m 6 l where P lm are the Legendre functions. We have Y l−m =
(−1)mY lm and the (Y lm) constitute an orthonormal basis of L2(µ) on S2, generally
referred to as the spherical harmonic basis. Any f ∈ L2(µ) has a spherical
Fourier transform

F(f)lm =

∫

S2

f(ω)Y lm(ω)µ(dω)

and a reconstruction formula

f =
∑

ℓ∈N

∑

−l≤m≤l

F(f)lmY
l
m.

If g ∈ L2
(
SO(3)

)
the spherical convolution operator Kf = g ⋆f defined in (4.1)

satisfies

F(g ⋆ f)lm =
l∑

n=−l

F(g)lmnF(f)ln (4.3)
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and we retrieve the blockwise SVD formalism of Section 2.1 in dimension d = 2
by setting H = G = L2(S2, µ), where µ the probability Haar measure on S2 and

eλ = gλ = Y ℓm with λ = (m, ℓ), Λℓ = {(m, ℓ), −ℓ 6 m 6 ℓ}.

We have |Λℓ| = 2ℓ + 1 and by (4.3), Kℓ is the finite dimension operator stable
on Span{eλ, λ ∈ Λℓ} with matrix having entries

(Kℓ)mn = F(g)ℓmn.

Hence the first part of Assumption 1 is satisfied. Notice also that in this case
Kℓ is generally not diagonal. Assumption 1 is satisfied as we assume that g is
ordinary smooth in the terminology of Kim and Koo [26]. Our Assumption 1
exactly matches the constraint (3.6) in their paper with examples given by the
Laplace distribution on the sphere (ν = 2) or the Rosenthal distribution (ν > 0
arbitrary).

Numerical implementation. Following Kerkyacharian, Pham Ngoc and Picard
[29] in their Example 2, we take f(ω) = C exp(−4‖ω−ω1‖2) with ω1 = (0, 1, 0)
and C = 1/0.7854. We have ‖f‖L2(µ) = 0.7469.

g is the density of a Laplace distribution on SO(3), defined through F(g)ℓmn =

δmn
(
1 + ℓ(ℓ+ 1)

)−1
. Hence, the matrices (Kℓ)mn are homotheties whose ratios

behave as ℓ−2. We have ν = 2.

We plot in Figures 1 a 1000-sample of Xi with density f on the sphere,
and the action by εi on the Xi, where the εi are distributed according to g in
Figure 2. Note that for the estimation of g, we have access to a noisy version of
g with noise level δ only.

We display below the (renormalised) empirical squared error of f̂108,δ (oracle
choice λ0 = 1, µ0 = 1) for 1000 Monte-Carlo for several values of δ. The noise
level δ is to to be compared with the noise level n−1/2 = 10−4. The latter is
chosen non-negative, in order to show the interaction between the two types of
error, and sufficiently small to emphasize the influence of δ on the process of
estimation.

Noise level δ 0 10−3 3 10−3 5 10−3 10−2

Mean error 0.0466 0.0542 0.1732 0.2784 0.4335
Standard dev. 0.0011 0.0022 0.0126 0.0355 0.0466

Finally, on a specific sample of n = 108 data, we plot the target density f
(Figure 3) and its reconstruction for n = 108 data with δ = 0 (Figure 4) and
δ = 3 10−3 (Figure 5). At a visual level, we oversimplify the representation by
plotting f and its reconstruction with a view from above the sphere through
the Oz axis. We see that the contour in Figure 5 is not well recovered in the
regions where f is small (on the right side of the graph in Figure 5). The choice
of λ0, µ0 remains unchanged.
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Fig 1. Data from f . Plot of n = 1000 data with common distribution f on the sphere S

(planar representation).
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−1−0.500.51
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Fig 2. Data from f ⋆g. Plot of n = 1000 data εiXi on the sphere S with common distribution
Kf = f ⋆ g. The Xi are the data pictured in Figure 1 and the εi are sampled according to g
(planar representation).
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Fig 3. Target density f . The representation is simplified through a view from above the
sphere through the Oz-axis.
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Fig 4. Reconstruction for n = 108 and δ = 0.

4.2. Circular deconvolution

Scientific context. In many engineering problems, the observation of a signal
f or image is distorted by the action of a linear operator K. We assume for
simplicity that f lives on the torus T = [0, 1] (or [0, 1]d) appended with periodic
boundary conditions. In many instances, the restoration of f from the noisy ob-
servation of Kf is challenged by the additional uncertainty about the operator
K. This is the case for instance in electronic microscopy [31] for the restoration
of fluorescence Confocal Laser Scanning Microscope (CLSM) images. In other
words, the quality of the image suffers from two physical limitations: error mea-
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Fig 5. Reconstruction for n = 108 and δ = 3 10−3. The reconstruction is polluted simulta-
neously by the limited number of observations n and the noise level δ in the blurring g.

surements or limited accuracy, and the fact that the exact PSF (the incoherent
point spread function) that accounts for the blurring of f (mathematically the
action of K) is not precisely known. This is a classical issue that goes back
to [35, 15]. An idealised additive Gaussian model for the noise contamination
yields the observation (1.1) with

Kf(x) = g ⋆ f(x) :=

∫

Td

g(u)f(x− u)µ(du), x ∈ T
d,

and µ is the uniform probability measure on Td. The degradation K = g ⋆ • is
characterised by the impulse response function g. In most cases of interest, we
do not know the exact form of g. In a condensed idealised statistical setup, we
have access to

gδ = g + δẆ ′, (4.4)

where Ẇ ′ is another Gaussian white noise defined on L2(µ) = L2(Td, µ) and
independent of Ẇ . Experimental approaches that justify representation (4.4)
are described in [10, 23, 34].

Checking Assumption 1. We obviously have H = G = L2(µ) and the bases
(eλ) and (gλ) will coincide with the d-dimensional extension of the circular
trigonometric basis (e2iπkx, k ∈ Z) if we set:

eλ(x1, . . . , xd) =
d∏

j=1

e2iπkjxj , (x1, . . . , xd) ∈ T
d,

where we put

λ = (k1, . . . , kd), ℓ = |λ| = 1 +

d∑

j=1

|kj |, and ℓ ≥ 1.
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Any f ∈ L2(µ) has a Fourier transform F(f)λ =
∫
Td f(x)eλ(x)µ(dx) and more-

over, if g ∈ L2(µ), we have

F(f ⋆ g)λ = Fλ(f)Fλ(g).

Therefore,K is diagonal in the basis (eλ, λ ∈ Λ). With Λℓ = {λ, |λ| = ℓ}, we have
|Λℓ| =

(

ℓ− 1 + d
d− 1

)

∼ ℓd−1. MoreoverKℓ = Diag
(
Fλ(g), λ ∈ Λℓ

)
and the first part

of Assumption 1. Assuming that g satisfies c|λ|−ν ≤
∣∣F(g)λ

∣∣ ≤ c′|λ|−ν for some
ν ≥ 0 and constants c, c′ > 0, we readily obtain the second part of Assumption
1. Note also that since K is diagonal in the basis (eλ, λ ∈ Λ) observing gδ in the
representation (4.4) is equivalent to observing Kδ in (1.2).

Numerical implementation. We numerically implement f̂n,δ in dimension d = 1
in the case where there is no noise in the signal (formally n−1/2 = 0) in order to
illustrate the parametric effect that dominates in the optimal rate of convergence

in Theorems 1 and 3.4 that becomes
(
δ2
)s/ν∧1

in that case. We take as target
function f : T → R belonging to W5−α for all α > 1/2 and defined by its Fourier
coefficients

F(f)λ = |λ|−5, λ ∈ {−1000, . . . , 1000}.
We pick a family of blurring functions gν defined in the same manner by the
formula

F(gν)λ = |λ|−ν , λ ∈ {−1000, . . . , 1000}, ν ∈ {1, 4, 5, 6, 8}.

We show in Figure 6 in a log-log plot the mean-squared error of f̂∞,δ for the ora-
cle choice µ0 = 0, λ0 = 1 over 1000 Monte-Carlo simulations for ν ∈ {1, 4, 5, 6, 8}

−9 −7 −5 −3
−18

−14

−10

−6

lo
g

(Ê
)

lo g (δ)

Fig 6. Estimation of the rate exponent when n−1/2
≪ δ. Empirical squared-error Ê versus

δ in log-log scale. Top-to-bottom: ν = 8, 6, 5, 4, 1. The target function has smoothness s = 5−α
for all α > 1/2. For ν < 4.5, the slope of the curve is constant and close to 2, confirming the
parametric rate predicted by the theory when the smoothess of the signal dominates the degree
of ill-posedness of the operator. The empirical errors were computed using 1000 Monte-Carlo
simulations.
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and δ ∈ [10−4, 10−1]. For small values of δ the predicted slope of the curve gives
a rough estimate of the rate of convergence. We visually see that for the critical
case ν ≤ s = 5 − α with α > 1/2 and below, the slope is close to 2 confirming
the parametric rate that is obtained whenever ν ≤ s.

5. Proofs

5.1. Preliminary estimates

Preparation. Recall that Hℓ = Span{eλ, λ ∈ Λℓ}, Gℓ = Span{gλ, λ ∈ Λℓ} and
that Pℓ (resp. Qℓ) denotes the orthogonal projector onto Gℓ (resp. Hℓ). We
repeatedly rely on the following consequence of Assumption 1

Lemma 1. We have

PℓK = KℓQℓ. (5.1)

Proof. For h ∈ H, we have

PℓKh = PℓKQℓh+ PℓK(Id−Qℓ)h.

The result is then a straighforward consequence of PℓK(Id−Qℓ)h = 0. Indeed,
by definition, (Id−Qℓ)h ∈ H⊥

ℓ hence (Id−Qℓ)h =
∑
ℓ′ 6=ℓQℓ′(Id−Qℓ)h. Since

Qℓ′(Id−Qℓ)h ∈ Hℓ′ , we have KQℓ′(Id−Qℓ)h ∈ Gℓ′ by Assumption 1. It follows
that

K(Id−Qℓ)h =
∑

ℓ′ 6=ℓ

KQℓ′(Id−Qℓ)h ∈ Span{Gℓ′ , ℓ′ 6= ℓ}G

Therefore K(Id−Qℓ)h ∈ G⊥
ℓ and PℓK(Id−Qℓ)h = 0 follows.

In turn, we have a convenient description of the observation Kδ defined in
(1.2) and yn defined in (1.1) and in terms of a sequence space model that we
shall now describe.

Notation. If h ∈ G, we denote by hℓ the (column) vector of coordinates of Pℓh
in the basis (gλ, λ ∈ Λℓ). If T : H → G is a linear operator, we write T ℓ for the
matrix of the Galerkin projection Tℓ = PℓT|Hℓ

of T .

Sequence model for error in the operator. The observation of Kδ in (1.2) leads
to the representation Kδ,ℓ = Kℓ + δḂℓ, or equivalently, in matrix notation

Kδ,ℓ = Kℓ + δḂℓ, ℓ ≥ 1, (5.2)

where Ḃℓ is a |Λℓ|×|Λℓ| matrix with entries that are independent centred Gaus-
sian random variables, with unit variance. The following estimate is a classical
concentration property of random matrices. For ℓ ≤ L, ‖•‖op denotes the oper-
ator norm for |Λℓ| × |Λℓ| matrices (we shall skip the dependence upon ℓ in the
notation).
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Lemma 2 ([11], Theorem II.4). There are positive constants β0, c0 such that

For all β ≥ β0, P
(
|Λℓ|−1/2‖Ḃℓ‖op ≥ β

)
≤ exp

(
− c0β

2|Λℓ|2
)
. (5.3)

An immediate consequence of Lemma 2 is the following moment bound:

For every p > 0, E
[
‖Ḃℓ‖pop

]
. |Λℓ|p/2. (5.4)

Sequence model for error in the signal. From (1.1), we observe the Gaussian
measure yn, or equivalently, thanks to (5.1)

Pℓyn = PℓKf + n−1/2PℓẆ = KℓQℓf + n−1/2ηℓ, ℓ ≥ 1

or, using the notation introduced in (2.5), in matrix notation

zn,ℓ = Kℓf ℓ + n−1/2ηℓ, ℓ ≥ 1 (5.5)

where we used (5.1), with ηℓ denoting a vector of |Λℓ| independent centred
Gaussian random variables with unit variance.

The following result is a direct consequence of the fact that ‖ηℓ‖2 has a
χ-square distribution with |Λℓ| degrees of freedom. The proof is standard

Lemma 3. There are positive constant β1, c1 such that

For all β ≥ β1, P
(
|Λℓ|−1/2‖ηℓ‖ ≥ β

)
≤ exp

(
− c1β

2|Λℓ|
)
, (5.6)

5.2. Proof of Theorem 1

We have

‖f̂n − f‖2H =
∑

ℓ≥1

‖f̂n,ℓ − f ℓ‖2 =

L∑

ℓ=1

‖f̂n,ℓ − f ℓ‖2 +
∑

ℓ>L

‖f ℓ‖2

where ‖•‖ denotes the Euclidean norm on R|Λℓ| (we shall omit any reference to
ℓ when no confusion is possible). Concerning the bias term, we have

∑

ℓ>L

‖fℓ‖2 ≤ ‖f‖2WsL−2s (5.7)

and this term has the right order by definition of L in (3.2). Concerning the
stochastic term, thanks to our preliminary analysis, we may write

f̂n,ℓ = (Kδ,ℓ)
−1zn,ℓ1{‖(Kδ,ℓ)−1‖op≤κℓ}1{‖zn,ℓ‖≥τℓ},

We set
Aℓ = {‖(Kδ,ℓ)

−1‖op ≤ κℓ} and Bℓ = {‖zn,ℓ‖ ≥ τℓ}.
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We thus obtain the decomposion of the variance term as

L∑

ℓ=1

‖f̂n,ℓ − f ℓ‖2 ≤ I + II + III,

with

I =

L∑

ℓ=1

‖(Kδ,ℓ)
−1zn,ℓ − f ℓ‖21Aℓ

1Bℓ

II =
L∑

ℓ=1

‖f ℓ‖21Ac
ℓ
,

III =

L∑

ℓ=1

‖f ℓ‖21Bc
ℓ
.

We shall successively bound each term I, II and III.

• The term I, preliminary decomposition. Writing

zn,ℓ =
(
Kδ,ℓ − δḂℓ

)
f ℓ + n−1/2ηℓ,

we obtain

(Kδ,ℓ)
−1zn,ℓ − f ℓ = −δ(Kδ,ℓ)

−1Ḃℓf ℓ + n−1/2(Kδ,ℓ)
−1ηℓ.

We introduce further the event {‖δḂℓ‖op ≤ aℓ} with aℓ = ρ
κℓ

for some 0 < ρ < 1
2

and the condition {‖Kℓf ℓ‖ ≥ τℓ
2 }. We thus have

I . IV + V + V I + V II,

with

IV =
L∑

ℓ=1

‖δ(Kδ,ℓ)
−1Ḃℓf ℓ‖21Aℓ ∩Bℓ

1{
‖δḂℓ‖op≤aℓ

}1{
‖Kℓfℓ‖≥

τℓ
2

},

V =
L∑

ℓ=1

‖n−1/2(Kδ,ℓ)
−1ηℓ‖21Aℓ ∩Bℓ

1{
‖δḂℓ‖op≤aℓ

}1{
‖Kℓfℓ‖≥

τℓ
2

},

V I =

L∑

ℓ=1

‖δ(Kδ,ℓ)
−1Ḃℓf ℓ‖21Aℓ ∩Bℓ

(
1{

‖δḂℓ‖op>aℓ

} + 1{
‖Kℓfℓ‖<

τℓ
2

}
)
,

V II =

L∑

ℓ=1

‖n−1/2(Kδ,ℓ)
−1ηℓ‖21Aℓ ∩Bℓ

(
1{

‖δḂℓ‖op>aℓ

} + 1{
‖Kℓfℓ‖<

τℓ
2

}
)
.

We shall next successively bound each term IV , V , V I and V II.
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• The term IV. First, we have

(Kℓ)
−1 = (Kδ,ℓ − δḂℓ)

−1

= (I − δK−1
δ,ℓ Ḃ)−1(Kδ,ℓ)

−1.

On Aℓ = {‖(Kδ,ℓ)
−1‖op ≤ κℓ} and {‖δḂℓ‖op ≤ aℓ}, since aℓ satisfies κℓ aℓ =

ρ < 1
2 , by a usual Neumann series argument,

‖
(
I − δ(Kδ,ℓ)

−1Ḃ
)−1‖op = ‖

∑

i≥0

(−Kδ,ℓ)
i(δḂ)i‖op

≤
∑

i≥0

‖Kδ,ℓ‖iop‖δḂ‖iop

≤
∑

i≥0

ρi = (1− ρ)−1.

Therefore, on Aℓ and {‖δḂℓ‖op ≤ aℓ}, we have

‖(Kℓ)
−1‖op ≤ (1− ρ)−1‖(Kδ,ℓ)

−1‖op ≤ (1− ρ)−1κℓ. (5.8)

Second, we now write

(Kδ,ℓ)
−1 =

(
I − (Kℓ)

−1δḂℓ

)−1
(Kℓ)

−1,

hence, on Aℓ and {‖δḂℓ‖op ≤ aℓ}, we have by (5.8)

‖(Kℓ)
−1δḂℓ‖op ≤ (1− ρ)−1κℓaℓ ≤

ρ

1− ρ
< 1

since ρ < 1
2 by assumption. The same Neumann series argument now entails

‖(Kδ,ℓ)
−1‖op ≤ ρ

1− ρ
‖(Kℓ)

−1‖op. (5.9)

We are ready to bound the term IV itself. We have

‖δ(Kδ,ℓ)
−1Ḃℓf ℓ‖21Aℓ

1{
‖δḂℓ‖op≤aℓ

}

≤‖(Kδ,ℓ)
−1‖2op‖δḂℓ‖2op‖f ℓ‖2 1Aℓ

1{
‖δḂℓ‖op≤aℓ

}

. ‖(Kℓ)
−1‖2opκ−2

ℓ ‖f ℓ‖2 1{‖(Kℓ)−1‖op≤(1−ρ)−1κℓ

},

where we successively used (5.8) and (5.9). It follows that

E
[
IV

]
.

L∑

ℓ=1

‖(Kℓ)
−1‖2opκ−2

ℓ ‖f ℓ‖2 1{‖(Kℓ)−1‖op≤(1−ρ)−1κℓ

}

.

L∑

ℓ=1

ℓ2νκ−2
ℓ ‖f ℓ‖2
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where we used Assumption 1. The bound is uniform inK ∈ Gν(Q). By definition
of κℓ and using that |Λℓ| is of order ℓd−1, we derive

E[IV ] .
(
(δ2| log δ|)

∨
n−1

) L∑

ℓ=1

ℓ2ν+d−1‖f ℓ‖2.

If 2ν + d− 1 ≤ 2s, we have

L∑

ℓ=1

ℓ2ν+d−1‖f ℓ‖2 ≤ ‖f‖2Ws,

therefore

E
[
IV

]
. δ2| log δ|+ L−2s

.
(
δ2| log δ|

)1∧
2s/(2ν+d−1) ∨

n−2s/(2ν+d) (5.10)

by definition of L in (3.2), and this result is uniform in f ∈ Ws(M). If 2ν+d−1 ≥
2s, we have

L∑

ℓ=1

ℓ2ν+d−1‖f ℓ‖2 ≤ L2(ν−s)+d−1
L∑

ℓ=1

ℓ2s‖f ℓ‖2

≤ L2(ν−s)+d−1‖f‖2Ws.

By definition of L again we derive

E
[
IV

]
.L−2sL2ν+d−1(n−1

∨
δ2|log δ|)

.L−2s(n−1/(2ν+d)
∨

1) 6 L−2s (5.11)

and this bound is uniform in f ∈ Ws(M). Putting together (5.10) and (5.11),
we finally obtain

E
[
IV

]
.

(
δ2| log δ|

)1∧
2s/(2ν+d−1) ∨

n−2s/(1ν+d) (5.12)

uniformly in f ∈ Ws(M),K ∈ Gν(Q).

• The term V. We have

‖n−1/2(Kδ,ℓ)
−1ηℓ‖21Aℓ

1{
‖δḂℓ‖op≤aℓ

}1{
‖Kℓfℓ‖≥

τℓ
2

}

≤n−1‖(Kδ,ℓ)
−1‖2op‖ηℓ‖21Aℓ

1{
‖δḂℓ‖op≤aℓ

}1{
‖Kℓfℓ‖≥

τℓ
2

}

.n−1‖(Kℓ)
−1‖2op‖ηℓ‖21Aℓ

1{
‖δḂℓ‖op≤aℓ

}1{
‖Kℓfℓ‖≥

τℓ
2

}

.n−1ℓ2ν‖ηℓ‖21{‖Kℓfℓ‖≥
τℓ
2

}
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where we successively used (5.8) and (5.9) in the same way as for the term IV,
the last inequality being obtained thanks to Assumption 1. By Assumption 1
again, since

‖Kℓf ℓ‖ ≤ ‖Kℓ‖op‖f ℓ‖ ≤ Q1(K)ℓν‖f ℓ‖
we derive

1{
‖Kℓfℓ‖≥

τℓ
2

} ≤ 1{
‖fℓ‖≥Q1(K)−1 τℓ

2 ℓ
ν
} = 1{

‖fℓ‖≥cℓ
ν+(d−1)/2n−1/2(logn)1/2

}

for some constant c that depends on Q1(K) and the pre-factor µ0 in the choice
of τℓ only. Since E[‖ηℓ‖2] = |Λℓ| . ℓd−1, we infer, for any 1 ≤ k ≤ L

E[V ] . n−1
L∑

ℓ=1

ℓ2ν+d−11{
‖fℓ‖≥c ℓ

ν+(d−1)/2n−1/2(logn)1/2
}

. n−1
( k∑

ℓ=1

ℓ2ν+d−1 +

L∑

ℓ=k+1

n(logn)−1‖f ℓ‖2
)

≤ n−1k2ν+d + (logn)−1
∑

ℓ>k

‖f ℓ‖2

. n−1k2ν+d + (logn)−1‖f‖2Wsk−2s.

The admissible choice k = ⌊
(
n(logn)−1/2

)1/(2(s+ν)+d)⌋ ∧ (δ2)−1/(2ν+d−1) yields

E[V ] . n−1kν+d + k−2s

.
(
n−1 logn

)2s/(2(s+ν)+d)
+ k−2s

.
(
n−1 logn

)2s/(2(s+ν)+d) ∨
(δ2)2s/(2ν+d−1) (5.13)

uniformly in f ∈ Ws(M),K ∈ Gν(Q).

• The term VI. We further bound the term V I via

V I ≤ V III + IX,

with

V III =
L∑

ℓ=1

‖δ(Kδ,ℓ)
−1Ḃℓf ℓ‖21Aℓ

1{
‖δḂℓ‖op>aℓ

},

IX =

L∑

ℓ=1

‖δ(Kδ,ℓ)
−1Ḃℓf ℓ‖21Aℓ ∩Bℓ

1{
‖Kℓfℓ‖<

τℓ
2

}.

On Aℓ, we have

‖δ(Kδ,ℓ)
−1Ḃℓf ℓ‖2 . δ2 κ2ℓ‖Ḃℓ‖2op‖f ℓ‖2
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hence

E
[
V III

]
. δ2

L∑

ℓ=1

κ2ℓ‖f ℓ‖2E
[
‖Ḃℓ‖2op1{‖δḂℓ‖op>aℓ

}]

≤ δ2
L∑

ℓ=1

κ2ℓ‖f ℓ‖2E
[
‖Ḃℓ‖4op

]1/2
P
(
‖δḂℓ‖op > aℓ

)1/2

. δ2
L∑

ℓ=1

κ2ℓ‖f ℓ‖2|Λℓ|δ c0ρ
2|Λℓ|

2/2λ2
0

. | log δ| max
1≤ℓ≤L

δ c0ρ
2|Λℓ|

2/2λ2
0‖f‖2H

applying successively Cauchy-Schwarz, the moment bound (5.4) and Lemma 2.
Indeed, since aℓ = ρ/κℓ, by definition of κℓ in (2.6), we infer

P
(
‖δḂℓ‖op > aℓ

)
≤ P

(
|Λℓ|−1/2‖Ḃℓ‖op > |Λℓ|−1/2 ρ

κℓ
δ−1

)

= P
(
|Λℓ|−1/2‖Ḃℓ‖op > ρ

λ0
| log δ|1/2

)

≤ exp
(
− c0

ρ2

λ2
0
| log δ||Λℓ|2

)
= δ c0ρ

2|Λℓ|
2/λ2

0 (5.14)

by (5.6) of Lemma 3 since ρ
λ0
| log δ|1/2 ≥ β0 for sufficiently small λ0 thanks

to the assumption δ ≤ δ0 < 1. Finally, since Λℓ is non-empty, by taking λ0
sufficiently small, we conclude

E
[
V III

]
. δ2 (5.15)

uniformly in f ∈ Ws(M). We now turn to the term IX . Observe first that

1Bℓ
1{

‖Kℓfℓ‖<
τℓ
2

} ≤ 1{
n−1/2‖ηℓ‖≥

τℓ
2

}. (5.16)

We reproduce the steps we used for the term V III, replacing the event
{‖δḂℓ‖op > aℓ} by {n−1/2‖ηℓ‖ ≥ τℓ

2 }. We obtain

E
[
IX

]
. δ2

L∑

ℓ=1

κ2ℓ‖f ℓ‖2|Λℓ|P
(
n−1/2‖ηℓ‖ ≥ τℓ

2

)1/2
.

By definition of τℓ in (2.7) and Lemma 5.6, we have

P
(
n−1/2‖ηℓ‖ > τℓ

2

)
= P

(
|Λℓ|−1/2‖ηℓ‖ > µ0

2 (logn)1/2
)

≤ exp
(
− c1

µ2
0

4 log n
)
= n−c1µ

2
0/4 (5.17)

since µ0

2 (logn)1/2 ≥ β1 for large enough µ0. It follows that

E
[
IX

]
. | log δ|‖f‖2H n−c1µ

2
0/4 . n−1| log δ| (5.18)
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by taking µ0 sufficiently large. The bound is uniform in f ∈ Ws(M). Putting
together the estimates (5.15) and (5.18), we derive

E
[
V I

]
. δ2 + n−1| log δ| (5.19)

for large enough n, uniformly in f ∈ Ws(M).

• The term VII. The arguments needed here are quite similar to those we used
for the term V I. On Aℓ, we have

‖n−1/2(Kδ,ℓ)
−1ηℓ‖2 ≤ n−1κ2ℓ‖ηℓ‖2,

hence, using (5.16), the fact that E
[
‖ηℓ‖2

]
= |Λℓ| . ℓd−1 together with κℓ ≤

n1/2 by definition (2.6), we successively obtain

E
[
V II

]
≤ n−1

L∑

ℓ=1

κ2ℓE
[
‖ηℓ‖2

](
P
(
‖δḂℓ‖op > aℓ

)
+ P

(
n−1/2‖ηℓ‖ > τℓ

2

))

. max
1≤ℓ≤L

{
P
(
‖δḂℓ‖op > aℓ

)
+ P

(
n−1/2‖ηℓ‖ > τℓ

2

)} L∑

ℓ=1

ℓd−1

. Ld−1
(
δ c0ρ

2/λ2
0 + n−c1µ

2
0/4

)

where we applied (5.14) and (5.17) to obtain the last inequality. The choice of
L in (3.2) leads to

E
[
V II

]
. (δ2)

− d−1
2ν+d−1+

c0ρ2

λ2
0 + n

1
2ν+d−

c1µ2
0

4 . δ2
∨
n−1 (5.20)

by taking λ0 sufficiently small and µ0 sufficiently large.

• The term I, conclusion. We put together the estimates (5.12), (5.13), (5.19)
and (5.20). We obtain

E
[
I
]
.

(
δ2| log δ|

)1∧
2s/(2ν+d−1) ∨(

n−1 logn
)2s/(2(s+ν)+d)

(5.21)

uniformly in f ∈ Ws(M).

• The term II. We claim the following inequality

1Ac ≤ 1{
‖(Kℓ)−1‖op≥

κℓ

2

} + 1{
‖Kδ,ℓ−Kℓ‖op≥κ

−1
ℓ

}, (5.22)

a consequence of the following elementary lemma

Lemma 4. Let A and B be two bounded operators with bounded inverse. If
‖B−1‖ ≥ κ for some κ > 0, then either ‖A−1‖ ≥ κ/2 or ‖A−B‖ ≥ 1/κ.
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Proof of Lemma 4. Write B = A+ξ. Assume that ‖A−1‖ < κ/2. By the triangle
inequality, ‖(A + ξ)−1 − A−1‖ ≥ κ/2. We proceed by contradiction: suppose
that ‖ξ‖ ≤ 1/κ. Then we have ‖A−1ξ‖ ≤ ‖A−1‖‖ξ‖ ≤ 1/2 < 1 and a standard
Neumann series argument entails

‖(A+ ξ)−1 −A−1‖ = ‖(Id +A−1ξ)−1A−1 −A−1‖
= ‖

∑

i≥1

(−1)i(A−1)i+1ξi‖

≤
∑

i≥1

‖A−1‖i+1‖ξ‖i

<
κ

2

∑

i≥1

(κ
2

)i(1
κ

)i
=
κ

2
,

a contradiction.

By Assumption 1, we have ‖(Kℓ)
−1‖op ≤ Q2(K)ℓν . Therefore

1{
‖(Kℓ)−1‖op≥

κℓ

2

} ≤ 1{
ℓ≥c

(
δ2| log δ|

)1/(2ν+d−1) ∧
n1/(2ν)

}

for some constant c that depends on Q2(K) and λ0 only. For the second term
in the right-hand side of (5.22), we apply by Lemma 2 in the same way as we
obtained (5.15) for the term V III. We derive

P
(
‖δḂℓ‖op ≥ κ−1

ℓ

)
= P

(
|Λℓ|−1/2‖Ḃℓ‖op ≥ µ−1

0 | log δ|1/2
)

≤ exp
(
− c0

µ2
0
| log δ||Λn|2

)
= δ c0|Λℓ|

2/µ0 ≤ δ c0/µ0

for large enough µ0. Therefore

E
[
II

]
≤

L∑

ℓ=1

‖f ℓ‖2
(
1{

ℓ≥c
(
δ2| log δ|

)1/(2ν+d−1) ∧
n1/(2ν)

} + P
(
‖δḂℓ‖op ≥ κ−1

ℓ

))

.
(
n−s/ν

∨(
δ2| log δ|

)2s/(2ν+d−1))‖f‖2Ws + ‖f‖2H δ c0/µ0 .

We finally obtain

E
[
II

]
.

(
δ2 log δ−1

)2s/(2ν+d−1)
+ δ2 + n−s/ν

.
(
δ2| log δ|

)1∧
2s/(2ν+d−1) ∨(

n−1 logn
)2s/(2(s+ν)+d)

(5.23)

uniformly in f ∈ Ws(M),K ∈ Gν(Q).

• The term III. Obviously, the decomposition (5.5) entails

1Bc = 1{
‖Kℓfℓ+n

−1/2ηℓ‖<τℓ

} ≤ 1{
‖Kℓfℓ‖≤2τℓ

} + 1{
n−1/2‖ηℓ‖>τℓ

}.

On the one hand, we have

‖Kℓf ℓ‖ ≥ ‖(Kℓ)
−1‖−1

op ‖f ℓ‖ ≥ Q2(K)−1ℓ−ν‖f ℓ‖
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by Assumption 1. By definition of τℓ in (2.7) it follows that, for any 1 ≤ k ≤ L,

L∑

ℓ=1

‖f ℓ‖21{‖Kℓfℓ‖≤2τℓ

} ≤
L∑

ℓ=1

‖fℓ‖21{‖fℓ‖≤2Q2(K)−1ℓντℓ

}

.

k∑

ℓ=1

ℓ2ντ2ℓ +

L∑

ℓ=k+1

‖f ℓ‖2

. (n−1 logn)

k∑

ℓ=1

ℓ2ν+d−1 + ‖f‖2Wsk−2s

. (n−1 logn) k2ν+d + ‖f‖2Wsk−2s.

The choice k = ⌊
(
n1/2(logn)−1/2

)1/(2(s+ν)+d)⌋ yields

L∑

ℓ=1

‖f ℓ‖21{‖Kℓfℓ‖≤2τℓ

} .
(
n−1 logn

)2s/(2(s+ν)+d)
(5.24)

uniformly in f ∈ Ws(M),K ∈ Gν(Q). On the other hand, by (5.17), we have

L∑

ℓ=1

‖fℓ‖2P
(
n−1/2‖ηℓ‖ > τℓ

})
. ‖f‖2H n−c1µ

2
0/4 . n−1

by taking µ0 large enough, uniformly in f ∈ Ws(M). Combining this last esti-
mate with (5.24) we infer

E
[
III

]
.

(
n−1 logn

)2s/(2(s+ν)+d)
+ n−1 (5.25)

uniformly in f ∈ Ws(M),K ∈ Gν(Q).

Proof of Theorem 1, completion. It remains to piece together the estimates
(5.7), (5.21), (5.23) and (5.25).

5.3. Proof of Corollary 1

It suffices to prove that (3.7). Let β > 0. We have

P

(
|Λℓ|−1

∑

λ∈Λℓ

η2n,λ > β2
)
≤

∑

λ∈Λℓ

P
(
|ηn,λ| ≥ β

)
≤ cP

(
|ηn,λ| ≥ β

)
,

where c = maxℓ≥1 |Λℓ| is finite by (3.8). Also,

n−1/2ηn,λ = n−1
n∑

i=1

(
gλ(Zi)− E[gλ(Zi)]

)

is the empirical mean of centred and independent random variables that satisfy
∣∣gλ(Zi)− E[gλ(Zi)]

∣∣ ≤ 2 max
ℓ≥1,|λ|=ℓ

sup
x∈D

|gλ(x)| = c′
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which is finite by (3.8). By Hoeffding inequality, it follows that

P
(
|ηn,λ| ≥ β

)
= P

(∣∣n−1
n∑

i=1

(
gλ(Zi)− E[gλ(Zi)]

)∣∣ ≥ n−1/2β
)

≤ exp
(
− 2(c′)−2β2

)
≤ exp

(
− 2(c′c)−2β2|Λℓ|

)

and (3.7) is proved with c1 = (c′c)2 and β1 = c−5/2 log(2c)(c′)−1 for instance.

5.4. Proof of Theorem 2

The lower bound in the case δ = 0 is classical (Nussbaum and Pereverzev [30])
and will not decrease for increasing noise levels δ or n−1/2 whence it suffices
to provide the case which formally corresponds to observing Kf without noise
while K remains unknown.

Preliminaries: a Bayesian inequality

For every ℓ ≥ 1, denote by Mℓ the set of |Λℓ| × |Λℓ| matrices. We denote by
Mν

ℓ (Q) the subset of Mℓ of matrices Kℓ such that

‖Kℓ‖op ≤ Q2ℓ
−ν and ‖(Kℓ)

−1‖op ≤ Q1ℓ
ν .

Define

K0
ℓ = c1ℓ

−νIℓ (5.26)

where Iℓ denotes the identity in Mℓ and c1 > 0 is such that

1/Q1 < c1 < Q2

so that K0
ℓ ∈ Mν

ℓ (Q). We assume a Bayesian approach and pick Kℓ at random,
with

Kℓ = K0
ℓ + c2 δẆ ℓ,

for some c2 > 0 and where Ẇ ℓ is an independent copy of Ḃℓ. Define gℓ =
(1 0 · · · 0)T as the first canonical (column) vector in R|Λℓ|. Define also

ϑ = −(K0
ℓ)

−1(Kℓ −K0
ℓ )(K

0
ℓ)

−1gℓ (5.27)

and

X = −(K0
ℓ )

−1(Kδ,ℓ −K0
ℓ)(K

0
ℓ)

−1gℓ. (5.28)

Lemma 5. There exists a constant c3 depending on ν,Q and c2 only such that

inf
T

P
(
δ−2ℓ−4ν |Λℓ|−1‖T (X)− ϑ‖2 ≥ c3

)
≥ 1

2 , (5.29)

where the infimum is taken among all estimators T based on the observation X.
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Proof of Lemma 5. We have X = ϑ+ ε, with

ϑ = −(K0
ℓ )

−1c2δẆ (K0
ℓ)

−1gℓ and ε = −(K0
ℓ)

−1δḂ(K0
ℓ)

−1gℓ.

By construction, ϑ and ε are two independent Gaussian random vectors. More
precisely, by definition of gℓ and with obvious notation, we have

ϑ ∼ N
(
0, δ2c22c

−4
1 ℓ4νIℓ

)
and ε ∼ N

(
0, δ2c−4

1 ℓ4νIℓ
)
.

It readily follows that the posterior law of ϑ given X is

L(ϑ
∣∣X) = N

( c22
1 + c22

X, δ2
c22

1 + c22
c−4
1 ℓ4νIℓ

)
.

Now, for c3 > 0, define

Hδ(c3,x) = 1{δ−2ℓ−4ν |Λℓ|−1‖x‖2 ≥ c3} for x ∈ R
|Λℓ|.

Setting z(X) = T (X)− E[ϑ |X], we have

E
[
Hδ

(
c3, T (X)− ϑ

)
|X

]
= E

[
Hδ

(
c3, z(X) + E[ϑ |X]− ϑ

)
|X

]

≥ E
[
Hδ

(
c3,E[ϑ |X]− ϑ

)
|X

]

where we used a version of Anderson’s Lemma given in Lemma 10.2 in [19] p.
157. Indeed, the law of E[ϑ |X]− ϑ has a centrally symmetric density and the
function Hδ is nonnegative, centrally symmetric, satisfies Hδ(0) = 0 and the
sets {x, Hδ(c3,x) < c} are convex for any c > 0.

Now, ‖E[ϑ |X] − ϑ‖2 has a χ2-distribution with |Λℓ| degrees of freedom,
up to a scaling factor of order δ2ℓ4ν . This means that the sequence of random
variables δ−2ℓ−4ν |Λℓ|−1‖E[ϑ |X]−ϑ‖2 is bounded below in probability in ℓ ≥ 1
and δ > 0. Since E[ϑ |X]−ϑ is moreover independent ofX, it follows that there
exists c3 independent of δ and ℓ such that

E
[
Hδ

(
c3,E[ϑ |X]− ϑ

)
|X

]
≥ 1

2 .

Integrating with respect to X, we obtain (5.29) and the result follows.

Proof of Theorem 2

We assume with no loss of generality that 2ν+d−1 ≥ 2s. (Otherwise, the lower
bound δ trivially follows from the parametric case.) Let Πs,ν(M,Q1) denote the
set of sequences π = (πℓ)ℓ≥1 satisfying

∑

ℓ≥1

π2
ℓ ℓ

2(s+ν) ≤ M2

Q2
1

. (5.30)

For π ∈ Πs,ν(M,Q1) and K ∈ Gν(Q), define f via its coordinates in Hℓ by

f ℓ = πℓK
−1
ℓ gℓ, ℓ ≥ 1,
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where gℓ is an arbitrary vector in R|Λℓ| with ‖gℓ‖ = 1 (fixed in the sequel).
Then

∑

ℓ≥1

ℓ2s‖πℓK−1
ℓ gℓ‖2 ≤

∑

ℓ≥1

π2
ℓ ‖K−1

ℓ ‖2op‖gℓ‖2 ≤ Q2
1

∑

ℓ≥1

π2
ℓ ℓ

2(s+ν) ≤M2

since π ∈ Πs,ν(M,Q1). Therefore f ∈ Ws(M). It follows that for an arbitrary

estimator f̂ , we have

sup
f∈Ws(M),K∈Gν(Q)

E

[∥∥f̂ − f
∥∥2
H

]

= sup
f∈Ws(M),K∈Gν(Q)

∑

ℓ≥1

E

[∥∥f̂ ℓ − f ℓ
∥∥2
]

≥ sup
π∈Πs,ν(M,Q1),K∈Gν(Q)

∑

ℓ≥1

E

[∥∥f̂ ℓ − πℓK
−1
ℓ gℓ

∥∥2
]
.

Lemma 6. There exist a choice of gℓ with ‖gℓ‖ = 1 and constants c4, c5 (de-
pending on s, ν,M,Q) such that for any π ∈ Πs,ν(M,Q1), if |Λℓ|1/2δ ≤ c4 ℓ

−ν,
we have

inf
f̂ℓ

sup
K∈Gν(Q)

E
[
‖f̂ ℓ − πℓK

−1
ℓ gℓ‖2

]
≥ c5 δ

2ℓ4ν+d−1π2
ℓ (5.31)

where the infimum is taken over all estimators and provided δ > 0 is sufficiently
small.

With (5.31), we easily conclude: Define L = ⌊c6δ−2/(2ν+d−1)⌋ with c6 > 0.
For 1 ≤ ℓ ≤ L, the assumption |Λ|1/2δ ≤ c4 ℓ

−ν of Lemma 6 is satisfied by
picking c6 > 0 sufficiently small and we have

sup
π∈Πs,ν(M,Q1),K∈Gν(Q)

∑

ℓ≥1

E

[∥∥f̂ ℓ − πℓK
−1
ℓ gℓ

∥∥2
]

≥ c5δ
2 sup
π∈Πs,ν(M,Q1)

L∑

ℓ=1

ℓ4ν+d−1π2
ℓ

≥ c5δ
2M2

Q2
1
L2ν+d−1−2s ≥ c5c

2ν+d−1−2s
6

M2

Q2
1
δ2s/(2ν+d−1)

thanks to the admissible choice π specified by π2
ℓ = ℓ−2(ν+s)M2/Q2

1 if ℓ = L
and 0 otherwise. Theorem 2 follows. It remains to prove Lemma 6.

Proof of Lemma 6. In view of (5.31), we may (and will) assume that πℓ = 1.
We rely on the notation and definition of the preliminaries. Observe first that

inf
f̂ℓ

sup
K∈Gν(Q)

E
[
‖f̂ ℓ −K−1

ℓ gℓ‖2
]

= inf
f̂ℓ

sup
K∈Gν(Q)

E
[
‖f̂ ℓ −

(
K−1
ℓ − (K0

ℓ )
−1

)
gℓ‖2

]
.
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whereK0 is defined in (5.26). Put vδ,ℓ = δ2ℓ4ν+d−1. For any c > 0, by Chebyshev
inequality, we have

c2v−2
δ,ℓ inf

f̂ℓ

sup
K∈Gν(Q)

E
[
‖f̂ ℓ −

(
K−1
ℓ − (K0

ℓ)
−1

)
gℓ‖2

]

≥ inf
f̂ℓ

sup
K∈Gν(Q)

P
(
‖f̂ ℓ −

(
K−1
ℓ − (K0

ℓ)
−1

)
gℓ‖ ≥ c vδ,ℓ

)
. (5.32)

We adopt the same Bayesian approach as in the preliminaries and consider Kℓ

as a random matrix with distribution such that

Kℓ = K0
ℓ + c2 δẆ ℓ, (5.33)

where Ẇ ℓ is an independent copy of Ḃℓ and c2 > 0 is to be specified later. Using
the randomisation (5.33) on Kℓ, the right-hand side in (5.32) is now bigger than

inf
f̂ℓ

P
(
‖f̂ ℓ −

(
K−1
ℓ − (K0

ℓ)
−1

)
gℓ‖ ≥ c vδ,ℓ

)
− P

(
Kℓ /∈ Mν

ℓ (Q)
)
. (5.34)

Let us first show that

inf
f̂ℓ

P
(
‖f̂ ℓ −

(
K−1
ℓ − (K0

ℓ )
−1

)
gℓ‖ ≥ c vδ,ℓ

)
(5.35)

is bounded below for an appropriate choice of c > 0. Introduce the event

Aδ =
{
Q1ℓ

νc2δ‖Ẇ ℓ‖op ≤ ρ
}

for some 0 < ρ < 1. Observe that ‖(K0
ℓ )

−1c2δẆ ℓ‖op ≤ ρ on Aδ, therefore, by
an usual Neuman series argument, we have the decomposition

K−1
ℓ − (K0

ℓ)
−1

=− (K0
ℓ )

−1(c2δẆ ℓ)(K
0
ℓ )

−1 +
∑

n≥2

(−1)n
(
(K0

ℓ)
−1c2Ẇ ℓ

)n
(K0

ℓ)
−1

Applying the vector gℓ = (1, 0, . . . , 0) and setting

ζδ,ℓ =
∑

n≥2

(−1)n
(
(K0

ℓ)
−1c2Ẇ ℓ

)n
(K0

ℓ )
−1gℓ,

we obtain the decomposition
(
K−1
ℓ − (K0

ℓ)
−1

)
gℓ =− (K0

ℓ)
−1(c2δẆ ℓ)(K

0
ℓ)

−1gℓ + ζδ,ℓ

= ϑ+ ζδ,ℓ,

where ϑ is defined in (5.27). We derive, for any c > 0

P
(
‖f̂ ℓ −

(
K−1
ℓ − (K0

ℓ)
−1

)
gℓ‖ ≥ c vδ,ℓ

)

≥P
(
‖f̂ ℓ − (ϑ+ ζδ,ℓ)‖ ≥ c vδ,ℓ and Aδ

)

≥P
(
‖f̂ ℓ − ϑ‖ ≥ 1

2c vδ,ℓ and Aδ and ‖ζδ,ℓ‖ ≤ 1
2c vδ,ℓ

)
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by the triangle inequality. We claim that for any ε > 0, there exists a choice of
sufficiently small c2 such that for any c > 0:

lim sup
δ→0

P
(
Aδ and ‖ζδ,ℓ‖ ≤ 1

2c vδ,ℓ
)
≥ 1− ε. (5.36)

Let us admit temporarily (5.36). For such a choice, we thus have

P
(
‖f̂ ℓ −

(
K−1
ℓ − (K0

ℓ)
−1

)
gℓ‖ ≥ c vδ,ℓ

)

≥P
(
‖f̂ ℓ − ϑ‖ ≥ 1

2c vδ,ℓ
)
− ε.

Let us now look at an apparently different problem: we want to estimate ϑ from
our observation Kδ,ℓ, or equivalently, from the observation

−(K0
ℓ)

−1(Kδ,ℓ −K0
ℓ)(K

0
ℓ )

−1.

The choice gℓ = (1 0 · · · 0)T entails that −(K0
ℓ)

−1(Kδ,ℓ −K0
ℓ)(K

0
ℓ)

−1gℓ is a
sufficient statistic, but this last quantity is precisely X defined in (5.28). Thus,

without loss of generality, f̂δ can be taken as an estimator of the form T (X).
By Lemma 5, we know that vδ,ℓ is a lower bound for estimating ϑ.

More specifically, by taking c such that c 6 2
√
c3, we have

P
(
‖f̂ ℓ − ϑ‖ ≥ 1

2c vδ,ℓ
)
− ε ≥ 1

2 − ε ≥ 1
4

say, since the choice of ε is arbitrary, and (5.35) follows. It remains to prove
(5.36).

First, we have that |Λℓ|−1/2‖Ẇ ℓ‖op is bounded in probability by Lemma 2

in ℓ ≥ 1. Since |Λℓ|1/2δ ≤ c4ℓ
ν by assumption, we also have that ℓνδ‖Ẇ ℓ‖op

is bounded in probability, hence the probability of Aδ can be taken arbitrarily
close to 1 by taking c2 sufficiently small. Moreover, on Aδ, we have

‖ζδ,ℓ‖ ≤Q1ℓ
ν
∑

n≥2

(
Q1ℓ

νc2δ‖Ẇ ℓ‖op
)n

≤ (1− ρ)−1c22Q
3
1δ

2ℓ3ν‖Ẇ ℓ‖2op
≤ (1− ρ)−1c22Q

3
1δℓ

2ν |Λℓ|1/2c4|Λℓ|−1‖Ẇ ℓ‖2op

where we again used the fact that |Λℓ|1/2δ ≤ c4ℓ
−ν by assumption. The claim

follows from the fact that |Λℓ|−1/2‖Ẇ ℓ‖op is bounded in probability. Hence
(5.36) and (5.35) is proved.

In order to complete the proof of Lemma 6, we need to check that the term
P
(
Kℓ /∈ Mν

ℓ (Q)
)
can be taken arbitrarily small when bounding (5.32) below by

(5.34). We have

P
(
Kℓ /∈ Mν

ℓ (Q)
)

≤ P
(
‖Kℓ‖op > Q2ℓ

−ν
)
+ P

(
‖K−1

ℓ ‖op > Q1ℓ
ν
)
. (5.37)
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For the first term in the right-hand side of (5.37), we have

P
(
‖Kℓ‖op > Q2ℓ

−ν
)
≤ P

(
‖c2δẆ ℓ‖op > Q2ℓ

−ν − ‖K0
ℓ‖op

)

≤ P
(
‖c2δẆ ℓ‖op > (Q2 − c1)ℓ

−ν
)
.

The last term can be rewritten as

P
(
|Λℓ|−1/2‖Ẇ ℓ‖op > (Q2 − c1)c

−1
2 ℓ−ν |Λℓ|−1/2δ−1

)
.

For the second term in the right-hand side of (5.37), thanks to the property

‖K−1
ℓ ‖op ≤

(
c1ℓ

−ν − ‖c2δẆ ℓ‖op
)−1

we derive

P
(
‖K−1

ℓ ‖op > Q1ℓ
ν
)

≤ P
(
|Λℓ|−1/2‖Ẇ ℓ‖op > (c1 −Q−1

1 )c−1
2 ℓ−ν|Λℓ|−1/2δ−1

)
.

By assumption, we have that ℓ−ν |Λℓ|−1/2δ−1 is bounded away from zero. Since
|Λℓ|−1/2‖Ẇ ℓ‖op is tight in ℓ ≥ 1, we can conclude by taking c2 sufficiently small.
The proof of Lemma 6 is complete.
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