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ON THE STABILITY IN WEAK TOPOLOGY OF THE SET OF GLOBAL
SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

HAJER BAHOURI AND ISABELLE GALLAGHER

ABSTRACT. Let X be a suitable function space and let G C X be the set of divergence free
vector fields generating a global, smooth solution to the incompressible, homogeneous three
dimensional Navier-Stokes equations. We prove that a sequence of divergence free vector
fields converging in the sense of distributions to an element of G belongs to G if n is large
enough, provided the convergence holds “anisotropically” in frequency space. Typically
that excludes self-similar type convergence. Anisotropy appears as an important qualitative
feature in the analysis of the Navier-Stokes equations; it is also shown that initial data which
does not belong to G (hence which produces a solution blowing up in finite time) cannot
have a strong anisotropy in its frequency support.

1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Setting of the problem. We are interested in the three dimensional, incompressible
Navier-Stokes equations

du+u-Vu—Au=—-Vp in R xR3
divu =20
Ujt=0 = U0,
where u(t, x) and p(t, x) are respectively the velocity and the pressure of the fluid at time ¢ > 0

and position € R3. We recall that the pressure may be eliminated by projection onto
divergence free vector fields, hence we shall consider the following version of the equations:

ou+Pu-Vu) —Au=0 in RT xR3
(NS) ¢divu=0
Ujt=0 = U0,
where P := Id — VA~ !div.
Note also that the Navier-Stokes system may be written as
O+ diviu®@u) — Au= —Vp in RT xR3
divu =0
Ujt=0 = U0,

d
where div(u ® u)! = Z@k(uj u*) = div(u/u). The advantage of this weak formulation is
k=1

that it makes sense for singular vector fields and allows to consider weak solutions. The

question of the existence of global, smooth (and unique) solutions is a long-standing open
problem, and we shall only recall here a few of the many results on this question. We refer
for instance to [3] or [45] and the references therein, for a precise definition of weak solutions
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2 H. BAHOURI AND I. GALLAGHER

and recent surveys on the subject. An important point in the study of (NS) is its scale
invariance: if u is a solution of (NS) on R x R? associated with the data ug, then for
any A > 0, uy(t,z) := Mu(\>t, \x) is a solution on R* x RY, associated with the data

(1.1) up () = Aug(Ax) .
In two space dimensions, L?(R?) is scale invariant, while in three space dimensions that is

. . —1
the case for L3(R?), the (smaller) Sobolev space H %(R?’), or the Besov spaces B,, ”(R3),
with 1 < p < o0 and 0 < ¢ < co. We refer to Appendix B for all necessary definitions and

+g(

properties of those spaces. Note that anisotropic spaces such as L*(R?; H %(]R)) can also be
scale invariant under (1.1), but also more generally under the anisotropic scaling

(1.2) Iap(@) == Af(Ax1, Awo, pas), VA, > 0.
Of course (NS) is not invariant through that transformation if A # pu.

3

It is well-known that (NS) is globally wellposed if the initial data is small in Bp;: "’ as long
as p < 0o (see the successive results by [46], [24], [38], [12] and [52]). Let us emphasize that
in all those results, the global solution lies in C(R™*; X) when the Cauchy data belongs to the
Banach space X. We note that the proof of uniqueness may require the use of more refined
spaces. In [42], H. Koch and D. Tataru obtained a unique (in a space we shall not detail
here) global in time solution for data small enough in the larger space BMO™!, consisting of
vector fields whose components are derivatives of BMO functions.

The smallness assumption is not necessary in order to obtain global solutions to (NS), as
pointed out for instance in [13]-[15]. We also recall that in two space dimensions, (NS) is
globally wellposed as soon as the initial data belongs to L?(R?), with no restriction on its
size (see [47]); this is due to the fact that the L?(R%) norm is controlled a priori globally in
time. This estimate also allowed J. Leray in [46] to prove the existence of global in time weak
solutions in two and three dimensions. J. Leray’s result extends to any dimension, as shown
in [18] for instance.

In this article we are interested in the structure of the set G of initial data giving rise to a
unique, global solution to the Navier-Stokes equations. More precisely our interest will be
in the global nature of the solution, as the uniqueness of the solution will not be an issue.
The solutions will be obtained via a fixed point procedure in an adequate function space.
It is known that the set G contains small balls in BMO™! centered at the origin. But it is
known to include many more classes of functions. We recall that it was proved in [2] (see [27]
for the setting of Besov spaces) that G is open for the strong topology of BMO™!, provided
one restricts the setting to the closure of Schwartz-class functions for the BMO~! norm. In
this paper we address the same question for weak topology. More precisely we wish to
understand under what conditions a sequence of divergence free vector fields converging in
the sense of distributions to an initial data in G, will itself be in G (up to a finite number of
terms in the sequence).

Before going into more details let us discuss some examples. If a sequence converges not only
3

weakly but strongly in Bp,oj . say, to an element of G then the result is known, see [27].
To give another example, consider a sequence of divergence free vector fields ug,, bounded
in L3(R3), converging in the sense of distributions to some vector field ug in L3(R3) N G.
If (14 )'™®ug, is bounded in L™ for some € > 0, then it is easy to see that ug, generates
a global unique solution to (NS) for n large enough. This can be seen using the “stability of
singular points” of [37, 53], or more directly using the fact that such a sequence is actually
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1. o-l+d . . .
compact” in By ” for p > 3 and applying the strong stability result [27]. This example
shows that in some cases, the weak convergence assumption implies the strong convergence
in spaces where stability results are available. Here we consider a situation where such a
reduction does not occur. One way to achieve this is considering sequences bounded in a
scale-invariant space only, with no additional bound in a non-scale-invariant space. However
in that case clearly some restrictions have to be imposed to hope to prove such a weak
openness result; indeed consider for instance the sequence

(1.3) du(z) = 2"6(2"z), neN,

where ¢ is any smooth, divergence free vector field. This sequence converges to zero in the
sense of distributions as n goes to infinity, and zero belongs to G. If one could infer, by weak
stability, that ¢,, gives rise to a global unique solution for large enough n, then so would ¢ by
scale invariance and that would solve the problem of global regularity for the Navier-Stokes
equations. Note that the same can be said of the sequence

(1.4) On(z) = d(z — 3n), |zn] — 0.

Since the global regularity problem seems out of reach, we choose here to add assumptions
on the spectral structure of the sequences converging weakly to an element of G, which in
particular forbid sequences such as ¢, or ¢, which in a way are “too isotropic”.

Actually one has the following interesting and rather easy result, which highlights the role
anisotropy can play in the study of the Navier-Stokes equations. This result shows that
initial data generating a solution blowing up in finite time cannot be too anisotropic in
frequency space, meaning that the set of its horizontal and vertical frequency sizes cannot
be too separated; the threshold depends only on the norm of the initial data. The result is
proved in Appendix B; its proof relies on elementary inequalities on the Littlewood-Paley
decomposition, which are all recalled in that appendix. The notation AZA;? appearing in the

statement stands for horizontal and vertical Littlewood-Paley truncations at scale 2¢ and 27
respectively, and is also introduced in Appendix B. The space BZ% 1(R3) is a scale invariant
space, slightly smaller than H 3 (R3).

Theorem 1. Let p > 0 be given. There is a constant Ny € N such that any divergence free
vector field ug of norm p in BEI(R?‘) satisfying ug = Z AﬁA?uo gives rise to a global,

|7—k|>No
unique solution to (NS) in C(R™; L3(R?)).

Let us now define the function spaces we shall be working with. As explained above we want
to work in anisotropic spaces, invariant through the scaling (1.2). For technical reasons we
shall assume quite a lot of smoothness on the sequence of initial data: we choose the sequence
bounded in essentially the smallest anisotropic Besov space B;;Zl invariant through (1.2). It
is likely that this smoothness could be relaxed somewhat, but perhaps not with the method
we follow. We shall point out as we go along where those restrictions appear, see in particular
Remark 4.7 page 20.

Definition 1.1. We define, for 0 < q < oo, the space B(} by the (quasi)-norm

1

o i+k h AV q
(15) 17k = 3 20 e )
.77

IThis fact can readily be seen by applying a profile decomposition technique and eliminating all profiles
except for the weak limit, thanks to the additional bounds satisfied by the sequence.
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where AZ and A;? are horizontal and vertical frequency localization operators (see Appen-

diz B).

This corresponds to the space B deﬁned in Appendix B, where the reader will also find its
properties used in this text. More generally we define in Appendlx B

1
||f||BzS7:Z = ( Z 2(7’J+sk qHAhAfoLp - >
J,kEZ
The norm (1.5) is equivalent to the norm (B.3) which is clearly invariant by the scaling (1 2),

and is slightly larger (if ¢ < 1) than the more classical 32 £ norm (for the role of B2 { in
the study of the Navier-Stokes equations see for instance [17] [51]). Moreover the space B;
is anisotropic by essence, which as pointed out above, will be an important feature of our
analysis.

It is proved in Appendix A that any initial data small enough in B} generates a unique, global
solution to (NS) in the space Sy 1 := L (R"; B}) N LY(RT; Bi’ll N Bllf’), and if the data is not
small then there is a unique solution in the local space
231 51,3
8171( ) - L?ooc([(L T)’ B%) N Llloc((07 T)7 Bl,l N BLl)

for some T > 0.

We provide also in Appendix A a strong stability result in B}, whose proof follows a classical
procedure, and the main goal of this text is to prove a stability result in the weak topology
for data in B(} for 0 < g < 1.

Now let us define our notion of an anisotropically oscillating sequence. We shall need another
more technical assumption later, which is stated in Section 2 (see Assumption 2 page 10).

Assumption 1. Let 0 < ¢ < 0o be given. We say that a sequence (fn)nen, bounded in B(},
1s anisotropically oscillating if the following property holds. There exists p > 2 such that
for all sequences (ky, jn) in ZN x ZN,

(1.6) liminf 25" DT AL AY ol s = C >0 = lim [j,— ka| = 00

n—o0 n—o0

Remark 1.2. It is easy to see (see Appendix B) that any function f in B; belongs also

+21
to By © 7 for any p > 1 hence

o
FeB — sup 2D ARAYF| L < oo,
(k.j)ez?
The left-hand side of (1.6) indicates which ranges of frequencies are predominant in the se-

2 n .
quence ( fy,): if lim sup 9fn(=143)+% HAZn A% fullLr is zero for a couple of frequencies (2Fn 20n),

n—oo
then the sequence (fy,)nen is “unrelated” to those frequencies, with the vocabulary of [31]

(see also Lemma 5.2 in this paper). The right-hand side of (1.6) is then an anisotropy
property. Indeed one sees easily that a sequence such as (¢p)nen defined in (1.3) is pre-
cisely not anisotropically oscillating: for the left-hand side of (1.6) to hold for ¢,, one would
need j, ~ k, ~ n, which is precisely not the condition required on the right-hand side of (1.6).
A typical sequence satisfying Assumption 1 is rather (for a € R3)

fal@) =227 f (22" (w1 — 01), 2" (22 — 0a2), 27" (w3 — a3)), (a,B) €R?, a#f
with f smooth. One of the results of this paper states that any sequence satisfying Assump-

tion 1 may be written as the superposition of such sequences, up to a small remainder term
(see Proposition 2.4 page 7).
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1.2. Main results. We prove in this article that G is open for weak topology, provided the
weakly converging sequence is of the type described in Assumption 1.

Theorem 2. Let g €]0,1[ be given and let (upn)nen be a sequence of divergence free vector
fields bounded in B(}, converging towards ug € B; in the sense of distributions, and assume
that ug generates a unique solution in Sy 1(00). If ug — (o n)nen s anisotropically oscillating
and satisfies Assumption 2 page 10, then for n large enough, ug, generates a unique, global
solution to (NS) in Sy 1(00).

Remark 1.3. Theorem 2 may be generalized by adding two more sequences to ug ,, where in
each additional sequence the “privileged” direction is not x3 but z1 or xs. It is clear from the
proof that the same result holds, but we choose not to present the proof of that more general
result due to its technical cost. Actually a more interesting generalization would consist in
considering more geometrical assumptions, but that requires more work and ideas, and will
not be addressed here.

Remark 1.4. Assumption 2 is stated page 10, along with some comments (see in particular
Remarks 2.8, 2.9 and 2.10). Its statement requires the introduction of the profile decom-
position of the sequence of initial data and it requires that some of the profiles vanish at
Zero.

Remark 1.5. Theorem 2 generalizes the result of [15], where it is shown that the initial data
J
uo(z) + Z(Ué(ﬁ +€jwé(J)7U§(J) +8]‘11)3(]),wg(]))(l'l,xg,ffjl'g)
j=1

generates a global solution if ug belongs to o (R?)NG, if the profiles (v(l](j),vg(j), 0) and w(()j)

are divergence free and in L?(R,,; H~'(R?)), as well as all their derivatives, if 1,...e; > 0

are small enough, and finally under the assumption that vé(j )(xl, x2,0) = vg(j )(

and wg(j )(xl, x2,0) = 0. Those last requirements are analogous to Assumption 2. Note that
even in the case when ug = 0, such initial data cannot be dealt with simply using Theorem 1
1

x1,22,0) =0

since it is not bounded in B2§71 Note also that as in [15], the special structure of (NS) is used
in the proof of Theorem 2.

Remark 1.6. Notice that it is not assumed that the global solution associated with wug
satisfies uniform, global in time integral bounds. Similarly to [2] and [27] such bounds may
be derived a posteriori from the fact that the solution is global: see Appendix A, Corollary 3.

Remark 1.7. One can see from the proof of Theorem 2 that the solution u,(t) associated
with wug, converges for all times, in the sense of distributions to the solution associated
with ug. In this sense the Navier-Stokes equations are stable by weak convergence.

The proof of Theorem 2 enables us to infer easily the following results. The first corollary
generalizes the statement of Theorem 2 to the case when uy ¢ G.

Corollary 1. Let (upn)nen be a sequence of divergence free vector fields bounded in the
space B; for some 0 < g < 1, converging towards some uy € B; in the sense of distributions,
with g — (o n)nen anisotropically oscillating and satisfying Assumption 2. Let u be the
solution to the Navier-Stokes equations associated with ug and assume that the life span of u
is T* < 0o. Then for all T < T*, there is a subsequence such that the life span of the solution
associated with ug, 1s at least T'.

The second corollary deals with the case when the sequence belongs to G, with an a priori
boundedness assumption on the solution (which could actually be generalized but we choose
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not to complicate things too much at this stage; see Appendix B for definitions), and infers
that the weak limit also belongs to G.

Corollary 2. Assume (ud),en is a sequence of initial data, such that the associate solu-
21

tion uy, is uniformly bounded in ﬁ(R*‘; Bff) If u® converges in the sense of distributions to
some ug, with ug — (g n)nen anisotropically oscillating and satisfying Assumption 2, then wug
gives rise to a unique, global solution in S31(00).

1.3. Notation. For all points = (1,22, x3) in R and all vector fields v = (v!,v2,v%), we

shall denote by

xp = (x1,29) and o= (v}, 0?)
their horizontal parts. We shall also define horizontal differentiation operators V" := (9y, ds)
and divy, ;= V-, as well as A, := 0% + 02.

We shall also use the shorthand notation for function spaces X (defined on R?) and Y (defined
on R): X3V, := X(R% Y (R)).

Finally we shall denote by C' a constant which does not depend on the various parameters
appearing in this paper, and which may change from line to line. We shall also denote
sometimes x < C'y by = < .

1.4. General scheme of the proof and organization of the paper. The main argu-
ments leading to Theorem 2 are the following: by a profile decomposition argument, the
sequence of initial data is decomposed into the sum of the weak limit ug and a sequence
of “orthogonal” profiles, up to a small remainder term. Under Assumptions 1 and 2 and
using scaling arguments it is proved that each individual profile belongs to G; this step re-
lies crucially on the results of [14] and [15]. The mutual orthogonality of each term in the
decomposition of the initial data implies finally that the sum of the solutions associated to
each profile is itself an approximate solution to (NS), globally in time, which concludes the
proof.

The paper is organized in the following way:

e In Section 2 we provide an “anisotropic profile decomposition” of the sequence of
initial data, based on a general result, Theorem 3 stated and proved in Section 5
page 26. This enables us to replace the sequence of initial data, up to an arbitrarily
small remainder term, by a finite (but large) sum of profiles.

e Section 3 is then devoted to the construction of an approximate solution by propa-
gating globally in time each individual profile of the decomposition. The propagation
is through either the Navier-Stokes flow or transport-diffusion equations.

e In Section 4 we prove that the construction of the previous step does provide an
approximate solution to the Navier-Stokes equations, thus completing the proof of
Theorem 2, while Corollaries 1 and 2 are proved at the end of Section 4. That
section is the most technical part of the proof, as one must check that the nonlinear
interactions of all the functions constructed in the previous step are negligible. It
also relies on results proved in Appendix A, on the global regularity for the Navier-
Stokes equation (and perturbed versions of that equation) for small data and forces
in anisotropic Besov spaces.

e Finally in Appendix B we collect useful results on isotropic and anisotropic spaces
which are used in this text, and we prove Theorem 1.
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2. PROFILE DECOMPOSITION OF THE INITIAL DATA

In this section we consider a sequence of initial data as given in Theorem 2, and write
down an anisotropic profile decomposition for that sequence. We shall constantly be using
the following scaling operators.

Definition 2.1. For any two sequences € = (p)nen and Yy = (Vn)nen of positive real numbers
and any sequence = (Tp)peN in R? we define the scaling operator

1 xh—m,h $3—£C,3
A b(a) = <z>< nh T3~ Tna

€En En Tn

L1421
Remark 2.2. The operator AZ , , is an isometry in the space Bpq " " for any 1 < p < oo
and 0 < ¢ < o0.

Then we define the notion of orthogonal cores/scales as follows (see also Section 5).

Definition 2.3. We say that two triplets of sequences (€4, v%, %) for ¢ € {1,2}, where (¢4, %)
are two sequences of positive real numbers and &t are sequences in R3, are orthogonal if
1 2

c AL 2

either — + 1+ -5+ -1 =00, n—x
€ v
n n n n

11 1.1
or (enmm) = (Enoym)  and ()7 = (27) 7 | =00, n— oo,

0

ﬁ)
) k M
Note that up to extracting a subsequence, any sequence of positive real numbers can be
assumed to converge either to 0, to 0o, or to a constant. In the rest of this paper, up to

rescaling the profiles by a fixed constant, we shall assume that if the limit of any one of the
sequences e¥, 'ye, ne, &% is a constant, then it is one.

‘
TS
S}

where we have denoted (a:e)ek”k = (
€

The main result of this section is the following.

Proposition 2.4. Under the assumptions of Theorem 2, the following holds. Let 2 < p < oo

be given as in Assumption 1. For all integers £ there are two sets of orthogonal sequences
in the sense of Definition 2.3, (ef,~4%, %) and (0, 8%, &%) and for all o € (0,1) there are

arbitrarily smooth divergence free vector fields (¢va,0) and (—th,;183¢g, #%) such that up
to extracting a subsequence, one can write

L L '
- ~ c -
Up,n = Up + ; Ao 5e 5t < W+ 0) + ;: Ale o e <—ivhﬁh183(¢i +74), O + Té)
+ (P = VAT Ok, k), div it =0, |7 + lrblls < o,
with TZJZL and L independent of o and uniformly bounded (in n and L) in B;, and

(2.1) timsup (647 _yzs+ 105 1o2s) =0, L oo,
n—00 B, p'p B,

D=

s

bS][

Moreover the following properties hold:
(2.2) V¢ e N, li_)m (6°9) 71t € {0,000}, li_)m ()7 let =0,
as well as the following stability result:

Tht ¢
(23) S (168 sy + 164l51) < sup ol + ol -
£eN "
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Proof of Proposition 2.4. The proof is divided into two steps. First we decompose the third
component uan according to Theorem 3 in Section 5, and then we decompose the horizontal

component u&n using both the first step and Theorem 3 again (for the divergence free part
of ull ).

Step 1. Decomposition of uan. Let us apply Theorem 3 of Section 5 (see page 26) to

the sequence u%m — u3. With the notation of Theorem 3, we define

gl =9 1)
FE = 9—J2(Ae(n))

Ty = 27 O (Ao (n))

al g = 272 gy (N (n)) .
The orthogonality of the sequences (e¢, 4%, ¥), as given in Definition 2.3, is a consequence of

the orthogonality property stated in Theorem 3 along with Remark 5.1. According to that
theorem we can write

L
(2.4) ug,n —upy = Z AZeﬁe,me(PZ +Ur,
(=1

where due to (5.10) in Theorem 3,

S 6y < sup i — sy < oo
2eN "

2
+2,

S =

.—1
In particular ! is uniformly bounded (in n and L) in B(} C Bpgq , and Theorem 3 gives

limsup [[¢%]  _,,21 —0, L—oo.
n—oo

p,p

2.1
p’p
The result (2.1) then follows by Holder’s inequality for sequences. Note that we have used
here the fact that g < 1.
Using horizontal and vertical frequency truncations, given any « > 0 we may further decom-
pose ¢! into
(2.5) ot = ¢t +rt . with ¢f arbitrarily smooth and HTéHB; <a,
and we have, by this choice of regularization,
¢ ¢ ¢

64 sy + IS sy < 20"l -

This implies (2.3) for ¢

Now let us prove that
VeeN, lim (%)l =o0.
n—o0

n

Assumption 1 along with Lemma 5.2 page 30 imply that the limit of (Wﬁ)flefl belongs

to {0,00}. Moreover by the divergence free condition on ug , we have divy ugn = —agug n
h

and since ug ,, 18 bounded in B; we infer that aguan is bounded in B%’; and 83u8 also belongs
to Bg’;. This in turn, due to Lemma 5.3, implies that
lim (7%)7tef = 0.

n
n—o0
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Step 2. Decomposition of ugn. The divergence free assumption on the initial data
enables us to recover from the previous step a profile decomposition for u&n. Indeed there is

a two-dimensional, divergence free vector field VﬁCo,n such that
ug,n = VﬁC’om — VhAglﬁgugm )
where Vi = (—0;,95). Similarly there is some function ¢ such that
ult = Vikp — Vi, 1osu .

Furthermore as recalled in the previous step 33“8@ is bounded in B%’;. This implies that the
sequence VﬁCom is bounded in B(} and arguing similarly for Vﬁ(p, the profile decomposition
of Section 5 may also be applied to VﬁCo,n(x) — Vﬁgp: we get

L
ViCon = Vi@ =Y Ao o o™ + "
/=1

with limsup |[¢%] .21 — 0 as L — oo and divy ¢"’ = 0 thanks to Lemma 5.4. Fi-
n—o00 B,p, PP

nally 7% /6% — 0 or oo due to the anisotropy assumption as in the previous step. The rest of
the construction is identical to Step 1. The proposition is proved. U

Before evolving in time the decomposition provided in Proposition 2.4 we notice that it may
happen that the cores and scales of concentration (n¢, 6, %) appearing in the decomposition
of VﬁCo,n coincide with (or more generally are non orthogonal to) those appearing in the
decomposition of ug s Damely (Ee, ~¢, a:e). In that case the corresponding profiles should be
evolved together in time. This leads naturally to the next definition.

Definition 2.5. For each ¢ € N, we define k() by the condition (with the notation of
Definition 2.3)

(0 (6)

nZ’ ot

(2.6)  lim <

n—o0

(@O C;;e)e"“M““)) =(\LX2,a), ALXe>0,a€eR?.

We also define for each L € N the set
K(L) = {EGNM:/@(Z), le {1,...,1:}}.

Remark 2.6. Note that for each ¢ there is at most one such «(¢) by orthogonality. Moreover
up to rescaling-translating the profiles we can assume that Ay = Ao =1 and a = 0.

The decomposition of Proposition 2.4 can now be written, for any L € N in the following
way. The interest of the next formulation is that as we shall see, each profile is either small,
or orthogonal to all the others. In the next formula we decide, to simplify notation that
the profile QSZ(E) is equal to zero if (2.6) does not hold. We also have changed slightly the
remainder terms r¢, and %, without altering their smallness properties (and keeping their
notation for simplicity), due to the fact that in Definition 2.5 the ratios converge to a fixed
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limit but are in fact not strictly equal to the limit. So we write

L
wom = ot S Al s e (&gvuvz’;” g’;v Ay O5(6” + i), 80 +rg“>)
(=1
- 77
+ ) Azf,ae,.#( ot 5? Valy, 133(¢3(£)+T3(Z)),¢3(@+Tg(£)>
r(£)=1

w(£)ER(00)\K(L)

@7 o+ Z ( = 163<¢f+r>¢f+r)

eg;c(oo)
¢
€n —1a £ ¢ n Thit | =ht
— g . <_77VhAh 030", 0" | — E Anz,ge@z( o+ 70" 0)
£>L n ¢>L
ek (L) 1<r(£)<L

Th,L ~19 L L
Before moving on to the time evolution of (2.7), we are now in position to state the second
assumption entering in the statement of Theorem 2.

Assumption 2. With the notation of Proposition 2.4, there is Lo such that for every L > Lyg,
the following holds.

e Suppose there are two indexes {1 # lo in {1,..., L} such that the following properties
are satisfied:

nh=n2, 6 w00, 0251 o0roc0 with 61/62 = 00,
(2.8) 0 <t e
~ ~ 2 2 3

and (&1 — g2)m o gfnl ¢ R3 —= = ak e R.
6 2

Then one has ™11 (-,0) == (o™ + 7o) (-,0) = 0.

o Ifuy #Z 0 and if there are £y # {3 € {1,...,L} such that for i € {1,2}, n% =1
with 6% — oo while :Eff’h is bounded and :Ef;,:s/&g — ag € R, then ¢Mbi(., —ELZ) = 0 for
each i € {1,2}.

o A similar result holds for the profiles ¢f = gE’;”ZHZ’“, with the corresponding assumptions
on the scales and cores.

Proposition 2.7. With the notation of Proposition 2.4 assume the following:
o Ifly # Uy in {1,...,L} are two indexes satz’sfymg (2.8), then a weak limit of the

“h,L _ N
sequence 12 (ug , — ufy — ¥n™ + VA, 1831#5)( yh + 2, 02ys + Big) ds OM2(y).

o A similar result holds for %2 (u,, — uf — kL) (elyy, + xffh, ylzys + xff?)), with the
corresponding assumptions on the scales and cores.

Then Assumption 2 holds.

Proof of Proposition 2.7. e We shall start by proving the result for a couple ¢ # ¢ chosen
in {1,..., L} so that 6% is the largest vertical scale among the vertical scales associated with
all couples satisfying (2.8).
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-0
z
We begin by noticing that the limit (after extraction) of 5%’13 is necessarily zero since
n
-0 ~el Lo ~lo y
x - x )f2
29 e I
Or Or ot | On

Without loss of generality we may also assume that for the index ¢; we have chosen, 6% is
the largest vertical scale satisfying (2. 8) By the hypothesis of Proposition 2.7 we know that
the weak limit of 7’ (uo o, — uh — zpﬁ L + VA, 331/%)( 2Yn + mn Ny Sl2ys + icfig) is @Mt (y).
This weak limit may be explicitly computed: noticing that for any integer k,

14 4 ~{ Th.k
2( k §k & 0" )( Yn +xnh75n2y3+xn2,3) :An,,k 5k ~“2<75 (y),
o R
~khly o~k ~ls 7]52 5t .. . .
with &% := (27 — Z;2)™ %" _we find that the weak limit of such a term is zero except in
three situations : if k = fo, if K = £4, or if
(2.10) =, /s 500, (F8 - FE)ymOn o o e R3,

If k = {5, then the function is simply equal to ¢"*2(y), and if k = ¢; then by (2.8) the weak
limit is equal to ¢ (y, + azl’g2 ,0). Finally if (2.10) were to hold then in particular £ would
satisfy the same properties as f5 in the statement of the proposition, while 52 / 5ff — 00, and
that is impossible by choice of ¢5 as corresponding to the largest vertical scale satisfying (2.8).
So finally the weak limit of n: (uon —uh — o L + V3A, 831/Jn)( Yn + xn h,éff Y3 + ffig)
is gtz (y) + ¢£1 (yn + afll’b, 0), hence necessarily by the assumptions of Proposition 2.7, we
have that (ﬁh’zl (yn + afll’&,O) = 0 so the result is proved in the case of the largest possible
vertical scale.

Now we can argue by induction for the other possible £!’s: suppose that ¢! corresponds to the
second largest for instance, then calling 6flo the largest one, the same argument implies that

the weak limit of the sequence 7’2 (ug W — U — ek 4 th—lagzpﬁ)( 2yn + xn 1y 0L2ys + JEZQ’?,)

is the function ¢ (y) + ¢ (yn +a, ", 0) + 0 (y, +a;72,0) = 32 (y) + " (y, + @}, 0)
hence ¢/ (y, + azl’&, 0) = 0 and by induction, the result is proved.

e The proof of the second point is very similar: we first consider ¢ corresponding to the
largest vertical scale among the indexes satsfying 7, = 1, 6%/ — oo, &t nh ah bounded

and ifl 3 /68 — dg € R. If there is no other index satisfying those requirements then we notice

that the weak limit of uf},, — uf; — ot vy, A1 Oabk is ¢ (yp — @l , —ah), while we also know
that it is zero, so the result follows. If there is a second index satisfying those requirements,
then we consider %2 the next largest vertical scale (by orthogonality it cannot be equal
to 6%1) and we use the assunlption of Proposition 2. 7 which implies that the weak limit of

the sequence (uf},, — ull — i" + VA 030k (yn + 32, 0L2ys + #23) is the function ¢/ (y)

n, h’ n

while a direct computation gives the limit ¢/ “(y) + ¢h Uy, — ah + ah ,—EL3) and again we
get the result.

The rest of the argument is as above, by induction on the size of the vertical scales.

e The proof is identical for the profiles ¢f.

Proposition 2.7 is proved. U
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Remark 2.8. Assuming the hypotheses of Proposition 2.7 is actually quite natural. Indeed
for any choice of sequences of cores (xf; n)neN and of scales (7 )nen, one has that the se-

quence nfl(u’&n —ul — ok 4 ViAo E) (nbyn + xfhh, 64ys + xn3) converges in S', and
it is assumed here that the weak limit is precisely the profile ¢"¢. Note that for a profile
decomposition in the space B;jgl that is obvious as soon as s < 2/p and s’ < 1/p. Here we
have s’ = 1/p so this is a true assumption (in the same way as the sequence f(xp,cx3) does
not necessarily converge weakly to zero with ).

For example the sequence provided in Remark 1.2 satisfies Assumption 2 since there is only
one profile involved.

More generally consider the sequence (assuming that 0 # « # ~, and (1, B2 # «, 81 # 7)
207 <f1 (2an.%'1, 20471.%,2’ 251”1.3 — ag) + f2 (204711_1’ QOmI'Q, 2B2n$3)) + Q,Ynfg (Q,Yn.%'l, 27”m2, 251”1.3) .

It clearly satisfies Assumption 1. If S5 = 81 then Assumption 2 is also satisfied. If 51 < 83 < 0
then one must have fi(-, —ag) = 0 to ensure Assumption 2: if there are two profiles with
the same horizontal scale (here 27%") and different vertical scales going both to infinity
(since B2 # (31 and both are negative), then the profile with the largest vertical scale
(here fi (20‘"x1, 20M g0 21N — ag) since (81 < (32), must vanish at x3 = 0.

Remark 2.9. If it is assumed that the initial data is bounded also in L?(R?), then the same
arguments as those leading to Lemma 5.3 allow to infer that the vertical scales 7% and 5% must
all go to zero. In particular Assumption 2 is unnecessary in that case since the hypotheses
are never met.

Remark 2.10. Assumption 2 is used in the following to show that profiles do not interact
one with another (see Paragraph 4.3).

3. TIME EVOLUTION OF EACH PROFILE, CONSTRUCTION OF AN APPROXIMATE SOLUTION

In this section we shall construct an approximate solution to the Navier-Stokes equations
by evolving in time each individual profile provided in Proposition 2.4 — or rather the version
written in (2.7) — either by the Navier-Stokes flow or by a linear transport-diffusion equation,
depending on the profiles. First we shall be needing a time-dependent version of the scaling
operator Ag . given in Definition 2.1.

Definition 3.1. For any two sequences € = (ep)nen and y = (Vn)nen of positive real numbers
and any sequence = (Tp)neN in R? we define the scaling operator

~ 1
Ag,w,w¢(tax) = €_¢ (

)

i Lh — Tnh T3 — xn,3>
s .
&2’ en Tn

Next let us introduce some notation for function spaces naturally associated with the resolu-
tion of the Navier-Stokes equations. We refer to Appendix B for definitions.

Definition 3.2. We define the following function spaces, for 1 < p < oo and 0 < g < oo

o~ 14342
Ipgq = ﬂ LT(R+§Bp,q : T(Rs)) )
r=1
o
— 1+242 1
Apq = ﬂ L'(R™Bpq " "7),
r=1
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Remark 3.3. The spaces defined above are natural spaces for the resolution of the Navier-
.—143
Stokes equations: for instance Z,, o, is associated with small data in B o ¥ (R?) (see [12],[52],
21

u _1+_7_ . .
as well as [3]) and S, 1 with small datain B,; *? (see Appendix A). Note that A, ; contains
strictly S,  and A,, 4 is embedded in A, , as soon as p; < po, and similarly for S, ;, and S, 4.

Remark 3.4. The operator A" is an isometry in A, , for all 1 <p < oo and 0 < ¢ < 0.

67’77%
That is however not the case for the space S, 4.

Now let us consider the decomposition (2.7), and evolve each term in time so as to construct
by superposition an approximate solution to the Navier-Stokes equations with data ug,. We
leave to Section 4 the proof that the superposition is indeed an approximate solution to (NS).

e The first term of the decomposition (2.7) is the weak limit uy € B(}, which gives rise to a
unique, global solution by assumption: we define u € S; 1(00) the associate global solution.
Due to Corollary 3 stated page 35, we know that actually u belongs to Sy 1.

e Let us turn to the profiles in the decomposition (2.7), namely first the terms

_ ¢
B = Al 5o 50 ( ht _ Z_;(thglag(ﬁg(z)), ¢§(z>>

for any ¢ € N. We use the notation of Appendix A, and in particular that of Theorem 4.

Lemma 3.5. Let { € N. There is Loy, independent of n and «, such that the following
properties hold.

o If{> Ly and k(£) > Ly, then for all a € (0,1) and n large enough, 4,56771 belongs to G and
the associate solution @', to (NS) satisfies

3'3 N
3,1 3,

(3.1) V> Lo st 6(0) > Lo, |l ls,, < 2(H<5§’ZHBJ 3+ H(bZ(Z)HB 11) < 200.
1

o For every £ € N, if 0 /6¢ converges to oo when n goes to infinity, then for all o € (0,1)

and for n large enough 4,56771 belongs to G: the associate solution it to (NS) is bounded in S31

1 1 2
and satisfies for all 1 <r < oo and all 3 <o< §+ -
-

— L_lig2 o1
(3.2) b =0 in DI(RYBF77TH) 0 oo,

o For every £ € N, if n’ /6 converges to 0 when n goes to infinity, then for all o € (0,1) and
for n large enough cﬁém belongs to G: the associate solution @’ to (NS) is uniformly bounded
in the space Si1 and satisfies for all o € (0,1)

~ ~ Z ~ ~
( iy, = AZe 5.3t (Uh’g + Z—?U,’f(z)’h, Uﬁ(g)’3> + R, R bounded in Ss,
3.3) o v

win
ol

~ —~ L2 1 .5 1 .
with  Rj, =0 in L2RT;B§P) N LY (R BJ® NBJ®), n— oo,

w

)

_ 4
while Uh’z, Urlf(g)’?’ and Z—?Ur’f(@’h are smooth and bounded in S 1.

Finally if &h’g(-, z3) = ¢ (-, 23) = 0 for some z3 € R, then for all s > 0,

(3.4) bim sup ™ 20) + UROPCo28) | oo et sz et gy S @
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Proof of Lemma 3.5. e By the stability property (2.3), for all g > 0 there is f/(ﬁ) such that
if ¢ > L(B) and (¢) > L(B), then

165 13 + 166 153 < 8-

Wl

- .1
Then if 3 is small enough, in particular ¢/¢ is smaller than, say co /2 in By #'* (by Sobolev

embeddings).
‘
Now let & > 0 be given and let us consider the initial data (—Z—?VhAglﬁggbg(@, QSZ(E)). Notice
n
that the only possible limit for the ratio of scales associated with ¢Z“) is zero by Proposi-
tion 2.4, so we can restrict our attention here to the case when 7!, /6 — 0. By construc-
tion of gbg(z) in (2.5), the vector field VhAglﬁgqbg(z) belongs to B; for each given «, hence

since 1%, /6 converges to 0 when n goes to infinity, then for n large enough and for x(¢) > L(f)

<928.

4
I — K K

| = 5y 2505, 62|

Finally choosing 3 < ¢o/4, for £ > L(B), k(¢) > L(3) and n large enough (depending on ¢

and «) Theorem 4 applies (using also Remark 2.2) to yield that gbg’n belongs to G and (3.1)

holds.

B;

o If n’ /6% converges to oo, then we observe that ¢’;“) = 0 (since as recalled above the only

possible limit for the ratio of scales associated with qﬁg(a

computation
1
P!
n",0%E “ Bg,l ~ Ufz

In particular for n large enough the data is small in B??,1 so small data theory of [38] and [52]
(see also [3]) gives the result: there is a global solution to (NS) associated with that initial

data, which goes to zero (like (5fl/nfl)%) in E)—‘S(Rﬂ Bgl) N ivl(RJr; B?%,l)- By Proposition B.3

is zero) and we have by a direct

+0,%—a+§)

— L1
and interpolation, it therefore goes to zero in L"(R™; B} forall 1 <7 < oo and

11 2
all o € [§ '3 + ;], as expected.

—~ .21
In particular @ is bounded in L2(R™; BJ}?®) which controls the Navier-Stokes equation for
.11
data in By ' (see Theorem 4), so we get in particular that ﬂfl is bounded in Sz 5.

e Conversely let us suppose that 7’ /6% converges to 0. Then by (isotropic) scale and trans-
lation invariance of (NS) we can first rescale by 1’ and translate by 2%, hence consider the

initial data

" _ 4
oala) = A2 o (3= B (90 00060), 05 ) 0

7’r]_e7 6£l
he T 1 14 14 Iy
= (3 - B 000t0), 60 ) (an, D).
n n
Since 7t /65 — 0 as n goes to infinity, we can rely on Theorem 3 in [14] which states that

as soon as 15, /d% is small enough (depending on norms of the profiles QEZ’Z, Z“)), then 56771

belongs to G and according to [14] the solution to (NS) associated with g%m is of the form

rrh,l % k(€),h T7K(£),3 % ~0
(U + U 7Un )(t7xh7 5e .%'3) +7an(t7x)

/A n
o,
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where for each z3 € R, UM(-, 23) is the global solution to the two-dimensional Navier-
Stokes equations with data gzgg’é(-,z?,), while US(Z) is a divergence-free vector field solving
the linear transport-diffusion equation (7)) of [14] with v = UM and ¢ = nt/o, with
data ( — thglag(ﬁg(g), gbg(@): we have, for some pressure p,;(g)
. AN £\ 2
QUL + TP PUEO — AURO — (Z-g) UL = — (vh, (Z—g> 33> P,

Both U"¢ and Uy &) are as smooth as needed.

In particular relying on [14] Proposition 3.2, and [32] (where estimates in the — more difficult —

_ 14
inhomogeneous situation are obtained), we have that U, Uy 03 and Z—?U,’f(z)’h are bounded
n
in Sy 1. It is not difficult to prove also (for instance using the estimates of Appendix A) that
they are bounded in Sy ;.
Furthermore 7% goes to zero in Zp; by [14] (actually the result of [14] only states the con-

vergence to zero in L>°(R™; H%) N L2(R*; H%) but it is clear from the proof that it can be
extended all the way to Zy1). It then suffices to unscale to the original data to find the

form (3.3), with ]?EZ going to zero in Zp;. We infer 1n particular by Proposmon B.3 and
Sobolev embeddings that RE goes to zero in L2 (R*; B3 53 P)NLYRT; B§’ ’13 ﬂB§ 13) as required.
Finally let us prove that Rfl is bounded in &31. We notlce that due to the above bounds, the

= .21
function u!, solves (NS) and is bounded in L2(R™; B3}?) since that holds for the right-hand
side of (3.3) by dlrect inspection. By Theorem 4 this implies that u is bounded in partic-

ular in LOO(}RjL B313 3), which proves the result for Rf again inspecting the formula (3.3)
giving u, — Rﬁ and recalling that 1’ /6% — 0 as n goes to infinity.

To conclude suppose that &h’é(-,z;g) = qﬁ“(g)(-,zg) = 0 for some z3 € R. Then by con-
struction of ¢%, in (2.5) and that of U™’ recalled above, the result follows for UM(t, -, z3).
For U5 (t,-, 2z3) we get the result from Proposition 3.2 of [15].

Lemma 3.5 is proved. O

E
e Now let us consider A%, _, . < ;}(VhA 183%)(:6),@55;(3;)), when ¢ ¢ K(00).

@

Lemma 3.6. Assume { ¢ K(c0). Then there is Ly, independent of n such that the following
¢

result holds. For any ¢ and for n large enough, A" _, <—i—;}(thh183¢£)(x),¢f;(x)>

et ~Ex
belongs to G and the associate solution un to (NS) enjoys the following properties.

e For every ¢ > Lo, o € (0,1) and n € N large enough,
4 14
(3.5) unllss, < 2ldall . -

11 < 2¢.
By i

o For every f € N, a € (0,1) and n large enough, the sequence u’,
51 2 4

11 510 .24
the space L>®(R™; B, )N LY(RT; B N BJY) and satisfies

is uniformly bounded in

n €e7’)’e7~’ﬂ

_ ¢
ut = A" P <€—7;U£’h, U£’3> + R, where
(3.6) Tn

win
ol

—~ .21 .5 1 .
R =0 in L2RYBP)NL'RY B3P NBSPE), n— oo,

w

)
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and all the properties stated in Lemma 3.5 hold.

Proof of Lemma 3.6. The proof follows the lines of the proof of Lemma 3.5, and is in fact
easier. One first uses the stability property (2.3) to obtain the existence of Ly such that for
all ¢ > Ly, for each o € (0,1) and for n large enough,

1(VhA, s, 60l ok S

and Theorem 4 applies. Then we notice again that by rescaling and translation it is enough

¢

to consider the vector field AZ Wy <—€—Z(VhA,:133¢f;)(x), qﬁﬁ(m)), and again [14] gives the
7577 711

result (recalling that 6fl /vf; goes to zero by Proposition 2.4). Compared with the proof of

Lemma 3.5, in this case the profile Uf; is simply a solution to the heat equation in R? with

viscosity (£¢,/7%)? in the third direction (see [14] system (T,), with v = 0 and € = el /4E).

The lemma, is proved. O

In the following we define, with the notation of Lemmas 3.5 and 3.6,

L
uk .= Z it + Z Z n, and
1<¢<L 1<K(0)<L (=1
(37) >L
= Y R, + > R, +ZR
1<¢<L 1<fz(>£z<L

and we recall that

(3.8) VL, lim |RE|_
n—o00 L2(R

B3 P )NLY(RY;B P NBy 7))

e Finally we propagate all the remaining terms in (2.7) by the heat equation: we define
(3.9) VE = pl+ 0k
with

B ¢
\Ilrl;(t) — etA(( Z,L — th]:1331/}7€17w7€) — Z A:g ‘_ye wz( — i_?th;Llag(b{ (bf)

>L
Z Ae 5t ¢ G 0)>

ek (L)
(>L

1<k(0)<L

and

L
A < Z AZKﬁiﬁze (fgj nn V A 163TZ(Z)7 TZ(Z))

-2
L ng

D Mg = VA 05l ), )
r(£)=1 n

r(£) e (c0)\K(L)

+ Z Aee,yeme th 1837"(1, a Z Aziji,@e(fgjao))

— £>L
ng(oo) 1<k(£)<L
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We notice that by (2.5)

VLeN, limsup |pylls;, < C(L)a,
n—oo

3.10
(3.10) and limsup (||\I’£’h||83 45, T [ WUE3||s,,) =0, L — oo uniformly ine,

~ 2,52 5 2

where 831 = ﬂ ﬂ L (RT; B3 """ 3). The presence of that space is due to terms of
r=1 o=0

the type VhAglﬁggbé and those bounds are due to (2.1) as well as the stability property (2.3)

and the fact that % /v% — 0. In particular
(3.11) lim sup (|| T%
n—o0

1 %))—>O, L — oo uniformly in «.

.51 2 2
LY R B 3 0BI )N (RY B3,

4. GLOBAL REGULARITY FOR THE PROFILES SUPERPOSITION
Now we need to superpose each of the solutions constructed in the previous section, and
check that the superposition is indeed a good approximate solution. This will prove Theo-

rem 2, and at the end of this section we shall show how the methods developed here give
easily Corollaries 1 and 2.

4.1. Statement of the superposition result and main steps of its proof. The main
result is the following, where we use the notation of the previous section.

Proposition 4.1. For n and L large enough, a small enough and up to an extraction, we
have
(4.1) Uy = u+UF+VE ol

where wk belongs to S 1 with iii%(lim_)sup wElss,) = 0 as L — oo.
n—0o0

Remark 4.2. The choice of the function space S3 1 in the statement of Proposition 4.1 is for
convenience, we have not tried to optimize on the integrability index here and other spaces
would certainly do as well.

Remark 4.3. This proposition proves Theorem 2. Indeed the sequence (u,) belongs in

particular to the space L2(RJr B§’ 13) since the results of the previous section show that this
is the case for all the terms in the right-hand side of (4.1). But we know from Theorem 4
that this norm controls the equation so the result follows.

Proof of Proposition 4.1. Let u,, be the solution of (NS) associated with the data ug ,, which
a priori has a finite life span 77}, and define
wh=wu, -Gt with GL:=u+FF and FL=ul+vl.
The vector field wl satisfies
owt + P(wk - Vwkl + GE . vwkl + wlk - VGE) — Awl = —PzL | divwl =0

with initial data w’ = 0, and where, recalling the definitions of UL and VI in (3.7)

n|t=0
and (3.9) respectively,

Zu Vu + Zu 11<£<L + 11<H(Z)<L) Vik (11<k<L + 11<N k)<L)

ot s
+ Z n(Lici<r + 11<n(£)<L) . VUﬁ + u - Vak w(Li<k<r + licem<z ))
L>L
ok

+u-VEE+ FEovu+ul - vyl + vl vul + vl . vyl
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The proposition follows from the two following lemmas.

.21 .51 .24
Lemma 4.4. Define Y := L*(R*; B ®) N LY(R™; B * N B3 3). With the notation of Lem-
mas 3.5 and 3.6, there is a constant K (depending on Ly, Lo and bounds on ug, (up) and u)

such that one can decompose GE = Gt 4 g,??, with the following properties: for each L € N
and each o € (0,1) there is N(L,«a) such that

G2 Iy < K for n> N(L,a),
while for all L € N there is ag > 0 such that
VOo<a<ay, G2y <K  uniformlyin n.

Lemma 4.5. Define

11 — L1 2 .2 2
K= LR B3 ) + LARY By 8) N LM R By 0.

We can write Zﬁ = Z,f’l + Z#’Q + Zﬁ’g with

(4.2) limsup || 22| x = 0 uniformly in n, o,
L—oo
(4.3) VL, limsup || Z52|x = 0 uniformly inn,
a—0
(4.4) and VL Yo, limsup|Z3||x=0.
n—oo

Assume indeed for the time being that those two lemmas are true. Then we start by choos-
ing L large enough so that uniformly in & and N one has

(4.5) 1251 < % exp (— 2Kc§1) uniformly in n,

with the notation of Theorem 5 stated and proved in Appendix A, and Lemma 4.5. Then
now that L is fixed we choose a € (0, ap) small enough so that

(4.6) 12524 < % exp (— 2Kco_1) uniformly in n

and
1GE2|ly < K uniformly in n,

with the notation of Lemma 4.4. Finally now that L and « are fixed we take Ny > N (L, a)
so that for all n > Ny,

(&)) —
(47) 125500 < T3 exp (— 2K65)

and
L
G2 Iy < K.
It then suffices to apply Theorem 5 in Appendix A with U = G%, F = ZL and data ug = 0,
noticing that X = A3 1 and YV C J3,1. The result follows immediately: we get that wﬁ belongs
to S3 1, and the fact that lir%(lim sup |[wZ|ls,,) — 0 as L — oo is due to the fact that one can
a—=0" nsoo ’

choose the bounds in (4.5)-(4.7) as small as one want, provided L and n are large enough,
and « is small enough. O

The two coming paragraphs are devoted to the proofs of Lemmas 4.4 and 4.5, thus achieving
the proof of Theorem 2. The final paragraph of this section contains the proofs of Corollaries 1
and 2.
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4.2. Study of the drift term GL.

Proof of Lemma 4.4. Recall that GL = u+ FF = u+UL + VI with the notation of Section 3,
so since we know that u belongs to Sa1, which embeds continuously in ), and u depends
neither on L, on « nor on n, we need to study F¥. According to Lemmas 3.5 and 3.6 and
recalling the notation (3.7), we can split FF = UEF + VI into FE .= F-' 4+ FE? + VL with

L L
L1 ~ ~ L2 ~
(4.8) E,m = g it + g it + Z uf, and FL? .= Z il .
1<¢<L 1<k(£)<L /=1 =1
né /8¢ —0 e>L /8%~ 00
nh/5H—0

The result (3.2) deals with FE? since according to (3.2), @i}, goes to zero in ) for each £ as n
goes to infinity. So that term is incorporated in the term ght,

Now let us consider F,-"'. We can decompose the sum again into several pieces, writing with
the notation of Lemmas 3.5 and 3.6, for all L > max(Ly, EO),

L Lo L
E uf; = E ufl + E uf;,
=1 =1

{=Lo+1
~0 ~/ ~/ ~/
Do = D Wt D Gt Do
1<4<L 1<e<Lg Lo<¢<L Lo<¢<L
nh /85 —0 nt /54 —0 1<k(0)<Lg Lo<r(0)
n%/&%—m n%/&%—m
~0 ~{ ~/
and g Uy, = g Uy, + g Uy, -
1<k(£)<L 1<k(0)<Lg Lo<r()<L
£Z>ZL >L >L
M /6p—0 nﬁ/éflﬁo nﬁ/%ﬁo

In all three right-hand-sides, the easiest term to deal with is the last one: indeed we can write

L L
| Xow X oas X al s X byt X lakly.

{=Lo+1 Lo<t<L Lo<w(0)<L {=Lo+1 Lo<t
Lo<r() ' Z>zL Lo<k(0)
nky /84 —0 /=0

Then by (3.1) and (3.5) we infer that as soon as n is large enough (depending on the choice
of L and «)

L
| Yo+ 3w X a] < Yl

{=Lo+1 Lo<t<L Lo<wr(O)<L Lo<?t 3,

Tht
33 + > ek HB}%’

ol

ks 3,
Z Lo<t

Lo<k(e) P 2>4L

/85,0 7/ On =0

Wl

L1
and the conclusion comes from the embedding of B; into By ¢’
property (2.3): for n > N(L, «)

H iuﬁ+ >ooah+ >

along with the stability

(4 Th,t
= > ligallsy + D 166t llsy < €

{=Lo+1 Lg<¢<L Lo<r(0)<L Lo<t Lo<t
Lo<r(L) />L/L
nb /550 /9 =0
L
V4 ~¢ ~0 - L1
So g u, + E U, + E u,, is of the type G,
{=Lo+1 Lo<¢<L Lo<r(®)<L
Lo<r(0) £>L

/50 i/~



20 H. BAHOURI AND I. GALLAGHER

Lo
Now let us estimate Zufl and Z ﬁfL . There is of course no uniformity problem
/=1 1<e<Ly

n§ /650
in L and we simply use the uniform bound in Y provided in Lemmas 3.5 and 3.6. The

terms Z it and Z iit, are dealt with similarly and all those three terms are also

n

Lo+1<e<L 1<k(£)<Lg
1<k(£)<Lg e>L
/64 —0 /850
of the type Go''. Choosing G52 = VL and using (3.10) and (3.11) concludes the proof of
Lemma 4.4. g

Remark 4.6. This argument shows that ¢/ is uniformly bounded in the space S31.

Remark 4.7. It is important to have chosen the initial data bounded in a space of the
type B;jgl with p = 1 > ¢ (hence in particular with p = 1 = ¢ by embedding), as it enables us
to prove easily the uniform bound on FnL 1. As seen for instance in [28], it is indeed possible
to prove such a bound when p = ¢ and it is not clear how to prove it in the general case,
when p # ¢q. Then it is very natural to pick ¢ < 1 as explained in the introduction in order to
have a good Cauchy theory for the Navier-Stokes equations in anisotropic spaces, and finally
the choice ¢ < 1 implies by interpolation that the remainders are small precisely in a space
where the Cauchy theory for (NS) is satisfactory (namely ¢ = 1).

4.3. Study of the forcing term.
Proof of Lemma 4.5. We recall that

Zy = uy Vg + Y (hisesr + Lisesr) - Vi (Licksr + Lissog<r)

7k £k
+ ) (5 (<< + 113;(39) - Vul 4+ up, - Vi (Li<p<r, + 1 1n(<t )
7k

+u-VEE+ FE ovu+ul - vyl + v vul + vl . vyl

We define
HP = Z uf - Vub + Z i (Li<e<r + Licw<r) - Vi (Li<p<r + Li<amm<t)
f;ﬁk‘ K;ék; ¢>L ¢>L
+ Z (a4 (Li<e<r, + 11§;§ZFL) SVl 4l - Vak (Lige<p + 1 1<e(t)<L )
£k

HE? = yr  wVE 4 VE vyl vl WYL and HES = u-VEE 4 FE .V,

Let start by discussing HE' We shall actually only deal with

dooah-vay= Y div(a,®d),

1<b£K<L 1<£k<L
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as all the other terms in H2"' can be dealt with similarly. Referring to Lemma 3.5, we know
that this term can in turn be split into two parts, defining

HEY = Y div(@dedrdted)+ Y div (Rﬁ ® ik +if ® Rﬁ) ,
1<0#k<L 1<6£k<L
nh /85, —00 0k /85+nk /6K —0
L12 ._ s (Xn Thit 4 77n k(0),h 77R(£),3
Hn = Z le <Ang75g7.ig (U 5[ U Un )
1<e£<L
0k /85 +nd, /63,—0

A 77” K K(J),
Ky 5o 3 (0" + U Dh,Uz3)).

n

The first term HZM' is dealt with using product laws in anisotropic Besov spaces (see Ap-
pendix B). On the one hand we have for any j € {1,2}, by (B.4),

195 5 gty S 155
(4.9)
S e 102
2(RY;B; L2(R+;B313)
and on the other hand estimate (B.5) gives
Has(fg)HLQ( rpEh S S lIfall e
(4.10)
S 1) 10
(R B;, L2(RT;B313)
and by (B.4) again
<
15N e ) S 10 st
(4.11)
S Il g1l

21 21 .
L2(R+ 33 3 1.2 ]R+ 333 3)

So using (3.2) along with the uniform bounds provided by Lemma 3.5 gives

(4.12) L, nh_)ngoH Z div (a, ®u)‘ =0.
1<t#£k<L
nn/%—wo

The terms RZ ® @F are dealt with in the same way using Lemma 3.5: we find that H,” b

satisfies the bound (4.2).

The same product laws (using the structure of the nonlinear term) enable us to deal with HE?
recalling that

Hy? = Uy -NVy + Vi - VUy + Vi - VVy
using (3.10)-(3.11) to estimate VY, and Remark 4.6 for #L. To control VL . VVE for 1n—
stance, we notice that the horizontal component does not belong a priori to LOO(}R+ B3 13’3)

(see (3.10)) but that is not a problem as in (4.10), due to the structure of the nonlin-

ear term, one of the two functions is necessarily a third component, which does belong
—_ .11

to L>°(R™"; By 7*). We argue similarly for all the other terms.

Next let us consider the term HZ*M?

define a typical term

and prove it satisfies the bounds (4.3)-(4.4). Let us

Uit .= A" 550" ®A” g0,
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and first show that

(4.13) div U* is bounded in L'(R™; Bll,’ll)ﬂf‘;(]R"'; B;ll’l)—i—Ll(R‘F; Bi’?)ﬂfg(]l@'; B?:?) .
This follows from the fact that U"¢ belongs to L*(R*; Bfll) NL=(R*: Bllll) (see Lemma 3.5
for that result): we know indeed that Bfll is an algebra and that the product of two functions
in 311:11 belongs to B?:ll (see Appendix B). Since LQ(]RJF;Bi’ll) N f‘;‘S(RjL,Bll,’ll) is invariant
through the action of Kze st z¢ (see Remark 3.4) the result (4.13) follows.

Now let us prove that UJ* goes to zero in LY(RT; Bi’ll)ﬂf;’g(R‘F; B?:ll), as in (4.3)-(4.4): div Uit
will then go to zero in L'(R™; 311:11) N foz(]l@'; B;ll’l) + LY(RT; Bi’?) N EOE(R‘F; B?:?) which
is contained in X.

Let us start by the L'(RT; B%ll) norm. By the equivalent formulation in terms of the heat

flow (B.3), we know that T72T/_%Kh(T)Kv(T/)U%g(t,.%') is uniformly bounded in L' in all
variables. To prove the result, by Lebesgue’s dominated convergence theorem we shall there-

fore prove the pointwise convergence of TR (T Ko (7 USE (¢, ) to zero for almost ev-
ery (1,7',t,x), as n goes to infinity.

We shall use the well-known bounds
_1
K (1) Ky (7)) f (8 2) | ge, < 771772 f(t,2) || oy and
[ KR () Ko (7)) f () |ge, < |1 (8 2) [ Lge,

as well as their interpolates, in the horizontal and vertical space variables: for instance
denoting L} L7 := LP(R% L"(R)) we have also

1 () () f ()| e, < 771 (8 @) e g e -

(4.14)

We first notice that

U7 I e s < sziﬁﬂiiﬁthLngLg

< C8

AN Th,g
Anﬂ' ,00 &I U HLgOLiLgo

so the a.e. pointwise convergence of7'_27"_%Kh(T)KU(T’)U,{"é(t, x) to zero follows, using (4.14),
if (by symmetry in £ and ) either 62 or 67, go to zero. So from now on we assume that &
and 47, go to infinity or 1. Next we write

5,6 An Frh,L An frhy
HUn HL?"L}LL;X’ < HAnl,ge@lU HL?"L}LLgO HAna ,5J,§;JU HL§°L,‘§°L3°
4
<cl
I
so again from now on we may assume that n, = 15, if not the result is proved (if one or the
other ratio goes to zero). But in that case

1
(m7)?
hence from now on we restrict our attention to the case when 7% = 77% — 0 or 1. We notice
that by the change of variables

¢
U oL < C

~0 ~0
Th — h r3 — T 3 _ _ _
Y= s e, o= () T, o= ()R s = () T
n, ;
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we have after an easy computation

_9 4_3
/7_ 27_/ 5

where

K (1)K (T UM (t, ) ‘deT/dxdt :/0_20'_%

Kin(0)K, (UM (s,y) ‘dada'dsdy
5551,3 - 55{1,3
& > ’

so if 0¢ = &) then the orthogonality assumption on the cores of concentration implies the

(091 o T (s g) & 55,95 4 T T
U (s,y) = UM (s,y) @ U™ (s, Yh+ ————, Fys+

T o,
result, so we may assume for instance that 5£ / 5% goes to infinity, and since neither goes to zero,
that in particular 5fl goes to infinity. The same argument lets us assume that (g%fl n jg; 7 h) /77%
is bounded.

Next we notice that the change of variables

=0 =0
Th =Ty T3 — Tp3 _ S _
Yh =, ys = o= () i ol = (00) R s = () R,
M, on
gives
/727/3 Ky (1)K, (7U(t, w)(dfdf’dwdt = / 020" 3| Ky (0) K, (o)) Vs, y)\doda’dsdy
where
~ . ~ 5 ~ jgh_jjh #3_33]'3
Vit (s, y) == U™ (s, yn, ST ® ot <5’yh s )
n n 5n

So if (&, 3 — 55313) /8% is not bounded, then for each fixed ys3 the limit of Vi7" (s, ) is zero hence
we may from now on assume that (jfhfi - fig))/&% is bounded, and similarly for jf‘%?)/éﬁ;
and jf;?) / & by translation invariance. Notice that repeating the argument (2.9) we get
that if%g / 5fl must go to zero. According to Assumption 2, we may therefore now assume that
~h,¢ —
2 (" 0) =0,
which implies by Lemma 3.5, (3.4), that

- & &,
(4.15) ‘Uh’g(tyh, 672/3)‘ < (57!y3\ + Oé>f(t,yh)
where f(t,y,) is a smooth function in L>°(R™; L? N L>(R?)). We obtain finally that
~ 5
174G )lliery S |o+ 57

n
The result in L'(R*; B1) follows.

The same argument gives actually also the result in E)—‘S(R‘F; B? ’11 ) since all convergences to
zero above are uniform in ¢.

All other terms of H*'? are dealt with in a similar fashion hence H;" satisfies the bounds (4.3)
and (4.4).

Recalling that HE? was already dealt with, let us finally consider HE? with
HE3 .= w-VFEF + FL . vu.
Using the decomposition (4.8) of F¥ and the same arguments as above give

VL, limsup (u- VELL L LY. Vu) =0 in LY(RY; 311:11 + Bi’?) N f‘;‘S(R‘F; Bill’l + B?:?)

n—oo
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where
N L L
Fbl.— Z il + Zufl and FL? .= Z .
1<0<L /=1 =1
7]%/6%—»0 nfl/é%ﬁoo
while the terms Fi'' — Fi'! and Fi? are dealt with using the product laws (4.9)-(4.11). We
leave the details to the reader. Lemma 4.5 is proved. ]

4.4. Proof of Corollaries 1 and 2.

4.4.1. Proof of Corollary 1. If the solution u associated with ug only has a finite life span T,
then we can retrace the following steps, replacing everywhere R™ by [0, T for T < T* and it
is obvious that the result of Corollary 1 holds as soon as n is large enough (depending on T').

4.4.2. Proof of Corollary 2. The proof of that corollary is very close to the proof of a similar
result in the isotropic context (see [25], Theorem 2(ii)). Under the assumptions of Corollary 2,
we can apply the previous results (in particular Corollary 1) to write that as long as the
solution u associated with wug exists, it may be decomposed into

w=1u, — U —VE —wl

n o

—~ 2
and we know that for all ' < T*, denoting by Lo(T) := L?([0,T]; B}

ol

)7

. . L
(4.16) Olélg%] (hzn_)sotép Jwy lzy(ry) =0, L —o00.

Moreover we also have, for n large enough, a small enough and all L (due to the assumption
on u, and to Lemma 4.4),
lu+wll 2oy < C
uniformly in L, @ and n. Next recalling that if a solution blows up at time 7, then its norm
in Lo(T) blows up when T goes to T™ (see Appendix A), we can therefore choose T' < T*
such that
lull g,y = 2C'.

We conclude by noticing that

lull oy < C + llwyll gy

so choosing n and L large enough and a small enough gives a contradiction due to (4.16),
whence the result.

5. PROFILE DECOMPOSITIONS IN B;

5.1. Introduction and statement of the theorem. After the pioneering works of P. -L.
Lions [48] and [49], the lack of compactness in critical Sobolev embeddings was investigated
for different types of examples through several angles. For instance, in [30] the lack of
compactness in the critical Sobolev embedding H*(RY) < LP(R?) in the case where d > 3
with 0 < s < d/2 and p = 2d/(d — 2s) is described in terms of microlocal defect measures and
in [31], it is characterized by means of profiles. More generally for Sobolev spaces in the L4
framework, this question is treated in [36] (see also the more recent work [41]) by the use of
nonlinear wavelet approximation theory. In [6], the authors look into the lack of compactness
of the critical embedding H},;(R?*) < L, where £ denotes the Orlicz space associated to
the function ¢(s) = ¢° — 1. Other studies were conducted in various works (see among
others [7, 11, 23, 54, 55, 56]) supplying us with a large amount of information on solutions
of nonlinear partial differential equations, both in the elliptic or the evolution framework;
among other applications, one can mention [5, 25, 26, 28, 39, 40, 57]. Recently in [4], the
wavelet-based profile decomposition introduced by S. Jaffard in [36] was revisited in order to
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treat a larger range of examples of critical embedding of function spaces X — Y including
Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hélder and BMO spaces. For that purpose, two
generic properties on the spaces X and Y were identified to build the profile decomposition
in a unified way. These properties concern wavelet decompositions in the spaces X and Y
supposed to have the same scaling, and endowed with an unconditional wavelet basis (1) )aea -

The first property is related to the existence of a nonlinear projector Qs satisfying

lim max — =0.
Jim ma 1f = Qu Sy

More precisely, if f may be decomposed in the following way (the notation will be made

precise below): f = Z dxy, then Qs f, sometimes called the best M -term approximation,

AevV
takes the general form

(5.1) Quf= Y dax,
AEE N

where the sets Fyy = Ep(f) of cardinality M depend on f and satisfy Ey(f) C Enr41(f).
The existence of such a nonlinear projector was extensively studied in nonlinear approxima-
tion theory and for many cases, like Sobolev spaces, it turns out that the set Eyy = En(f)
can be chosen as the subset of V that corresponds to the M largest values of |dy|. It is in fact
known (see [50] for instance) that in homogeneous Besov spaces B;’ » we have the following
norm equivalence :

(5.2) 171155, ~ Il revlle

for f = Zd}ﬂ/})\ with wavelets normalized in B;"T,r' Therefore, in the particular case
)\GV. .

where X = Bj, and ¥ = Bé,q, with 1—1) — % = %, the nonlinear projector (Qjs defined

by (5.1), where Eyr = Ep(f) is the subset of V of cardinality M that corresponds to the M
largest values of |d,|, is appropriate and satisfies (see [4] for instance):

s—t
(5:3) sup  |[f = Qufllg <COM™ .
£l <1

The second property concerns the stability of wavelet expansions in the function space X
with respect to certain operations such as “shifting” the indices of wavelet coefficients, as
well as disturbing the value of these coefficients. In practice and for most cases of interest,
this property derives from the fact that the X norm of a function is equivalent to the norm
of its wavelet coefficients in a certain sequence space, by invoking Fatou’s lemma.

Under these assumptions, it is proved in [4] that, as in the previous works [30] and [36],
translation and scaling invariance are the sole responsible for the defect of compactness of
the embedding of X — Y.

In what follows, we shall apply the same lines of reasoning, taking advantage of an anisotropic
21

wavelet setting to describe the lack of compactness of the Sobolev embedding B — By, PP
with p > max(1, ¢) in terms of an asymptotic anisotropic profile decomposition. We recall that
as defined in the introduction of this paper, B(} = Bll; Our presentation is essentially based
on ideas and methods developed for the isotropic setting in [4]. Because of the anisotropy,
we use a two-parameter wavelet basis. More precisely, wavelet decompositions of a function
have the form

(5.4) f= > dh,

A=(A1,A2)EV



26 H. BAHOURI AND I. GALLAGHER

where the wavelets ) are assumed to be normalized in the space X = B(}, and where
the notation A\; = (j1,k1) € Z X 72 (resp. A2 = (ja2,k2) € Z x 7Z) concatenates the scale
index j; = j1(A1) (resp. jo = j2(A2)) and the space index k; = ki(A1) (resp. ko = ka(\2)) for
the horizontal variable (resp. the vertical variable). Thus the index set V in (5.4) is defined
as V := (Z x Z*) x (Z x Z) and the wavelets 1, write under the form

Vr = Y ng) = 227 —ky, 272 - —ky)

where ¢ the so-called “mother wavelet” is generated by a finite dimensional inner product of
one variable functions ¢, for e € E a finite set. It is known (see for instance [8]) that wavelet
bases are unconditional bases, i.e. there exists a constant D such that for any finite subset
E C V and coefficients vectors (c))xep and (dy)acg such that |cy| < |dy| for all A, one has

55) I3 extally < DI S dual
AeE AEE
L1421 L1421
and similarly for B, ?'”. In addition B; and By, ”'? may be characterized by simple prop-
erties on wavelet coefficients: for f = Z Ay = Z din AP \e) With normalized
AEV (A1,A2)€V

wavelets, we have the following norm equivalences:

(5.6) G ~> (X (XX ld(Amw')q)I/q)q

JIEZ  |A1|=j1 J2€Z |X2|=j2
and

5.7 142 1 ~ ||(d .
(5.7 N (Ve

Moreover as proved in [4, 43], there exists a nonlinear projector Qs of the form (5.1) such
that

(5.8) lim max ||f— QMfHB_1+

M=+00 | f] 33 <1

21 =0.

p’p

We refer to [1, 8, 10, 19, 20, 21, 22, 29, 34, 44, 58] and the references therein for more
details on the construction of wavelet bases and on the characterization of function spaces
by expansions in such bases.

In the sequel, for any function ¢, not necessarily a wavelet, and any scale-space index A

defined by A = (A1, A2) = ((J1, k1), (J2, k2)) € V, we shall use the notation
(ﬁ)\(.%') = 2j1¢(2j11‘h — kl, 2j2.%'3 — kg),

and to avoid heaviness, we shall define for i € {1,2} and A = (A1, A2) = ((J1, k1), (J2, k2)),

We shall prove the following theorem, characterizing the lack of compactness in the critical
21

L1421
embedding B(} — Bpp 77, p>max(q,1). The result actually holds for many such embed-
dings, but for the sake of readability we choose to only state and prove it in this particular
case.

Theorem 3. Let (uy)n>0 be a bounded sequence in B,}. Then, up to a subsequence extraction,
there exists a family of functions (qﬁg)gzo n B(} and sequences of scale-space indices (Ag(n))n>0
for each £ > 0 such that for all p > max(q,1),

—-0 as L— .

L
’ L . L
Un = W+ 0E where Tmsup [VF] .z,
= n—oo

p,p
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The decomposition is asymptotically orthogonal in the sense that for any k # £, as n — 400,
either

(5.9) 71 (Ak(n)) = J1(Ae(n))] + [J2(Ak(n)) = j2(Ae(n))] = +o0
k1 (A\k(n)) — 2j1()\k(n))_j1()\l("))k1()\é(n))‘ + |ka(A\k(n)) — 2j2()\k(n))_j2()\l("))kQ()\g(n))‘ — 400.

Moreover, we have the following stabz’lity estimates

(5.10) EE: 161153 <1C7SHP\MM1HBI7
(=1

where C' is a constant which only depends on the choice of the wavelet basis.

Remark 5.1. Up to rescaling the profiles, if (5.9) does not hold then one may assume
that j;(Ae(n)) = ji(Ax(n)) for ¢ € {1,2}.

5.2. Proof of Theorem 3. Along the same lines as in [4], the anisotropic profile decompo-
sition construction proceeds in several steps.

5.2.1. Step 1: rearrangements. According to the notation (5.4), we first introduce the wavelet

decompositions of the sequence u,, namely u, = Z dxn¥y. Then we use the nonlinear

AEV
projector Qs to write for each M > 0

Uy = Qrrun + Ryru,,  with MlurflF sup||RMun|| 1021 =0,

p,p

2.1
p’p
in view of (5.8) and the boundedness of the sequence u,, in B(}. Noting
M
Qumun = Z dm,n¢k(m,n) )
m=1
it is obvious that the coefficients d,,, are uniformly bounded in n and m, so up to a diag-

onal subsequence extraction procedure in n, we can reduce to the case where for all m, the
sequence (dp, n)n>0 converges towards a finite limit that depends on m,

Ay = lim dpy -
n—-+o00
We may thus write
M M
Uy = Z dm¥xmm) T tnp,  Where tp p = Z (dmn — dm)iﬁ)\(mm) + Raruy, -
m=1 m=1

5.2.2. Step 2: construction of approzimate profiles. The profiles ¢ will be built as limits of
sequences ¢! resulting by the following algorithm. At the first iteration i = 1, we define

oVt =dip, A(n):=A1,n), @i(n):=n.
Now, supposing that after iteration step ¢ — 1, we have constructed L — 1 functions denoted
by (¢t1, ..., ¢¥~1~1) and scale-space index sequences (A1 (n),...,Ar_1(n)) with L < i, as
well as an increasing sequence of positive integers gpl-,l(n) such that

Z dm% (m,pi—1(n)) Z gbiZ(SOlz 1(n))?

m=1
we shall use the i-th component d;¥\ ey, ,(n)) t0 elther modify one of these functions or
construct a new one at iteration i according to the following dichotomy.
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(i) First case: assume that we can extract o;(n) from ¢;_1(n) such that for £=1,...,L —1
at least one of the following holds:

(5.11)  lim i1 (AG ¢i(n))) = j1(Ae(wi ()] + [72(A(, @i (n) = 2(Ae(pi(n)))] = +oo,

lim ‘/ﬂ (A, pi(n))) — 251 (AGipi(n))) =1 (e i (M) e ()\5(901(”)))‘
(5.12) nohee o |
—|—‘k‘1 (A, pi(n))) — 271 (A(Ei (1)) =51 (Ae(#i () |, (Az(%(n)))‘ — 4o0.

In such a case, we create a new profile and scale-space index sequence by defining
ot i=dypp, Ap(n):=\i,n), M=o tvee{l,... L—1}.
(ii) Second case: assume that for some subsequence p;(n) of ¢;_1(n) and for some ¢ belonging

to {1,...,L—1} neither (5.11) nor (5.12) holds. Then it follows that for ¢ in {1, 2}, the quan-
tities 41 (ve((n))) — Gi(Ais 2i(n) and kg (A(G, 1 (n))) — 20O O Dk (ry(5(m)))

only take a finite number of values as n varies. Therefore, up to an additional subsequence

extraction, we may assume that there exists numbers a1, ao, b1 and by such that for all n > 0
and for ¢ € {1, 2},

Ji(A(@, @i(n))) — Ji(Ae(pi(n))) = ai,
ki(A(i, 0i(n))) — 2Jz~(/\(wi(n)))*ﬁ(/\z(w(n)))ki()\z(%(n))) —b;.
We then update the function ¢“*~! according to
PO = O A2 ap(29 - —by, 2% - —by), Pt i=t IV e {1, L—1}, (' £

Up to a diagonal subsequence extraction procedure in n, it derives from this construction
that for each value of M there exists L = L(M) < M such that

M L
oM
Z dm¢A(m,n) = Z ¢>\e(n)
m=1 (=1
with foreach £ =1,...,L
oM
¢>\z(n) - Z dmwA(m,n) )
meE(6,M)

and where the sets E(¢,M) for ¢ = 1,...,L form a partition of {1,...,M}. Moreover,
for i € {1,2} and for any m,m’ € E({, M) we have

(5'13) jZ(A(m? n)) - jZ(A(m,? n)) = ai(m’ m,) 9
and
(5.14) ki(A(m,n)) — 20iAmm) =5 A0 m) (X (m/ n)) = by(m, m),

where a;(m,m’) and b;(m,m’) do not depend on n.

5.2.3. Step 3: construction of the exact profiles. The profiles ¢¢ will be obtained as the limits

in Bc11 of ¢*M as M — 4o0. To this end, we shall use (5.6) and the fact that the wavelet

basis (¥))aev is an unconditional basis of B;. So let us define for fixed ¢ and M such

that ¢ < L(M) the functions ¢*™ := Z dm¥xm) and oM. — Z dmnA(m)>
meE(¢,M) meE(L,M)

with A(m) := A(m,1). In view of (5.13), (5.14) and the scaling invariance of the space Bcll,

we have

Hfg’MmHBl} = H Z dm,nw)\(m,n)

meE(L,M)

5



STABILITY IN WEAK TOPOLOGY OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 29

Since Z dimn®r(mm) is @ part of the expansion of u,, we deduce the existence of a
meE(L,M)
constant C' which depends neither on n nor on £ and M such that

LM < C.

Now, according to the first step of the proof of the theorem, the coefficients d,,, are the limits
of dp, , when n tends to infinity. Therefore, (5.6) and Fatou’s lemma imply that

g llsy < timn nf |24 g

which ensures the convergence in B; of the sequence g™ towards a limit ¢¢ as M — +oo.

Finally, since by construction the g™ are rescaled versions of the ¢“M, there exists num-
bers A; > 0, Ay > 0, B; € R? and B € R such that

oM = oM gbtM M _p 942 . _p)).
Therefore ¢“M converges in B; towards ¢f := 241g¢(241 . —B,,242 . —By) as M — +oo.
To conclude the construction, we argue exactly as in the proof of Theorem 1.1 in [4].

Finally, let us prove that the decomposition derived in Theorem 3 is stable. The argument
is again similar to the one followed in [4], we reproduce it here for the convenience of the
reader. We shall use the following property: if Fy,..., Er are disjoint finite sets in V, then
for any coefficient sequence (dy), one has

L L
(5.15) S daalsy <CIY. D datialsy -

(=1 MX€E, (=1 X€E,

Such an estimate was proved in [4] for Besov spaces B;a(Rd) and generalizes easily to our
framework. Let us then consider for £ = 1,..., L the functions

¢Z,M,n = Z dm,nw)\(m,n) )

meE¢,M)

where FE(¢, M) are the sets introduced in the second step of the proof of the decompo-
sition. These functions are linear combinations of wavelets with indices in disjoint finite
sets E1,..., Er (that vary with n), which implies by (5.15) that

L L
Z H(b&M,nHBé < CH Z(bf,Mm
(=1 =1

Since the functions ¢ are part of the wavelet expansion of u,, we deduce that

B;

L
S 165 gy < C sup sy
=1 n20
Now, by construction the sequence (¢“7™),-¢ converges in B; towards the approximate

profiles ¢§’%L) = Z dmWx(m,n) s n — oo. It follows that for any € > 0 we have
meE(¢,M)

L
oM
; 163l < € sup s + <.

Y4
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for n large enough. Thanks to the scaling invariance, we thus find that

Z l6"lgy < © SupHuanl
(=1

Letting M go to 400, we obtain the same inequality for the exact profiles and we conclude
by letting L — 4-00. The theorem is proved. O

5.3. Some additional properties. The following result is very useful.

Lemma 5.2. Let (up)nen be a bounded sequence in B(}, which does not converge strongly to
Z€ero in B; and which may be decomposed with the notation of Theorem 3 into

L
(5.16) tn =D&+ V-
=1

Let p > 2 be given. For any £ € {1,...,L}, there are three constants C > 0 and (a},a?) € 7?2
such that

i 71 e (n)) (=14 2) 4 228Dy .
(5.17) lim sup 2 DS ‘Ajlw(n)) 1o DY (0 o)

LP(R3)

Proof of Lemma 5.2. We start by noticing that the existence of C' < oo satisfying (5.17) is
obvious, the only difficulty is to prove that C' > 0.

e Let us first estimate one individual contribution, meaning let us show that there is C4? > 0
and (a},a?) € Z* such that

. () (14 2)4 22020 i
(5.18) hgf;? 27117 » P T (Ove(n))-+al Ah()\z(n a? ¢>\e . _ ot
By definition A] +a, U= 2201 +a) g (271441 ) 5,y and AY L u = 22100 (272102, ) 5y, where U

is the frequency localization function introduced in Appendix B and xj (resp. %,) denotes
the convolution operator in the horizontal (resp. vertical) variable. Writing

) = 2j1<Ae<n>>¢e<2j1<Ae(n>>( n =l ), 2200 (g xgg)),

we easily prove that

A?l(M("))Jra} A%(M( +a2¢)\z(n = 21w ( * ¢€)(2j1()\Z(n))( h z, h) 2]2()%(71))(‘3 o xflﬁ))

where Uf(z) := 920y +a} W (2% xh)\I’(Qa%xg), which ensures that

. (O (n)) (=142 )4 22 () h v
(5.19) limsup i1 re(m)(=1+3) P H jl()\g(n))Ajg()\e(n))un

n—00 LP(R?) N H\IIK ’ ¢£HLP(R3) #0,

as soon as (a}, ag) are conveniently chosen so that the supports of U’ and QASE are not disjoint.

e Next let us prove that for ¢ # ¢

. 12y J2(0p(n)
9i1(Ae(n))(=1+7)+7== 1A —0 as n— o0,

LP(R3)

‘Anwmma JOel)+a2 B ()

when the scales j(\;(n)) and j(Aw(n)) are orthogonal, meaning 27i(Ae(m)=7:(Av () 5 0 or oo
as n — oo, for 7 equal either to 1 or 2. Noticing that

AN ($(2F 2y, 27 3)) = (Af_pAY_6) (28 2,27 23)
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we deduce that
9t (he(m) (142 HMHM AV

i) +at Aiamyrrat || o,
0.0 2 Jg’l/ (n)
_ 2]17 (”)(*1+;)+7p h AV é"
- 0,07 1 0.0 2
J1 (n)-i—ae J2 (n)+‘14 LP(]R3)

where
it () == 1) — 1w (n)) and 3" (n) = Ga(Ae(n)) — ja(Ae(n)).
a2 1
Since ¢* € Bp,;+P’p, we deduce that

. j2 (Ap(n))
(5.20) 2t Ge(m)(-1+5)+25E 50, as n—oo.

LP(R?)

h v
’Ame(n))w;A

2(Ae(n)) +ag ¢>‘Z’ (n)

e Finally, let us regroup in (5.16) all the profiles corresponding to the same scales: namely
let us write, for a given £ € N

L __ ¢ ¢
_wn _un,l +un,27

where (up to conveniently re-ordering the profiles (ﬁilz () ,(ﬁ% (n)),
1 L

Ly
upy =D 0N oy with Gi(Ae () = ji(Ae(n), Vi€ {1,2},
k=1

and on the other hand, writing to simplify ji()\g( ) =: ji(n),

Z ¢>\ek(n ’

k=Lg+1
with scales jij(Ag, (n)) orthogonal to the scale jj(n) for every kK € {L, +1,...,L}. The
result (5.20) enables us to take care of the term ufh2 which satisfies

. 12y, d2(Xp(n))
9i1(Ae(n)) (=14 7)+ =77 0, as n— o0,

h Z
‘ jl(M("))‘*"I}A (Ae(n))—l—aQ n,2

LP(R?)
so let us prove that

(=14 2)+22()

: Jji(n v 14 _
hyrlrl_)solin ! p/ T J1(m)-+al Ajg(n)-i—a%unvl ) C>0.
By Holder’s inequality if 2 < p < oo, we have
p—2
ja(n) ) . 2(p—1)
(n)+s2(n)
(5 21) 2 2 A (n)A]2(n) n,l LQ(RS) S <231 J2 A (n)A]2(n) LI(R?’))
. p
jl(n)(*1+2)+j2(n) h v Z 2(p—1)
X <2 P P A ( ) Jg(n) LP(RS)

and since both terms on the right-hand side are bounded, the result will follow if we prove
that

2(n)
limsup2 2
n—oo

But this is a simple orthogonality argument, notlclng that

AR IA

]l(n)“l’al :C>0.

oL
2(n)+a L] o gy

HAﬁ(” ol Da(n)+a2 Unl

2(R3 = Z H j1(n) +ae ]2(11 +a% ¢>\¢ n)HL2 (R3)
(5.22)
h v h v 14 ’
+ D (A% nyat Dhmyra O, ()% (n) o Dany a2 O () 128 -
kK
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Indeed we know from (5.18) that

N

L,
( Jja(n) h v Y
(Z H j1(n)+a} AJz(n )+a2 ¢>\e )HL2 R3 ) 22 ||Aj1(n)+a} Ajz(n)Jral? ¢>\e(n) HLQ(RS)

(5.23) > >0

so it is enough to prove that

j (n) h v 14 h v 0.1
e /;,(Amn)w Ajamytaz D, ()| +at Batmy+az Oy, () 122 = 0

Y

This is a finite sum so it suffices to prove the result for each individual term, which writes
after a change of variables

h ‘ h 0 j 0 Oy
L B0 (Ml Ap ) o 4 2y ) o
which goes to zero when n goes to infinity, due to the orthogonality of the cores of concen-
tration (see Theorem 3), so (5.24) holds.
e Finally we need to take the remainder into account. But a reverse triangle inequality gives
21

L1421
trivially the result, since the remainder 1 may be made arbitrarily small in By oo ’'7 as soon
as L is large enough, uniformly in n, whereas (5.22)-(5.23) guarantee that making L larger
does not decrease the norm of the sum of the profiles.

The lemma, is proved. O

Lemma 5.3. Let us consider a sequence (vn)nen, bounded in B;, which may be decomposed
with the notation of Theorem 3 into

L
Un = B+ Y
(=1

Assume moreover that ILm 2~ e+ € 10, 00}, If (O300)nen is bounded in B?;,
then

lim 271 Qe(m)+i2(e(n) _

n—o0

Proof of Lemma 5.3. By definition of B! we have

lq’

1/q
HGgUnHB?’; = < Z 23qHAhA”33?)nHL1(R3 > < oo uniformly in n.
’ J, k€L

In particular, for any ¢ € {1, ..., L}, we have

(5.25) 272(Ae(n) < oo uniformly in n.

L1(R?)
Now reasoning as in the proof of Lemma 5.2 and taking into account that d3v,, is also bounded

Jl(/\e(n )A})g(,\z(n))asvn

in B1 'q» we find that there are two integers a% and a? such that
: i1(Ag(n)) h v 14 _
hrrln_)solip 9J1(Ae AJ1(/\e(n))+% Ajg(Ae(n))+a§83¢>\z(n) ) =C>0,
and for any ¢ # /
i1(Ae(n) || AP
971 (Ae A]l(Ae(n))'i‘a[ Am()\z n))+a2 3%\{/ Mz @) -0 as n—o0.

Finally, we argue as in the proof of Lemma 5.2 and write

L
Up = Up,1 + Up2 + ¢n )
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where vy, 1 contains all the profiles with scale j;(A¢(n)), meaning (up to re-ordering the pro-

files)
Ly
{4
Un,a1 = Zgb)\]zk(n) )

with ¢§’2 () = 271(Ae(n)) gl <2ﬁ(>‘l( Nz, — x 1) 272(Ae(m) (g5 — xfl’“g)) and where, denot-
k )
ing ji(n) := ji(Ae(n)),

k=Ly+1
with scales j(As, (n)) orthogonal to the scale j;(n) for any k € {L; +1,...,L}. Using the
same argument as in the proof of Lemma 5.2, we easily prove that for any ¢ € {1,..., L}
j2 (A h —J1 (A +j2 (A
2 EDNAL ()t Aha () +a2 050 e~ MR € as - n = 00,
with C' > 0, which concludes the proof of the lemma due to (5.25). O
Lemma 5.4. Let us consider (v!' = (v}, v2))nen a bounded sequence of vector fields in B;
and let us suppose, with the notation of Theorem 3, that
L
<0k Lh
- Z ¢>\£(") o
(=1

If divy, v = 0, then for any £ € {1,..., L} we have divy, q@i’f(n) =0.

Proof of Lemma 5.4. We use the notation of the proof of Lemma 5.2. Taking advantage of

the fact that the operator divy is continuous from Bl into B!, we get, along the same lines
2 1

1 q’
as (5.19) in the proof of Lemma 5.2 and recalling that Bqu embeds in BZ, 7,

Jim sup 271 e () (3 =29 LD

n—oo

A . h T T
’Aﬁ(Ae(n)Ha}A 20 +a2 VA O3,y ||, = 17 x divi &y )

and for any ¢’ # ¢, as in (5.20),

272(Ae(n)) —0 as n— oo.

L1(R3)

‘ Ah

v . i
j1(Ae(n))+a} A]é (Ae(n))+a2 divy, ¢>\z' (n)

Moreover as in (5.24),

9—2j1(Ae(n)) 9i2(Ae(n)) Z (Ah

v h
J1(n)ral
Ak

Y4 v 2
Jam+a? O3, )1 B e ral Biare)rag oy, ()22 = 0-

Then we follow the method giving Lemma 5.2 which yields

2
— 9251 (Ae(n)) 972(Ae(n)) || AP v ; h
0 = 2-21(Ae(n)) 9i2(Ae AJ1(>\z(n))+ae A].Q()\Z(n))Jra% divy, v,

L2(R3)
251 (M (e . 70,h 2
> 272 el gh el Z” 31 Oem)rat 2o m)+az TV O, )2y F+0(1) = 00

> |9 divy $37 172 + 0(1), n— o0

Il
o
O

so finally W * divy, (%\}h(n) = 0 for all couples (a},a?), hence divy, qu\’f(n)
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.—1421
APPENDIX A. THE (PERTURBED) NAVIER-STOKES EQUATION IN B, ; 77

A.1. Statement of the results. In this appendix it proved that (NS) is globally wellposed

for small data in Bp
undertaken in the framework of Sobolev spaces). We also study a perturbed Navier-Stokes
equation in such spaces.

er
21
PP using anisotropic techniques (note that in [35] such a study was

We use the following notation:

— -1 271 2 1 ,1 ,2
Spq = LOO(R+§Bp7q+p ")n L (R+ qup " + o ")
S—1+21 +20 142041
Sp,q(T) = L?ooc([o TJ; Bpg ¥ ") mLloc([o TY; qup p meq ),
TiR+. BTy L T3 L34y T+, g e
Xp,q:L(]R ; Bpg )+L(R qu ") N LY R qu )

’_7_ ’_7 +l ’1+271
Vpq = Lz(R+§B;,qp) N LI(RJr;Bﬁq "NBpg" "),

Theorem 4. Let 1 < p < 0o be given. There is a constant ¢y such that the following result

L—142 1
holds. Let ug € B,,; "7 werifying the smallness condition |lug| _ < ¢o. Then, there

p,1
exists a unique, global solution u to (NS) in Y, 1, and it satisfies

+2. 1
Top

lellyya < 2luoll vz,

p,1

1.
p

.—142 1
If the initial data belongs to B, " " with no smallness condition, then there is a mazimal
time of existence T* > 0 such that there is a unique solution in Y, 1(T™*) and if T* < oo then

(A1) lim ||uH

T—T* L2([o T]B%’%) - oo
DT,

.—1421
If the initial data belongs moreover to By, ©* with ¢ < 1 then the solution belongs to the

space Vp o(T*), on the same life span.
Moreover if p < 4 then the spaces Yy 4 can be replaced by S, , everywhere.
The next result deals with a perturbed Navier-Stokes system:

ou+Plu-Vu+U-Vu+u-VU)—Au=F in RTxR?
(NSP) u\t:O = Uuo,
divug =divF =0.

Theorem 5. Let 1 < p < 4 be given. There is a constant ¢y such that the following result
. ,1+27l
holds. Consider three divergence free vector fields ug € B, "7, F'€ X1 and U € Yp1. If

follvi 3.3+ [1F s < coexp (= 5 U],

p,1

then there is a unique, global solution to (NSP), in the space

142142 2141

L2(RY; BMmB )le(R+B ””mB” ).

The proofs of those two theorems allow to obtain the following strong stability result, which
to simplify we only state in the case p = 1 since it is the setting of the stability result by
weak convergence proved in this paper. We recall that B} = Blll1
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Corollary 3 (Strong stability in B}). Let ug € B} be a divergence free vector field gener-
(]RJF;Bi’ll N Bllf’) Then u belongs to Si1

ating a unique solution u in LlOC(RJr;B%) NnL.
and [[u(t)||gr — 0 as t — oo.

Moreover there is gy such that any vo € Bi satisfying ||up — vollg1 < €0 generates a unique
global solution in S 1.

A.2. Proof of Theorem 4. We shall proceed in several steps:
o142 . :
(1) If up belongs to B,, """, weprove that a fixed point may be performed in the Banach
21

space L2(RY; BpE ’1;), which implies the existence and uniqueness of a solution in that
space for small data.

(2) We then prove that the solution constructed in the previous step actually belongs
to Vp.1, and to Sy, 1 if p < 4, and we prove that any ”almost global solution” belongs
to Sp1 and decays to zero at infinity.

(3) We deduce from the estimates leading to the above steps the result for large data.
(4) We prove the propagation of regularity in S, , for ¢ < 1.

N 21
(1) Let us start by applying a fixed point theorem in the Banach space L2(R™; B;’lp ), to (NS)
written in integral form:

¢
u(t) = ePug — / A PAiy (u @ u)(t') dt’
0
recalling that P := I — VA~!div is the Leray projector onto divergence free vector fields. We
first notice that (see Proposition B.2)
_ 2k 27

e AL AYug|| e S e AR A ug | 1o

so one sees immediately that for any 1 < r < oo and for any 0 < o < 2/r,

tA
(A2) el yasootovh S ol 0o

1.
p
Now let us turn to the non linear term. Defining

t
B(u,u)(t) == — /0 A Pdiv (uw @ u)(t) dt’

we have

t ) ) ;
T ALAYB (u,w) (1)1 S / e o= 9k 4 90)2 % | ARAY (u @ w)(¢)] 1o i
0

21
The space Bp 7 is an algebra according to (B.4) so we have

p,1
(A3) lu®ul < Mlull?

’EI»—A

.21 2 .
O R AT

It follows that

t _ '
/ efc(tft/)(22k+221)(2k + 2])Cjk(t/) dt' ’

2k J v
(A.4) 2P+P\|AZAJB(u,U)(t)HLPSHUI|2 3o

L2(R*;B)

'U\M
'ﬁ\'—‘

where c¢;i(t") belongs to E}k(L%,) and Young’s 1nequality in time gives

(A.5) 1B (u, w)]| < llull®
L3 (

21 2 1
+.3P’P 5P’ P
R ’Bp,l ) LQ(R+?B£1P)

— 21
The small data result follows classically from (A.2) and (A.5) by a fixed point in L2(R™; Br).
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(2) Now let us prove that the solution actually belongs to ), 1. We first notice that the above

12 At
computations actually imply that the solution u belongs to L!(R™; B,,"" OB p 7). Indeed

that holds for the term e*“uy due to (A.2) so we just need to concentrate on the bilinear
term. We return to estimate (A.4) and consider any real number r € [1,00]. Using (A.3), we
can write for any ¢ € R

2 202 1
W) = 2k(—1+5+0)23(;—o+;)HAZA;gB(u,u)HLP

t , ) . 14242y 2 1 1
3 / e~ U=t 42%) gkt 9i) ok (I Ho )9l Gty =) e (v dt!
0

I;

Slul?.
L2(RT;BP

where again c;i(t") belongs to K}k(Lg,). We want to prove that I;;(t) belongs to Ejl-k(L;,). We

apply a Young inequality in the time variable, which produces

(A6)  pller Sl | (2% 23) 7 (28 4 20)24C PG

(]R+ BP P)

with dji, € E . An easy computation shows that the sequence bounding ||;x||r- is bounded

in El.k as soon as one has 1 < ¢ < 2/r. This implies in particular that u belongs to the
1+2,1 2142

space L'(R™; B 7 ; ﬂB;;l ") as claimed.

Remark A.1l. Note in passing that if 2¥ + 27 was replaced by 2 on the right-hand side

of (A.6), then one would recover directly the whole range 0 < o < 2/r. Here we need an

extra step because of the presence of 2.

From now on we assume that p < 4, and we want to extend this result to any degree of

1+ 24
integrability in time, as well as to the space L!'(RT; B ?). Let us start with the

case r = 0o. Due to the smallness of ug and to the result We JUSt found, it is enough to prove
that

A7 B(u,u a2z Sul|l 1421 lu 21 24,1
AT B ey S gy,
since (A.2) takes care of e!*ug. But we have, if p < 4,
u - Vu _ 2;§uh-vhu 21+ ||[uPdsu .21
ooVl i 5 \|L1(R+;.pi+p,p) sl ks,
(A.8)
S [Ju 421 < 2 1 + |lu 2 ;)
S N (R Ty

by the product laws (B.5) recalled in Appendix B, and the result follows exactly as above:
on the one hand (A.8) gives

Ti(t) = 21020 | ALAY B(u, u) | 1o

</t€ e(t—t') (224227 gh(—14 7)o F o —k(—147) 9= 7 (') dt’
0

X |ul| __ ,z;(u~ 21 +||u 2;)
N (T (TR |
with c;i(t) € E}k(L%), hence
||B(Uau)\|2;(R+, ;+%% < W jkller, ccge)
< ||lu 1421 < U 21 +||u 2 ;)
e (e T ey |
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which proves (A.7). On the other hand
Kju(t) = 2 D2/ CH) | ALAYB (u, u) | o

J
t . j
. / et ) @2 (14 D) 9T 24 ) g R+ Do~ 0 (1) !
0

~

1

X (|ul| + ||u 2 ,)
lell__ I o)

1421 u 21
(]R ;Bp’i p’p)<H Hlll(]R ;B;lp’p
with Cjk(t) S Ejlk(L%), hence

1B, o cgacg < Wl

Bp1

< |lu 21 (u
S HZE(WB 23 | ||L1(R+_

21 +||u 2 ;).
B, 4 ,B:;P’P) || ‘|L1(R+.BP’1+P)

p,1

We conclude that if the initial data is small enough, then the solution belongs to S, 1.

Remark A.2. It is easy to see, using Remark A.1 for instance, that one could add an exterior
—~ L1 271
force, small enough in L'(R™; B,, *7), and the small data result would be identical.

Remark A.3. Note that all the estimates can be restricted to a time interval [a,b] of RT.

3=

— 142,
Remark A.4. The L®(R*; B, 7
L1421 —~ .21
by the (smaller) L=(R™; B,, ??)norm. The same goes for the L2(R*; B} ") norm in (A.3),
21

which can be replaced by the L2(R™; Bzi ’15) norm. This will be useful in the proof of Theo-
rem 5.

) norm on the right-hand side of (A.8) can be replaced

(3) Tt is classical that the previous estimates can be adapted to the case of large initial data
(for instance by solving first the heat equation and then a perturbed Navier-Stokes equation,
of the same type as in the proof of Theorem 5 below) and we leave this to the reader.

(4) Now we are left with the proof of the propagation of regularity result. Again this is an
easy exercise based on the fact that Young’s inequality for sequences are true in £¢ with ¢ > 0
so we can simply copy the above arguments.

Theorem 4 is proved. O

A.3. Proof of Theorem 5. We shall follow the proof of Theorem 4 above, writing (NSP)
under the integral form

t
u(t):emuO_/ e(t—t’)AP(diV(u®u+U®u+u®U)+F>(t’)dt’.
0

The linear term e**uy and the term involving div (u®u) (called B(u, ) in the previous proof)

have already been dealt with and we know that in particular for any a < band any 1 < r < oo,

2
A9 Vo<o<-— ePu ia2io2 o1 Sluo|l _ip21.
(A.9) =Y =70 | 0||i7([a,b];3pj+’7+ - +p) [[uol] .p’1+p,p

We have as well

(A10)  [[B(u,u)] -

+ || B(u,u 2 4,1
i FIBE whgh

21 2 _
1) LY([a,b);B), PNB
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and if 1 <p <4,
| B(u,u) ~1+2,1 + || B(u, U)H~ —1+2,1+1 + | B(u, u)]| 1+2 2+1
(A 11) (R+;Bp 1 ) (R 7Bp 1 ) LY(R R*; B )
S ] 42,1 ||u\| 12,

+. +.
L= (RY;B, | LY(RT;B,

1+2 1+
Note that the estimate in LQ(R+ B ) appearing in (A.11) is a consequence of an

; : T . 1+ 241
interpolation between the spaces L® (R ;B,; 7")and LY (R™; B 7).
Now let us study the term containing the force F'. We define

1+2

t _
F(t) = /O "IAPR(Y)dt', with Fye L'RY; B,

1
7y and
-~ - e 22142
F,el2RY:B,, »  ")NL'RY: B 7).
On the one hand the above arguments (see the estimates of I;;, and Kji, or simply Re-
mark A.1) enable us to write directly that for all o € [0, 2],

(A12)  IFL gy HIFL g SIRL gy
= (labiB,, PP) L (e, T LY ([abliB,, PP
while for all 1 <o <2,
(A.13) Hf||~ 2. +Hf|| o422 04l N||F2H 241
L2([abs B L, T LBt

On the other hand the same computations as in the proof of Theorem 4 give easily

(A.14) 71l i+ 3asd S 142,141 -

142 1 1 _ , 1
= (abl:B,, P'P)NL2([a, B, * 7 L2RTB,, P )

Finally let us turn to the contrlbutlon of U. We define

t
Ut) = —/ A Pdiv (u @ U 4+ U @ u)(t') dt’ .

0
We can write using (B.5) (and Remark A.4)
h h 3
u' - V'U +u’ U ez Su ,z,U 21 24,1
H 3 || 1([a,b];Bpj+P’p) H HLOO(a, , pi+ H HLl([ab] Bl+p,me:,11+p)
< lw 21 U 21 2,1
> |’35([a,b};sp,i+PP>“ ”Ll([a,b];B;jP”’mB;’,f”)

and using (B.5) again,

U™ Vhu + U303u 21 Sull 142441 21 |U 21
H L L\(abliB,, 7P H ”LQ([a,bLB R B,fﬁ’)” HL?([a,bLBg’l‘U
This enables us to write
Uu 21 .2 1§(uN 21 [|U 21 2,1
| HLOO([abJB LN (0B, ) | ”Lw([a,b},B “M)H ”Ll([a,bJ;Bl?"’ﬂB,ﬁ’,i”P)
A5 Hlull . e 20 U 21 ).
( ) | HL2([ab],Bpi+2’1+zl7mBE’11J I HL2([a,b];BI§2”i11J)
Putting estimates (A.9), (A.10), (A.12), (A.13), (A.15) together we infer that
A.16 ull 21 2.1 21 SC<u2
(410 | HL?({a,b],ng)nLlaab]B LB, ) ” HZ@([a,b];B,,%,;%)
wl|l 21 [|[U 21 + |lula _a21 +||F ),
s iy * @l 3 1,
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while estimates (A.9), (A.11), (A.14), (A.15) give

U .21 e2..1 < C( ul| .21 ||lu 21 24,1

| HN([a,b];'p;rp’p)ﬁ 5 (ab):B 1+ 1+3 Py~ [[ull (b p1+ ” [ ! ([l tp,pm.giwp)

+|u||__ 1421 U 21 2441

H ” (a,b}, - i+ ” H[ﬂ([a,b]; .;jp,pm .;,ller)

A.17 +u~ 2,1 21 ||U 21 +||lula _g;—}—FX).
( ) H H 2(lab):B pi+ 1+ £1P)|| H 2 ([a,; ﬁlp) H ()H .p;+p,p H H D1

To conclude we resort to a Gronwall-type argument (see for instance [27] for a similar ar-
gument): there exist N real numbers (7;)1<j<ny such that 77 = 0 and Ty = +oo, such

N—-1
that Ry = U [T;,T;+1] and satisfying
i=1
1
A18) |U 21 +||U 21 2,1 <— Vie{l,....N—1}.
( a HL 2([T3,Ti41);B E”l)) H ” LY([T3,Ti1);B,, +1§ ;OBEQH;) 8C { )
Then suppose that
1
F -
(A19) ool -1+.5 + V¥l < ey

By time continuity we can define a maximal time 7' € R™ U {oo} such that

1
A.20 21 +||u 21 < —-
(A.20) 1ot by 1 oo ) < 70

If T = oo then the theorem is proved. Suppose now that T' < +o00. Then we can define an
integer k € {1,..., N — 1} such that

T, <T < Tgya,
and plugging (A.18) and (A.20) into (A.16) we get for any i < k — 1

21 +||u 2.1 21 <Clu ia21
L |rL1([ThTM];BﬁiHPOB;?,,)) Tl 134
1
+COlFllx,, + g llull 21 —|| H 21,
L2([T3,Tis1);BE P L2([T3,Tip1):B) 17
so finally
21 +||u 24,1 21
b s BILT) Il LT T sBY, PB, )PP
(A.21)

<20 (T e + 1)

From relations (A.16) and (A.17) we also get

<20 (T 1oz g+ 1F ] ).

p,1

(A.22) [[u H 142

1
([T17T1+1]7 p,1 p)

— 1421 L1421
Since L>®(R™; B, "")C L®(RT; B,, "'"), we further infer that

33 <20(I(@ 1z +1F],)

p,1 p,1

A trivial induction now shows that for all ¢ € {1,...,k — 1},

(@ vy < QO (ol vz g + 1Pl )

p,1 p,1

|u(Tis1) ] 142,
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We conclude from (A.21) and (A.22) that

Jul + Jlul .

< @0) (Jluoll 1.3 + 1, )

1+
1 p,1

—~ 21 .2
L2([T3, T s By 1P LY([T3, T ;BY P,

and
U 21 < (2C Z< ugll _ii21 + || F >
H ”EV([ Tl piﬂ% —( ) ” OH .p;ﬂ%,}, ” ”Xm

for all # < k — 1. The same arguments as above also apply on the interval [T, T] and yield

1
p

u gl<20N(u .21+ ||F )
ity < O (1l 1o g 1,
and
,21§20N<u ,21+FX>-
e <3, < O (Il g+ 1
Then it is easy to see that (see for instance [27])
bl . ax <l aa et luls s
L2 ([0,T);By,") L2([T1, T2l B 1P L2([Ty,T);:B, ")
< NECP ol 134 +NEOY [Pl
p,1
Under assumption (A.19) this contradicts the maximality of T as defined in (A.20). Since
the integer N can be chosen of size equivalent to |U]| 21 +|U| 421 2941,
2(RTBPP) LYRT;B, P PnBl] P
the theorem is proved. O
+2 1
Remark A.5. Note that we have obtained also that u belongs to L> (R+ B 7).

A.4. Proof of Corollary 3. Let u € L?OC’C(R+ Bi) N LlOC(R+;Bi’11 N Bljl) solve (NS) with
initial data ug € Bi. Let us start by proving that u € S and that ||u(t)] pl — 0ast
goes to co. Actually it is enough to prove the convergence to zero result in large times,
since the fact that u € Sy 1 is then a consequence of Theorem 4 since for T' large enough we
have [|u(T)||1 < co.

We shall only sketch the proof as it is very similar to the same result in the isotropic case,
proved in [27]. The idea is to use a frequency truncation to decompose uy = vy + wp
with [lwollg1 < eo for some arbitrarily small g9 and with vy € Bi N L?. We then solve

globally (NS) in &1 with data wp, and we know from Theorem 4 that
”w”sm < 2e.

It is easy to see (using the same arguments as in Proposition B.3) that |lwo||z-1 < eg so

the arguments of Proposition A.2 of [27] imply that
(A.23) sup Vt|[w(t)|| 1 < eo.
>0

Now let us consider v: it satisfies the perturbed (NSP) equation with data vy, with F' =0
and with U = w, and it belongs to LOO (RT;BI)N L} (RT; Bfll N Bllf) since that holds for u
and w. We claim that there is T > O such that

ve L=([0,T]; L7) N L2([0, T]; H').
Indeed we have by product laws the following analogue of (A.8):

R | + [[u*Osul

[ Vul| 13 11
LN(0.7):B, F) LL(0.7):B, F)

LY([0,T):B, L3

i)

< . .
Sl g (el oy sy + el o i) )
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which implies as in (A.7) that

< . .
1B u )HN([O By ] 5 Il 3= “([O,T];Biﬁ%)Hu”Ll([O’T};B?:%OB%Z%H)
N R ) —
so as in Lemma A.2 of [27] we get v € L>([0, T]'BLQ) C Le(]o, T]'BO’O) C L>=([0,T); L?).
1
The bound in L?([0, T]; H') is obtained in a similar way, noticing that if f is in L' ([0, T); B1 ),

t
then I := / e(t=t' )A]P’( f)(t') dt’ satisfies, by similar computations to the proof of Theorem 4,
0

||F||L2 [OT] Bl (]RS ) ~ ||f||L1 OT < HfH [OT] B

Then we conclude exactly as in the proof of Theorem 2.1 in [27]: we ﬁnd, writing an energy

estimate in L? and using (A.23) that v can be made arbitrarily small in H3 as time goes to
0.1

infinity, hence by Proposition B.3 the same holds in Bgv’f. It follows that u(t) = v(t) + w(t)

.0.1
is arbitrarily small in Bg:f (say smaller than ¢y, if g is small enough) for ¢ large enough,

hence there is a global solution in S 1 associated with g, which can be shown to also belong
to S1,1 by a propagation of regularity argument. We know indeed by Theorem 4 that u

belongs to S;1(T) for some time 7" so we just need to check that the Zi([O,T]; Bi’ll) norm
of u remains bounded uniformly in 7. But product laws give

lu @ ull 21) S [lull H H
LH(0.T):Byy 2([0,T}:BY 2)

so as in (A.5) we get

HB(U u)HLQ ([0,TY; B21 ~ HUHLQ(OT} 321 H HLQ([OT}B 1%)7

which allows to prove the result.

Then the strong stability result is obtained using Theorem 5. Indeed we can solve (NS) with
initial data vg for a short time and the solution v can be written as u —w. The vector field w
then satisfies (PNS) with initial data wq, with forcing term zero, and with U = u. We know
that u € 81,1 C V1,1 so the result is a direct consequence of Theorem 5.

Corollary 3 is proved. O

APPENDIX B. ANISOTROPIC LITTLEWOOD-PALEY DECOMPOSITION

In this section we recall the definition of the isotropic and anisotropic Littlewood-Paley
decompositions and associated function spaces, and give their main properties that are used
in this paper. We refer for instance to [3], [17], [33], [32], [35], [51] and [59] for all necessary
details.

B.1. Isotropic decomposition and function spaces. Let X (the Fourier transform of )
be a radial function in D(R) such that x(¢) = 1 for |¢t| <1 and X(¢) = 0 for |¢| > 2, and we
define (in d space dimensions) x, := 2%x(2¢| - |). Then the frequency localization operators
used in this paper are defined by

Spi=xex- and Ag:= S —5p=: Wy

Now let us define Besov spaces on R? using this decomposition. We start by defining, as
in [3],

(B.1) Sh={1 e S®Y /11811 >0, j — —o0} .
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Let f be in S'(R?), let p belong to [1,00] and ¢ to ]0,00], and let s € R,s < d/p. We say
that f belongs to B;q(Rd) if the sequence gy := 2°||Af||z» belongs to £9(7Z), and we have
HfHB;’q(Rd) = HEZHM(Z) .

If s = d/p and ¢ = 1, then the same definition holds as soon as one assumes moreover
that f € S; — or equivalently after taking the quotient with polynomials. Finally in all other
cases then B;q(Rd) is defined by the above norm, after taking the quotient with polynomials
(see [9] and the references therein for a discussion).

It is well-known that an equivalent norm is given by

(B2)  VseR V(pa)€Locl s, @ = || HIKO o)

La(RY; %)
with K (t) := t0;e!®. We recall also that Sobolev spaces are defined by the norm || - HB; L(RY)
and ’

; o
Vo< G Wlesy = ([ P17 de)

where f is the Fourier transform of f.

Finally it is useful, in the context of the Navier-Stokes equations, to introduce the following
space-time norms (see [16]):

||f||i7([o,T];B;7q) = H2j8‘|Ajf||LT([O,T];LP(Rd))HZ‘I

or equivalently

190z oirig p = [ EIK O o oirney | e,
The following proposition lists a few useful inequalities related to those spaces.
Proposition B.1. If 1 <p < g < oo, then
HaaAijL‘I(]Rd) S 2j(|a‘+d(1/p71/q))HAjf“LP(Rd) )
and (|22 f oy S eict22jHAijLq(Rd)'
Finally let us recall product laws in Besov spaces:
1581 e g S W gl
as soon as

d
s1+ 52 >0 and sj<z—),j€{1,2}.

B.2. Anisotropic decomposition and function spaces. Similarly we define a three di-
mensional, anisotropic decomposition as follows. For (j,k) € Z?, we define the horizontal
decomposition as

Stf=F Y xE7Fen]) f(€)) and Al == Sk, — 8P which writes F(AFf) := U(27F|&u]) f(€)
and the vertical decomposition as

SYf = F R 7&)) f(€)) and AY := SY,, — Y, which writes  F(AYf) := T(27|&)) f(€).

Now let us define anisotropic Besov spaces. We define, for all (s, s’) € R? s < 2/p, s’ <1/p
and all p € [1,00] and ¢ €]0, 00},

. / k . h
By = {1 €8 /1Sl = 259 1 ARAT 1

<oo}.
z
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In all other cases one defines the same norm, and one needs to take the quotient with poly-
nomials.

As in (B.2) an equivalent definition using the heat flow is

(B.3) 1l = |50 F RN O KA 0]

La(RF xR+ 4t 4ty
where Kj(t) := tde'®h and K, (t) := td,e'%.
As in the isotropic case we introduce the following space-time norms:

= Hkaﬂs HAhAUfHLr [0,T];LP)

”f”f;([O,T],B;S Hﬁq

or equivalently

1z oy = [ 3 FIKRO K@) i qorrien)

La(R xRt 9t dtly -

Notice that of course ﬁ([O,T]; B;,’f,) = L"([0,T7; B;:f,), and by Minkowski’s inequality, we
have the embedding L ([0, T]; BS,’Z,) C L"([0,T7]; Bf,jgl) if r > gq.

The anisotropic counterpart of Proposition B.1 is the following.
Proposition B.2. If 1 < p; < py < oo, then
105, ANl pos 2,1y S 250F2VPVPD AR F|| 1o 2,1 ) »
[E58 AUfHLT(R2 L2 (R) S < 9J(lal+1/p1— 1/p2)HAUf”LT(R?;Lm(R)) 7
et ARAYfllze S e T ARAY |1
In this paper we use product laws in anisotropic Besov spaces, which read as follows:

1f9ll. g i S HfH ot Jlgll s T (Al B AT

pl

as soon as

1, 2

— <5y s1+s>0 and s;<—,j€{l,2},

p p
and

||fg|| sl+527— s +s/17% < ||f|| Sl 31Hg|| 32 32 9
By q

as soon as

1
sy +s5 >0 and 89<5,j€{1,2}

and with the same conditions on s, so. Finally

<

(B.4) HngBp%ii% (Al 55 %HgHBp%,i% ;

and if p < 4,

(B.5) 1ol vvz.s S, rezsllll 2.1
pl p,1 p,1

The following result compares some isotropic and anisotropic Besov spaces.

Proposition B.3. Let s and t be two nonnegative real numbers. Then for any (p,q) € [1,0c]?

one has
1 lgse S 1F1 g
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Proof of Proposition B.3. We recall that
k j h
£, = S0 202 ALAT S,
T gk
We separate the sum into two parts, depending on whether j < k or 5 > k and we shall only
detail the first case (the second one is identical). We notice indeed that if j < k, then

IARAY e = || AGARAYF|| 1o
¢
~ || ARARAY f e -
It follows that ‘ ‘
o2 AL I, S 30 2 A,
j<k j<k

< 22U ALL,
k

and the result follows. O

Finally let us prove the following easy lemma, which implies that (ugn)nen is bounded in B(}
if it is bounded in a space of the type Bllfel’li& for some e1,e9 > 0.
Lemma B.4. Let s1,50 € R, p € [1,00], 0 < ¢1 < g2 < 00 be given, as well as two positive

2o S , o
real numbers €1 and e3. The space By """ is continuously embedded in Bylg®.

Proof. Let f be an element of Bfqusl"%ie? and let us prove that f belongs to Bf,}q’lsQ. We
write
k j h
T S e A ININ
"k
and we decompose the sum into four terms, depending on the sign of j and k. For instance
we have

Fuim Y2t | ALAYF,

j<O0
k>0

< Z 9—kerqi9jeaqiok(site1)q19i(s2—e2)q HAZA;)f”qLIP

i<0
k>0

and we apply Holder’s inequality for sequences which gives
Fi s ||f||351+51»82*62 .
1,q2
The other terms are dealt with similarly. O

B.3. On the role of anisotropy in the Navier-Stokes equations. In this final short
paragraph, we shall prove Theorem 1 stated in the introduction.

Proof of Theorem 1. The proof follows from the small data theory recalled in Appendix A.

Let us first consider vy := Z AZA;?uO. We have
j—k<—DNp
LiAh
lvoll 0.3 ~ > 25| ARAYugl 12 me
21 j—k<—No

i—k _k N
~ > 2T 23 | AR AUl gy < C27 2 p
j—k<—DNp
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" . . . -1 -10
due to Proposition B.3 which states in particular that B3, C B3;. So vy can be made
I . 50,3 .
arbitrarily small in By'?, for Ny large enough (depending only on p).
Now let us consider wy = Z AZAguo. We shall prove that in this case ||wg] 3 is small.
Jj—k>No .
Indeed we know (see for instance [3]) that Bg,1 C L3, and moreover we have as soon as Ny is
large enough (depending only on the choice of the Littlewood-Paley decomposition)

IAewollps ~ || Y ARAjuol|,s -
k—¢<—Ng

It follows that

[Agwolls < Y [1AFAGug|l s
k—¢<—Np
<C Y 2525 AlAYuo 2
k—¢<—Nop

by Bernstein’s inequalities (see Proposition B.2, applying successively the inequalities for
the horizontal and the vertical truncations). So using Proposition B.3 again which states in

. .1 -0,%
particular that B3, C B,’{, we get

_ N,
IAqwolls <€ 30 25723 | ARAuo] 12 < 0275 pey
k—f<—Ng

where ¢, is a sequence in the unit ball of /}(Z). So again if Ny is large enough (depending
only on p) then we find that wq is small in B§,1 hence in L3.

To conclude we can start by solving (NS) associated with the data wg which yields a global,
unique solution w that by Proposition B.3 belongs to )3 1, with norm smaller than 2||wg|| 73
11

1
(by small data theory, as soon as Ny is large enough). Then since Bg:f embeds in B;f’g
we can apply Theorem 5 with F' = 0 and U = w which solves the perturbed equation
satisfied by u — w globally in time, as soon as Ny again is large enough. The solution
belongs to C(R'; L3(R3)) by classical propagation of regularity arguments, and that proves
the theorem. O

Remark B.5. Contrary to Theorem 2, the proof of Theorem 1 does not require the special
structure of the nonlinear term in (NS) as it reduces to checking that the initial data is small
in an adequate scale-invariant space.
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