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HIGH PERFORMANCE COMPUTING FOR THE REDUCED BASIS METHOD.

APPLICATION TO NATURAL CONVECTION

Elisa Schenone1, 2, Stéphane Veys3 and Christophe Prud’homme4

Abstract. In this paper, we are interested in studying of the reduced basis methodology (RBM)
applied to steady-state natural convection problems. The latter has applications in many engineering
domains and being able to apply the RBM would allow to gain huge computation savings when querying
the model the reduced model for many parameter evaluations. In this work, we focus on the order
reduction of the model — in particular the handling of the non-linear terms, — as well as the design of
the RBM computational framework and the requirements on high performance computing to treat 3D
models using Feel++, a C++ open source library to solve partial differential equations. Numerical
experiments are presented on a 2D and 3D models.

Introduction

Nowadays, in many application fields, engineering problems require accurate, reliable, and efficient evaluation
of quantities of interest. Often, these quantities of interest depend on the solution of a parametrized partial
differential equation where the — e.g. physical or geometrical — parameters are inputs of the model and
the evaluation of quantities of interest are outputs — e.g. average values. — In a real-time or many-query
context, the reduced basis method (RBM) offers a rapid and reliable evaluation of the input-output relationship
(see [PRV+02,VPP03,VPRP03,PP04,QRM11,RHP07] for the methodology) for a large class of problems.

In this paper, we are interested in studying the RBM applied to steady-state natural convection problems
parametrized by the Grashof and Prandtl numbers. Natural convection has applications in many engineering
domains and being able to apply the RBM would allow to gain huge computation savings when querying the
model the reduced model for many parameter evaluations. In this work, we focus on the order reduction of the
model — in particular the handling of the non-linear terms, — as well as the design of the RBM computational
framework and the requirements on high performance computing (HPC) to treat 3D models. Even though the
model considered remains simple with respect to industrial applications, we tackle some of the main difficulties
namely order reduction and computational costs.

In order to solve Finite Elements (FE) or Reduced Basis (RB) problems, we use an open-source library called
Feel++ for Finite Element Embedded Library and Language in C++ ( [PCD+12, Pru06] ). Feel++ is a
library to solve problems arising from partial differential equations (PDEs) with Galerkin methods, standard
or generalized, continuous or discontinuous, from 1D to 3D, for low to high order approximations (including
geometry). Among the many other Feel++ features, it provides a seamless programming environment with
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respect to parallel computing using MPI, see section 4.1. Feel++ enjoys an implementation of the RBM,
see [DVTP13], which can deal with a wide range of problems: elliptic or parabolic models, coercive or non-
coercive models, linear or non-linear models. It can handle coupled non-linear multiphysic problems such as
the thermo-electric problems in [VDPT12, VCD+12]. It is important that such an environment hides as many
implementation details as possible and let the user worry only about his/her model and the high level aspects
of the FEM and RBM.

The organisation of the paper is as follows: in section 1 we describe the 2D and 3D steady-state natural
convection models; in section 2, we present the finite element discretization and the solution strategy; in section
3, we apply the RBM and focus in particular on the non-linear terms handling; in section 4, we present the
computational framework for FEM and RBM as well as some implementation aspects; finally in section 5, we
display some numerical experiments in 2D and 3D.

1. Problem setting

We start with the description of a standard natural convection model. We consider a heated fluid in a
squared or cubical cavity, the fluid circulates towards the low temperature under the action of density and
gravity differences. We introduce the adimensionalized steady-state incompressible Navier-Stokes equations
coupled with the heat equation and we consider the problem in a two and a three dimensional tank, see e.g.
Figure 1: find (u, p, T ) such that

u · ∇u +∇p− 1√
Gr
4u = Te2 , in Ω

∇ · u = 0 , in Ω

u · ∇T − 1√
GrPr

4T = 0 , in Ω

u = 0 , on ∂Ω

T = 0 , on Γ1

∂T

∂n
= 0 , on ∂Ω \ (Γ1 ∪ Γ3)

∂T

∂n
= 1 , on Γ3.

(1)

where Ω ⊂ Rd, d = 2, 3, u, p and T are respectively the adimensionalized velocity, pressure and temperature,
Gr and Pr are the Grashof and the Prandtl numbers, and e2 is the inward-pointing normal vector of a border
Γ2 ⊂ ∂Ω. The 2D domain consists in a rectangular tank of height 1 and length W , in the 3D case we consider
a rectangular cuboid of height 1, length W and depth 1. A heat flux is imposed on the “right” border Γ3

while the temperature is fixed on the “left” border Γ1 and the remaining walls are insulated. Similar boundary
conditions apply in 3D. No-slip boundary conditions are set for the fluid velocity in the tank.

The parameters are the Grashof and the Prandtl numbers and we consider the Nusselt number — the average
temperature on Γ3 — as the output. As the Grashof and/or Prandtl numbers increase the Nusselt is decreasing,
see e.g. figure 5(a) or figure 6(a).

2. Finite element formulation

In this section, we write the weak Galerkin formulations associated to (1) and we propose an iterative method
to solve this problem in case of FE space and a resolution with the RBM.
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Figure 1. Geometry of the 2D model. Consider an extrusion of this geometry in 3D case is
the extrusion in z axis of length 1.

The weak formulation associated to problem (1) writes

a(u,u,v)− b(p,v) +
1√
Gr

c(u,v)− d(T,v) = 0 ,∀v ∈ V

b(q,u) = 0 ,∀q ∈ Q
e(T,u, ξ) +

1√
GrPr

g(T, ξ)− 1√
GrPr

h(ξ) = 0 ,∀ξ ∈ Ξ

(2)

where V ≡ [H1
0 (Ω)]d, Q ≡ L2(Ω), Ξ ≡ {ξ ∈ H1(Ω) s.t. ξ|Γ1

= 0}, and we define the tri-linear forms a :
V × V × V → R and e : Ξ× V × Ξ→ R as

a(u,w,v) =

∫
Ω

(w · ∇u) · v, ∀u,w,v ∈ V (3)

e(T,v, ξ) =

∫
Ω

(v · ∇T ) ξ, ∀v ∈ V, T, ξ ∈ Ξ (4)

the bi-linear forms b : Q× V → R, c : V × V → R, d : Ξ× V → R and g : Ξ× Ξ→ R as

b(q,v) =

∫
Ω

q∇ · v, ∀v ∈ V, q ∈ Q (5)

c(w,v) =

∫
Ω

∇w : ∇v, ∀w,v ∈ V (6)

d(ξ,v) =

∫
Ω

ξ e2 · v, ∀v ∈ V, ξ ∈ Ξ (7)

g(T, ξ) =

∫
Ω

∇T · ∇ξ, ∀T, ξ ∈ Ξ (8)

and the linear operator h : Ξ→ R as

h(ξ) =

∫
Γ3

ξ, ∀ξ ∈ Ξ. (9)
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We introduce now a FE discretization of (2). We define the discrete spaces Vh ⊂ V , Qh ⊂ Q, Ξh ⊂ Ξ and
the associated Galerkin projection of the solution (u, p, T ) of (2) by

Vh ≡ span{φ1, . . . ,φNu
} , u '

Nu∑
j=1

ujφj

Qh ≡ span{ψ1, . . . , ψNp
} , p '

Np∑
j=1

pjψj

Ξh ≡ span{ξ1, . . . , ξNT
} , T '

NT∑
j=1

Tjξj .

The discrete formulation of (2) now reads

Nu∑
i,j=1

uiuja(φi,φj ,φk1) +

Nu∑
i=1

1√
Gr

uic(φi,φk1)−
Np∑
i=1

pib(ψi,φk1)−
NT∑
i=1

Tid(ξi,φk1) = 0 , k1 = 1, . . . , Nu

Nu∑
i=1

uib(ψk2 ,φi) = 0 , k2 = 1, . . . , Np (10)

NT∑
i=1

Nu∑
j=1

Tiuje(ξi,φj , ξk3) +
1√
GrPr

NT∑
i=1

Tig(ξi, ξk3)− 1√
GrPr

h(ξk3) = 0 , k3 = 1, . . . , NT

Due to its strong non-linearities, when the Grashof or Prandtl numbers are high, a robust iterative method
is required to solve this problem. We apply here a Newton Method. For a given parameter µ = (µ1, µ2) =
(Gr−1/2, P r−1) and an initial guess (u0, p0, T 0), at each Newton sub-iteration n = 1, . . . , nmax we look for
(un+1, pn+1, Tn+1) ∈ RNu × RNp × RNT such that

J(un, pn, Tn;µ)
[
(un+1, pn+1, Tn+1)− (un, pn, Tn)

]
= R(un, pn, Tn;µ) (11)

where J = J(u, p, T ;µ) is the Jacobian matrix, R = R(u, p, T ;µ) is the residual vector.
In the case of problem (10) the terms of the Jacobian matrix can be easily calculated. For each row k1 =

1, . . . , Nu they write

Jk1i(u, p, T ;µ) =

Nu∑
j=1

uja(φi,φj ,φk1) +

Nu∑
j=1

uja(φj ,φi,φk1) + µ1c(φi,φk1) , i = 1, . . . , Nu

Jk1Nu+i(u, p, T ;µ) = −b(ψi,φk1) , i = 1, . . . , Np

Jk1Nu+Np+i(u, p, T ;µ) = −d(ξi,φk1) , i = 1, . . . , NT

(12)

for all row k2 = Nu + k, k = 1, . . . , Np

Jk2i(u, p, T ;µ) = b(ψk,φi) , i = 1, . . . , Nu

Jk2Nu+i(u, p, T ;µ) = 0 , i = 1, . . . , Np

Jk2Nu+Np+i(u, p, T ;µ) = 0 , i = 1, . . . , NT

(13)
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and for all line k3 = Nu +Np + k, k = 1, . . . , NT

Jk3i(u, p, T ;µ) =

NT∑
j=1

Tje(ξj ,φi, ξk) , i = 1, . . . , Nu

Jk3Nu+i(u, p, T ;µ) = 0 , i = 1, . . . , Np

Jk3Nu+Np+i(u, p, T ;µ) =

Nu∑
j=1

uje(ξi,φj , ξk) + µ1µ2g(ξi, ξk) , i = 1, . . . , NT .

(14)

In the same way, each term of the residual R(u, p, T ;µ) ∈ RNu+Np+NT can be calculated by

Rk(u, p, T ;µ) = −a(u,u,φk) + b(p,φk)− µ1c(u,φk) + d(T,φk) , k = 1, . . . , Nu

RNu+k(u, p, T ;µ) = −b(ψk,u) , k = 1, . . . , Np

RNu+Np+k(u, p, T ;µ) = µ1µ2h(ξk)− e(T,u, ξk)− µ1µ2g(T, ξk) , k = 1, . . . , NT

Remark 2.1. For high Gr and Pr numbers the Newton method might be insufficient. We propose in that case
to use the continuation algorithm 1. Note however that, for the range of Grashof and Prandtl, we didn’t need
to apply this continuation method.

Algorithm 1 Continuation strategy for high Gr and Pr numbers.

Fix parameters Gr and Pr
Fix minimal values of parameters Grmin = 1 and Prmin = 10−2

Fix tolerance tol and max number of iteration nmax for Newton
Calculate number of intermediary parameters:

N = max
{

1; max
{
dlog(Gr/Grmin)e), d(log(Pr/Prmin)e

}}
for i=1:N do

Logarithmic scale for intermediary parameters:
Gr(i) = exp{log(Grmin) + i(log(Gr/Grmin))/N)
Pr(i) = exp{log(Prmin) + i(log(Pr/Prmin))/N)

Fix Newton initial guess u0 = uold
while ||R|| ≥ tol or n ≤ nmax do

find un s.t. J(un−1)(un − un−1) = R(un−1)
end while
uold = un

end for
return Solution u = un

3. Reduced basis formulation

Let us now investigate a reduced basis formulation to solve the heat convection problem introduced above.
We first propose a general approach that can be applied to any quadratic problem affine in parameters. The
technique is based on the idea to store the more information as possible in the reduced space. So, tensors
are introduced and projected as well as matrices and vectors. After an overview on this method we deal with
application to the heat convection equations.
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3.1. Reduced Basis for a general quadratic problem

We now turn to the generalization of the RBM to a quadratic problem, in abstract form it reads

a(u, u, v;µ) + b(u, v;µ) = f(v;µ), ∀v ∈ V (15)

where the solution is u = u(µ) ∈ V , µ ∈ RQ indicates Q scalars parameters, V is an Hilbert space defined on
a domain Ω ⊂ Rd, with d = 1, 2, 3, a : V × V × V → R is a tri-linear form, b : V × V → R is a bi-linear form,
and f : V → R is a linear operator.

We first introduce the FE approximation of (15) that leads to the RB approximation. The RB formulation
of the general problem (15) applies then to (2).

Let us define a FE space VN ≡ span{v1, . . . , vN } ⊂ V , and the approximated solution of (15) as

u(µ) '
N∑
i=1

ui(µ)vi

then the discrete formulation of (15) writes

N∑
i,j=1

uiuja(vi, vj , vk;µ) +

N∑
i=1

uib(vi, vk;µ) = f(vk;µ), ∀k = 1, . . . ,N (16)

where the solution u = u(µ) = [u1 · · ·uN ]T ∈ RN for each parameter µ ∈ RQ.
In order to describe the RB approximation applied to problems such as (15), we need to define some discrete

objects. In particular, we introduce the tensor A = A(µ) ∈ RN×N×N , the matrix B = B(µ) ∈ RN×N , and the
vector f = f(µ) ∈ RN defined by

(A)ijk = a(vi, vj , vk;µ), (B)ki = b(vi, vk;µ), (f)k = fk = f(vk;µ)

for i, j, k = 1, . . . ,N . Note that the tensor A can be considered as a vector of matrices, i.e. for each k = 1, . . . ,N ,
we define the matrix Ak = Ak(µ) ∈ RN×N as (Ak)ij = (A)ijk, i, j = 1, . . . .N . Using this notation (16) now
reads

uTAku + (Bu)k = fk, ∀k = 1, . . . ,N (17)

where (Bu)k and fk are respectively the k-th term of vectors Bu and f .
As described in Section 2 we can treat the non-linearity of the first term in (17) using a Newton Method.

For a given parameter µ ∈ RQ, each iteration n = 1, 2, . . . of the Newton algorithm reads

Jrow(k)(u
n;µ)(un+1 − un) = Rk(un;µ), ∀k = 1, . . . ,N (18)

where Jrow(k)(u
n;µ) ∈ RN and Rk(un;µ) are respectively the k-th row of the Jacobian matrix J = J(u;µ) ∈

RN×N and the k-th term of the residual R = R(un;µ) ∈ RN defined by

Rk(un;µ) = fk − (un)TAku
n − (Bun)k, k = 1, . . . ,N . (19)

For the sake of notation, the dependency of a, b, f , and all associated operators on the parameters µ is removed.
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Now, we just need to calculate the Jacobian matrix J = J(u;µ). We can write each of its elements as

Jki(u) =
∂a

∂ui
(u,u, vk) +

∂b

∂ui
(u, vk)− ∂f

∂ui
(vk) =

=

N∑
l=1

N∑
j=1

∂

∂ui

(
uluja(vl, vj , vk)

)
+

N∑
j=1

∂

∂ui

(
b(vj , vk)uj

)
=

=

N∑
l=1

N∑
j=1

∂

∂ui

(
ulAljkuj

)
+

N∑
j=1

∂

∂ui

(
Bkjuj

)
=

=

N∑
j=1

ujAjik +

N∑
j=1

Aijkuj +Bki. (20)

In general A is never assembled as it is of size N 3, where N is the dimension of the underlying discretization
space. If this is indeed the case for FE discretization, recall however that here we deal with reduced order
approximation which enables the computation of A explicitly. Let us then introduce a reduced space VN =
span{ϕ1, . . . , ϕN}, with N � N and define the projection ũ = ũ(µ) ∈ RNof the solution u in VN as

ũ =

N∑
i=1

ũiϕi = ΦTu, (21)

where Φ = [ϕ1 . . . ϕN ] ∈ RN×N , Φji = ϕ̂i,j = (ϕi, vj)VN , the coefficients ũi are

ũi = (u, ϕi)VN = (u,

N∑
j=1

ϕ̂i,jvj)VN =

N∑
j=1

ujϕ̂i,j

and (·, ·)VN is the scalar product associated to VN .
We observe that the Newton method defined in (18) is in fact generic with respect to the discrete spaces and

that we can replace VN by VN which corresponds to projections of the terms in (18) onto VN . We now prove
this statement.

Following the procedure of (21) we start by defining the projection of the source term f as f̃ = f̃(µ) ∈ RN

f̃ = ΦT f , (22)

then the matrix B̃ = B̃(µ) ∈ RN×N as well is the projection of B into the reduced space VN

B̃ = ΦTBΦ, (23)

and finally we denote the reduced size tensor Ã = Ã(µ) ∈ RN×N×N . We now prove that it is in fact the
projection of the tensor A ∈ RN×N×N in VN

Ãijk = a(ϕi, ϕj , ϕk) =

N∑
l,m,h=1

ϕ̂i,lϕ̂j,mϕ̂k,ha(vl, vm, vh) =

=

N∑
l,m,h=1

ϕ̂i,lϕ̂j,mϕ̂k,hAlmh =

N∑
h=1

ϕ̂k,h(ΦTAhΦ)ij =

N∑
h=1

ϕ̂k,h(Ãh)ij (24)
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i, j, k = 1, . . . , N , where Ãk = ΦTAkΦ is the projection of Ak ∈ RN×N in VN for all k = 1, . . . ,N . Let us define
the tensorial product ? : RN × RN → R as

aT ? (bTAc) :=

N∑
h=1

ah(bTAhc), ∀a,b, c ∈ RN ,∀A ∈ RN×N×N . (25)

Then

Ãijk =

N∑
h=1

ϕ̂k,h(ϕTi Ahϕj) = ϕTk ? (ϕTi Aϕj), i, j, k = 1, . . . , N. (26)

Using equations (23) and (26) we obtain the projection of the Jacobian J̃ ∈ RN×N at each iteration n =
1, 2, . . ., and it reads

J̃ik(ũn;µ) = (Ãk|col(i))T ũn + (Ãk|row(i))ũ
n + B̃ik (27)

where Ãk|col(i) = [Ãjik]Nj=1 ∈ RN is the i-th column of the matrix Ãk for each k = 1, . . . , N and Ãk|row(i) =

[Ãijk]Nj=1 ∈ RN is the i-th row of the matrix Ãk for each k = 1, . . . , N . If we use the tensorial product defined
by (25) we simply write

Ãk|col(i) =
[
ϕTk ? (ϕT1 Aϕi) · · · ϕTk ? (ϕTNAϕi)

]
Ãk|row(i) =

[
ϕTk ? (ϕTi Aϕ1) · · · ϕTk ? (ϕTi AϕN )

]
i, k = 1, . . . , N . Similarly, each term of the reduced residual R̃ = R̃(ũ;µ) ∈ RN reads

R̃k(ũn;µ) = f̃k − (ũn)T Ãkũ
n − (B̃ũn)k, k = 1, . . . , N. (28)

3.2. Application to heat convection problem

Let us now apply this reduction technique to the natural convection problem introduced in Section 2. The
FE formulation of each sub-iteration n = 1, . . . , nmax of the Newton Method applied to equations (2) writes

J(un, pn, Tn)
[
(un+1, pn+1, Tn+1)− (un, pn, Tn)

]
= R(un, pn, Tn) (29)

with Jacobian and residual terms defined as in Section 2. In order to apply the technique described in the pre-
vious paragraph, we introduce matrices and tensors associated to (10). We define the tensors A ∈ RNu×Nu×Nu

and E ∈ RNT×Nu×NT as

A = [Aijk, i, j, k = 1, . . . , Nu], (Ak)ij = Aijk = a(φi,φj ,φk)

E = [Eijk, i, k = 1, . . . , NT , j = 1, . . . , Nu], (Ek)ij = Eijk = e(ξi,φj , ξk)

the matrices B ∈ RNp×Nu , C ∈ RNu×Nu , D ∈ RNu×NT , G ∈ RNT×NT as

B = [Bij , i = 1, . . . , Nu, j = 1, . . . , Np], Bij = b(ψj ,φi)

C = [Cij , i, j = 1, . . . , Nu], Cij = c(φj ,φi)

D = [Dij , i = 1, . . . , Nu, j = 1, . . . , NT ], Dij = d(ξj ,φi)

G = [Gij , i = 1, . . . , NT ], Gij = g(ξj , ξi)

and the vector H ∈ RNT as

H = [Hi, i = 1, . . . , NT ], Hi = h(ξi).
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Then, using notation introduced in Section 3.1, the Jacobian matrix writes

J(u, p, T ;µ) =

 JNl1(u) + µ1C −B −D
BT 0 0

JNl2(T ) 0 JNl3(u) + µ1µ2G

 (30)

where each element of the non-linear submatrices JNl1(u), JNl2(T ), JNl3(u) are

JNl1ki (u) =

Nu∑
j=1

((Ak)ij + (Ak)ji)uj = ((Ak|col(i))T + (Ak|row(i)))u , k, i = 1, . . . , Nu

JNl2ki (T ) =

NT∑
j=1

(Ek)ijTj = (Ek|row(i))T , k = 1, . . . , NT , i = 1, . . . , Nu (31)

JNl3ki (u) =

Nu∑
j=1

(Ek)jiuj = (Ek|col(i))Tu , k, i = 1, . . . , NT

whereas each element of the residual vector of the Newton algorithm (29) writes

Rk(u, p, T ;µ) =− uTAku +Brow(k)p− µ1Crow(k)u +Drow(k)T , k = 1, . . . , Nu

Rk(u, p, T ;µ) =− (Bcol(k))
Tu , k = Nu + 1, . . . , Nu +Np (32)

Rk(u, p, T ;µ) =µ1µ2Hk − uTEkT − µ1µ2Grow(k)T

To apply efficiently the RB methodology, a key ingredient is the affine decomposition of the terms in the
Newton Method which is readily available for our problem. The Jacobian matrix writes as

J(u, p, T ;µ) =

QJ∑
q=1

θqJ(µ)Jq(u, p, T ) (33)

where for the considered example QJ = 4 and the coefficients θJ are

θ1
J(µ) = µ1 =

1√
Gr

, θ2
J(µ) = µ1µ2 =

1√
GrPr

, θ3
J(µ) = θ4

J(µ) = 1. (34)

Each sub-matrix can be described using the notation introduced above

J1(u, p, T ) =

 C 0 0
0 0 0
0 0 0

 , J2(u, p, T ) =

 0 0 0
0 0 0
0 0 G

 , (35)

J3(u, p, T ) =

 0 −B −D
BT 0 0
0 0 0

 , J4(u, p, T ) =

 JNl1(u) 0 0
0 0 0

JNl2(T ) 0 JNl3(u)

 .
As to the residual, it is readily decomposed as

R(u, p, T ;µ) =

QR∑
q=1

θqR(µ)Rq(u, p, T ) (36)
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with QR = 3 terms, we have

θ1
R(µ) = µ1 =

1√
Gr

, θ2
R(µ) = µ1µ2 =

1√
GrPr

, θ3
R(µ) = 1 (37)

and

R1(u, p, T ) =

 −Cu
0
0

 , R2(u, p, T ) =

 0
0

H −GT

 , (38)

R3(u, p, T ) =

 −(uTAku)Nu

k=1 +Bp+DT

BTu

−((uTEkT )T )NT

k=1

 .
The last step consists in projecting these equations in a reduced space. As shown for the general problem

(15), the reduced Newton method at each iteration n = 1, . . . , nmax writes

J̃(ũn, p̃n, T̃n)
[
(ũn+1, p̃n+1, T̃n+1)− (ũn, p̃n, T̃n)

]
= R̃(ũn, p̃n, T̃n) (39)

where the ∼ indicates the projection onto the reduced space VN . The computation of vectors and matrices
is done in a ”classical” way, the terms are calculated in the FE space VN and projected into the reduced one
by the matrix Φ defined by the basis function. Each basis function is the solution of problem (10) for a fixed
parameter µ, possibly orthonormalized. For tensors A and E a different approach is needed because of their
high dimensions.

Let us consider a general tensor A ∈ RN
3

defined by a trilinear form a : V 3
N → R, Aijk = a(vi, vj , vk),

i, j, k = 1, . . . ,N as in problem (15). Its projection on a reduced space VN = span{ϕ1, . . . , ϕN}, as shown in

Section 3.1, is defined by Ã ∈ RN3

, Ãijk = ϕTk ?(ϕTi Aϕj), i, j, k = 1, . . . , N . We observe that Ãijk = a(ϕi, ϕj , ϕk)
where ϕi, ϕj , ϕk ∈ VN .

Let us then define an hybrid tensor Λ ∈ RN×N×N whose elements are

Λijk = (Λk)ij = a(vi, vj , ϕk), (40)

i, j = 1, . . . ,N , k = 1, . . . , N . We can then use this tensor to redefine the reduced tensor Ã

Ãijk = a(ϕi, ϕj , ϕk) =

N∑
l,m=1

ϕ̂i,lϕ̂j,ma(vl, vm, ϕk) =

=

N∑
l,m=1

ΦliΦmj(Λk)lm = (ΦTΛkΦ)ij . (41)

So, we proved that

Ãk = ΦTΛkΦ . (42)

That implies that we can calculate only N matrices Λk, k = 1, . . . , N , and project them into the reduced space

to obtain the reduced tensor Ã.

4. Computational framework

In this section we give an overview of the computational framework and its implementation to solve the heat
convection problem introduced in section 2. All the routines described are part of the FE or RB frameworks
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of Feel++ library and available in Feel++ source code. We first introduce the main principles of Feel++,
then we illustrate the FE implementation of problem (1) and finally we introduce the associated RB framework.

4.1. Feel++ principles and design

Feel++ is a C++ library that provides a clear and easy to use interface to solve complex PDE systems.
It aims at bringing the scientific community a tool for the implementation of advanced numerical methods and
high performance computing.

Feel++ relies on a so-called Domain Specific Embedded Language (DSEL) designed to closely match the
Galerkin mathematical framework. In computer science DS(E)Ls are used to partition complexity. In Feel++
the DSEL splits low level mathematics and computer science on one side, and high level mathematics as well as
physical applications to the other side. This difference between disciplines is reflected on users and developers
tasks and allows easily improvements on both sides. Furthermore, it enables using Feel++ for teaching
purposes, solving complex problems with multiple physics and scales or rapid prototyping of new methods,
schemes or algorithms.

The DSEL on Feel++ provides access to powerful tools such as interpolation, with a simple and seamless
interface, and allows clear translation of a wide range of variational formulations into the variational embedded
language. Combined with this robust engine, it lies also arbitrary order finite elements, high order quadrature
formulas and robust nodal configuration sets. The tools at the user’s disposal grant the flexibility to imple-
ment numerical methods that cover a large combination of choices from meshes, function spaces or quadrature
points using the same integrated language and control at each stage of the solution process of the numerical
approximations.

In this paper, we use recent developments which allow to operate on large-scale parallel infrastructures. The
general strategy used is parallel data framework using MPI and thanks to DSEL the MPI communications
are seamless to the user: (i) we start with automatic mesh partitioning using Gmsh [GR09] (Chaco/Metis)
— adding information about ghost cells with communication between neighbor partition;— (ii) the Feel++
parallel data structures such as meshes, (elements of) function spaces — create a parallel degrees of freedom
table with local and global views; — (iii) and finally we use the library PETSc [BBB+12b,BBB+12a,BGMS97]
which provides access to a Krylov subspace solvers(KSP) coupled with PETSc preconditioners such as Block-
Jacobi, ASM, GASM. A complete description of the Feel++ high performance framework is available in the
thesis [Cha13].

Remark 4.2. The last preconditioner is an additive variant of the Schwarz alternating method for the case
of many subregions, see [SBG04]. For each sub-preconditioners (in the subdomains), PETSc allows to choose
a wide range of sequential preconditioners such as LU, ILU, JACOBI, ML. Moreover, precondioner ASM or
GASM can be used with or without an algebraic overlap. Other parallel preconditioners are available in PETSc
but not used here. In particular we would like to mention the MUMPS direct parallel solver [ADL00]. We use
it both as solver and preconditioner for iterative solves. FieldSplit preconditioners are also of notice for the
applications we have: they allow to exploit the structure of block matrix.

4.3. Finite element model for the reduced basis framework

In this section we briefly introduce the organization of the RB framework of Feel++ (see figure 2), and
then we see how the user deals with the FE model, needed to interface with the RB framework.

4.3.1. Reduced basis framework

The offline/online strategy developed in the RBM is implemented in the class CRBTrilinear.
As the offline step of the method can be very expensive, scalar products resulting from the projection of

matrices or vectors on the RB are saved in a database. To save objects in the database, we use the concept of
”serialization” introduced by the set of libraries for the C++ programming language Boost.
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CRBAppUserModel CRBModelTrilinear

CRBTrilinear

ParameterSpace

boost::Serialization

Figure 2. Class diagram for the Feel++ RB framework. Arrows represent instantiations
of template classes.

The class CRBApp is the driver for the RB framework. The class ParameterSpace manages the construction
of the parameter space. First, if no existing database is found the offline step of RBM is run in order to build
a basis, while if a database already exists the basis can be enriched or the algorithm passes to the online step.

To solve a linear or nonlinear problem with RB method in Feel++ the user has to define in his model the
variational formulation of the problem. At the state of the art, the variation form must be defined in accord
with the affine decomposition, future revisions of the code will introduce an automated affine decomposition.
Note that using Feel++ the user model can be as well a 1D, 2D or 3D model. It is important to keep
in mind that to interface with the RB framework the user has to provide only the FE model (i.e.parameter
space, geometry, variational formulation), it corresponds to UserModel in figure 2 whose interface derives from
CRBModelTrilinear.

The Feel++ RB framework support parallel architectures using the MPI technology. As in the FE frame-
work an automatic mesh partitioning using Gmsh (Chaco/Metis) is computed, while every data associated to
the reduced basis (scalars, vectors and dense matrices, parameter space samplings,...) are duplicated on each
processor. However note that since the mesh is partitioned according the number of processors, finite element
approximations and thus the reduced basis functions are in fact spread on all processors. Currently the basis
functions are saved in the RB database with their associated partitioning. If they are required for visualization
purposes or reduced basis space enrichment, the same data partition as in the initial computations must be
used. Another particular attention must be paid to parameter space sampling generation: we must ensure
that all processors hold the same samplings. To this end, there are generated in a sequential way by only one
processor and then broadcasted to other processors.

4.3.2. Finite element model

Let us illustrate the implementation of the FE solution strategy for the problem (1) using Feel++, we give
the main ideas of the solver function, with the continuation algorithm described above, and the computation of
Newton method terms.

In listing 1, we display a snippet of code showing the code describing for a given µ, the solution process
to retrieve (u(µ), p(µ), T (µ)): (i) compute the coefficients of the affine decomposition; (ii) assemble the linear
terms; (iii) solve the non linear problem where updateJacobian and updateResidual are computing the jaco-
bian and residual respectively during the Newton iterations. Note that updateJacobian need not be called at
every iterations. Moreover the code is seamless with respect to geometrical dimension (2D or 3D) and parallel
computing.

Listing 1. Implementation of algorithm 1
void solve( parameter_type const& mu, element_ptrtype& T )

{

this ->computeThetaQ( mu ); // Update θ coefficients

this ->update( mu ); // Update affine decomposition of the linear terms
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// nonlinear iterative solver , solve for U=(u, p, T )
backend()->nlSolve( _jacobian=updateJacobian ,

_residual=updateResidual ,

_solution=U );

}

As mentioned earlier, at each Newton iteration, the Jacobian matrix and the residual vector are updated. We
start with the linear terms which can be precomputed, see section 3.2. We show, as an example, the Jacobian
sub-matrices assembly. The vector thetaAq[q] represents the coefficients θJ defined in (34), while the matrices
Aq[0], Aq[1], Aq[2] are respectively the matrices J1, J2 and J3 defined in (35). The assembly of those matrices
is displayed in listing 2.

Listing 2. Jacobian Linear terms assembly
// Definition of mesh and FE space Xh = Vh ×Qh × Ξh

mesh_ptrtype mesh;

// N polynomial order

Vh = Pch <N+1, Vectorial >( mesh );

Qh = Pch <N>( mesh );

Xih = Pch <N+1>( mesh );

Xh = Vh * Qh * Xix;

// Definition of functions

element_type U( Xh , "u" );

element_type V( Xh , "v" );

// Velocity function and test function

element_0_type u = U. element <0 >(); element_0_type v = V. element <0 >();

// Pression function and test function

element_1_type p = U. element <1 >(); element_1_type q = V. element <1 >();

// Temperature function and test function

element_2_type t = U. element <2 >(); element_2_type s = V. element <2 >();

// 1) Fluid equations

// 1.1) Velocity diffusion: Aq[0] = C =
∫

Ω
∇u : ∇v

form2(_test=Xh ,_trial=Xh ,_matrix=Aq[0] ) =

integrate( _range=elements(mesh), _expr=trace(gradt(u)* trans(grad(v))) );

// 1.2) Heat diffusion: Aq[1] = G =
∫

Ω
∇t · ∇s

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[1] ) =

integrate( _range=elements( mesh ), _expr=gradt(t)* trans(grad(s)) );

// 1.3) Pressure -velocity terms: Aq[2] = -B =
∫

Ω
−p ∇ · v

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[2] ) =

integrate ( _range=elements( mesh ), _expr= - idt(p) * div(v) );

// Aq[2] += B^t =
∫

Ω
q ∇ · u

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[2] ) +=

integrate ( _range=elements( mesh ), _expr=divt(u) * id(q) );

// 2) Temperature equation

// 2.1) Buyoancy forces: Aq[2] += D =
∫

Ω
t e2 v

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[2] ) +=

integrate( elements( mesh ), -idt(t)*( trans(vec(cst(0.),cst (1.0)))* id(v) ) );

// B.C. ...

form2(Xh,Xh,M) builds a bilinear form Xh×Xh → R whose algebraic contribution will be stored in the matrix
M. We remark that the finite element space Xh used to solve the problem is a composite space: Vh is a finite
element space of degree 3 for vectorial functions (velocity), Qh is a scalar function space of degree 2 (pression)
and Xih a scalar space of degree 3 (temperature). Again this is seamless for the user with respect to parallel
computing and quite expressive with respect to the mathematical formulation.
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Finally we add the contribution of the non-linear terms to the jacobian. The main operations required to
this update are showed in listing 3. We remark that for a given µ the linear part of the jacobian stored in Jlin

does not need to be updated, its implementation is computed once for all using the code displayed in listing 2.

Listing 3. Non-linear terms assembly in jacobian
void Convection :: updateJacobian( const vector_ptrtype& X, sparse_matrix_ptrtype& J)

{

// Definition of mesh and FE space Xh, and definition of functions

//are done in the same way as previously

Aq[3][0]-> zero (); // initialization

// 1) Fluid equations - fluid convection derivatives:

// Aq[3] = u^T*A + A*u =
∫

Ω
(u ∇ · vi vj + vi ∇ · u vj)

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[3] ) +=

integrate ( _range=elements(mesh), trans( id(v) )*( gradv(u) )*idt(u) );

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[3] ) +=

integrate ( _range=elements(mesh), trans( id(v) )*( gradt(u) )*idv(u) );

// 2) Temperature equation - heat convection:

// Aq[3] += u^T*E + E*T =
∫

Ω
(u · ∇(si)sj + ui · ∇(T )sj)

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[3] ) +=

integrate ( elements(mesh), grad(s)*( idv(t)*idt(u) ) );

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[3] ) +=

integrate ( elements(mesh), grad(s)*( idt(t)*idv(u) ) );

// B.C. ...

// Jacobian = linear terms of Affine Decomposition + Nonlinear term Aq[3]

J->zero (); J->addMatrix (1.,Jlin); J->addMatrix (1.,Aq[3]);

}

5. Numerical Experiments

We present some numerical results: first we compare flow profiles obtained using FEM and RBM, and
associated errors, in both 2D and 3D cases. Then, computational times and performances varying model
parameters are show in both FEM and CRB cases are displayed. Finally, we compare the Nusselt number
obtained in both cases.

Thanks to the Feel++ framework, the finite element and reduced basis models are available both in 2D
and 3D.

Regarding the 2D case the FEM simulations refer to 6 × 104 degrees of freedom while in the 3D tank we
have more than 2 × 105 dof. We consider polynomial basis functions of degree 3 for velocity and temperature
variables, and degree 2 for pressure variable. Continuation algorithm (see Algorithm 1) is not used for FEM
simulation and RBM as well, a simple Newton Method without parameters continuation is run. The RB used
for all results presented here contains 28 elements non orthonormalized. The basis functions are solutions of the
FE problem evaluated for Prandtl fixed to 1 while Grashof varies from 1 to 106. Each 2D simulation is run in
parallel on 10 processors, whereas each 3D simulation is run on 24 processors. In both cases we use the solver
GMRES and the Additive Schwarz Method (GASM) as preconditioner.
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5.1. Flow profiles

First we look at the solutions obtained with RBM and compare them with the FEM ones. We investigate
the relative error between the two resolutions for increased turbulent flow, i.e. high parameters.

Figure 3 shows 2D results for different Grashof values (1, 103, 105). On the left there are RBM solutions,
we show the velocity magnitude (top) and temperature (bottom) profiles. We observe faster flow for increased
Grashof values as expected. On the right, relative errors for velocity (top) and temperature (bottom) are shown.
As the flow is more turbulent for increasing parameters, the relative errors increase as well. Furthermore, errors
is at least 2× 10−3 for velocity magnitude and 10−2 for temperature profile, which are satisfactory values (we
do not consider values for Gr = 1 because of it corresponds to a parameter used to build the basis, the error is
as expected 10−16).

We analyze the error in 2D and 3D simulations, respectively Figures 5(c) and 6(c), increasing Grashof values.
We observe in both cases that the error increases for Grashof between 1 and 103 and it stabilizes for values
greater than 103. Also, we remark that the solution in a finite 3D tank for high Grashof value represents a flow
with a complex pattern (Figure 4).

5.2. Performances

We now compare the RBM computational gain with respect to FEM. Figures 5(b) and 6(b) show the com-
putational times for increased Grashof in both FEM and RBM cases, respectively in the 2D and 3D tanks. In
both cases, we show the log-log plot of the computational times (in seconds) vs Gr.

As expected the FEM solution costs is several order more expensive than the RBM one. In particular, we
have a factor 6 × 102 for small Grashof and we reach a factor 1.5 × 103 for high Grashof in 2D case, and a
factor from 103 to 104 occurs in 3D case. Furthermore, we observe that the computational time increases in
parameters in the case of FEM, while it is almost constant in RBM computations. In both 2D and 3D case we
find few parameters that lead to a higher computational time in RB, this is due to increased number of online
Newton iterations, however it still yield good results when inspecting the Nusselt number, see Figure 5(a) and
Figure 6(a).

We remark that we do not apply the continuation algorithm neither for FEM nor for RBM. However it may
become necessary for FEM resolution in case of non-convergence of the Newton solver, for higher parameter
values or more complex geometry. As initial guess of the Newton Algorithm used to solve the online RB
problems, the nearest known solution is used, whereas in FEM the initial guess is taken as the zero — although
we could also use the nearest basis function as initial guess. —

5.3. Outputs

To conclude we look at the Nusselt number, i.e. the mean temperature on boundary Γ3 = Ω̄ ∩ {x = 1} (see
Figure 1 for the 2D tank)

Nu =

∫
Γ3

Tdσ. (43)

This quantity decreases with increasing Grashof because of faster fluid flows that remove the heat for Γ3. In
Figures 5(a) and 6(a), respectively 2D and 3D cases, the logarithmic output curves show that the RBM solutions
follow the same behavior of the FEM ones with same Nu values. These results confirm the good approximation
obtained with RBM in both 2D and 3D simulations.

6. Conclusions and perspectives

We have presented a mathematical and computational treatment of the RBM applied to steady-state natural
convection. This can be readily applied to other types of problems with quadratic non-linearities. The proposed
method gives results that are accurate and efficient. In particular, the efficiency of this technique is remarkable
in the case of flows with complex patterns both in 2D and 3D. From a framework point of view, the (offline)
database handling raises interesting challenges when dealing with large parallel data.
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(a) Gr=1.e+00

(b) Gr=1.e+03

(c) Gr=1.e+05

Figure 3. Comparisons of FEM and RBM solutions for Gr = (1, 103, 105) and Pr = 1. On
the left velocity flow magnitude (top) and temperature profile (bottom) for RBM solutions. On
the right velocity error (top) and temperature error (bottom).
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(a) mesh partitioning (24 processors)

(b) temperature isosurfaces (c) Stream lines

Figure 4. 3D computations for Gr = 1e7, P r = 0.1
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Figure 5. 2D computations for Gr ∈ [1; 1e6], Pr = 1.

In terms of perspectives, a posteriori error estimation is a first step not only to assess the quality of the RB
approximation but also to guide the RB space construction using greedy strategies [Yan12, VPRP03]. More
complex applications can be considered in particular including geometrical parameters. However it is foreseen
that we may require hp-RBM approximations, see e.g. [EHKP12]. Finally, we dealt with the steady-state of
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Figure 6. 3D computations for Gr ∈ [1; 1e6], Pr = 1.

the natural convection flow, the transient state is also of interest but requires much more involved mathematical
and computational framework, see e.g. [Yan12].
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