
Order Theory for Big-Step Semantics

Jérôme Vouillon

To cite this version:

Jérôme Vouillon. Order Theory for Big-Step Semantics. 2011. <hal-00782145>

HAL Id: hal-00782145

https://hal.archives-ouvertes.fr/hal-00782145

Submitted on 29 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47098497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00782145

Order Theory for Big-Step Semantics

Jérôme Vouillon

CNRS, UMR 7126, PPS, Univ Paris Diderot, Sorbonne Paris Cité,

F-75205 Paris, France

jerome.vouillon@pps.jussieu.fr

Abstract

We show that tools from order theory, such as Kleene fix-

point theorem, can be used to define bigstep semantics that

simultaneously account for both converging and diverging

behaviors of programs. These semantics remain very con-

crete. In particular, values are defined syntactically: the se-

mantics of a function abstraction is a function closure rather

than some abstract continuous function.

1. Introduction

Many techniques are available to express formally the se-

mantics of a calculus. Syntactic approaches are often fa-

vored, as they are very concrete and require little theory.

They can be classified into two categories. Small-step se-

mantics [26] are very expressive, accounting for both ter-

mination and non-termination. However, this precision can

be a hinder when proving program transformations: the se-

mantics of programs are execution traces, that needs to be

transformed to validate program transformations. Big-step

semantics [18] are more abstract: the semantics of a pro-

gram is its final outcome. They do not account for non-

termination, unless they are specified as both an inductive

relation for terminating programs and a coinductive relation

for non-terminating ones. Denotational approaches, on the

other hand, are powerful but require a significant mathemat-

ical background: the semantics of a program is not a syntac-

tic object, but belongs to an abstract mathematical domain;

for instance, function abstractions are typically interpreted

as continuous functions between domains. In the present pa-

per, we attempt to find a middle ground: we experiment with

basic denotational tools to define big step semantics that si-

multaneously account for finite and infinite program behav-

iors. This way, we can define semantics which are simple

and very concrete, but also precise.

We present our technique on a kind of call-by-need cal-

culus which would be complicated to tackle by other means

(Section 2). We then discuss how to apply our framework

for the semantics of other calculi (Section 3). This paper is

based on a mechanised formalisation in Coq of (basic) order

theory and of the call-by-need calculus (Section 4).

2. A Call-by-Need Calculus

As a running example, we consider a small calculus with

first-class functions and pairs. We mean this calculus to be

call-by-need. Our aim is to give a kind of big-step semantics

to this calculus. This semantics accounts for both converging

and diverging behaviors. We then illustrate how to reason on

the semantics by proving a type soundness result.

2.1 Syntax

Terms T are given by the grammar below. This is the stan-

dard syntax of λ-calculus with pairs.

t ::= x variable

λx.t function abstraction

t t function application

(t, t) pair

fst t first projection

snd t second projection

We write X for the countable set of variables x. Terms

evaluate to values V , described by the following grammar.

v ::= (λx.t)ρ function closure

(v, v) pair

diverge divergence

error error

An environment ρ is a total map from variables X to val-

ues V . A variable x is unbound in an environment ρ when

ρ(x) = error. The diverge and error values may occur

nested inside other values: intuitively, values are computed

lazily; then, when visiting a value, one may reach a position

in the value where the computation diverges or fails.

Laziness makes it possible to define infinite datastruc-

tures. Thus, for the moment, we consider that values v may

be infinite trees (see just below for a formal definition). In

other words, we interpret the grammar above in a coinduc-

tive way. Later on, we will take a different point of view, and

will find it convenient to write v to denote just finite values

and v̄ to denote any value, including infinite ones.

Infinite tree. We write N∗ for the set of finite sequences of

integers. The empty sequence is written ǫ, and w ·w′ denotes

the concatenation of two sequences w and w′.

1 2012/3/19

VAR

ρ ⊢ x ; ρ(x)
ABS

ρ ⊢ λx.t ; (λx.t)ρ

PAIR

ρ ⊢ t1 ; v1 ρ ⊢ t2 ; v2

ρ ⊢ (t1, t2) ; (v1, v2)

APP

ρ ⊢ t ; (λx.t′′)ρ′ ρ ⊢ t′ ; v′

ρ′;x 7→ v′ ⊢ t′′ ; v

ρ ⊢ t t′ ; v

APP-STRICT

ρ ⊢ t ; diverge

ρ ⊢ t t′ ; diverge

APP-ERROR

ρ ⊢ t ; v v 6≤ (λx.t′′)ρ′

ρ ⊢ t t′ ; error

FST

ρ ⊢ t ; (v1, v2)

ρ ⊢ fst t ; v1

FST-STRICT

ρ ⊢ t ; diverge

ρ ⊢ fst t ; diverge

FST-ERROR

ρ ⊢ t ; v v 6≤ (v1, v2)

ρ ⊢ fst t ; error

SND

ρ ⊢ t ; (v1, v2)

ρ ⊢ snd t ; v1

SND-STRICT

ρ ⊢ t ; diverge

ρ ⊢ snd t ; diverge

SND-ERROR

ρ ⊢ t ; v v 6≤ (v1, v2)

ρ ⊢ snd t ; error

Figure 1. Semantics.

We assume given a set Σ of labels together with an arity

function Ar : Σ → N ∪ {∞}. A tree (T, V) is a pair of

a non-empty set of nodes T ⊆ N
∗ and a labelling function

V : T → Σ such that:

• if t · c ∈ T where c ∈ N, then t ∈ T and for all c′ ∈ N ,

if c′ < c then t · c′ ∈ T ;

• for all t ∈ T , Ar(V (t)) = d(t), where the degree of a

node t ∈ T is d(t) = inf{c ∈ N | t · c 6∈ T}.

We refer you to [7, 14] for more details on infinite trees.

2.2 Semantics

The tentative semantics is presented using inference rules

in Figure 1. The semantics ρ ⊢ t ; v is a relation be-

tween an environment ρ ∈ X → V , a term t ∈ T and

the semantic value v ∈ V of the term in the environment.

As side-condition to some of the rules, we write v 6≤ v′

where v is a value and v′ is the shape of a value to mean

that value v is neither diverge nor of the shape v′. The

inference rules read well. The value of a variable is taken

from the environment. The value of a function abstraction

is a closure composed of the abstraction together with the

current environment. The value of a pair of two terms is the

pair composed of the values of each of the terms. For value

destructors (function application and pair projections), there

are three cases. Consider a function application t t′. If the

value of term t is a closure (λx.t′′)ρ′ , then the value of the

application is the value of the closure body t′′ in the envi-

ronment ρ′;x 7→ v′ derived from the closure environment ρ′

by assigning to the function parameter x the value v′ of the

argument t′. If term t diverges, then so does the function ap-

plication. Otherwise, the application fails. The rules for pro-

jections are similar. If the value of a term t is a pair, then the

value of the projection fst t (resp. snd t) is the first element

(resp. the second element) of the pair. If the term diverges,

then so does the projection. Otherwise, the projection fails.

The semantics can be understood as an abstraction of call-

by-need that does not account for when a term is evaluated,

but only expresses that terms are evaluated at most once.

Hence, we avoid the imperative flavour of typical operational

semantics of call-by-need, where thunks are created to de-

lay the evaluation of terms, and are later updated in place

once their value is computed. One might rightly argue that,

as is, one cannot really distinguish the calculus from a call-

by-name calculus. The difference would really become vis-

ible if a non-deterministic construction were added (a non-

deterministic choice, for instance, as in [19]). Indeed, con-

sider an expression (λx.(x, x)) t where subexpression t may

evaluate to several distinct values due to non-determinism.

In a call-by-need settings, as t is evaluated at most once,

the whole expression only evaluates to values of the shape

(v, v). This is reflected in our calculus by the fact that a

function parameter x is bound to a single value when a func-

tion application is evaluated. On the other hand, in a call-by-

name settings, the expression can also evaluate to values of

the shape (v1, v2), where v1 and v2 are two distinct values

of subexpression t.
Now, what do the inference rules of Figure 1 actually

mean? The standard interpretation of inference rules is as in-

ductive rules, that is, the assertion ρ ⊢ t ; v holds if, using

the inference rules, one can build a finite tree (a derivation)

that justifies this assertion. An example of derivation is given

in Figure 2. But we are only capturing finite behaviors this

way: it is not possible to derive ρ ⊢ t ; diverge for any

term t (when the environment ρ does not already contain

the diverge value), as all rules that yield divergence also

assume divergence as hypothesis! It is also not possible to

derive that a term evaluates to any infinite value. Thus, a dif-

ferent interpretation of inductive rules is needed. For this, let

us first come back to the definition of inference rules.

2 2012/3/19

ABS

∅ ⊢ λx.(x, x) ; (λx.(x, x))∅

ABS

∅ ⊢ f ; (f)∅

VAR

ρ ⊢ x ; (f)∅

VAR

ρ ⊢ x ; (f)∅

ρ ⊢ (x, x) ; ((f)∅, (f)∅)
PAIR

∅ ⊢ (λx.(x, x)) f ; ((f)∅, (f)∅)
APP

where f = λx.x and ρ = x 7→ (f)∅.

Figure 2. Simple derivation.

ABS

∅ ⊢ ∆ ; (∆)∅

ABS

∅ ⊢ ∆ ; (∆)∅

VAR

ρ ⊢ x ; (∆)∅

VAR

ρ ⊢ x ; (∆)∅

...

ρ ⊢ xx ; diverge
APP

ρ ⊢ xx ; diverge
APP

∅ ⊢ ∆∆ ; diverge
APP

where ρ = x 7→ (∆)∅.

Figure 3. Derivation for a diverging term.

ABS

∅ ⊢ Π ; (Π)∅

VAR

ρ ⊢ x ; (Π)∅

...

ρ ⊢ (xx, x x) ; p
PAIR

ρ ⊢ xx ; p
APP

ρ ⊢ (xx, x x) ; p
PAIR

∅ ⊢ ΠΠ ; p
APP

where ρ = x 7→ (Π)∅ and the value p satisfies p = (p, p).

Figure 4. Term evaluating to an infinite value.

Inference system. An inference system Φ over a set U is a

set of pairs (A, c) ∈ P(U)× U [2]. The pair (A, c) is called

an inference rule and is usually written:

a1 . . . an

c

where A = {a1, . . . , an}. The intuitive reading of such

a rule is that the conclusion c holds if and only if all the

antecedents in A hold.

Given an inference system Φ, we define the operator

FΦ : P(U) → P(U) as

FΦ(S) = {c ∈ U | ∃A ⊆ S, (A, c) ∈ Φ}.

The set FΦ(S) is the set of conclusions that can inferred

in one step from the antecedents in S. The operator FΦ is

monotonic. By Knaster-Tarski [29] theorem, it has a least

and a greatest fixpoint. The least fixpoint lfpFΦ is the in-

ductive interpretation of the inference system Φ. The great-

est fixpoint gfpFΦ is the coinductive interpretation of the

inference system Φ.

There are reasoning principles associated to these fix-

points. The induction principle can be stated as follows: if X
is F -closed (that is, F (X) ⊆ X), then lfpF ⊆ X . The

coinduction principle can be stated as follows: if X is F -

consistent (that is, X ⊆ F (X)), then X ⊆ gfpF .

Using the coinduction principle, one can prove that an

element x is included in gfpX by finding an F -consistent

set X such that x ∈ X . In the case of the least fixpoint, one

uses the fact that lfpF =
⋃
Fn(∅). Thus, x ∈ lfpF if there

exists n such that x ∈ Fn(∅).
Concretely, with the inductive interpretation, a conclu-

sion c holds if one can build a finite tree that derives c using

the inference rules in system Φ. With the coinductive inter-

pretation, a conclusion c holds if one can build a possibly

infinite tree ending with conclusion c. The F -consistent set

that proves that c holds is the set of elements of U that occur

in the derivation tree. We refer you to [14], for instance, for

more details on coinductive reasoning.

In our case, the rules of Figure 1 define a map F on se-

mantic relations, where a semantic relation is a relation be-

tween an environment ρ ∈ X → V , a term t ∈ T and

the semantic value v ∈ V of the term in the environment.

We have seen that the inductive interpretation of the rules

(the least fixpoint of F) is not large enough to encompass

diverging behaviors. The coinductive interpretation seems

more promising. For instance, one can derive that term ∆∆,

where ∆ = λx.x x, diverges: indeed, the derivation in Fig-

ure 3 can be extended forever by repeating the same pattern

of function application and pair evaluation. Similarly, one

3 2012/3/19

ρ ≤ ρ′

(λx.t)ρ ≤ (λx.t)ρ′

v1 ≤ v′1 v2 ≤ v′2
(v1, v2) ≤ (v′1, v

′
2)

diverge ≤ v
for all x, ρ(x) ≤ ρ′(x)

ρ ≤ ρ′

Figure 7. Order on finite values and environments.

can show that some terms evaluate to infinite values. Figure 4

illustrates the fact that term ΠΠ, where Π = λx.(xx, x x),
evaluates to the infinite value p such that p = (p, p).

But, actually, the derivation of Figure 3 can be gener-

alised to show that term ∆∆ evaluates to any value v, as

shown in Figure 5. This is really not what we want! Thus,

while the inductive interpretation of the inference rules is

too small, the coinductive interpretation appears to be too

large. It seems that we need to find a fixpoint in-between.

More precisely, the issue we have is that the calculus

should be deterministic: to each environment ρ and term t
should be associated exactly one value v. This is not the case

with the fixpoints we have considered so far. But remark that

operator F returns a function when given as input a function.

FACT 1. Operator F is a self-map on the graph of functions

in (X → V) → T → V .

In other words, the operator F preserves determinism. This

gives us some confidence that it has a deterministic fixpoint.

By the way, this is also a strong hint that we have the right

set of rules, with no missing nor overlapping rules.

Thus, we want a fixpoint of operator F that is a function.

But how to find such a fixpoint? The solution comes from

order theory: we need to find a suitable domain of functions

in which operator F has a least fixpoint. To find this fix-

point, the idea is to consider approximate derivations, that

corresponds intuitively to giving up the computation of parts

of a value at some points, returning the diverge value in-

stead. Approximate derivations are partial derivations where

all assertions ρ ⊢ t ; v are justified (like for a normal fi-

nite derivation), except possibly for some assertions of the

shape ρ ⊢ t ; diverge. An example is given in Figure 6,

where the rightmost assertion at the top is not justified. Then,

a correct derivation should be the limit of a suitable set of

approximate derivations. For instance, the partial derivation

in Figure 6 shows that the resulting value is a pair of pairs.

By considering larger partial derivations, one can get a more

precise approximation of the value. This approach rules out

the derivation in Figure 5, where value v is coming out of

this air, from infinity: if one gives up the computation at any

point, one does not get any value as a result but diverge.

We will progressively make these ideas precise. As a first

step, we define the approximation relation between finite

values by the inductive rules in Figure 7: an approximation

of a value is built by replacing some of its subvalues by

the diverge value. Intuitively, it is then enough to work

with finite values, as we will be able to approximate infinite

values as precisely as wanted using only finite values (in a

sense that will be made precise later). Hence, from now on,

we write v to denote only finite values, and v to denote any

value, including infinite ones. The inference rules of Figure 1

are reinterpreted accordingly. As we use heavily orders and

more generally preorders below, we remind their definitions.

Preorder. A preorder ≤ on a set A is a binary relation on

this set which is both reflexive (for all x in A, we have x ≤ x)

and transitive (for all x, y, z in A, if x ≤ y and y ≤ z, then

x ≤ z). A set A with a preorder ≤ defined on it is called a

preordered set. We denote it by (A,≤), or just A when there

is no confusion.

An order is a preorder that is also antisymmetric (that is,

if for all x, y in A, x ≤ y and y ≤ x implies x = y). A set

A with an order ≤ defined on it is called an ordered set.

A preorder induces an equivalence relation ≡ on A (x ≡
y iff x ≤ y and y ≤ x), and an order on the quotient set

A/≡. However, it is often more convenient (in particular,

when undertaking mechanised proofs) to work directly with

the initial preordered set rather than with the quotient set.

We expect that the more precise the input of the semantic

function, the more precise its output. We should thus con-

sider only monotonic semantic functions. Then, function F
should also be monotonic, for a suitable order on semantic

functions: given more precise subcomputation results, the

function F should produce more precise computation re-

sults. Formally, we adopt the following definitions.

Monotonic map. A monotonic map f : A → B between

two preordered sets A and B is a map that preserves the

preorder, that is, for all x1, x2 in A, if x1 ≤ x2, then

f(x1) ≤ f(x2). We write A →m B for the set of monotonic

maps from A to B.

Pointwise order on functions. Given a set A and a pre-

ordered set B, one can define a canonical preorder on func-

tions in A → B by:

f ≤ g iff ∀x ∈ A, f(x) ≤ g(x).

Monotonic functions A →m B between two preordered

sets A and B can be ordered canonically in the same way.

Then, we have the expected result.

FACT 2. Function F is a monotonic self-map on functions

(X → V) →m T → V .

4 2012/3/19

ABS

∅ ⊢ ∆ ; (∆)∅

ABS

∅ ⊢ ∆ ; (∆)∅

VAR

ρ ⊢ x ; (∆)∅

VAR

ρ ⊢ x ; (∆)∅

...

ρ ⊢ xx ; v
APP

ρ ⊢ xx ; v
APP

∅ ⊢ ∆∆ ; v
APP

where ρ = x 7→ (∆)∅.

Figure 5. Incorrect derivation.

VAR

ρ ⊢ x ; (Π)∅

VAR

ρ ⊢ x ; (Π)∅ ρ ⊢ (xx, x x) ; diverge

ρ ⊢ xx ; diverge
APP

ρ ⊢ (xx, x x) ; (diverge, diverge)
PAIR

ρ ⊢ xx ; (diverge, diverge)
APP

ρ ⊢ (xx, x x) ; ((diverge, diverge), (diverge, diverge))
PAIR

where ρ = x 7→ (Π)∅.

Figure 6. Truncated derivation.

We are onto something. But, remember we have defined F
for finite values only. The next step is to define infinite values

and extend F to deal with them. We want infinite values to

be limits of a set of finite values. We need to make a number

of definition to precise this notion of limit. In particular, for

preorders, the natural notion of limit is the supremum.

Least element and supremum. A least element x of a

subset s of a preordered set A is an element of s which is

smaller than all other elements in s. The supremum x of

a subset s of a preordered set A, if it exists, is the least

element of A that is greater or equal to all elements of

subset s. Suprema and least elements are each unique up to

equivalence.

Directed subset. A subset s of a preordered set A is a

directed subset of A if it is nonempty and every pair of its

elements has an upper bound : for all x and y in s, there

exists z in s such that x ≤ z and y ≤ z. Directed sets

are a generalisation of chains (that is, totally ordered subsets

of a preordered set). Intuitively, if a directed subset s has

a limit (its supremum), then given two elements of s, it is

always possible to find an element of s that provides a better

approximation of the limit.

Directed complete preordered set (DCPO). A directed

complete preordered set is a preordered set such that each of

its directed subsets has a supremum. Note that DCPO nor-

mally stands for directed complete (partial) order. We use a

more general definition in the present paper.

We now define the set of possibly infinite values as a com-

pletion of the set of values V , so that infinite values v̄ be

the limits of finite values that approximate them. The idea

is similar to the way real numbers can be constructed as a

completion of the rational numbers. We first define the ob-

jects that we want to converge. In the case of real numbers,

these are Cauchy sequences. Here, we consider directed sets

of values. Then, we specify how their expected limits should

be related. In other words, we define an equivalence relation

between Cauchy sequences or, here, a preorder on directed

set. Finally, the completed set is obtained by quotienting by

the equivalence relation. It appears that we can reason di-

rectly on the preorder. We thus skip this last step.

Preorder completion. The preorder completion A of a pre-

ordered set A is the set of directed subsets of A, with the

following preorder:

s ≤ t iff ∀x ∈ s, ∃y ∈ t, x ≤ y.

Intuitively, for any approximation x in s, there should exist

a more precise approximation y in t. The set A is a DCPO.

A supremum of a directed set d of elements of A is their

union: sup d =
⋃

s∈d s. The function i : x 7→ {x} is a

monotonic injection of A into A (in the relaxed sense that, if

i(x) ≡ i(y), then x ≡ y). Thus, one can consider A as if it

was a subset of A.

This completion is equivalent to the standard ideal com-

pletion, where an ideal is a downward closed directed subset.

Indeed, any directed subset s is equivalent to its downward

closure {x ∈ A | ∃y ∈ s, x ≤ y}.

We thus define the set of possibly infinite values as being V ,

the completion of the set of finite values V . We should now

extend the definition of function F to also deal with infinite

5 2012/3/19

values. There is a canonical way to do it and get a continuous

function (that is, a morphism between DCPO).

Continuous function. A function f between two pre-

ordered sets A and B is continuous if it preserves suprema

of directed set, that is, if for any directed subset s of A, if

x ∈ A is a supremum of s, then f(x) is a supremum of f(s).
We write A →c B for the set of continuous functions from

A to B. A continuous function is monotonic.

A monotonic function f : A →m B can be extended in

a unique way, up to equivalence, into a continuous function

↑f : A →c B such that, for all x ∈ A, we have ↑f({x}) ≡
{f(x)} (this equation states that ↑f coincides with f for

all elements of set A). This function can be defined by:

↑f(X) = {f(x) |x ∈ X}.

Thus, we consider the continuous function ↑F . We need to

show that it has a fixpoint. We rely on the following theorem.

Kleene fixpoint theorem. A complete preordered set (CPO)

is a directed complete preordered set with a least element ⊥.

Every continuous self-map f on a CPO has a least fixpoint

lfp f (such that f(lfp f) ≡ lfp), which is a supremum of the

iterates {⊥, f(⊥), f(f(⊥)), . . . , fn(⊥), . . .}.

The set (X → V) →m T → V is a CPO, with least ele-

ment the set {λρ.λt.diverge}. Hence, applying the the-

orem to ↑F , we get a least fixpoint, which is the seman-

tics of the calculus. Or is it? The fixpoint lfp ↑F is in

(X → V) →m T → V . But we would like the semantics

to be in (X → V) →m T → V ! How far are we from that?

As we show now, the two sets can be related in an appro-

priate fashion, so that lfp ↑F can indeed be considered as a

semantics.

For that, we need to understand how preorder completion

commutes with arrows. As we will show, the set A → B,

where A is a set and B is a preordered set, can be seen as a

refinement of the set A → B, in the sense that the second set

is equivalent to a partition of the first set. The sets A →m B
and A →c B, where A and B are both preordered sets,

are related in a similar fashion. The relations between these

pairs of sets will be materialised by pairs of functions. Then,

by combining appropriately the fixpoint lfp ↑F with these

functions, we get a semantics of the expected type. We need

to introduce a number of definitions to state this precisely.

Galois connection. A Galois connection [13] between two

preordered sets A and B is a pair of functions f : A → B
and g : B → A such that for all x in A and y in B we

have f(x) ≤ y if and only if x ≤ g(y). In this situation,

function f is called the lower adjoint of function g and

function g is called the upper adjoint of function f .

If (f, g) is a Galois connection, then function f is con-

tinuous and function g is monotonic. Besides, given func-

tion f , function g is unique up to equivalence, as g(y) is a

supremum of {x ∈ A | f(x) ≤ y} for all y in B.

Preorder equivalence. Two preordered sets A and B are

equivalent, written A ≈ B, if there exists a pair of functions

f : A →m B and g : B →m A such that for all x
in A, g(f(x)) ≡ x and for all y in B, f(g(y)) ≡ y. In

other words, two preordered sets are equivalent when their

associated quotient ordered sets are isomorphic.

If two preordered sets A and B are equivalent, as wit-

nessed by two functions f : A →m B and g : B →m A,

then (f, g) is a Galois connection. Conversely, given two

preordered sets A and B and two functions f : A → B and

g : B → A, if both (f, g) and (g, f) are Galois connections,

then A and B are equivalent.

Reflection. A reflection [13, 23] between two preordered

sets A and B is a Galois connection (f, g) between A and B
such that for all y in B, f(g(y)) ≡ y.

The existence of a reflection between two preordered sets

A and B makes it possible to consider set A as a refinement

of set B, in the sense that B is equivalent to a partition

of A. More precisely, a Galois connection (f, g) between

two preordered sets A and B induces an equivalence relation

∼ on A compatible with the preorder: x1 ∼ x2 iff f(x1) ≡
f(x2). Then, the Galois connection (f, g) is a reflection

when the preordered sets A/∼ and B are equivalent.

Given a set A and a preordered set B, we thus want to define

a reflection (G∗, G∗) between sets A → B to A → B.

Though these two functions depend on sets A and B, we

do not index them, as the involved sets will always be clear

from the context. The function G∗ should basically be the

identity for functions in A → B. By using the appropriate

injection functions, a function f ∈ A → B corresponds

to {f} in A → B and λx.{f(x)} in A → B. We should

therefore have

G∗({f})(x) = {f(x)}.

Function G∗ should also be continuous for (G∗, G∗) to be a

Galois connection. Thus, we should have, for all s ∈ A → B
and all x ∈ A,

G∗(s)(x) ≡ G∗(sup{{f} | f ∈ s})(x)

≡ (sup{G∗({f}) | f ∈ s})(x)

≡ sup{G∗({f})(x) | f ∈ s}

≡ sup{{f(x)} | f ∈ s}

≡ {f(x) | f ∈ s}.

We thus take

G∗(s)(x) = {f(x) | f ∈ s}.

6 2012/3/19

Given the characterisation of G∗ in function of G∗ for Galois

connections, one can show that one must have

G∗(f) ≡ {g ∈ A → B | ∀x, {g(x)} ≤ f(x)}.

This can be taken as a definition of G∗(f) by replacing the

equivalence by an equality. We have the expected result.

THEOREM 3. The pair (G∗, G∗) is a reflection.

It is instructive to understand why we do not have a pre-

order equivalence but only a reflection. For that, consider

the sequence of functions fi from natural numbers to values

defined by

fi(j) =

{
error if i ≤ j
diverge otherwise

and the function f defined by f(j) = error for all j ∈ N.

Then, we have sup{fi | i ∈ N} ≡ f in N → V , but

sup{{fi} | i ∈ N} ≡ {fi | i ∈ N} 6≡ {f} in N → V . What

happens is that existing suprema, when they are not also

greatest elements, are not preserved by completion; instead,

new suprema are added just below. Note that, however, we

have G∗(G
∗({fi | i ∈ N})) ≡ {f}, and thus, G∗({fi | i ∈

N}) ≡ G∗({f}): the sets {fi | i ∈ N} and {f} cannot

be distinguished when considered as functions in N → V .

This kind of situation does indeed happen with our semantic

function, with any sequence of terms that take longer and

longer to yield a result. This example also suggests that one

could get an equivalence by restricting appropriately the sets

of functions considered so that it contains no problematic

sequence of functions such as functions fi above. This idea

is developed in Section 3.2.

We similarly relate the sets A →m B and A →c B by the

pair of functions (H∗, H∗) defined by

H∗(f)(x) = {f(x) | f ∈ f, x ∈ x}
H∗(g) = {f ∈ A →m B | ∀x, {f(x)} ≤ g({x})}.

The two functions are well-defined and suitably related.

THEOREM 4. The pair (H∗, H∗) is a reflection.

We can finally define the semantics of a term t ∈ T in an

environment ρ̂ ∈ X → V , as a value in V :

JtKρ̂ = (G∗ ◦H∗(lfp ↑F) ◦G∗)(ρ̂)(t).

There is a slight rough point with this definition. Indeed,

while functions G∗ and H∗ are both continuous (as lower

adjoints of a Galois connection), function G∗ is only mono-

tonic. When computing JtKρ̂, we therefore need to approxi-

mate G∗(ρ̂) ∈ X → V , not directly ρ̂ ∈ X → V . In other

words, a kind of uniform convergence is required: we need

to provide a directed set of functions in X → V as approx-

imations, rather than providing for each variable x in X a

directed set of values. For these reasons, we find it useful to

also state the semantics of a term t ∈ T in an environment

ρ ∈ X → V :

JtKρ = (G∗ ◦H∗(lfp ↑F))(ρ)(t).

To provide better insight on the semantics, it is inter-

esting to unravel the definitions. We consider an environ-

ment ρ ∈ X → V and a term t ∈ T . We compute (G∗ ◦
H∗(lfp ↑F))(ρ)(t) ∈ V . Function F is a self-map on the

preordered set Σ = (X → V) →m T → V . This set has a

least element ⊥Σ = λρ.λt.diverge. Then, function ↑F is a

self-map on the CPO Σ and ⊥
Σ
= {⊥Σ} is a least element

of this CPO. The semantic function is defined using Kleene

fixpoint theorem as the following least fixpoint of ↑F :

lfp ↑F = sup{(↑F)n(⊥
Σ
) |n ∈ N}.

We have, by definition, (↑F)(X) = {F (x) |x ∈ X}.

Hence, (↑F)n(⊥
Σ
) = {{Fn(⊥Σ)}}. Then, by definition

of sup for a completed preorder,

lfp ↑F = sup{{Fn(⊥Σ)} |n ∈ N}

= {Fn(⊥Σ) |n ∈ N}.

Then, we have, by definition of H∗,

H∗(lfp ↑F)(ρ) = H∗({Fn(⊥Σ) |n ∈ N})(ρ)

= {Fn(⊥Σ)(ρ) |n ∈ N, ρ ∈ ρ}.

Finally, by definition of G∗,

JtKρ = (G∗ ◦H∗(lfp ↑F))(ρ)(t)

= G∗({Fn(⊥Σ)(ρ) |n ∈ N, ρ ∈ ρ})(t)

= {Fn(⊥Σ)(ρ)(t) |n ∈ N, ρ ∈ ρ}.

The expression Fn(⊥Σ) is the set of assertions ρ ⊢ t ; v
that can be deduced by building approximate derivations

of height n. So, the value of term t in environment ρ is

the limit of the values derived from more and more precise

derivation trees, and for better and better approximations ρ
of environment ρ. This is what we expected.

To summarize this section, we define the semantics

through inductive rules only involving finite values. We

prove that these rules define a monotonic operator F that

maps a preordered set of functions onto itself (Facts 1 and 2).

These are the only proofs that have to be adapted for other

calculi. They indicate, in particular, that there is no missing

nor overlapping rules. Such an operator can automatically

be extended to work on the CPO obtained by completion of

the preordered set of functions. There, it has a least fixpoint,

which we consider as the semantics of the calculus. Though

this fixpoint is not a function mapping environments and

terms to values, it can be considered as such, in a canonical

way, by a suitable use of reflections.

7 2012/3/19

Γ(x) = τ

Γ ⊢ x : τ

Γ;x : τ1 ⊢ t : τ2

Γ ⊢ λx.t : τ1 → τ2

Γ ⊢ t1 : τ1 → τ2
Γ ⊢ t2 : τ1

Γ ⊢ t1 t2 : τ2

Γ ⊢ t1 : τ1
Γ ⊢ t2 : τ2

Γ ⊢ (t1, t2) : τ1 × τ2

Γ ⊢ t : τ1 × τ2

Γ ⊢ fst t : τ1

Γ ⊢ t : τ1 × τ2

Γ ⊢ snd t : τ2

Figure 8. Typing rules for terms.

Values

ρ : Γ Γ;x : τ1 ⊢ t : τ2

(λx.t)ρ : τ1τ2

v1 : τ1 v2 : τ2

(v1, v2) : τ1 × τ2

diverge : τ

Environments

ρ : ∅
ρ : Γ ρ(x) : τ

ρ : Γ;x : τ

Figure 9. Typing rules for values.

2.3 Type Soundness

We illustrate how to reason on the semantics by proving a

type soundness result. We use simple infinite types: types

are defined coinductively by the grammar below.

τ ::= τ → τ function type

τ × τ pair type

The use of infinite types ensures that interesting programs

can be typed while having a very short grammar of types

and few typing rules. In particular, the fixpoint operator

Y = λf.(λx.f (xx)) (λx.f (xx))

is well typed, with type (τ → τ) → τ for any type τ .

The typing relation Γ ⊢ t : τ , where environments Γ are

sequence of bindings x : τ , is defined using inductive rules

in Figure 8. These typing rules are standard.

In order to prove type soundness, we define a typing

relation for values. We first define inductively the type of

finite values (Figure 9). We want to extend this definition to

all values by continuity. Given a type τ , the predicate v : τ
can be seen as a function from finite values V to Booleans.

The CPO of Booleans. The set Bool = {true, false} of

Booleans, ordered such that true ≤ false, is a CPO. Be-

sides, this set Bool and its completion Bool are equivalent:

the function that maps Boolean b to the set {b} and the func-

tion that maps set s ∈ Bool to its greatest element (which al-

ways exists) are both monotonic and inverse of one-another.

A predicate on a set A is a function in A → Bool. Given

a preordered set A, a monotonic predicate P on A, that is a

function in A →m Bool, can be extended into a continuous

predicate P̃ = sup ◦(↑P) on A. By unfolding definitions,

one can see that P̃ (s) holds when P (x) holds for all x in s.

Hence, if typing rules v : τ are monotonic with respect to

values v, we can extend them to infinite values.

FACT 5. The typing rules for values define, for each type, a

monotonic predicate on finite values. The same holds for the

typing rules for environments.

We can therefore adopt the following definitions to type

values v ∈ V and environments ρ ∈ X → V :

• v : τ when, for all v ∈ v, we have v : τ ;

• ρ : Γ when, for all ρ ∈ ρ, we have ρ : Γ.

The soundness theorem can now be stated as follows.

THEOREM 6 (Type Soundness). If Γ ⊢ t : τ then, for all

ρ ∈ X → V such that ρ : Γ, we have JtKρ : τ .

The result can also be stated for environments ρ̂ ∈ X → V .

This is an immediate consequence of the theorem.

COROLLARY 7. If Γ ⊢ t : τ then, for all ρ̂ ∈ X → V such

that ρ̂ : Γ (that is, G∗(ρ̂) : Γ), we have JtKρ̂ : τ .

To prove the theorem, we need a way to reason about the

semantics. The characterisation of the least fixpoint given

by Kleene theorem provides such a reasoning principle.

Induction principles. The standard reasoning principle

can be stated as follows. An admissible predicate is a con-

tinuous map from a CPO A to the CPO of Booleans. Let

f be a continuous self-map on a CPO A. Suppose that an

admissible predicate P on A is such that:

• P (⊥);

• for all x in A, we have P (x) implies P (f(x)).

Then P (lfp f) holds.

When the CPO is the completion A of a preordered set A,

a variant of this induction principle allows to reason only

on A rather than on A. Let f be a monotonic self-map on

a preordered set A with a least element ⊥. Suppose that a

monotonic predicate P on A is such that:

• P (⊥);

• for all x in A, we have P (x) implies P (f(x)).

Then P̃ (lfp ↑f) holds.

This variant relies on equality (↑f)n({⊥}) = {fn(⊥)},

from which one can deduce lfp ↑f = {fn(⊥) |n ∈ N}.

8 2012/3/19

Core rules

VAR

ρ ⊢ x ; ρ(x)
ABS

ρ ⊢ λx.t ; (λx.t)ρ

PAIR

ρ ⊢ t1 ; v1 ρ ⊢ t2 ; v2

ρ ⊢ (t1, t2) ; (v1, v2)

APP

ρ ⊢ t ; (λx.t′′)ρ′ ρ ⊢ t′ ; v′

ρ′;x 7→ v′ ⊢ t′′ ; s

ρ ⊢ t t′ ; s

FST

ρ ⊢ t ; (v1, v2)

ρ ⊢ fst t ; v1

SND

ρ ⊢ t ; (v1, v2)

ρ ⊢ snd t ; v1

Divergence

PAIR-STRICT-L

ρ ⊢ t1 ; diverge

ρ ⊢ (t1, t2) ; diverge

PAIR-STRICT-R

ρ ⊢ t1 ; v1 ρ ⊢ t2 ; diverge

ρ ⊢ (t1, t2) ; diverge

FST-STRICT

ρ ⊢ t ; diverge

ρ ⊢ fst t ; diverge

APP-STRICT-L

ρ ⊢ t ; diverge

ρ ⊢ t t′ ; diverge

APP-STRICT-R

ρ ⊢ t ; (λx.t′′)ρ′ ρ ⊢ t′ ; diverge

ρ ⊢ t t′ ; diverge

SND-STRICT

ρ ⊢ t ; diverge

ρ ⊢ snd t ; diverge

Errors

PAIR-ERROR-L

ρ ⊢ t1 ; error

ρ ⊢ (t1, t2) ; error

PAIR-ERROR-R

ρ ⊢ t1 ; v1 ρ ⊢ t2 ; error

ρ ⊢ (t1, t2) ; error

FST-ERROR

ρ ⊢ t ; s s 6≤ (v1, v2)

ρ ⊢ fst t ; error

APP-ERROR-L

ρ ⊢ t ; s s 6≤ (λx.t′′)ρ′

ρ ⊢ t t′ ; error

APP-ERROR-R

ρ ⊢ t ; (λx.t′′)ρ′ ρ ⊢ t′ ; error

ρ ⊢ t t′ ; error

SND-ERROR

ρ ⊢ t ; s s 6≤ (v1, v2)

ρ ⊢ snd t ; error

Figure 10. Call-by-value semantics.

We use this theorem to prove soundness. We consider the

following predicate P (σ) that states that semantic relation

σ ∈ Σ = (X → V) →m T → V satisfies type soundness:

if Γ ⊢ t : τ then, for all environments ρ ∈ X → V
such that ρ : Γ, we have σ(ρ)(t) : τ .

We want to apply the induction principle on P . Hence, we

check its premises.

FACT 8. The predicate P is monotonic. Besides, we have

P (⊥Σ), where ⊥Σ = λρ.λt.diverge, and, for all σ ∈ Σ, if

P (σ) then P (F (σ)).

The first two propositions are immediate. Regarding the last

proposition, we show P (F (σ)) by case on the derivation of

assumption Γ ⊢ t : τ , applying the hypothesis P (σ) on

immediate subderivations. All cases are easy.

Hence, we have P̃ (lfp ↑F): the semantics satisfies the

soundness property. We are not quite done yet, however: the

statement of Theorem 6 is not an immediate consequence of

this result. Let us now conclude the proof. We assume Γ ⊢
t : τ . Let ρ ∈ X → V such that ρ : Γ. We now need to prove

that JtKρ : τ . Note that JtKρ = {σ(t)(ρ) |σ ∈ lfp ↑F, ρ ∈ ρ}.

Hence, it is sufficient to prove that for all σ ∈ lfp ↑F and all

ρ ∈ ρ we have σ(t)(ρ) : τ . Let σ ∈ lfp ↑F and ρ ∈ ρ. We

have ρ : Γ, hence ρ : Γ. On the other hand, P̃ (lfp ↑F), hence

P (σ) holds for all σ ∈ lfp ↑F . This is exactly what we need

to conclude.

Soundness is thus fairly easy to establish. We do not have

to work directly with possibly infinite values nor infinite

derivations. Instead, the proof is based on an inductive prin-

ciple, which we are able to apply without proving any ad-

missibility result, and that involves only finite values and

derivations. Only a bit of fiddling is needed at the end to

relate the soundness statement resulting from this principle

with a direct statement of type soundness.

3. Considering Other Calculi

We discuss how our technique can be applied to specify the

semantics of other calculi.

3.1 Deterministic Call-by-Value Calculi

We define the semantics of a call-by-value calculus. This is

simpler as there are only finite values. We keep the same

syntax for terms (Section 2.1). In a call-by-value settings,

errors and divergence cannot occur nested inside a value.

9 2012/3/19

Thus, we distinguish the values v ∈ V of the calculus from

the semantic values s ∈ S. We have the following grammars.

v ::= (λx.t)ρ function closure

(v, v) pair

s ::= v regular value

diverge divergence

error error

Semantic values are ordered as follow: s1 ≤ s2 when s1 =
diverge. This is a so-called flat CPO. An interesting prop-

erty of flat CPOs is that they are equivalent to their comple-

tion: S ≈ S. This is because all suprema are reached. The

canonical injection function maps set S to set S; the con-

verse mapping is provided by the supremum function. Note

that Booleans are another instance of flat CPOs.

The semantics is a relation ρ ⊢ t ; s between an

environment ρ ∈ X → V , a term t ∈ T and a semantic

value s ∈ S. We define it by the inference rules in Figure 10.

One can check that the operator F specified by these rules is

a monotonic self-map on

(X → V) → T → S.

As previously, we extend F into a self-map ↑F on CPO:

(X → V) → T → S.

The semantics is the least fixpoint lfp ↑F of this operator.
To use it, one should compose it with appropriate reflections.

We thus adopt the following definition:

JtKρ = sup(G∗(G∗(lfp ↑F)(ρ))(t)).

This gives us a function with signature

(X → V) → T → S,

which is exactly the expected signature of a semantics.
Note that we could have left implicit either the rules for

divergence, or the rule for errors. Then, the inference rules

would define a partial operator F ′. When the divergence

rules are omitted, this operator can be extended into the total

operator F by

F (σ)(ρ)(t) =

{
F ′(σ)(ρ)(t) when defined

diverge otherwise.

One can then proceed as previously to define the semantics.

3.2 Maps with Finite Support

We have shown in Section 2.2 that the DCPOs A → B and

A → B, where A is a set and B is a preordered set, are

not equivalent in general. One can show, however, that the

equivalence holds when the set A is finite.

Another interesting case is when one restricts oneself

to functions with finite support. Let A be a set and B be

a preordered set with a distinguished maximal element m

(that is, for all y in B, if m ≤ y, then m ≡ y). We

say that a function g ∈ A → B has finite support when

g(x) = m for all x in A but a finite number of them.

We write A →f B for the set of such functions. One can

then show that A →f B and A →f B are equivalent, with

witness the pair of functions (G∗, G∗). defined previously,

restricted to these sets. As a consequence of the equivalence,

both these functions are continuous.

It is quite usual to consider environments to be functions

from variables X to values V with finite support (taking

error as distinguished element). This solves the issue we

encountered in Section 2.2 where we saw that environments

had to be approximated in X → V rather than in X → V
for lack of continuity. The price to pay is a more complex

definition of environments.

3.3 Non-Determinism

As we mentioned in Section 2.2, it would be interesting to

extend our running example with a non-deterministic choice.

Indeed, we explained that this operator makes it possible

to distinguish call-by-need from call-by-name. But then,

clearly, the semantics is not going to be a function returning

a single value anymore.

The usual approach to deal with non-determinism is to

use powerdomains (the order-theoretic counterparts to pow-

ersets), such as Plotkin powerdomains [25]. Then, the se-

mantic is a function returning an element in a powerdomain

of values. But powerdomains are complex beasts, and thus

we loose some of the simplicity of our approach.

An alternative due to Cary and Sarkar [11] is to use

oracles: the semantics is made deterministic by threading

an oracle, a sequence of Boolean Ω = (ωn)n∈N, through

the computation. The semantic relation ρ ⊢Ω t ; v, can

then associate a single value to a triple of an oracle, an

environment and a term. Whenever a Boolean is needed (for

instance, to choose an alternative for a non-deterministic

choice), one can take the first element ω0 of the sequence; it

remains the oracle (ω′
n)n∈N such that ω′

n = ωn+1. An oracle

can also be split into two independent oracles (ω1
n)n∈N and

(ω2
n)n∈N with ω1

n = ω2n and ω2
n = ω2n+1. This is useful

when several computations are performed independently.

This would be the case for the evaluations of the function

argument and the function body in rule APP of Figure 1.

4. Mechanised Formalisation

Our results regarding the call-by-need calculus of Section 2

have been formalised in Coq [30]. Our packaging of math-

ematical structures (preorders, DCPOs and CPOs, and the

corresponding morphisms) follows the techniques estab-

lished by Garillot, Gonthier, Mahboubi and Rideau [15, 16].

We take Coq propositions Prop for the CPO of Booleans.

We have the following hierarchy of structures:

• a preorder is a set A with a reflexive transitive relation

sub : A → A → Prop;

10 2012/3/19

• a DCPO is a preorder with a function sup of signature

directed_set A → A, which associates to each directed

set its supremum (a directed set directed_set A is a

characteristic function, that is a function in A → Prop,

with suitable properties);

• a CPO is a DCPO with a least element bottom.

The fact that sup is defined as a function rather than a re-

lation makes it possible to have an explicit definition of the

least fixpoint lfp f of a function f, as the function sup ap-

plied to the directed set containing the iterates fn(bottom).
However, due to the constructive nature of Coq, the supre-

mum function sup cannot be defined for concrete CPOs such

as the set S of semantic values of Section 3.1: it is not possi-

ble to associate in a constructive way a suitable element of S
to the characteristic function f : S → Prop corresponding

to each directed set. For the same reason, one can establish

that S and S are equivalent preorders (in the sense that there

exists suitable functional relations between the two), but it

is not possible to provide an explicit function that map an

element of S to an element of S.

The operator F is directly specified in Coq as a function

from semantic functions to semantic functions. We use pat-

tern matching, which helps keep the definition short by shar-

ing some cases. Such a definition directly shows that opera-

tor F maps functions to functions (Fact 1). Then, one only

needs to show that F is appropriately monotonic (Fact 2)

to complete the definition of the semantics of the calculus.

Establishing type soundness is similarly short and simple.

The mechanised formalisation of complex semantics was

one of the main motivations for this work. We found that

working with a proof assistant was also very helpful for

finding the right definitions.

5. Related Work

The works by Gunter and Remy [17] and Stoughton [28] are

most related to ours. They describe the incremental construc-

tion of derivation trees, which is similar to our presentation

of approximate derivations. We go beyond these works by

working at a more abstract level, making an explicit con-

nection with order theory and dealing with more complex

domains of values.

Leroy and Grall [20] present a trace-based big-step se-

mantics for a call-by-value calculus. They use separately

an inductive definition for converging behaviors and a coin-

ductive definition for divergence. It would be interesting to

compare this approach with ours in which both cases would

be handled simultaneously. The complexity should be in-

between the two calculi we have studied here: one has to

deal with finite values V and environments X → V but infi-

nite semantic values (traces) S.

An alternative to our order-theoretic approach is the

mixed induction and coinduction approach, advocated in

particular by Danielsson and Altenkirch [12], where rules

are partitioned into inductive and coinductive rules. With

this approach, inference rules are separated in two sets: those

interpreted in a inductive fashion, and those interpreted in

a coinductive fashion. This yields two operators Find and

Fcoind. These operators are then combined into a single op-

erator F (X,Y) = Find(X)∪Fcoind(Y). Then, the semantics

of the rules is

gfp(λY. lfp(λX.F (X,Y))).

In order to reason on this semantics, one has to combine

coinduction with induction. Concretely, derivation trees are

allowed to be infinite, but only finitely many inductive rules

may ever appear on top of one another without any coinduc-

tive rule in-between. In our case, rules for divergence should

be interpreted in a coinductive way; the rule APP for function

application ought to be split in two, depending on whether

the function body evaluates to diverge or not. We feel that

having to combine inductive and coinductive reasoning is

complex. For instance, the proof that the semantics of the

calculus is deterministic would not be immediate at all with

this approach: it would be a rather complex proof involving

both induction and coinduction.

A similar approach, proposed by Cousot and Cousot [8,

9], is to partition instead the universe U , relying on the fol-

lowing set isomorphism: P(U1 ∪ U2) ≈ P(U1) × P(U2).
Then, one can order P(U1) by inclusion and use the converse

order for P(U2). This works well for a call-by-value seman-

tics, where one can separate converging behaviors from di-

verging behaviors, but it is not clear how this framework can

be extended to cover our call-by-need calculus.

We use order theory to define an operational semantics.

A fruitful research topic has been to start instead from an

operational semantics and build order-theoretic concepts

upon this semantics. This includes defining types as sets

of terms that are downward-closed and closed under lim-

its, as in MacQueen, Plotking and Sethi [21], Abadi, Pierce

and Plotkin [1], Birkedal and Harper [6], or Vouillon and

Melliès [31]. It is also possible to define syntactic logical

relations as in Crary and Harper [10]. As shown by Ma-

son, Smith and Talcott [22, 27], many notions from domain

theory can be defined in this context.

There have been several formalisations of domain theory

in Coq. Bertot and Komendantsky [5] use a choice axiom

to prove Kleen fixpoint theorem. They are able to extract

possibly non-deterministic programs. During extraction, the

least fixpoint operator is replaced by a fixpoint function of

the target language. Paulin-Mohring [24] develop a con-

structive formalisation, taking advantage of the possibility to

define coinductive datastructures in Coq. Benton, Birkedal,

Kennedy and Varming [3, 4] extend this work up to and in-

cluding the inverse-limit construction of solutions to mixed-

variance recursive domain equations, and the existence of

invariant relations on those solutions. Our work is different

from these works as we use syntactic values as a domain: for

11 2012/3/19

instance, the semantics of an abstraction is syntactically a

closure, not a continuous function from values to values. We

have a non-constructive definition of CPOs. But it should be

possible to specify our semantics in a constructive way, as

they are defined as the supremum of a chain.

6. Conclusion

We have presented a way to specify big-step semantics that

account simultaneously for finite and infinite behaviors,

based on order theory. We were able to specify semantics

with little proof obligations. Basically, one only has to prove

that the inference rules define a monotonic self-map on a

suitable set of functions, which is easy. It is noteworthy that

we do not have to establish any continuity property (as is of-

ten the case for order-theoretic developments); indeed, this

is typically a lot more complicated. Also, we only work with

very concrete objects defined using inductive grammars and

with finite derivations involving these objects; in particu-

lar, it is possible to reason inductively on these objects and

derivations, as well as on the semantics itself. A bit more

work is required than with the standard way of defining big-

step semantics, but we gain a lot in precision.

References

[1] Abadi, M., Pierce, B., Plotkin, G.: Faithful ideal models for

recursive polymorphic types. International Journal of Foun-

dations of Computer Science 2(1) (Mar 1991)

[2] Aczel, P.: An introduction to inductive definitions. In: Bar-

wise, K.J. (ed.) Handbook of Mathematical Logic. North-

Holland, Amsterdam (1977)

[3] Benton, N., Birkedal, L., Kennedy, A., Varming, C.: Formal-

izing domains, ultrametric spaces and semantics of program-

ming languages (2010), submitted for publication

[4] Benton, N., Kennedy, A., Varming, C.: Some domain theory

and denotational semantics in Coq. In: TPHOLs ’09. Springer-

Verlag (2009)

[5] Bertot, Y., Komendantsky, V.: Fixed point semantics and par-

tial recursion in Coq. In: PPDP ’08. ACM (2008)

[6] Birkedal, L., Harper, R.: Constructing interpretations of recur-

sives types in an operational setting. Information and Compu-

tation 155 (1999)

[7] Courcelle, B.: Fundamental properties of infinite trees. Theo-

retical Computer Science 25(2) (1983)

[8] Cousot, P., Cousot, R.: Inductive definitions, semantics and

abstract interpretations. In: POPL ’92. ACM (1992)

[9] Cousot, P., Cousot, R.: Bi-inductive structural semantics. Inf.

Comput. 207 (2009)

[10] Crary, K., Harper, R.: Syntactic logical relations for polymor-

phic and recursive types. Electron. Notes Theor. Comput. Sci.

172 (April 2007)

[11] Crary, K., Sarkar, S.: Foundational certified code in the twelf

metalogical framework. ACM Transactions on Computata-

tional Logic 9(3) (2008)

[12] Danielsson, N.A., Altenkirch, T.: Subtyping, declaratively: an

exercise in mixed induction and coinduction. In: MPC’10.

Springer-Verlag (2010)

[13] Erné, M., Koslowski, J., Melton, A., Strecker, G.E.: A Primer

on Galois Connections. New York Academy Sciences Annals

704, 103–125 (Dec 1993)

[14] Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping

revealed: (functional pearl). SIGPLAN Not. 35 (September

2000)

[15] Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Pack-

aging mathematical structures. In: TPHOLs ’09. Springer-

Verlag (2009)

[16] Gonthier, G.: Type design patterns for computer mathematics.

In: TLDI ’11. ACM (2011)

[17] Gunter, C.A., Rémy, D.: A proof-theoretic assessment of

runtime type errors. Research Report 11261-921230-43TM,

AT&T Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ

07974-2070 (1993)

[18] Kahn, G.: Natural semantics. In: STACS ’87. Springer-Verlag,

London, UK (1987)

[19] Kutzner, A., Schmidt-Schauß, M.: A non-deterministic call-

by-need lambda calculus. In: ICFP ’98. ACM (1998)

[20] Leroy, X., Grall, H.: Coinductive big-step operational seman-

tics. Inf. Comput. 207(2) (2009)

[21] MacQueen, D., Plotkin, G., Sethi, R.: An ideal model for

recursive polymorphic types. In: POPL ’84. ACM (1984)

[22] Mason, I.A., Smith, S.F., Talcott, C.L.: From operational

semantics to domain theory. Information and Computation

128(1) (1996)

[23] Melton, A., Schröder, B.S.W., Strecker, G.E.: Lagois connec-

tions - a counterpart to Galois connections. Theor. Comput.

Sci. 136(1), 79–107 (1994)

[24] Paulin-Mohring, C.: From Semantics and Computer Science:

Essays in Honor of Gilles Kahn, chap. A constructive denota-

tional semantics for Kahn networks in Coq. Cambridge Uni-

versity Press (2009)

[25] Plotkin, G.D.: A powerdomain construction. SIAM J. Com-

put. 5(3) (1976)

[26] Plotkin, G.D.: A structural approach to operational semantics.

Tech. Rep. DAIMI FN–19, Computer Science Department,

Aarhus University, Aarhus, Denmark (Sep 1981)

[27] Smith, S.F.: The coverage of operational semantics. In: Gor-

don, A.D., Pitts, A.M. (eds.) Higher Order Operational Tech-

niques in Semantics. Publications of the Newton Institute,

Cambridge University Press (1998)

[28] Stoughton, A.: An operational semantics framework support-

ing the incremental construction of derivation trees. In: Sec-

ond Workshop on Higher-Order Operational Techniques in

Semantics. Elsevier Science Publishers B. V. (1998)

[29] Tarski, A.: A lattice theoretical fixpoint theorem and its appli-

cations. Pacific J. of Mathematics 5 (1955)

[30] The Coq Development Team: The Coq Proof Assistant Ref-

erence Manual – Version V8.2 (2008), http://coq.inria.

fr, http://coq.inria.fr

12 2012/3/19

http://coq.inria.fr
http://coq.inria.fr
http://coq.inria.fr

[31] Vouillon, J., Melliès, P.A.: Semantic types: a fresh look at the

ideal model for types. In: POPL ’04. ACM (2004)

13 2012/3/19

	Introduction
	A Call-by-Need Calculus
	Syntax
	Semantics
	Type Soundness

	Considering Other Calculi
	Deterministic Call-by-Value Calculi
	Maps with Finite Support
	Non-Determinism

	Mechanised Formalisation
	Related Work
	Conclusion

