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IN BRITTLE FRACTURE

JEAN-FRANCOIS BABADJIAN AND ALESSANDRO GIACOMINI

ABSTRACT. This paper is devoted to prove the existence of strong solutions for a brittle fracture
model of quasi-static crack propagation in the two dimensional antiplane setting. As usual, the
time continuous evolution is obtained as the limit of a discrete in time evolution by letting the
time step tend to zero. The analysis rests on a density lower bound estimate for quasi-minimizers
of Mumford-Shah type functionals, under a homogeneous Dirichlet boundary condition on a part
of the boundary. In contrast with the previous results, since boundary cracks may be obtained as
limits of interior cracks, such a density lower bound has to be established also on balls centered
inside the domain but possibly intersecting the Dirichlet boundary. Thanks to a 2D geometrical
argument, the discrete in time crack turns out to satisfy a uniform density lower bound which
can pass to the limit, leading to the closedness of the continuous in time crack. We also establish
better convergence properties of the discrete in time displacement/crack pair towards its time
continuous counterpart.

KEYWORDS: Free discontinuity problems, brittle fracture, quasi-static evolution, functions of
bounded variation, regularity.

MSC 2010: 49Q20, 35R35, 74R10, 35J70, 49N60.

1. INTRODUCTION
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The variational approach to fracture introduced by Francfort and Marigo in [17] (see also [4] and
the pioneering paper by Ambrosio and Braides [1]) is now a well established theory for quasi-
static crack propagation. It rests on Griffith’ original idea that crack propagation is the outcome
of the interplay between the elastic energy stored in the material, and the surface energy needed
to elongate (or create) a crack.
If O C RY is the reference configuration of the body, a configuration of {2 is given by a pair
(u,T) where I' C Q stands for the crack, and u : Q\I' — R¥ is the associated displacement. Then
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(u,T') carries a total energy of the form
(1.1) E(u,T) = E(u,T) + E(T),
where

Eer(u,T) = W (Vu) dx and E (D) = kHNYD).

O\

Here &.(u,T) is the elastic energy associated to the displacement u, and W is the elastic energy
density of the material: in the case of isotropic linearized elasticity, W is a quadratic function
involving the Lamé coefficients of the material. The term &£;(I") is, according to Griffith’ ideas,
the energy required to break the material and create the crack I': within the framework of brittle
fracture, & is proportional to the surface of I' (here H¥ ! stands for the (N — 1) dimensional
Hausdorff measure, which reduces to the usual notion of area for sufficiently regular sets) by means
of a constant k > 0, usually referred to as the toughness of the material.

The Francfort and Marigo model deals with crack propagation in terms of variational properties
of the total energy (1.1). Given a time varying prescribed boundary displacement [0, 7] > t — ¢(t),
and in absence of external body and traction forces, a quasi-static crack evolution is — according
to [17] —a map t — (u(t),'(t)) such that u(t) = g(t) on 9Q for every t € [0,T], and the following
properties are satisfied:

(a) Irreversibility: t — T'(t) is increasing in time, i.e., I'(s) C T'(t) for every 0 < s <t < T
b) Global stability: for every configuration (v,I') with v = g(t) on 9Q and T'(t) C T

(
(1.2) E(u(t),T(t)) <&, T);
(¢) FEnergy balance: for every t € [0,T]

E(u(t), () = E(u(0),T(0)) —l—/o /Q\F( , DW (Vu(s,x)) - Vg(s,x)dzds,

where ¢(t) is extended to €2 (every extension is admissible, see (1.4) below).

The first condition implies that no healing process can occur during the evolution: the cracking
process is irreversible. The second condition states that (u(t),I'(¢)) is an absolute minimizer of the
total energy (1.1) among all admissible configurations for the boundary displacement g(t) and with
crack containing I'(¢). In particular, by taking IV = I'(¢), it turns out that the displacement u(t)
minimizes the elastic energy among all admissible displacements at time ¢, i.e. it coincides with
the elastic displacement up() associated to I'(t) and g(t). Under suitable regularity assumptions,
up(y) satisfies the following elliptic problem

—diV(DW(VUF(t))) =0 inQ\T(¥)
(1.3) ur(t) = g(t) on 02
DW (Vupg))v =0 on I'(¢),

where v denotes the normal to T'(t). Since external body forces are absent, the elastic stress
DW (Vur)) is divergence free, and its normal component on I'(t) vanishes: the crack is thus
traction free. Finally the third condition amounts in a sort of energy conservation statement: the
variation of the total energy is given by the work done by the external loads, since integrating by
parts and taking into account (1.3)

(1.4) / DW (Vu(s,x)) - Vi(s,x)dex = DW(VUF(S) (x))v(z) - §(s,x) d’HN_l(:E),
O\I'(s) o0

where v(z) denotes the outer normal to ) at x € 99.

Conditions (a)—(c) above retain their meaning even if the admissible configurations enjoy very
low regularity properties: namely it is sufficient a notion of differentiability to be defined for the
displacements u in order to compute the elastic strain Vu and the associated elastic energy. On
an elementary level, it suffices that

(1.5) T is closed and ueCHQ\T).
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As a consequence, the theory can handle geometries for the cracks which are much more general
than those covered by the classical Griffith’ theory, for which, in a two dimensional setting for
example, the cracks are curves parametrized by arc length. It has been shown in [17] that if the
quasi-static evolutions fit the classical framework, they turn out to satisfy the usual conditions a la
Griffith for the propagation involving energy release rates. As a consequence, the Francfort-Marigo
model can be considered as a genuine generalization of Griffith’ one, in which the crack path is a
true unknown of the problem.

The drawback of the theory lies essentially in the issue of global minimality involved in condition
(b), d.e., (u(t),[(t)) is an absolute minimizer for the total energy among configurations whose
associated crack contains I'(¢). Global minimality should rather be replaced by some notion of
local minimality which is far from being obvious, since the family of cracks should be endowed
with a topology. A suitable notion of local minimality which is useful in this context has been
formulated by Larsen in [19].

As suggested in [17], quasi-static evolutions are obtained using variational arguments employing
the following scheme.

(1) Given a discretization 0 =tk < ¥ < ... < tﬁ(k) = T of the time interval [0, T'], incremental
configurations (uf,TF) at time t; are constructed by minimizing
(1.6) (u,T) W(Vu) dx + kHN 1)
o\rk

among all admissible configurations (u, ') with u = g(t¥) on 9Q and ' D T'¥_,. Incremental
configurations are readily seen to be globally stable in the sense of (1.2).

(2) A discrete in time evolution [0,T] > t — (u¥(¢),T*(¢)) is constructed as the right contin-

uous piecewise constant interpolation in time of {(uf,T¥) : k € N;i = 0,...,n(k)}. It
is easily seen that for every k € N and tF <t < t§+1a the following energy inequality is
satisfied:

E(uF(8), TH(2) gs(uk(o),rk(O)H/t”l/DW(vuk(s,x))-vg(s,x)dxdsﬂk,

where g, — 0.

(3) A quasi-static evolution is then obtained formally by letting the time step discretization
vanish, and considering the limit, in a suitable sense, of the discrete in time evolutions.
Indeed, assuming that global stability and the previous energy inequality are preserved in
the limit, the opposite inequality necessary for the energy balance is easily established.

The problem of finding a rigorous mathematical framework for the above mentioned procedure
has been addressed in many works. In order to formulate rigorous existence results for incremental
configurations, one is led to specify the structure of the cracks and the displacements. Moreover,
in order to employ the direct method of the calculus of variations, one needs to conveniently
”topologize” the family of admissible configurations. As a consequence, it turns out that the
Dirichlet condition has to be reformulated since, within this scheme, cracks can naturally reach
the boundary. A convenient way to solve the problem is that of assuming I' C €, and prescribing
the boundary displacement only on 9Q \ I': no displacement is transmitted on those parts of the
boundary which are “broken”.

The first mathematical result in this direction is due to Dal Maso and Toader [11]. In their
paper, a 2D linearized antiplane setting is considered, for which one can assume W (Vu) = |[Vul|?.
The cracks are supposed to be closed sets with an a priori fixed number of connected components
and with finite H!-measure. The displacements are assumed to be Sobolev regular outside the
crack. The minimum problems (1.6) are interpreted as problems involving only T, i.e.,

(1.7) [ ||Vur|3 + wHY(T),

where ur is the elastic displacement associated to I' and g(¢¥). The bound on the number of
the connected components makes the functional (1.7) lower semicontinuous with respect to the
Hausdorff convergence of compact sets (see Section 2 for a definition). Indeed the surface energy
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is lower semicontinuous in view of Gglab’s theorem (see e.g. [14]), and at the same time the
elastic energy turns out to be continuous in view of stability results for the solutions of Neumann
problems on varying domains (see also [5] for a more general result in this direction). The same
method has been employed by Chambolle [7] to treat the case of plane elasticity.

Subsequently, the result has been generalized by Francfort and Larsen [16] to any space di-
mension. This study imparts from the observation that the model of crack propagation presents
similarities with that of minimizing the Mumford-Shah functional arising in image segmentation.
They actually proved the existence of weak solutions for this model where the displacement is
interpreted as a SBV function. The main tool of that paper is a jump transfer theorem (replacing
the stability of the Neumann problems) enabling the authors to pass to the limit in the global
stability condition from discrete times to continuous ones. Within this approach the crack I'(¢) at
time ¢ is actually defined as

(1.8) Lt):= U Sue,

seD,s<t

where D C [0,7] is a countable set, and S, is the jump set of u(s). As a consequence, the
admissible cracks are countably H™¥ ~!-rectifiable sets with finite %~ ~!-measure.

Then a more general result in the framework of nonlinear elasticity has been proved by Dal
Maso, Francfort and Toader [8] for quasi-convex energy densities W with p-growth. Here the main
difficulty is that the nonconvexity of the problem necessitates one to consider a new notion of weak
convergence of cracks (called oP-convergence), and the continuous in time cracks are then defined
as abstract oP-limits of discrete in time ones. However, in [9], it has been proved that, also in
that case, the cracks can be described as in (1.8). Finally, Dal Maso and Lazzaroni [10] proved
an existence result in the framework of hyper-elasticity for polyconvex energy densities W, taking
into account the non-interpenetration of matter as well as the fact that the elastic energy should
blow up as the determinant of the deformation gradient tends to zero.

The advantage of the weak formulation as in [16, 8, 9, 10] is that it enables one to prove existence
results in very general settings, at the expense of weakening the regularity of the admissible
configurations. Indeed the cracks are now rectifiable sets, while the displacements are functions
of bounded variation. The object of this paper is to prove that, in the 2-dimensional case, it is
possible to prove regularity results for weak solutions. This analysis will be performed thanks to
an approach similar to the regularity theory for minimizers of the Mumford-Shah functional (see
[12, 6, 15]), leading to the existence of strong solutions.

The idea behind our study is that the discrete in time formulation (1.6) enjoys the same prop-
erties than the Mumford-Shah problem. Indeed, starting from a ”regular enough” initial datum
(up,To), by iteration and using the direct method in the calculus of variations, it is possible to
show the existence of a solution u¥ € SBV(Q) to

min {/ W (Vo) de + kHY 1S, \ T }) 1 v € SBV(Q),v = g(t¥) HN "-a.e. on 9N\ Ff_l} ,
Q

where T¥ ;| C Q is the (closed and countably HY ~l-rectifiable) crack obtained at the previous
time step, and g(t¥) € W1>°(R¥) is the updated prescribed boundary displacement at time ¢¥.
Then it is possible to apply the regularity results for the Mumford-Shah problem [12, 6, 15] to
ensure that S is (essentially) closed in Q\T* |. The new (closed) crack is then defined by

IF=TF US,

and the associated displacement enjoys a Sobolev regularity outside the crack. Under suitable
assumptions on W, the equilibrium equation (1.3) entails a C' regularity for the displacements,
yielding thus a discrete in time evolution in a strong sense. Then the main difficulty consists in
being able to preserve this property when letting the time step tend to zero.

The regularity results [12, 6, 15] are based on the fact that the H™¥ ~!-density of jump set S,
at any discontinuity point g € S, is bounded away from zero. Unfortunately, the density lower
bound is not uniform with respec‘é to the time step so that these results are not robust enough
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to pass directly to the limit. Thus, we need to go deeply into the details of the proofs to find, if
possible, uniform estimates. It turns out that this is possible in the 2D case (see Remark 5.6) for
the simple geometrical fact that p — HN=1(0B,) ~ p¥~! is sub-additive only if N = 2.

Our approach contains a further difficulty. Indeed in [12, 15], the authors proved a density
lower bound estimate for balls well contained inside €2, while in [6] a similar estimate was obtained
for balls centered on the (Dirichlet portion of the) boundary of . In our case, we actually need to
prove such a density lower bound for balls centered inside 2 but possibly intersecting the boundary.
This is due to the fact that cracks on the boundary can be reached as ”limits” of cracks lying
inside the body (see Remark 5.8): in this case interior estimates cannot be used to infer estimates
for the limit crack.

The paper is organized as follows. In Section 2 we present the main notation and recall the
tools employed in the paper.

In Section 3 we collect the regularity properties of the minimizers of the free discontinuity
problems involved in the analysis. We show (Proposition 3.11) that minimizers with a non-
homogeneous Dirichlet boundary condition g are (modulo a translation by —g) quasi-minimizers
under a homogeneous boundary condition (see Definition 3.3). Then we state (Theorem 3.4) a
density lower bound for the jump set of quasi-minimizers in the form we will use to deal with
quasi-static evolutions. The proof of this result is postponed to Section 6: it rests on a gradient
bound estimate for local minimizers of integral functionals under suitable homogeneous Dirichlet
conditions (Theorem 3.8) whose proof is given in Section 7 (the estimate is straightforward in the
case W(Vu) = |[Vu|?, see Remark 3.9).

In Section 4, we recall the results from [8] concerning existence of quasi-static evolutions. In
view of our applications, we restrict to a generalized anti-plane setting, for which the framework
of [8] reduces to considering displacements of class SBV, and countably H~ ~!-rectifiable cracks.
The boundary displacement is imposed only on a portion dp€2 of 2. Rather than a Griffith’ type
energy, we consider the more general anisotropic surface energy

Es(T) ZZ/FK(Z/F)dHNil

depending on the approximate normal vr to I'. This makes no essential difference (with respect
to the scheme illustrated for example in [3, Chapter 7]) concerning the proofs of regularity results
for the minimizers of the associated free discontinuity problems.

Section 5 contains the main results of the paper. In the two dimensional case N = 2, and
under suitable assumptions on the reference configuration, the elastic energy density W and the
boundary displacement g, we prove (Theorem 5.2) the existence of regular evolutions, that is
such that T'(¢) is closed in the relative topology of Q U 0p{, and wu(t) is Sobolev regular and
continuous on 2\ I'(¢). This is a consequence of a uniform H*-density lower bound for the cracks
of the incremental configurations (Proposition 5.5), which turns out to be stable as the time step
discretization vanishes: we remark that the proof of such a uniformity is the only point in the
paper which requires the dimension two, the rest of the analysis being N-dimensional. Under
further assumptions on W, regular evolutions are then shown (Theorem 5.11) to be evolutions
in a strong sense, that is satisfying (1.5): we thus obtain the generalization of the result in [11]
without requiring a uniform bound on the number of the connected components of the admissible
cracks.

The two last sections are devoted to prove Theorems 3.4 and 3.8. The proof of Theorem 3.4 in
Section 6 is performed as in [3, Chapter 7], and rests on a decay lemma (Lemma 6.6). Its basic
idea is that if the density of jump set of a quasi-minimizer u is small enough, then u is closed to
being the local minimizer of the bulk energy without jump. As mentioned above, the main point
in our analysis is the presence of a homogeneous Dirichlet boundary condition. This reflects on
the fact that the local minimality involves a Dirichlet condition on a flat boundary. The precise
gradient bound estimate for these local minimizers, Theorem 3.8, is proved by resorting to De
Giorgi’s approach to the regularity of solutions of nonlinear elliptic partial differential equations.
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2. PRELIMINARIES

In this section we state the main notation and recall the basic definitions employed throughout
the paper. In the sequel,  stands for a bounded open subset of RV,

General notation. We will denote by B,(x) the open ball in RY of center € RY and radius
p>0. If z =0, we simply write B, instead of B,(0).

If p > 1, we use standard notations for Lebesgue spaces LP(£2) and Sobolev spaces WP ().
We write |A| for the Lebesgue measure of a measurable set A C RY. Moreover wy := |B;| will
stand for the volume of the unit ball. Finally we will denote by H"~! the (N — 1)-dimensional
Hausdorff measure.

SBV-functions. The space SBV(Q) of special functions of bounded variation is given by all
functions u € L'(Q) such that the distributional derivative Du of u can be represented as a vector
valued bounded Radon measure of the form

Du=Vul" + (ut —u ))y,H N ILS,.

Here £V is the Lebesgue measure, Vu € L*(Q;RY) is the approximate gradient of u, and S, is
the jump set of w. S, turns out to be countably H~ ~!-rectifiable, i.e., it is contained up to a set
of HN~1-measure zero in the union of C'-submanifolds of RY. It is possible to define HN~1-a.e.
on S, an approximate normal denoted by v, as well as traces u™. We refer to [3] for a detailed
description of that space.

The space SBVP? (), for p > 1, is a subset of SBV(Q2) made of all functions u € SBV () such
that Vu € LP(Q;RY) and HV~1(S,) < +o0. One of the main interests of the space SBVP(() is
that Mumford-Shah like functionals are coercive and lower semicontinous in that space according
to Ambrosio’s compactness Theorem (see [3, Theorems 4.7 and 4.8]).

Theorem 2.1. Let (u,) C SBV?(Q) be a sequence such that
sup ([[unlloo + [[Vuallp +HY 71 (Su,)) < +oc.
neN
Then, there exist a subsequence (upn,) and a function w € SBVP(Q) such that u,, — u strongly
in LY(Q), Vu,, — Vu weakly in LP(Q;RY), and
HN=Y(S,) < liminf HY (S, ).
k k

—+0o0
The previous result suggests to define a notion of “weak convergence” in SBV?((Q).

Definition 2.2. Let (u,) C SBV?(Q) and u € SBVP(Q). We say that u, converges weakly to u
in SBVP(R), and we write u, — u, if u, — u strongly in L' (), Vu, — Vu weakly in LP(Q;RY),
and sup, ey HY71(S,,,) < +oo.

We will use the following semicontinuity property (see [3, Theorem 5.22]): if u,, — u weakly in
SBVP(Q), then

(2.1) / (V) dHN 7! < lim inf/ kv, ) dHN !
SunA Su, NA

n—-+oo

for every norm x : RY — [0, +00) and every open set A C (.

oP-convergence of rectifiable sets. We use the notation C (resp. =) for the inclusion (resp.
equality) of sets, up to a set of zero H™¥~!-measure. Let us consider
(2.2) R(Q) :={T' C Q : T is countably H ~'-rectifiable with H"~}(T') < 4-o0}.

Note that any I' € R(Q) admits at H" !-a.e. € I an approximate normal denoted by vr(z).

We next recall a notion of convergence for H™ ~L-rectifiable sets introduced in [8, Definition
4.1] called oP-convergence. It is closely related to the jump sets of weakly converging sequences
in SBVP. Let us fix an open set 2y C RY such that Qc Q.
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Definition 2.3. We say that a sequence (I'y,) oP-converges in Q to some I' € R(Q) if HN~1(T,,)
is uniformly bounded, and the following properties are satisfied:
a) if up, — u in SBVP(Qy), and Sup, C T, for some sequence ny — +o0o, then S, C I';
b) there exist a function u € SBVP(Qg) and a sequence u, — u in SBVP(Qy), such that
S., CTy for eachn €N, and S, =T.

The oP-convergence enjoys good compactness and lower semicontinuity properties as the next
result shows (see [8, Theorems 4.3 and 4.7]).

Proposition 2.4. Let (I'y,) be a sequence in R(§2).

i) If HN-N(T,) ds uniformly bounded, then there exist a subsequence (Ty,) and T € R(Q)
such that I',,, oP-converges to I' in €.

ii) If Ty, oP-converges to some I' € R(Y), then

/ k(vr) dHN 7! < lim inf/ w(vp, ) dHN 1
T\E T \E

n—-+oo

for any Borel set E C Q with HN~Y(E) < 400, and for every norm  : RN — [0, +-00).

Hausdorff convergence of compact sets. Let K; and K» be compact subsets of Q. The
Hausdorff distance between K; and Kj is given by

dy (K1, K3) := max{ sup dist(z, K3), sup dist(y,Kl)}.

reK1 yeKo

Definition 2.5. We say that a sequence (K,) of compact subsets of Q converges in the Hausdorff
metric to the compact set K if dy (K, K) — 0.

The Hausdorff convergence of compact sets turns out to be equivalent to the convergence in
the sense of Kuratowski. Indeed K, — K in the Hausdorff metric if and only if both following
properties hold:

a) any z € K is the limit of a sequence (z,) with z, € K,;
b) if x, € K, any limit point of (z,) belongs to K.
Finally let us recall the following compactness result (see [3, Theorem 6.1]).

Theorem 2.6 (Blaschke). From any sequence (K,,) of compact subsets of 2, one can extract a
subsequence converging in the Hausdorff metric.

3. SOME REGULARITY RESULTS FOR FREE DISCONTINUITY PROBLEMS
Let Q CRY (N >2), 9p2 C 09, OnQ C 09, and Q' C RY be such that

Q C RY is a bounded open set with Lipschitz boundary,

Op€) C 01 is open in the relative topology of 9L,

ONQ =00\ 0pQ,

Y is a bounded open set with Q C ', Q' NN = IpQ, and diam(Q') < 2diam(f).

(3.1)

Let us consider a continuous function W : RY — R satisfying:
(H1) There exist L > 0 and p > 1 such that for every £ € RV,

L™ elP < w(e) < LIg|”;
(Hs) There exists > 0 such that for every ¢ € C1(B;) and ¢ € RV,
| Wi+ o) - w©lds 2 [ (€ + 7o) F Ve

By
(H3) For every t > 0 and & € RV,
W(t§) = tPW(g).
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Remark 3.1. It can been proved that if W is a continuous function satisfying the p-growth and
p-coercivity conditions (Hp), then the following statements are equivalent:

i) W satisfies (Hs);

ii) W is uniformly convex, i.e., there exists yo > 0 such that for every &, & € RV,

W (51 ;52) < %W(&) + %W(&) — po(l&1 1 + &) 7 |6 — &

iii) W(€) = cl¢]P + (&) for some constant ¢ > 0, and some convex function ¢ : RV — R
satisfying 0 < 1(€) < L|¢[P.

Finally let x : R — R be such that

(3.2) {FL is a norm,

there exists 3 > 0 such that for every v € RY, B=tv| < k(v) < B|v|.

For every open set A C Q' and every u € SBVP?(A), let

(3.3) Flu, A) = /AW(VU) dx + /SmA K(v)dHY ™ ifu=0ae in AN(Q\Q),

+00 otherwise.
Define also the minimal value
m(u, A) := inf{F (v, A) : ve SBVP(A),{v #u} CC A},
and the deviation from minimality of u on A by setting, if m(u, A) < 400,
Dev(u, A) := F(u, A) — m(u, A).
We write F(u) for F(u, ).

Remark 3.2. The role of ' in the definition of F(u, A) is that of enforcing in a variational sense
the Dirichlet condition on dpQ N A: indeed it is immediately seen that

SuNA=(S.NANQ)U{z € IpQNA: u(x)# 0},

where the value of u on 0pQ2N A is intended in the sense of traces. As a consequence, the functional
F(u, A) can be described in terms of the behaviour on AN taking into account the value of the
traces. We prefer to adopt the setting involving the extended domain €2’ for which points with
nonzero traces are treated as ordinary jump points since this is the point of view taken in several
papers dealing with quasi-static crack evolutions (see [16, 8]).

In the sequel, we will consider quasi-minimizers of F' whose precise definition is given below.

Definition 3.3 (Quasi-minimizers). Let A C Q' be an open set. We say that u € SBVP(A) is
a quasi-minimizer of F(-, A) if there exist constants w > 0 and s € (0,1) such that for every ball
B,(z) CA

Dev(u, B,(2)) < wpN 7.

Note that the previous definition is not the most general one (see e.g. [2]), but it will be enough
for our application. Clearly, if u is a quasi-minimizer of F(-, A), then necessarily « = 0 a.e. in
(Q\ Q)N A.

A density lower bound estimate for the jump set of quasi-minimizers of the Mumford-Shah
functional, i.e., for W(£) = |¢|? and x(v) = |v|, was shown to hold on balls B,(z) C € by De
Giorgi, Carriero and Leaci in [12], and subsequently extended to the nonlinear case (see [3, 15]).
The case of the Mumford-Shah functional with Dirichlet boundary conditions has been treated
by Carriero and Leaci in [6], establishing the density lower bound also for balls B,(z) with center
x € 0pQ). In view of our application to quasi-static crack growth, we need to extend the result
to balls possibly intersecting dp€2 but with center inside 2. This extension is contained in the
following theorem, whose proof is postponed to Section 6.
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Theorem 3.4 (Density lower bound for the jump set of quasi-minimizers). Assume that
O satisfies (3.1), and that

OpQ) is of class C*.

Let W : RN — R be a continuous function satisfying (Hy) — (H3), let A C Q' be an open set, and
let w e SBVP(A) be a quasi-minimizer of F (-, A) with constants w > 0 and s € (0,1).

Then for every nn > 0, there exist Y9 > 0 and py > 0 (depending only on N, p, L, u, B, s, w,
and n) such that

HN (S, N By(x)) > dop™ !
for all balls B,(z) C A with center x € S, radius p < py and such that dist(B,(x),OnQ) > 1.

The safety parameter n is introduced for technical reasons connected to the fact that only the
portion dpQ) of A€ is assumed to be of class C'. This parameter enforces the balls involved in the
density lower bound to be well distant from Jx €2 on which only Lipschitz regularity is available.
Note that if the entire boundary 02 was of class C!, then it would be useless to introduce 7.

It is essential for our application to crack evolution that the constants ¢ and py are independent
of the subset A of €. Indeed we will need to consider a sequence of minimization problems stated
on a decreasing family of open subsets of ', and we will need to ensure that the constants obtained
in the density lower bound estimates are indeed uniform.

Remark 3.5. Let v € SBVP(A) be a quasi-minimizer of F(-,A) for A C . Clearly S, C
(QUOPN) N A. From standard properties of densities (see e.g. [3, Section 2.9]), we know that for
HN"Lae z € [(QUAIPN) N A]\ S, one has
N-1
o HY(5,0B,(0)
p—0 p

=0.

As a consequence of Theorem 3.4 we deduce that
HY L ([(QU ) N AN (S, \ S,)) =0,
so that S, is essentially closed in [©2 U 9p§] N A.

The proof of Theorem 3.4 relies on a gradient bound estimate for local minimizers of the bulk
energy under a homogeneous Dirichlet boundary condition, where the Dirichlet boundary dp{2
has been flattened into the boundary of a half plane. Let us introduce, for § > 0,

Hs:={zx = («',an) € RN :2n > -6},
and for every r <1 and u € WP (B,), let

W(Vu)dx if u=0a.e. in B, \ Hy,
FO,(S('U/’BT) = /BT ( \

400 otherwise.

(3.4)

Note that if » < §, then the functional Fy (-, B,) does not see the Dirichlet condition which
therefore becomes irrelevant.

Definition 3.6 (Local minimizers). Let r > 0. We say that u € WYP(B,) is a local minimizer
of Fos(-, By) if
Fos5(u, By) < Fos(v, Br)
for every v € WHP(B,) with {u # v} CC B,.
In order to estimate the gradient of such local minimizers we will need to distinguish the cases
d>1/2 and 6 € [0,1/2]. In the former case, the problem will essentially be reduced to an interior

estimate as in [15, Theorem 2.2], while in the latter case, the presence of the flat boundary will
play a crucial role in the estimate.
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Theorem 3.7 (Interior gradient bound). Assume that 6 > 1/2 and that W : RN — R is
a continuous function satisfying (Hy) and (Hz). Let u € WYP(By,s) be a local minimizer of
Fo,5(-, B1y2). Then, there exists a constant Co = Co(N, p, L, 1) > 0 such that

esssup |VulP < 218/ |Vu|Pdx  for every p < 1/2.
p/2 P B,

Theorem 3.7 is a direct consequence of [15, Theorem 2.2] since B3 CC Hs, so that the flat
boundary 0H; is not seen by the functional Fy (-, B1/2).

In Section 7, we will prove the following result which extends Theorem 3.7 up to the flat
boundary.

Theorem 3.8 (Boundary gradient bound). Assume that 6 € [0,1/2] and that W : RV — R
is a continuous function satisfying (Hy) and (Hz). Let u € WYP(By) be a local minimizer of
Fo5(-,B1). Then, for each Ry < 1, there exists a constant C, = C{(N,p, L, i, Ro, |Vul[p) > 0
(independent of 6) such that

1
esssup |[Vul? < Cf <—N/
p

|[VulPdz + 1 for every p < Ry.
B2 By

Without loss of generality, one can assume that the constants Cy and C{) involved in Theorems
3.7 and 3.8 satisfy

(3.5) Co < Cy.

Note finally that C{ is independent of J: this point is essential to establish Theorem 3.4 (see
Lemma 6.6).

Remark 3.9 (The case W (¢) = |£|?). Note that the conclusion of Theorem 3.8 is easily estab-
lished in the case W (&) = |¢|?. Indeed in that case the local minimizer v € WH2(By) is actually
a harmonic function over By N Hg, so that harmonic reflexion across 0Hs can be used in order to
get the gradient bound as a consequence of the mean value property for harmonic functions.

In the study of the quasi-static crack evolution model, we will consider a sequence of mini-
mization problems for free discontinuity functionals with a non homogeneous Dirichlet boundary
condition. In order to infer a density lower bound for the jump set of their minimizers, we associate
to them suitable quasi-minimizers of (3.3) and apply Theorem 3.4.

Let us consider an open set A C ' and let u € SBVP(A) be a solution of

(3.6) min{/AW(Vv) dx +/5 K(vy) dHN " v € SBVP(A), v =g ae. in (\Q) mA},

where g € WH°(Q'). The following energy upper bound estimate holds.

Lemma 3.10. Assume that (3.1) and (3.2) hold, and that W : RN — R is a continuous function
satisfying (Hy) and (Hz). Let A C Q, g € WH(QY), and let u € SBVP(A) be a solution of
(3.6). There exists a constant co > 0 (depending only on N, p, L, B, ||V|leo, diam(QY), and the
Lipschitz constant of 0Q) such that for any ball B,(z) C A

IVully s s, (aymry + HY (8w N By(x)) < cop™ .

Proof. Let us compare u with v := uxa\[onB,(z)- Observe that v € SBVP(A) with v = g on
(' \ Q) N A. Moreover

S, N B,(x) C [0B,(z) Q] U [0pQ N B,()].

By the minimality of u, since W satisfies (H1) and « satisfies (3.2), we infer (v = u = g a.e. in
B,(x) N[Q"\ Q)

v/ VU dy Y800 By ) < 1 / Ve dy s 31 S, 0 B )
B,(z B,(z

< L|Vg|Lwnp™ + BNwyp™ 4+ BHN 1 (0p0 N B, (),



EXISTENCE OF STRONG SOLUTIONS FOR QUASI-STATIC EVOLUTION IN BRITTLE FRACTURE 11

so that the result follows by the Lipschitz regularity of 92, and the fact that p < diam(Q)) <
2diam(Q). O

The following result holds.

Proposition 3.11. Assume that (3.1) and (3.2) hold, and that W : RN — R is a function of
class C* satisfying (H1) and (H3). Let AC Q, g € Wh(Q'), and let u € SBVP(A) be a solution
of (3.6). Then the function

4:=u—ge€ SBVP(A)
is a quasi-minimizer of F(-, A) for s =1/p and w > 0 which only depends on N, p, L, B, ||V co,
diam(QY), and the Lipschitz constant of 0.

Proof. Since S; = S, then 4 minimizes

1
v»—)/ W(Vv)dy+/ /DW(VU+SV9)~ngyds+/ w(vy) dHN 1
A 0 A SyNA

among all v € SBVP(A) with v =0 a.e. in (' \ Q)N A. Let B,(z) C A and v € SBVP(A) with
{v # 4} CC B,(x). From the previous minimality property we deduce that

(3.7) F(u,B,(x)) < F(v,B,(z)) —|—/ /B . (DW (Vv + sVg) — DW (Vi + sVg)) - Vgdyds.

By the p-growth property (H;) and the convexity of W (see Remark 3.1), we deduce that its
differential DW satisfies the following (p — 1)-growth condition: for all £ € RY,
[DW (€)] < e’

for some constant ¢ > 0 depending only on p and L (see e.g. [18, Lemma 5.2]). Hence, by Holder’s
inequality, we infer that

/ / W (Vi + sVyg) - Vgdyds
By ()

< ¢ (I9al 5, IVl Lo, 0w + 19918 5, aymms )

for some constant ¢ = ¢(p, L) > 0. Using Lemma 3.10 and the coercivity property (Hy), we get
that

(3.8) W (Vi + sVg)-Vgdyds

B (m)

<c (((coLpN*)@*”/p + (I9g)1%con p™) =0/ (Vg Zon p™) /7 + Vgl mwono™ )

N—1+1/p
)

<cip

for some constant ¢; > 0 depending only on N, p, L, 8, [|[Vg|lc, diam(Q2), and the Lipschitz
constant of 0€).
In order to estimate the other term, we use Young’s formula to get that

(3.9) W (Vv + sVyg) - Vgdyds

< c/ (sp/@*l)wvw + (P + 1)|Vg|p) dy
B <x> B, ()

< (P/0IF(w, By(@) + (7 + 1) V),
for some constant ca = c2(p, L, ||Vg|ls) > 0 and for € > 0 to be fixed later. Hence gathering (3.7),
(3.8) and (3.9), we infer that
F(i, By(x)) < (14 coe?” P=)F(v, B,(x)) + c1p™ 1HYP ey (677 +1)pN
Taking the infimum with respect to such v’s leads to

Dev(a, By(x)) < coc?’ PV E (i, By(x)) + c1pN 1P 4eo(e7? +1)pN
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As a consequence, using Lemma 3.10 we obtain that
Dev(t, B,(z)) < c3 (Ep/(p_l)pN_l + pNTIHYP (7P 1)pN)

where ¢35 > 0 depends only on N, p, L, 8, |[V¢||o, diam(2), and the Lipschitz constant of 9. If
we choose € = p/ ) we finally get that

Dev(i, By(z)) < wpN1H1/P,

for some constant w > 0 so that 4 is a quasi-minimizer for F(-, A) with the choice s = 1/p. O

4. QUASI-STATIC CRACK EVOLUTIONS

As mentioned in the Introduction, the Francfort-Marigo model for quasi-static crack propaga-
tion introduced in [17] has been addressed from a mathematical point of view in several papers,
in order to find suitable frameworks in which rigorous existence results could be proved (see
[11, 16, 8)).

In the sequel, we present a mathematical formulation of the Francfort-Marigo model which
is a sort of compromise between [16] and [8]. Specifically we consider an anti-plane generalized
geometry with elastic energy density W of convex type, and an anisotropic Griffith energy for
the cracks. Within this framework, we have at our disposal the tools for establishing existence
of quasi-static crack evolutions, and those for proving regularity results for the jump set of the
minimizers of the associated free discontinuity problems.

The reference configuration. Let € be a bounded open subset of RY (N > 2) with Lipschitz
boundary which stands for the reference configuration of an elastic material that can experience
cracks. We write 992 = InQ U IpQ2, where OpS2 denotes the Dirichlet part of the boundary on
which the displacement is prescribed, and dn€) denotes the Neumann part of the boundary which
is traction free. We assume that dp€2 is open in the relative topology of 9€).

Admissible configurations. Consider a boundary displacement g given by the trace on dp{ of
a function in WHP(2). We say that a pair (u,I') is an admissible configuration for g, and we
write (u,T) € A(g), if u € SBVP(Q), T € R(Q) (see (2.2)) with S, C T', and u = g HV l-a.e.
on OpQ\ . The set I stands for the crack of the body, while the function w is the associated
displacement.

Bulk and surface energies. Let W : RV — R be a convex function of class C! satisfying (H;) of
Section 3, and let k : RN — R be such that (3.2) holds. Given an admissible configuration (u,T")
for the boundary displacement g, we set

(4.1) W(Vu) = / W(Vu)dx and KT) ::/ w(vr) dHN L.
Q r\onQ

The quantity W(Vu) stands for the elastic energy associated to the displacement u, while
K(T) is the energy associated to the crack I'. Following Griffith’ ideas, K(T") is proportional to
the surface of I', and here we consider a possibly anisotropic surface energy depending on the
approximate normal vp to I'. Note that I' N Oy does not contribute to the energy associated to
T.

Finally, we define the total energy of the configuration (u,T’) as

E(u,T) :=W(Vu) + K£(T).

Quasi-static evolutions. Let us fix a time interval [0,T], where T' > 0, and consider a time-
dependent boundary displacement

(4.2) g € AC(0,T; WHP(Q) N L>(Q)).
Definition 4.1 (Quasi-static crack evolution). The map [0,T] 3 t — (u ( ) I'(t)) is a quasi-
) €

static evolution relative to the boundary displacement g if (u(t),I'(t)) € A(g(t)) for all t € [0,T],
and if the following properties are satisfied:
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(a) Irreversibility: for every 0 < s <t < T, then I'(s) C I'(¢).

(b) Global stability: for every (v,T") € A(g(t)) such that T'(t) C TV

) E(u(t), T (1)) < E(v, ).

(

c) Energy balance: for every t € [0,T], the total energy E(t) := E(u(t),T(t)) is absolutely
continuous and

(4.3

E(t) =£(0) + /0 5 DW (Vu(s,x)) - Vg(s,x)dzds.

The following result has been proved in [8].

Theorem 4.2. Let g be an admissible boundary displacement satisfying (4.2), and let (ug,Tg) €
A(g(0)) be globally stable in the sense of (4.3). Then there exists a quasi-static evolution [0,T] >
t— (u(t),T'(t)) relative to g and such that (u(0),T'(0)) = (ug, o).

The previous existence result is obtained following the main ideas outlined in [17]. Namely, a
discretized in time evolution is constructed by means of minimum problems taking into account the
irreversibility condition which forces the crack to increase in time. Then the time step discretization
is sent to zero, and the quasi-static evolution arises as the limit of a suitable piecewise constant
interpolation in time of the discretized evolution.

More precisely let

(4.4) 0=ty <ty <---<thyy=T

be a discretization of the time interval [0, T] such that the time step

(4.5) Spi= sup (tF -tV ) =0,
1<i<n(k)

and set gF := g(t¥). Setting (uf,T'§) = (uo, o), and assuming to have constructed (u¥ ,,T¥ |) €
A(gF_,), let (u¥,T*) € A(gF) be a solution of

(4.6) min{W(Vu) + K(T) : (u,T) € A(gF), I* , C T}

The existence of solutions to problem (4.6) can be established using the direct method in the
calculus of variations (see [8, Theorem 3.10]) thanks to Ambrosio’s theorem (Theorem 2.1) and

the compactness of R(€2) with respect to the oP-convergence (Proposition 2.4). Note that by a
truncation argument we can always assume that for every ¢ =0, ..., n(k)

(4.7) luflloe < 119 lloo-

For future reference, we need the following definition.

Definition 4.3 (Incremental configurations and discrete in time evolutions). Consider
the discretization (4.4) of the time interval [0, T).

We say that {(uf,T%):i=0,...,n(k)} is a family of incremental configurations if (u¥,T¥) is
a solution of (4.6) and (4.7) is satisfied.

The associated discrete in time evolution [0,T] > t — (u*(t),*(t)) is defined as the right
continuous piecewise constant interpolations
(4.8) uF(t) =i, gt(t) =g, T =T, telt i),
with u*(T) = uy gy, TH(T) =Tk ) and g"(T) = gk .

A quasi-static evolution is obtained from (4.8) by letting k — +00, i.e., by letting the time step
discretization tend to zero. More precisely the following result holds (see [8, 16]).

Theorem 4.4. Let [0,7] > t ~ (u*(t),T*(t)) be a discrete in time evolution relative to the
discretization {ti'c}ogign(k) of the time interval [0,T] satisfying (4.4) and (4.5). The following
properties hold.

(a) There exists a constant C > 0 such that for every k € N and t € [0, T

[ (®)lloe + IV ()]l + HYTHTH(E)) < C.
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(b) There exist a quasi-static evolution [0,T] 3 ¢t — (u(t),T'(t)) relative to the boundary dis-
placement g and with initial configuration (ug, L), and a subsequence of (u¥(t),T*(t))
(not relabelled) such that for every t € [0,T], T'(t) C QU IpQ,

WV () = W(Vu(t))
and
(4.9) K(TR(t)) — K(T(t)).
Moreover, for every t € [0,T]
TF(t) UaNQ — T(t) UONQ in the sense of o¥ -convergence on Q,
and for a subsequence (ki) (possibly depending on t)
ubt () — u(t) weakly in SBVP(Q).

5. REGULAR QUASI-STATIC EVOLUTIONS IN THE TWO-DIMENSIONAL ANTI-PLANE SETTING

In this section we show that in dimension two, and under suitable assumptions on the reference
configuration, the boundary displacements and the bulk energy density, there exists a quasi-static
evolution whose associated crack is, at any time, topologically closed. As a consequence, also the
associated displacements enjoy more regularity, they are Sobolev and Hoélder continuous outside
the crack. We will speak of regular quasi-static evolutions.

Let us consider the case N = 2. Assume that the reference configuration Q C R? is such that

Q C R? is open, bounded and with Lipschitz boundary,
(5.1) Op§) C 99 is open in the relative topology and of class C?,
NS =00\ OpQ.

We assume that the elastic energy density W : R? — R and the surface energy density » : R? —
R are such that

(5.2) W is of class C' and satisfies (H;)—(Hj3) of Section 3, and & satisfies (3.2).

Note that in view of Remark 3.1, W is uniformly convex on RZ.
Let us consider a prescribed boundary displacement g such that

(5.3) g € AC(0,T; WH>=(Q)).

Finally let us assume that the globally stable initial configuration (ug,I'g) € A(g(0)) is such
that T'g € QU Op is closed in the relative topology, and for every 1 > 0 there exist ¥y > 0 and
po > 0 such that for every « € I'g and p < po with dist(B,(x), OnQ) > 7

(5.4) HY (Lo N B,(x)) > Jop.

Remark 5.1. Note that the family of all admissible initial configurations is not empty. Indeed,
let Q9 C R? be a bounded open set such that Q C Qq, and set ' := Qo \ InQ. Let us extend g(0)
to a function in W1°°(Qy), and let ug € SBVP()') be a solution of

min{ W(Vv) dz —|—/ k(vy) dHN 7 v € SBVP(Q), v = g(0) a.e. in Q' \ ﬁ} .
(o) S,

From Proposition 3.11, ug — g(0) is a quasi-minimizer of the functional (3.3) with A = '. By
Theorem 3.4 and Remark 3.5, the set Ty := S,, C QU dpQ is essentially relatively closed in
QU 0p? and satisfies (5.4) for suitable dg, po > 0.

The main result of the paper is the following.

Theorem 5.2 (Existence of regular quasi-static evolutions). Assume (5.1), (5.2), (5.3) and
(5.4). Then there exists a quasi-static evolution [0,T] > t — (u(t),I'(t)) relative to the boundary
displacement g, with (u(0),T(0)) = (ug,y), such that for every t € [0,T]

I'(t) CQUOIPQ is closed in the relative topology,
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and, for some a € (0,1) independent of t,
u(t) € WHP(Q\ T(t)) N L>=(Q) N CO’O‘((Q UapQ)\T(1)).

loc

In order to prove existence of regular quasi-static evolutions, we study more in details the
discrete in time evolutions which are used to establish the existence of quasi-static evolutions. We
will prove that incremental configurations enjoy additional regularity properties (Proposition 5.3),
and that, thanks to a uniform lower bound for the density of the cracks (Proposition 5.5), this
regularity is transferred to the associated quasi-static evolutions as the time step discretization
vanishes (Theorem 5.7).

As in the previous section, let us take a discretization {t§}0§i§n(k) of the time interval [0, T
satisfying (4.4) and (4.5), and set gF := g(t¥).

In order to deal with the Dirichlet boundary condition, let us introduce a bounded open set
Qo C R? such that Q C Qg and diam(Qg) < 2diam(f2). By using an extension operator, we may
assume that

g € AC(0,T; WH>=(Qy)).

Given (u,T') € A(g(t)), we extend u to Qg by setting u = g(t) on Qp \ © obtaining a function in
SBVP(Qp). Note that we may have created a jump on the Neumann part Oy with

S, C TUINQ,

but this additional jump is not counted in the energy (4.1). As a consequence, A(g(t)) may be
described as

A(g(®)) = {(u,T) : w € SBVP(Q), T CQ, S, CONQUT, u=g(t) ae. in Q\ Q}.
The following result holds.
Proposition 5.3 (Regular incremental configurations). Assume (5.1), (5.2), (5.3) and (5.4).

There exist incremental configurations (uf,T%) € A(gF) with (u§,T§) = (uo,To), such that for
every k € N and i € {0,...,n(k)},

rf =T, U (S \owe).

Ff C QU OIpPN is closed in the relative topology,
and for some a € (0,1) independent of k and i

uF e WHP(Q\TF) N L=(Q) N ¢ ((QUapQ) \ TF).

loc

Finally for every n > 0, there exist Y9 > 0 and pg > 0 (independent of k and i) such that
(5.5) HA(TE 0 B, (@) = dop

for every ball B,(z) C Qo \ (ONQ UTE |) with center x € T¥, radius p < po, and such that
dist(B,(x), ONQ) > 1.

Proof. Assuming having constructed (uf_;,T'% ;) € A(¢gF ) at time t¥ | for i > 1, with T'¥ | C
Q U dpQ closed in the relative topology of Q U dpQ, let uf € SBVP(Q) be a solution of the
following problem

i—

min / W(Vv) dz Jr/ K(vy) dH v € SBVP(Q), v = gF ae. in Qo \ Qp.
Q S,\(Tk_,UdN Q)

The existence of u¥ is guaranteed by Ambrosio’s theorem (Theorem 2.1) and the lower semicon-
tinuity property (2.1) since W(0) = 0, and by truncation we may assume that [|v| e < [|g¥]0o-
Clearly S,x C Q as g is locally Lipschitz on Qg \ Q.

Let us consider the open sets

Q=0 \0nQ and  A:=Qp\ (ONQUTE ).
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It is readily seen that the restriction of u¥ to A is a solution of (3.6) with g = g¥ (compare
firstly with bounded functions in SBV?(A) which can be seen as functions in SBVP () since
H}(ONQUTE |) < 400, and then use a truncation argument). By Proposition 3.11, the function

uf — gF € SBVP(A)

is a quasi-minimizer of (3.3) with constants s = 1/p and w = w?. Note that w¥ only de-
pends on N, p, L, B, |VgF|lw, diam(€), and the Lipschitz constant of 2. However, since
supiepo, 7] IV9(#)]loo < +00, we infer that wk < w for some w independent of ¢ and k.

By Theorem 3.4 and Remark 3.5, since clearly S, ko= =S, - , the set S, k is essentially closed
in A, and for every n > 0 there exist ¥ > 0 and po >0 (dependmg only on N, p, L, u, B, g,

d1an1(Q), the Lipschitz constant of 9 and #) such that
(5.6) H (S 0 By(@)) = dop

for all balls B,(z) C A with center z € S_uf, radius p < po, and such that dist(B,(z), OnQ) > 7.
Note that the constants (pg,J9) given by Theorem 3.4 can be taken to be equal to those of (5.4)
involving T'y.

By considering the restriction of u¥ to Q and setting

I =T7 U (S \ On9)

we obtain that (uf, T¥) € A(gF) with T C QU 9pQ closed in the relative topology of Q U dpQ,
and uf € WHP(Q\TF)NL>2(Q). It is easily seen that (u¥, I'¥) are incremental configurations, i.e.,
they are solutions of (4.6) satisfying the L>°-bound (4.7). By the global stability of (u¥, T'¥), we
deduce that
W (Vul)de < W(Vv) dx
Q\rk Q\I'*

for any v € WHP(Q \ T'¥) such that v = g¥ H'-a.e. on OpQ \ T'¥ (in the sense of traces).
Since

(5.7) sup (luflloo + Vg llo0) < oo,

according to [18, formulas (7.45) and (7.54)], we infer that there exists o € (0,1) independent of

k and ¢ such that
el ((QUapQ) \ TH).

loc

Finally (5.5) follows from (5.6), so that the proof is concluded. O

Remark 5.4. Assume that A C Q is open and such that AN (OxQUT¥) = () for every k,i. In
view of (5.7) and according to [18, formulas (7.45) and (7.54)], we infer that

sup [ llgo.e. zry < +o0.
)

Moving to the associated discrete in time evolutions, we can formulate the following uniform
density lower bound for the cracks.

Proposition 5.5 (Uniform in time density lower bound). Assume (5.1), (5.2), (5.3) and
(5.4), and let [0,T] > t — (uF(t),T*(t)) be the discrete in time evolution associated to the incre-
mental configurations given by Proposition 5.3.

For every n > 0, there exist Y9 > 0 and pg > 0 (independent of k and t) such that for all
te0,1],

(5.8) H(TH(1) N By () > dop

for any ball B,(x) C Qo\ONQ of center x € T*(t), radius p < po, and such that dist(B,(z), On§) >
n.
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FIGURE 1. The 2D geometrical argument.

Proof. The proof is based on a simple geometrical argument which works in dimension two. Let
Yo and pg be given by Proposition 5.3. It suffices to prove that (5.8) holds for I'¥ for every k € N
and ¢ € {0,...,n(k)}. We proceed by induction on 1.

For i = 0, the density lower bound holds by assumption (5.4) since I'§ = Ty (and 9o, pg can be
considered compatible with the constants in (5.4)). Assume that (5.8) holds for I'¥_,, and let us
prove it for T¥ =Tk | U (S—uf \ OnQ2). Let us consider

z € Sy \ (1 UaNQ),
and let p < po be such that B, (x) C Q\OnQ and dist(B,(z), On2) > 1. Define dy := dist(x, ¥ ;U
OnQ) > 0 and consider y € T* | UdnQ such that dp = |z — y|.
If p < do, the desired inequality follows by (5.5) since in that case B,(z) C Q \ (OnQUTE ).

If p > &9, then necessarily y € I¥ | \ OnQ (since B,(z) does not intersect Ox§2). Then in view
of the inductive assumption on T'¥ | and of (5.5), we infer that (see Figure 1)

H(TF N By(x)) > H'(TF N Bs,y () + H(TE 1 N By, (y)) = 9060 + Jolp — o) = Dop.
O

Remark 5.6. Following the previous estimates in the case N > 3, we would end up with the
inequality

HNHTE N B, () > edop™ !
with € € (0,1), which degenerates as k — +oc.

We are now in position to prove Theorem 5.2. It is a consequence of the following result.

Theorem 5.7 (Convergence to a regular quasi-static evolution). Assume (5.1), (5.2),
(5.3), (5.4), and let [0, T) > t — (uk(t),Tk(t)) be the discrete in time evolution given by Proposition
5.5.

There exists a (not relabeled) subsequence (independent of t) of (u¥(t),T*(t)) and a quasi-static
evolution [0,T] > t — (u(t),I'(t)) relative to the boundary displacement g, with (u(0),T(0)) =
(ug,Tg), and such that the following properties are satisfied.
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(a) For everyt € [0,T]
T(t) CQUOIPQ is closed in relative topology of QU IpQ
and, for some a € (0,1) independent of t,
u(t) € WHP(Q\ T(t)) N L>=(Q) N C&?((Q UapQ)\T(1)).
(b) For every t € [0,T]

(5.9) IF(t) UINQ — T(t) UONQ  in the Hausdorff metric,

and
(510) / K (VFk(t)) dHl — K (VF(t)) dHl

Tk (t) I'(t)
(¢) For everyt € [0,T]

(5.11) Vuk(t) — Vu(t)  strongly in LP(;R?)

and
(5.12) / W(Vu®(t)) dz — / W(Vu(t)) d.

Q Q

Finally, for every A C Q open, connected, with Lipschitz boundary, such that AN (OnQU
L(t) =0 and H1(OAN (OpQ\T(t))) > 0, then AN (ONQUTF(t)) = 0 for k large enough

and
(5.13) uF(t) = u(t)  uniformly in A.

Proof. Let us consider the quasi-static evolution [0,7] 3 ¢t — (u(t),T'(t)) associated to a subse-
quence of ¢ > (u*(t),T*(t)) according to Theorem 4.4. We know that (5.12) holds true.
Concerning the cracks, we have I'*(¢), I'(t) C QU dpS,

T*(t)UoNQ — T(t) UONQ  in the sense of oP-convergence on 2,

and (5.10) is a consequence of (4.9).

Since the sets I'*(t) U OxQ are closed in Q and increasing in time, by [11, Theorem 6.3], up
to a further subsequence independent of ¢, we can assume that there exists an increasing map
t = Kn(t), with Ky(t) € Q compact and such that for every ¢ € [0, 7]

rk () UIONQ — Kn(t) in the Hausdorff metric.
Let us set
(5.14) K(t):= Kn(t) \ OnQ

so that K (t) C QU IpQ is closed in the relative topology of Q U dpfD.

Concerning the displacements, let us prove (5.11). This improvement for the convergence of
Vuk(t) to Vu(t) (strong convergence and no need of subsequences depending on t) is due to the
uniform convexity properties of W. Let (Vu¥i(t)) be a subsequence of (Vu*(t)). There exists a
further time-dependent subsequence (not relabeled) such that

ubi(t) = v weakly in SBV?(Q)

for some v € SBVP(Q) with (v,I'(t)) € A(g(t)) (admissibility is a consequence of the oP-
convergence of the cracks). In view of the global stability of (u*(t),I'*(¢)), the Jump Transfer
Lemma [8, Theorem 5.1] immediately entails that

5 W (Vv)dz < /QW(VZ) dx

for any z € SBVP?(Q) such that (z,I'(t)) € A(g(t)). Note that u(t) also enjoys the same property.
Since the set {Vz € LP(Q;R?) : (2,T(t)) € A(g(t))} is convex and W is strictly uniformly convex
(see Remark 3.1), i.e. & +— W (&) — c[¢|P is convex for some ¢ > 0, we deduce that Vv = Vu(t).
As a consequence, along the entire sequence

Vb (t) — Vu(t) weakly in L?(Q;R?).
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In view of (5.12), and since W is strictly uniformly convex, the convergence is readily seen to be
strong, so that (5.11) follows.
In order to complete the proof, we now proceed in several steps.

Step 1: Localizing the convergence of the crack energy. Let us prove that the convergence
of the surface energy (5.10) can actually be localized on almost every balls, i.e., for every x €
Qo \ OnQ and a.e. p > 0 with B,(z) C Qo \ In 2, then

(5.15) lim ki (vrk(y) dH :/ k(v dH .
k=+oo Jrr)nB, (v) L) D(t)NB,(x) (o)

By the lower semicontinuity property of the oP-convergence (see Proposition 2.4), we have

lim inf/ K (vreg) dH' = liminf K((T*(t) U OnQ) N B,(z))
Tk (t)NB,(z)

k——+oo k——+oo
> K((T'(£) UdnQ) N B, () = / k (vege) dH,
T(H)NB,(z)
hence it remains to prove that
(5.16) limsup/ K (l/l"k(t)) dH* < / K (l/l"(t)) dH'.
koo JTk()NB, (z) T(£)NB,(z)

First of all, we notice that there exists a countable set S C (0, dist(z, (2o \ On§?)) such that for
all p & S

(5.17) H'(T(t) N OB, (z)) =0.

Select such a radius p € S, and assume that (5.16) does not hold, then

(5.18) Hmsup/ K (vpey) A > / K (vre) dH'.
k—+oo JTk(t)NB,(z) I(t)NB,(z)

On the other hand, using again Proposition 2.4, we have that

k——+oo k——+oo

lim inf/ K (l/l"k(t)) dH' =liminf K((T*(t) UONQ) \ B,(x))
T*()\B, (=)

K (l/p(t)) dHl

> K(T(0) Uon) \ By = |
(H)\
Consequently, in view of (5.17) and (5.18), we deduce that

]imsup/ K (Vpk(t)) dH! >/ K (Z/F(t)) dH!
T*(t)

k—+o0 I'(t)

BP(I)

which is against (5.10). We conclude that (5.15) holds.

Step 2: Hausdorff convergence for the cracks. We are now in position to prove that

I'(t) = K(t), where K(t) is given in (5.14), so that we can assume I'(t) C QU dp) closed in the
relative topology of Q U dp{) and

T*(t)UINQ — T(t) UONQ  in the Hausdorff metric.

Hence item (b) and the first part of item (a) hold true.
By definition of o” and Hausdorff convergences, we always have that I'(t) C K (t). Assume by
contradiction H!(K (t) \ ['(t)) > 0. Then by [3, Section 2.9] there exists x € K(t) \ I'(¢) such that

PANGINNED)
p—0 p

=0.

Let us fix 7 > 0 such that
2n < dist(z, INQ).
There exists p < min{pg, n} such that B,(z) C Qo \ InQ and

(5.19) HY(T(t) N B,(x)) < 908 2p,
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where pg and ¥y are the constants appearing in Proposition 5.5 associated to 7, while 5 appears
in the coercivity estimate for the surface energy density « in (3.2). By (5.15), there exists p’ < p
(which can be chosen arbitrarily close to p) such that

(520) lim K (VFk(t)) dHl = / R (l/p(t)) dHl

k=400 Jrk($)nB,, () T(t)NB . (z)
Since I'*(t) U On 2 converges to K (t) U dnS in the Hausdorff metric, and = € K (t), it is possible
to find a sequence of points zj, € I'*(t) UdnQ with 2 — x. Being dist(B,(z), InQ) > 1, then
zp € T*(t) for k large enough. Hence if p” < p/, then for k large enough one has B, (zy) C
By (z) C Qo \ OnQ and dist(B, (), OnQ) > n, and thus by (5.20) and (5.8)

(:21) U N By(o) = [ 5 (o) dH!
T()NB,/ (x)
= lim Vrk dH' > 1imsup/ K (vpk dH!
k— 00 Fk(t)ﬁBp/(m)( o) k—s+o0 JTRNB, 1 () (reco)
> B limsup HY (T (t) N By (1)) > 9087 "
k—+oo

Letting first p” 7 p’, and then p’ 7 p, we deduce that
HI(D(t) N B,(x)) > 90B?p,

which is in contradiction with (5.19).

Step 3: Regularity of the displacements. Let us complete the proof of item (a). Since
Suty C T(t) and T'(t) is closed in QUAIPQ in view of Step 2, we deduce that (recall that [|u(t)]|oc <
l9(®)lloo)

u(t) € WHP(Q\ T(t)) N L>®(Q).
Next using the global stability of (u(t),'(¢)), we deduce that

/ W(Vu(t))dxg/ W (V) da
O\I'(t) O\I'(t)

for any v € WHP(Q \ I'(t)) such that v = g(t) H'-a.e. on dpQ \ I'(t) (in the sense of traces).
Since

sup ([u(®)lloo + [[Vg(t)[loc) < +o0,
te[0,T)

by [18, Theorem 7.8], there exists & > 0 (independent of ¢) such that
u(t) € CUX (LU APQ) \ T(1)).

loc
Step 4: Uniform convergence for the displacements. Let us finally prove (5.13). Let
A C Q be open, connected, with Lipschitz boundary, such that A N (OyQ U T'(t)) = @ and
HYOAN (OpQ\ T(t))) > 0. Consider k large enough so that A N (OxyQ U T*(t)) = 0: this is
possible in view of the Hausdorff convergence in (5.9). In particular u*(t) € WP(A) for k large
enough, and
uki(t) = v weakly in WP (A)

for some subsequence (k;). Clearly Vo = Vu(t) in view of (5.11). Since ¢g*(t) — g(t) uniformly on
AN (0pQ\T(t)), we infer that v = g(t) H'-a.e. on 0AN (OpQ\T'(t)). Hence we deduce v = u(t),
so that without passing to subsequences

uk(t) — u(t) weakly in WP (A).
The convergence is indeed uniform on A: it is a consequence of Ascoli-Arzela theorem since in
view of Remark 5.4

sup [|u* (t)llco. ) < +0c.
keN



EXISTENCE OF STRONG SOLUTIONS FOR QUASI-STATIC EVOLUTION IN BRITTLE FRACTURE 21

Remark 5.8. Note that the main place where we used our version of the density lower bound
given in Proposition 5.5 on balls centered in € but touching dp€? is formula (5.21). Indeed, in the
case I'*(t) C Q but with I'(t) C dp ), then a density lower bound & la De Giorgi-Carriero-Leaci
for balls well contained in € would enforce the choice p” = pj/ with p}! — 0 as k — +o0, and the
resulting estimate would be useless.

Remark 5.9. Notice finally that for A C Q open and connected with AN (OxQUT(¢)) = 0 but
with HE(OAN(OpQ\T'(t))) = 0, it is readily seen, as a consequence of global stability and since the
boundary condition is not seen on A, that w(¢) is constant on A. In this case, following arguments
similar to those in Step 4, one can show that for every ¢ € [0,T] there exists cfil € R such that
uk(t) + & — u(t) uniformly on A.

We conclude the section by considering a strong formulation of the Francfort-Marigo model.

Definition 5.10 (Strong quasi-static evolutions). We say that a map [0, T] > t — (u(t), K(t))
with
K(t) C Q is closed and countably H'-rectifiable
and
u(t) € CO((QUIPQ) \ K(t))NCHQ\ K(t)),
is a quasi-static evolution in the strong sense relative to the boundary displacement g if u(t) = g(t)
on OpQ\ K(t) for every t € [0,T], and the three following properties hold.
o Irreversibility: for every 0 < s <t < T, then K(s) C K(¢).
e Global stability: for every t € [0,T], for every closed and countably H!-rectifiable set
K' C Q such that K(t) C K', and every function v € CO((QUdpQ) \ K')NCY(Q\ K)
satisfying v = g(t) on dpQ\ K', then
(5.22) E(u(t), K(t)) < E(v, K").

e Energy balance: for every t € [0,T)

/ /Q\K W(Vu(z,s)) - Vg(s, ) dz ds.

We speak about strong formulation because of the regularity of the cracks and of the fact
that admissible displacements admit elastic strains in a classical sense (without resorting to weak
notions of derivatives). Existence of quasi-static evolutions in a strong sense was established in [11]
for W (&) = |£]? under the assumption that the number of connected components of the admissible
closed cracks is a priori fixed.

The following result is a generalization of that in [11] without any assumption on the number
of connected components of the cracks.

Theorem 5.11. Assume that (5.1), (5.2), (5.3) and (5.4) hold, and that W € C*(R?)NC?(R?\{0})
satisfies (Hy), (Hs) and

(Hy) There exists X > 0 such that for every & € RV \ {0},

[D2W(€)] < AP~
(Hs) There exists pn > 0 such that for every & € RN \ {0} and n € RV,
D*W (&) -1 > pleP~2|nf*.

Then there exists a strong quasi-static evolution [0,T] > t — (u(t), K(t)) relative to the boundary
displacement g and such that K(0) = To U On Q.

Proof. Let [0,T] 2 t — (u(t),['(t)) be the regular quasi-static evolution given by Theorem 5.2.
Thanks to the global stability of (u(t),I'(¢)), and in view of [13, Theorem 2], we have also (up to
reducing «)

u(t) € Cgd (A\ T(1)).

To obtain a quasi-static evolution in the strong sense it suffices to set
K(t) :=T(t) UOonQ.
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Indeed we only need to prove (5.22). Without loss of generality we can assume that £(v, K') < 400

and [|v]lco < ||g(t)|loo- Then, since H!(K') < 400, we have v € SBVP?(Q2) with ’Hl(Sv\ =0
and v = g(t) on IpQ\ K’. Hence (5.22) follows by the global stability (4.3) since (v, K') € A(g(t))
and I'(t) C K'. O

6. DENSITY LOWER BOUND FOR THE JUMP SET OF QUASI-MINIMIZERS UNDER HOMOGENEOUS
DIRICHLET BOUNDARY CONDITIONS

The object of this section is to prove Theorem 3.4 on which rests the analysis of Section 5. It
states a density lower bound for the jump set of quasi-minimizers of suitable free discontinuity
problems involved in the analysis of crack propagation. Throughout the section, we assume that
Q, OpQ, OnS and ' satisfy (3.1), W satisfies (H;)—(Hs), while & satisfies (3.2).

Following the approach of [12, 6, 15], the density lower bound is a consequence of a suitable
decay estimate (see Lemma 6.6). The main difference with respect to the results of [12, 6] is
that we allow balls to have center in 2 and to possibly intersect the Dirichlet part 0p{2 of the
boundary: this fact is essential for our application to quasi-static crack propagation (see Remark
5.8). The proof of the decay estimate will rest on a regularity result for local minimizers of the
bulk energy (see Theorem 3.8), whose proof will be given in Section 7. Note that our surface
energy depends on the approximate normal to the crack, but it controls and is controlled by the
surface measure HN ! of the crack: as a consequence, this makes no essential difference with
respect to the Mumford-Shah type functionals considered in the above mentioned papers.

We will follow closely [3, Sections 7.1 and 7.2], taking care of the necessary modifications
required by the Dirichlet boundary condition. The decay estimate is proved by contradiction
considering rescaled problems on the unit ball and studying in details their asymptotic properties.
We collect such general properties in Subsection 6.1.

6.1. Problems on the unit ball. Given D C By a Borel set, ¢ > 0, u € SBV?(B;) and p < 1,
let us set

/WVu)dx—i—c/ k() dHN ™! ifu=0ae. in D,
Fp(u,c,B,) 5.NB

+0o0 otherwise.
We denote by
mp(u,c, By) == inf{Fp(v,¢,B,) : v € SBVP(B1),{v # u} CC B,}

the minimal value, and by Devp(u, ¢, B,) the deviation from minimality of u on B, for Fip, defined,
it mp(u,c, B,) < 400, by

Devp(u,c, B,) == Fp(u,c, B,) —mp(u,c, B,).
The following compactness result is a variant of [3, Proposition 7.5].
Lemma 6.1. Let Dy, C By be a sequence of Borel sets such that for some dy > 0 we have |Dy| > dy
for every h € N. Let (vy,) C SBVP(B1) be such that

sup [ W(Vu)dz < 400, HNTL(S,,) — 0, vy, =0 a.e. in Dy,
heNJB

Let us define vy, := (vy, A7V (vp, B1)) V 7~ (vp, B1), where
(o By) = ind {1 € [~o0,+o0] ¢ [{on < 1}] > 2ynHY(8,,)]7 )

6.1 N
(6.1) 7 (vp, By) := inf {t € [—o0, +00] : [{vn <t} > |Bi| — [2ywHY 71(S,, )] 71 },

and yny > 0 is the dimensional constant of the isoperimetric inequality.

Then there exists hg € N (depending only on dy and N) such that vy, = 0 a.e. in Dy, for any
h > hg. Moreover there exist a subsequence (vn,) C (vp), and a function v € WP (By) such that
Up; — v strongly in LP(B1), vp, — v a.e. in By, and

Jj—+o0

W Vv)dz < lim mf/ W (Vo) dx  for every p < 1.
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Proof. Let us show that the condition o, = 0 a.e. in Dy is satisfied for h large enough. Since
vp, = 0 a.e. in Dy, this is a consequence of the fact that for h large enough
(6.2) 7 (vp,B1) <0 and 7 (v, B1) > 0.

Indeed, given & > 0, since HV~1(S,, ) — 0 we have for h > hq independent of &

{vn < e} > |Da| > do > 2ywHY 1 (S, )] 7 7.

The value ¢ is thus admissible for the computation of 7~ (vy, By) for h > hg so that 7~ (vp, B1)
Since ¢ is arbitrary, we deduce that 77 (vs, B1) < 0. A similar proof shows that 77 (vs, By)
and thus (6.2) follows.

In view of [3, Proposition 7.5 and Remark 7.6], denoting by

my, = inf {t € [—o0,+00] : |[{vn, > t}| < |B1|/2},

<e.
> 0,

a median for vy, there exists a subsequence (vp,) and a function v € W?(B;) such that

(63) Uh, .

; —mp, — v strongly in LP(By), Vh,

, —mp; v ae. in By,

and, applying Ambrosio’s theorem to the truncation at level M of the previous sequence, and
letting M — 400, we get for every p <1

W(Vv)dzx < hmlnf/ w Vvh
Jj—+4oo
The proof of the lemma follows if we show that the sequence (myp,;) is bounded, since we can
consider (up to extracting a further subsequence) v+ m as limit function, where m is a limit point
for (mp,). Since v, = 0 a.e. in Dy, for h > hg, in view of (6.3), we obtain

limsup [mp, [P| Dy, | < [Jv]D,
Jj—+o0

and the result follows since Dy, | > do. O

The following proposition is an adaptation of [3, Theorem 7.7] to the case of a homogeneous
Dirichlet boundary condition. It deals with the asymptotic behaviour of sequences of functions
v, with vanishing deviation from minimality and vanishing jump set: as expected, the limit
Sobolev function is a local minimizer of the integral functional associated to W under a suitable
homogeneous Dirichlet boundary condition.

Proposition 6.2. Let f, : RV=1 = R be a sequence of continuous functions, and let Dy, := {x =
(2',xn) € By : ay < fa(2')}. Assume that (fr) is locally uniformly converging to the constant
function —§, with 6 € [0,1). Let ¢, > 0 and v, € SBVP(By) be such that

sup Fp,, (v, cp, B1) < +00,

heN

li D Bi) =
Rlm evp, (vn,cn, B1) =0,

lim HN7Y(S,,) =0,

h—+oco

v, — v € WHP(By) a.e. in Bj.

Then v is a local minimizer of Fy s(-, B1) (see Definition 3.6), and

(6.4) lim Fp, (vp,cn, B / W(Vv)dz for every p € (0,1).

h—+oco

Proof. Since p — Fp, (vp,cn, B,) is increasing on [0, 1], by Helly’s theorem we may assume that
up to a subsequence

lim Fp, (vn,cn, Bp) = a(p) for every p € [0,1]
h—+o00

for some increasing function « : [0,1] — [0, 400).
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Observe that since f, — —¢ locally uniformly, and § < 1, then necessarily |Dy| > dy for some
constant dyp > 0. Hence by Lemma 6.1 we have that (for a not relabeled subsequence) @, — v
strongly in LP(By), o5, = 0 a.e. in Dy, for h large enough, and for all p <1

(6.5) W Vo)dr < hmlnf/ W (V) d
h—+o0
We claim that

(6.6) lim Fp, (0n,cn, By) = a(p) forae. pe(0,1),
h—+o0

and that

(6.7) lim Devp, (0n,cn, B,) =0 for every p € (0,1).
h—+o00

Assuming the validity of (6.6) and (6.7), let us show that v € WP(B;) is a local minimizer of
the functional Fp s(-, B1) given in (3.4). Let w € WP(By) with {w # v} CC By and w = 0 a.e.
in By \ Hs. In view of Lemma 6.3 below, we can find w, € W1P(By) satisfying w, = 0 a.e. in
Dy, and wy, — w strongly in WP(By).

Let 0 < p’ < p <1 be such that « is continuous at p, {w # v} CC B, and (6.6) holds for both
p and p’. Then we have the inequality

Fp, (On,cn, By) < Fo 5(wn, By) + Devp, (O, cn, Bp)

C
+ C[Fp, (Vn, cn, By \ By) + Fos(wn, By \ By)| + 7,/ |Up, — wp|P dx,
(p—r)P JB\B,

where C' > 0 depends only on p and L. This inequality is obtained by the same proof of [3, Lemma
7.4], i.e., by comparing vj, with nwy + (1 — 7)oy, with 7 a suitable cut-off between B, and B,:
note that nwy, + (1 — ), = 0 a.e. in Dy, as both wj, and 7y, vanish on that set. For h — 400, in
view of our choice of p and p’, and thanks to (6.7) we obtain that

C
a(p) < W(Vw) dz+C +7/ v—wlP dx.
(v) (V) (p—p)P B,\B,/ | |

Bp/

a(p) —al(p) +/ W (Vw) dx

BP\BP/

Since w = v on B, \ B, letting p’ 7~ p we get

a(p) §/B W (Vw) dx

Choosing w = v in the previous relation, we obtain in view of (6.5) and (6.6) that
(6.8) alp) = / W) da
BP

Hence Fy 5(v, B1) < Fy s(w, B1), and the local minimality follows. Moreover, by (6.8), the mono-
tone functions o and p — | B, W (V) dz coincides a.e. on (0, 1), and since the latter is continuous,
they actually coincide everywhere on (0, 1). Hence (6.4) holds.

In order to complete the proof, we need to show claims (6.6) and (6.7). We will use the fact
that B8~ < k(v) < B for v € RY belonging to the unit sphere.

Let 9y, and v, be the Lebesgue representatives of v, and oy, respectively. By definition of oy
and 7% (vy, By) (see (6.1)), we have (see [3, Remark 7.6])

1
cn [V (i # 50} 00B,) dp = enl{in # 5} < 22y MY (ST 50
0

where we used the fact that ¢, Y ~1(S,,) is uniformly bounded. It yields, up to a further subse-
quence, that

hlir}rq en N H{on # r) N 0B,) =0 fora.e. pe(0,1).
— 400
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Since for every h € N and for a.e. p € (0,1) we have that HN=1(S;, N dB,) = 0, we can write for
p<p <1
Fp, (0w, cn, B,) < Fp, (vn, cn, Bp)
< Fp, (On,cn, Bp) + Ben HN 1 ({@y, # vp} N OB,) + Devp, (vn, ¢, By ).

The first inequality comes by truncation. The second one follows by the same proof of [3, Lemma
7.3] which is based on a comparison between vy and UnXxB, +vrX B, \B,: hote that the last function

vanishes on Dy, so that it is an admissible competitor. Letting h — 400 we obtain (6.6).
For what concerns (6.7), we observe that
Deth (’Dh’ Ch, BP) < FDh (17}17 Ch, BP) - FDh (vhv Ch, BP)
=+ ﬂch’HN_l({’Dh 7& ’L_jh} N 8Bp) =+ Deth (’Uh, Ch, Bp/).
This inequality follows by the same proof [3, Lemma 7.3] by taking as competitor wx g, +vnX B,/\B,
where w € SBVP(B,) is such that {w # o5} CC B, and w = 0 a.e. in Dj. Sending h — 400, we

deduce that (6.7) holds for a.e. p € (0,1). Since the deviation is an increasing function of p, we
deduce that (6.7) actually holds for every p € (0,1). O

In the previous proof, we used the following technical lemma.

Lemma 6.3. Let f;, : RN~1 — R be a sequence of continuous functions, and let Dy = {z =
(2',zn) € By : oy < fu(a)}. Assume that (fp) is locally uniformly converging to the constant
function —6, with § € [0,1). For every w € WhP(By) with w = 0 a.e. in {z = (2/,xn) € By :
rn < —6}, there exists wy, € WHP(By) with wy, = 0 a.e. in Dy, and

wp, — W strongly in W'P(By).
Proof. Let us consider
U:={z=(2',ay) € By:ay > -0} U ((-2,2)V"! x (-2,-9)).

We can extend w to U by setting w = 0 outside B;. Then, since U enjoys the exterior cone
condition, there exists @ € W1P(RY) such that W)y = w. We set for z € By

wp(x) == W(x — apen)
where ap, = sup|,|<o [fa(z') + 6| = 0. Clearly wy, € WHP(By), wy, — w strongly in WP(By),
and if z = (2/,zn) € Dy, then
oy —an < oy — fu(@) + fu(@’) —an < =6
so that © — apeny € (—2,2)V 7! x (=2, —6) and consequently wy, (z) = 0. O

6.2. The density lower bound estimate. In order to prove Lemma 6.6, we will need the
following geometric fact.

Lemma 6.4. Let (xp) be a sequence in QUIpQ such that xp, — T € OpY, and let pr, — 0 be such
that B, (xzn) C Q' and B, (xn) NOpQ # 0. Let us rescale By, (xp) to the unit ball By by means
of the change of variable x := xp, + ppy with y € By, and let Dy, C By be the region corresponding
to (V'\ Q)N B,, (zn).
Then, there exists a coordinate system such that, up to a subsequence,
Dp={y=(y,yn) € Br : yn < fu(y')}
for some f, € CLHRN=1L) locally uniformly converging to a constant —d, with & € [0,1].

Proof. Let us consider the orthogonal coordinate system relative to & such that
QN B.(z) ={z = (z',2n) € B.(T) : zn > f(2')},

where r > 0 and f € C}(RN~1) is such that f(z') = Zx and Vf(z') = 0. This is possible since
OpQ is of class C!.
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Since zp, — = and pp, — 0, then B, (x1,) C B,(Z) for h large enough. Let us use the coordinate
system in Z also for defining the blow up: the region Dj is then given for h large by those
y = (y',yn) € By such that

(zn)n + pryn < f(x), + pny'),
i.e.,

yn < frly)) == f @) + thh) - (xh)N.

Let zp, = (23, (2n)N) € By, (xn) N 0pS2 so that we can write, as (zn)n = f(2},), and
n_ San+eny) = o) + f(@) = f(z) + (o) — (@n)n
fu(y') = o :

Since we have |f(x},) — f(2},)| < Clz}, — z;,] < Cpp and |(zn)n — (xn)~n| < pr, then, up to a
subsequence,

f@y) = fz) + (zo)n = (2n)N
Ph

—ceR.

Moreover, the sequence of functions
f(@h + pny') — fla})
Ph
converges locally uniformly to zero since for some ¢, € (0,1)
f(@h +peny') — fla})
Ph
We conclude that fj, — ¢ locally uniformly on RV—1,
Since fr(0) < 0, we infer that ¢ < 0. On the other hand, since Dy, # (), there exists &, =

(&, (En)N) € By with fi(&),) > (§n)n > —1, which easily entails that ¢ > —1. The conclusion
follows by taking § = —c. O

gn(y') =

=V (), +pntny) -y = V@) -y =0.

Remark 6.5. From a geometrical point of view, the previous result shows that the rescaled
version of B,, (z1) N Op€2 tends to a flat boundary. This property is standard if =, = Z € pQ2.

The following result is the key point to obtain a density lower bound for the jump set of
quasi-minimizers of F'.

Lemma 6.6 (Decay lemma). There exists a constant C1 > 0 (depending only on N, p, L, )
with the following property: for every T € (0,1) and n > 0, there exist (t,n) > 0, ¥(r,n) >0 and
r(7,m) > 0 such that for every ball B,(z) C Q' withx € QUIPQ, p < r(r,n), dist(B,(z),On2) > 7,
and for every u € SBVP(B,(z)) satisfying u =0 a.e. in (' \ Q)N B,(z) with

HY7H(Su N By(x)) < e(rym)p™ ™t Dev(u, By(x)) < 9(r,n)F(u, By(x)),
then we have
F(u, B ,(z)) < Ci7V F(u, B,(x)).
Proof. Let us proceed by contradiction by showing that the result holds true for any choice of
Cy > max{4"™, C)L2NL +wn)},

where L is the constant appearing in the growth estimate (H;) for W, and C is the constant
given by Theorem 3.8 (with Ry = 3/4, and for local minimizers whose W1?(B;) norm is less than
or equal to L'/P).

Note that we can assume 7 < 1/4: indeed if 7 > 1/4, in view of the choice of C}

Oy F(u, B,(2)) > 4N4LNF(u, B,(z)) > F(u, By p(x)).

Assume by contradiction that there exist sequences of positive numbers ¢y, 95, v, — 0, of points
xp € QUIPQ, of radii pp, < rp, such that B, (xp,) € ', dist(B,, (z4),OnQ?) > 1, and of functions
up, € SBVP(B,, (z)) with up = 0 a.e. in (' \ Q) N B, (z1), with the properties

HY " (Suy N By, (x0)) = enpy ',
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Dev(un, By, (xn)) = OnF (un, By, (xn)),
and
F(un, Brp, (x1)) > Cr7" F(un, By, (wn))-
Following [3, Lemma 7.14] we rescale B,, (zp) to By and uy to v, € SBVP(By) by setting

1— 1
un(y) = py PPy Pun (o + pry)
with
Nf
Pp !

@ Flun, By, (@)

Let D;, C Bj be the set associated to (' \ Q) N B,, (z,) under such a rescaling. It is not
restrictive to assume that Dy, # (). Indeed, if not, the Dirichlet boundary condition will not play
a role, and the conclusion follows by [3, Lemma 7.14] (recall that the surface energy controls and
is controlled by the surface area). Consequently, since p, — 0 and n > 0, we can suppose, up to
a subsequence, that x;, — Z € dpQ. Then by Lemma 6.4, up to a further subsequence, one can
find a coordinate system in which

Dy, = {;L' = (SC/,SCN) € By zy < fh('r/)}v

for some f;, € CY(RN~1) with f,, — —& locally uniformly, where § € [0, 1].
With the notations of the beginning of Subsection 6.1, we get thanks to the p-homogeneity
(H3) of W and since the surface energy depends only on the normal v,

(6.9) Fp, (vp,cn, B1) =1, Devp, (vp, cn, B1) = Op, HN_I(Svh NB;) =
and
(610) FDh(’Uh,Ch,BT) > ClTN

Let us assume first that ¢ € (1/2,1]. By [3, Proposition 7.5 and Remark 7.6], there exists
v € WP(By5) such that, if my, is a median of vy, in B2, up to a subsequence
Vp — Mp — U a.e. in By ;.
There exists hg € N such that Dy N By, = 0 for all h > hg. In particular, from (6.9) we obtain
(we omit the subscript Dj, since the boundary condition disappears, and we localize on By /2)
F(’Uh,ch,Bl/Q) < 1 DeV(’Uh,Ch,Bl/Q) 4)0, /HNil(Svh ﬂBl/g) — 0.
By [3, Theorem 7.7}, v is a local minimizer of Fy (-, B1/2) and for all p < 1/2

h—+o0 h—+o0

(6.11) / W(Vv)dz = lim F(vp,ch,By) = lim Fp, (vn,cn, By) < 1.

Next, according to Theorem 3.7 and in view of (3.5), the function v turns out to be locally Lipschitz
on By, with the estimate

CH2NL

N
esssup |[Vo|P < 00—2/ [VolP de <
w B1/2 WN

Biy
where we used (6.11) and the growth condition (H;) in the last inequality. But since 7 < 1/4

hhrf Fp, (vn,cn, B / W(Vv)dz < L/ |VolP de < Cp2N L2
—

-

which is against (6.10) since by construction C; > C{2N L2.

If rather 0 < ¢ < 1/2, then |Dy| > dy > 0 for some dy > 0. By Lemma 6.1 and Proposition 6.2
there exists a local minimizer v € W1P(By) of Fy (-, B1) such that, up to a subsequence, vy, — v
a.e. in By. Moreover for every p € (0,1)

(6.12) / W(Vv)dz = lim Fp, (v, cn, By) < 1.

h—+o00
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Notice that ||Vv||, < L'/P, which is consistent with our choice of Cy. Then using the gradient
bound given by Theorem 3.8, we have that

(2N L (2NL
esssup |[VolP < C) [ — [VolPde+1) <CH| —+1],
By s WN By WN

where we used (6.12) and the growth condition (H;) to get the last inequality. Then we reach
again a contradiction by arguing as in the previous case. (|

We are now in a position to prove Theorem 3.4.

Proof of Theorem 3.4. In view of Lemma 6.6, we can adapt the proof of [3, Theorem 7.21] to
our context: suitable modifications are needed to take into account the more general notion of
quasi-minimizer, and the anisotropic surface energy.

Let us fix n > 0. Let A C Q' be an open set, and let u € SBVP(A) be a quasi-minimizer of
F(-, A) with constants s and w. Note that it is easily proved that

(6.13) F(u, By(x)) < BNwnpN ™ + wphN =1+

for any ball B,(z) C A with dist(B,(x), dnQ) > n by comparing u with UXB,(2)\B, (x) for o <p,
and letting p’ 7 p.
Following the notation of Lemma 6.6, let 7 € (0,1) be such that C;7V < 7V=1%5 and let
o € (0,1) be such that C1o(BNwy + 1) < 871e(r,n). Let us define
L gle(mmr™o(ry) Bte(r o (o) :

(6.14) po:min{;, - , ~ ) ,7’(0,77)5,7"(7',77)8} )

and
Po := (o, ).

Note that in view of the decay lemma, the constants ¥y and py only depend on N, p, L, u, 5, s,
w and 7.
The proof of the theorem proceeds by contradiction. Define the set

1
I:=qzxeA: limsup N/ |u(y)|%dy=+oo ;
p—0 WNP B,(z)

and assume that we have

HN (S, N By(x)) < dop™ !
for some z € S, \ I, and some p < pg with B,(z) C A and dist(B,(x),In) > n.
We claim that
(6.15) F(u, Byrn,(2)) < B re(r,n)7" (07" p)N ™1 for all h € N.

Let us prove (6.15) by iteration.
Let h = 0, and assume first that Dev(u, B,(x)) < ¥(o,n)F (u, B,(x)). Since we have p < r(o,n)
by our choice (6.14) of pg, we deduce from Lemma 6.6 and the energy upper bound (6.13) that

F(u, Bop()) < ClUNF(UaBp(x)) < C’laN[ﬂNwNpN_l +pr_1+s]
< Cio(op)V T (BNwy +1) < () (op)

If rather Dev(u, B,(z)) > ¥(o,n)F(u, B,(x)), then using the definition of quasi-minimizers

N—1+s
w
< p

F(u, Byy(x)) < F(u,By(z)) < #Dev(u,BP(z» < e

(o, n)
proving the validity of (6.15) for h = 0.

< B le(r,n)(op)N 7,
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Assume now that (6.15) holds for some h € N, and let us show that it still holds for h + 1.
Again, if Dev(u, By, ,(x)) < 9(7,n)F(u, Byrn,(x)), since o"p < r(7,n), we can apply Lemma
6.6 to get that

F(uaBU‘rh+1p($)) < ClTNF(uaBaThp(x)) < ﬁilE(Ta n)clTNThS(UThp)N71

< Be(r D e N,

On the other hand, if Dev(u, B, n,(x)) > 9(7,1)F(u, B,n,(x)), since u is a quasi-minimizer, we
get that

w(O_Thp)NflJrs

F(u, By )(2) < Flu, Byony(2)) < ——Dev(u, By () < e

d(r,m)
< 6_15(7-; 77)T<h+1)s(0'Th+1p)N_1,

which completes the proof of (6.15).

As a consequence of (6.15), we infer that for every x € Sy, \ I,

1
3 P N-1 _

lim FN—1 </Br(z) [VaulP dy +HY 7 (Su N Br(x))> =0,
which leads to a contradiction according to [3, Theorem 7.8]. Hence the conclusion of Theorem 3.4
holds for any € S, \ I, and by density for any = € S,, \ I. Consequently, it suffices to show that
Su\I=2S,. Consider z ¢ S, \ I. By [3, Lemma 3.75] we have HV~1(I) = 0, so that it is possible
to find an open set U C A containing = for which H¥~1(S, N U) = 0, and thus u € WLP(U).

According to the Poincaré-Wirtinger inequality, the energy upper bound (6.13), and the coercivity
condition (Hy), for any ball B,(z¢) C U we get that

/ [u(y) — Uz ,r|” dy < Crp/ [VulP dy < C/TN71+p7
By (z0) B,(z0)

where @y, is the average of u over B,(z¢). Thanks to the Campanato theorem (see e.g. [3,
Theorem 7.51], we deduce that u € 60,1—1/;)([]) which shows that U C A\ S,. Hence x ¢ S,

loc

which completes the proof of Theorem 3.4. O

7. GRADIENT BOUND ESTIMATE FOR LOCAL MINIMIZERS OF INTEGRAL FUNCTIONALS

The object of this section is to prove the gradient bound estimate given by Theorem 3.8 for local
minimizers of integral functionals on the intersection of the unit ball B; and a half plane of the
type

Hs ::{,IGRN:.IN>—(S}
where ¢ € [0,1/2]. This result — which was used in the proof of the decay lemma (Lemma 6.6) —
is a generalization of [15, Theorem 2.2] involving a homogeneous Dirichlet boundary condition on
a flat boundary.

The proof of Theorem 3.8 will be achieved through an approximation of the energy density W
by a sequence of non degenerate energies W,, and by considering associated integral functionals
involving the local minimizer u of the initial problem as boundary datum. We collect the properties
of these auxiliary problems in Subsection 7.2, after having proved a suitable bound for the L* norm
of u in Subsection 7.1: the key point is that the associated estimates turn out to be independent
of €, so that the proof of Theorem 3.8 can be recovered by letting ¢ — 0. It is also important for
the application of the gradient bound to the proof of Theorem 3.4 (see in particular Lemma 6.6)
that the estimates are independent of §.

7.1. Some properties of the local minimizer. Let W : RY — R be a continuous function
satisfying (H;) and (Ha), and let uw € WHP(B;) with u = 0 a.e. in By \ Hs be such that u is a
local minimizer of Fy s, i.e.,

(7.1) W (Vu)dx < W(Vz)dz
B, B
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for every z € WYP(By) with {z # u} CC By and 2 =0 on By \ Hs.
We first establish a local boundedness property for the local minimizer.

Proposition 7.1. For every 1/2 < Ry < 1, there exists a constant ¢ = ¢(N,p, L, Ry) > 0 such
that

(7.2) [l (Bry) < cllVullLr(z,my)-
Proof. Let us first treat the case p < N. Given Bs(xg) C Bi(xg) C By and k > 0, let us consider
the function
zi=u—nu—k)+
where n € C°(By), 0 <n <1,n7=1o0n By(zg), =0 on By \ By(x), |Vn| < 2(t — s)~ . Notice

that 2 € WHP(By) is such that 2 = u on By \ By(), and that z = 0 on By \ Hs since k > 0. Thus
z is admissible for (7.1). By comparing u and z we obtain the following Caccioppoli inequality

/ [VulP dz < #/ (u— k)P dx,
B (wo)n{u>k} (t = $)P JB(zo)n{uzk)

where ¢ = ¢(N,p, L) > 0. Similarly (changing the definition of z), for every k < 0 we get

/ |[VulP de < < / (k —u)? dx.
B (o) {u<h} (t = )P JB, (zo)nusk}

This means that u belongs to a suitable De Giorgi class (see [18, Definition 7.1]): as a consequence
the following inequality holds (see [18, Theorem 7.2])

1/p
C
- <(— Pq
el <BR°’—<(1—RO>N/131'“' ”") |

where ¢ = ¢(N,p,L)!. Since § < 1/2, then v = 0 a.e. in By \ Hy3. Thus according to the
Poincaré inequality, we infer that (7.2) holds with a constant depending on N, p, L and Ry, but
independent of 4.

The case p > N is immediate thanks the Sobolev embedding WP(B;y) < L°(Bj) and the
Poincaré inequality since u = 0 a.e. on By \ Hy 5. In this last case, u is actually globally bounded
on Bj. O

7.2. Gradient bound for minimizers of a non-degenerate auxiliary problem. Let us
consider a non-degenerate density f € C2(R™) satisfying the following properties:

(A1) There exist € € (0,1), L > 0 and p > 1 such that for every £ € RV,
L7HE + (€7 < £(6) < L™+ 1)/
(A2) There exists A > 0 such that for every £ € RY,
IDfE)] < A + [€*) 272,
(A3) There exists p > 0 such that for every ¢ and n € RV,
D f(&)n-n = p(e® + €)= 2|,

In particular, since f is convex from (As), we get from [18, Lemma 5.2] that
(7.3) DA < e(e® +[g)"~V/2 forall € € RY,

where ¢ > 0 is a constant depending only on p and L. Moreover, from (A;), it follows that f
satisfies the following p-growth and p-coercivity conditions:

(7.4) L7l < £(§) S LA +1¢P)  for all € € RY.

IThe proof in [18] has actually been performed in the case p < N. However, the critical case p = N proceeds
exactly in the same way by using the Sobolev imbedding W1 (RN) — LI(RN) for any p < q < +oo, instead of
that WLP(RN) — LP" (RN) when p < N.



EXISTENCE OF STRONG SOLUTIONS FOR QUASI-STATIC EVOLUTION IN BRITTLE FRACTURE 31

Let us fix a radius 1/2 < Ry < 1, and consider the solution v € WP(B;) of the following
minimization problem:

(7.5) min{ f(V2)dx: 2z € WHP(By), 2 =u ae. in By \ (Bg, N H(;)} .
B
Note that v is a solution of the following Euler-Lagrange equation:
6) div (Df(Vv)) =0 in D'(Bg, N Hy),
' v=1u HN"1-a.e. on 9(Br, N Hy).

Proposition 7.2. There exists a constant Ko = Ko(N,p, L, Ro, [|Vul| Lo, ;rv)) > 0 such that

(7.7) [0l Lo (BRy) < Ko

Proof. Let us first observe that from Proposition 7.1, there exists a constant ko (depending only

on N, p, L, Ry and [|[Vu| 1»(p,;r~)) such that

(7.8) ||U||L°°(B(RO+1)/2) < ko.

Let p < N. Given Bg(x0) C Bi(zo) C Br, and k > ko, let us consider the function
z=0v-n(—Fk),

withn € C°(B1),0<n<1,n=1o0n Bs(zg),n=0on By \ Bi(), and |[Vn| < 2(t—s)~!. Notice

that z € WP(By) and that z = u a.e. on By \ (Bgr, N Hs). Indeed v = u on By \ (Bg, N Hs),

and consequently (v — k)4 = 0 on Bi(xg) \ (Bgr, N Hs) since k > ko and kg satisfies (7.8). Thus

z is admissible for the minimum problem (7.5). By comparing v and z we obtain the following
Caccioppoli inequality

/ V[P do < L/ (v — k)P dz + c|B, N {v > K},
B. (o) {v>k} (t = )P JB,(zo)nfvk}

where ¢ = ¢(N,p, L) > 0. Similarly, for every k < —ko we get

/ V[P da < L/ (k —v)? dz + | B, N {v < k}|.
B. (o) {v<k} (t = )P JB,(zo)nv<h}

The function v thus belongs to a suitable De Giorgi class (see [18, Definition 7.1]), so that following
[18, Theorem 7.2], v is bounded in Bg, with

1 1/17
(7(11?0)1\’/3 |v|de) +ko+1
1

where the constant ¢ depends only on N, p and L. Since § < 1/2, then in particular v = 0 a.e. in
B1 \ Hy s, so that according to Poincaré inequality

[vllLo(BRy) <€

)

vl 2o (Bry) < llIVVllLr(By RN 1Ro+1) < 2(IVUllLo(3,:mY) + ko + 1),

the last inequality coming from the minimality of v together with the p-growth and p-coercivity
conditions (7.4) satisfied by f. Notice that co > 0 depends only N, p, L, Ry and ||Vul| s 5, ;zN),
but is independent of §.

Finally, the case p > N follows from the Sobolev embedding W'?(Bpg,) < L>(Bg,) together
with the Poincaré inequality and the minimality of v. (]

In view of equation (7.6), using the difference quotient method (see e.g. [18, Sections 8.2 and
8.4]), we infer that for every r < Ry,
v e W2 P(B,. N Hs),
and according to [18, Section 8.5], we also have that
veCH (B, NHs) for some a € (0,1).

Arguing as in [18, Section 8.4] one can prove that Vv is actually bounded on B, N OH;s by some
constant My > 0 depending only on N, p and H’U”LOO(BRO), but independent of §. Consequently,
from (7.7), we deduce the following result.
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Proposition 7.3. There exists Mo = Mo(N,p, L, i, Ro, |Vl Le(p,rr)) > 0 such that

(7.9) sup |Vo| < M.

BRO NOHs

We are now in position to prove the following gradient bound estimate for v. The proof is
inspired by [15, Theorem 2.2]: rather than a Moser iteration technique, we employ the De Giorgi
scheme which we found easier to adapt to the case with homogeneous Dirichlet conditions.

Proposition 7.4. Given 1/2 < Ry < 1, let v € WLP(By) be the minimizer of (7.5). There exists
a constant ¢(N,p, L, i1, Ro, [|[Vu| pr(p,;zv)) > 0 such that for every r < p < Ry

1
sup |[Vv|P <e¢ 7/ VoulP +1)dxe+1].
v <o [ o+ de 1)

Proof. By the Euler-Lagrange equation (7.6), we have that

Df(Vv) -Vedr =0,
BRO

for all ¢ € C}(Bg,) satisfying ¢ = 0 in Bg, \ Hs. Take as particular test function ¢ := n*Dg1),
where n € CL(Bp,;[0,1]) is a cut-off function, ¢ € C*(Bg,) with ¢ = 0 in Bg, \ Hs, and s =
1,..., N. Thanks to an integration by parts, we infer that

(7.10) D3, f (Vo) Dj(Dsv)(Dip)n* da

BR()

- / nD:f (Vo) Dywp Dy das — 2 / 0D, f (Vo) DioD,ry da,
Br, B

Ro

where, here and in the sequel, we use the summation convention on repeated indexes. Observe
that, by density, we can consider test functions ¢ € Wi)’pr(BRo) satisfying ¢ = 0 a.e. in B, \ Hs.
Let us define

V= (% + |Vol?)P/?

and fix r < Rp. Since V is the composition of Vo € WH2"P(B, N Hs) with the smooth function
t = (2 +t?)P/2 then V. € WH2"P(B, N Hs) as well. Next, we set for each s = 1,..., N and
k> (€2 + MZ)P/? =: ko,

b e (V—k)1Dsv in B, N Hs,
) in Bp, \ Hs.

Clearly ¢ € W12/P(B,. N Hg). Then according to (7.9) and the fact that k > ko, we obtain that
the upper trace of ¢ on Br, N 0H; vanishes, from which we deduce that ¢ € Wli)’f/\p(BRo). As a
consequence we are allowed to take it as test function in (7.10). Using the (p — 1)-growth property

(7.3) of Df, we obtain that

D f(Vv) D (Dyv)Dy(Dov)(V — k) 41 dx

BR()

+ D3, f (Vo) Dj(Dsv)(D;V)(Dsv)n? da

<cop.L) | VIS Ol [(V — K D%] + (VY[ da.

BryN{V>k}
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Since (D;(Dsv))(Dsv) = 5D;(|Vo[?) = $D;(V*/?) = LVE=P/PD;V and |Vo| < V'/P, using the
lower bound (A3) on D?f yields

ul VWV -k D de + £ / IVV 22 da
Br, BroN{V>k}
<cpl) [ VE V|V — k)| D% de
BROﬂ{V>k}
+e(Vop D) [ VilValIVV] da.
Bron{V >k}

Applying Young’s inequality to both terms in the right hand side of the previous relation leads to

ﬁ/ Vp_f(ka)+|D2v|2n2 dx + ﬁ/ |VV|2n? da
2 JBg, 2D J Bpyn{V >k}
N,p, L
s IVl [(V ~ B)2V) + V2] do,

lu’ BROﬂ{V>k}
from which we deduce that
(7.11) / |VV|?n? dx < c(N,p,L,u)/ |Vn|?V? dx

Bron{V >k} Bro{V >k}

for every k > ko.

Let us consider Bs(xg) C Bi(wg) C Br,, and n € CL(Bp,) such that 0 < np < 1,7 =1 on
Bs(z0), 7 = 0 on Bg, \ Bi(z¢) and |Vn| < 2(t — s)~!. Then we get from (7.11) that for every
k > Ko,

/ IVV[2dz < M/ V2 dz
B (z0)N{V>k} (t—s) By (x0)N{V>k}
1
<ce(N,p, Lyp) | 77— / (V — k) do + k*(t — s) 2| Bi(zo) N {V > k}| | .
(t—s) Bi(z0)N{V>k}

We conclude that, up to the term k2(t — s)72|Bi(z0) N {V > k}|, the function V satisfies an
inequality similar to that defining De Giorgi classes. The form of this term can nevertheless be
handled in the De Giorgi iteration scheme, so that following [18, Theorems 7.2, 7.3 and Corollary
7.1] we obtain for every r < p < Ry

1
supV < e(N,p, L, pt) | ————
ppy s “><<p—r>N/B

The proof of the proposition is now complete since |[Vv|P <V < (1 + |Vu|?)P/2, e < 1, and M, is
estimated in Proposition 7.3. O

V dz + (¢ +M§)’z’> .

P

7.3. Proof of Theorem 3.8. We now complete the proof of Theorem 3.8, namely extending
Proposition 7.4 to the local minimizer of integral functionals where the density satisfies the degen-
erate assumptions (Hp) and (Hz). This will be done as in the proof of [15, Theorem 2.2] thanks
to a suitable regularization of W.

Indeed according to [15, Lemma 2.4], there exist a sequence (W.) C C?>(RY) and a constant
¢ = c¢(N,p) > 0 such that for every ¢ and n € RY,

(i) T LLTHE? + |EP)P/?2 < W(€) < eL(e? + |¢)P/%
(ﬁ) |D2Ws(§)| < )\6(52 + |§|2)(p72)/2, for some A, > 0;
(ili) D*W.(&)n-n > ctu(e +|€2)P=2/2|n)%

(iv) W. — W locally uniformly on R¥.
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It suffices to prove the result for 1/2 < Ry < 1. Let us denote by v. € WLYP(Bg, N Hs) the
unique solution of the minimization problem (W, is strictly convex)

min / W.(Vz)dx: 2 € WYP(Bgr, N Hs), z = u HY '-a.e. on 8(Bgr, N Hs) ¢ .
BRoﬁHg
Extending v, to By by setting v. = u on By \ (Br, N Hys), then v, is actually a minimizer of
min{ W.(Vz)dx: 2 € WHP(By), z = u a.e. in By \ (Bg, N Hg)} .
By

According to Proposition 7.4, one can find a constant ¢ = c¢(N, p, L, 1, Ro, | Vu| pr(p,ry)) > 0
such that for every r < p < Ry

r 3

1
7.12 sup |Vl < ¢ 7/ Vol?P+1)de+1].
(7.12) Bpl | <(p7’)N B(l P +1) )

Hence the sequence (v.) is bounded in WP(B;) (compare with u and use Poincaré inequality)
and in W1°°(B,) (recall that u is bounded on Bp, thanks to Proposition 7.1, and v. coincides
with u on 9(Bg, N Hs)). Thus it is possible to find a subsequence (not relabeled) such that for
every r < Ry

Ve — Voo weakly* in Wh*°(B,),

for some voo € WHP(By) N W5 (Bg,). Clearly ve = u ae. in By \ (Bg, N H;).
Since W, — W uniformly on compact sets, and thanks to the minimality of v., we infer that

/ W (Vus) dz < lim inf/ W(Vv:)dx = lim inf/ We(Vu.) dx
B,NH;s B,NH; B,NH;

e—0 e—0
< liminf/ W.(Vu) dx :/ W(Vu)dz.
€20 JBr,nH;s BroNHs
Letting »  Rp in the left hand side of the previous inequality, and since v, = u a.e. in

By \ (Bgr, N Hys), we obtain
W (Vus) dz < W (Vu) dx.
Bl Bl

By the minimality of u (see (7.1)) we infer that the previous inequality is indeed an equality. Since
W is strictly convex (using (Hz) and Remark 3.1), we deduce that © = vs. Then according to
(7.12) with r = p/2 we get for every p < Ry (up to modifying c, still depending only on N, p, L,
p, Ro and [|Vul| o (g, v))

1
esssup |Vul? < liminf sup [Vu.|P <liminfec | — [Vue|P dz + 1
e—0 e—0

N
B2 By/a p B,

L 1
< llg;lélfc <p_N /BP W (Vo) dx + 1) )

Finally, using again the minimality property of v. we obtain (up to modifying ¢ in an admissible
way)

1
esssup |Vul? < liminfe (—N / W.(Vu) dx + 1)
e—0 p B,

BP/2
1 1
P JB, P JB

and the proof of Theorem 3.8 is complete. O

|Vul|P dx + 1) ,

P
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