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Abstract

We introduce a new model for describing the fluctuations of a tick-by-tick single
asset price. Our model is based on Markov renewal processes. We consider a point
process associated to the timestamps of the price jumps, and marks associated to price
increments. By modeling the marks with a suitable Markov chain, we can reproduce
the strong mean-reversion of price returns known as microstructure noise. Moreover,
by using Markov renewal processes, we can model the presence of spikes in intensity of
market activity, i.e. the volatility clustering, and consider dependence between price
increments and jump times. We also provide simple parametric and nonparametric
statistical procedures for the estimation of our model. We obtain closed-form formula
for the mean signature plot, and show the diffusive behavior of our model at large scale
limit. We illustrate our results by numerical simulations, and find that our model is
consistent with empirical data on the Euribor future. E|

Keywords: Microstructure noise, Markov renewal process, Signature plot, Scaling limit.

! Tick-by-tick observation, from 10:00 to 14:00 during 2010, on the front future contract Euribor3m



1 Introduction

The modeling of tick-by-tick asset price attracted a growing interest in the statistical and
quantitative finance literature with the availability of high frequency data. It is basically
split into two categories, according to the philosophy guiding the modeling:

(i) The macro-to-microscopic (or econometric) approach, see e.g. [12], [2], [14], interprets
the observed price as a noisy representation of an unobserved one, typically assumed to
be a continuous It6 semi-martingale: in this framework many important results exist on
robust estimation of the realized volatility, but these models seem not tractable for dealing
with high frequency trading problems and stochastic control techniques, mainly because
the state variables are latent rather than observed.

(ii) The micro-to-macroscopic approach (e.g. [], [3], [6], [1], [9]) uses point processes, in
particular Hawkes processes, to describe the piecewise constant observed price, that moves
on a discrete grid. In contrast with the macro-to-microscopic approach, these models do
not rely on the arguable existence assumption of a fair or fundamental price, and focus
on observable quantities, which makes the statistical estimation usually simpler. Moreover,
these models are able to reproduce several well-known stylized facts on high frequency data,
see e.g. [1], [5]:

e Microstructure noise: high-frequency returns are extremely anticorrelated, leading to
a short-term mean reversion effect, which is mechanically explicable by the structure
of the limit order book. This effect manifests through an increase of the realized
volatility estimator (signature plot) when the observation frequency decreases from
large to fine scales.

o Volatility clustering: markets alternates, independently of the intraday seasonality,
between phases of high and low activity.

e At large scale, the price process displays a diffusion behaviour.

In this paper, we aim to provide a tractable model of tick-by-tick asset price for liquid
assets in a limit order book with a constant bid-ask spread, in view of application to optimal
high frequency trading problem, studied in the companion paper [I0]. We start from a
model-free description of the piecewise constant mid-price, i.e. the half of the best bid and
best ask price, characterized by a marked point process (T}, J,,)n, where the timestamps
(T},) represent the jump times of the asset price associated to a counting process (N), and
the marks (.J,,) are the price increments. We then use a Markov renewal process (MRP)
for modeling the marked point process. Markov renewal theory [13] is largely studied in
reliability for describing failure of systems and machines, and one purpose of this paper
is to show how it can be applied for market microstructure. By considering a suitable
Markov chain modeling for (J,), we are able to reproduce the mean-reversion of price
returns, while allowing arbitrary jump size, i.e. the price can jump of more than one tick.
Furthermore, the counting process (/V;), which may depend on the Markov chain, models
the volatility clustering, i.e. the presence of spikes in the volatility of the stock price, and

we also preserve a Brownian motion behaviour of the price process at macroscopic scales.



Our MRP model is a rather simple but robust model, easy to understand, simulate and
estimate, both parametrically and non-parametrically, based on i.i.d. sample data. An
important feature of the MRP approach is the semi Markov property, meaning that the
price process can be embedded into a Markov system with few additional and observable
state variables. This will ensure the tractability of the model for applications to market
making and statistical arbitrage.

The outline of the paper is the following. In Section [2, we describe the MRP model
for the asset mid-price, and provides statistical estimation procedures. We show the simu-
lation of the model, and the semi-Markov property of the price process. We also discuss
the comparison of our model with Hawkes processes used for modeling asset prices and
microstructure noise. Section [3] studies the diffusive limit of the asset price at macroscopic
scale. In Section [4] we derive analytical formula for the mean signature plot, and compare
with real data. Finally, Section 5 is devoted to a conclusion and extensions for future
research.

2 Semi-Markov model

We describe the tick-by-tick fluctuation of a univariate stock price by means of a marked
point process (T, Jp)nen. The increasing sequence (75,), represents the jump (tick) times
of the asset price, while the marks sequence (J,,),, valued in the finite set

E={+1,-1,...,4m,—m} C Z\ {0}

represents the price increments. Positive (resp. negative) mark means that price jumps
upwards (resp. downwards). The continuous-time price process is a piecewise constant,
pure jump process, given by

N¢
Po= R+ Jn, t>0, (2.1)
n=1

where (IVy) is the counting process associated to the tick times (7}, )y, i.e.

Ny = inf{n:ZTkSt}
k=1

Here, we normalized the tick size (the minimum variation of the price) to 1, and the asset
price P is considered e.g. as the last quotation for the mid-price, i.e. the mean between
the best-bid and best-ask price. Let us mention that the continuous time dynamics (2.1)) is
a model-free description of a piecewise-constant price process in a market microstructure.
We decouple the modeling on one hand of the clustering of trading activity via the point
process (IV;), and on the other hand of the microstructure noise (mean-reversion of price
return) via the random marks (Jp, ).

2.1 Price return modeling

We write the price return as

Jn = Jn&n, n>1, (2.2)



where J, = sign(Jy,) valued in {+1,—1} indicates whether the price jumps upwards or
downwards, and &, := |J,| is the absolute size of the price increment. We consider that
dependence of the price returns occurs through their direction, and we assume that only
the current price direction will impact the next jump direction. Moreover, we assume that
the absolute size of the price returns are independent and also independent of the direction
of the jumps. Formally, this means that

e (Ju)n is an irreducible Markov chain with probability transition matrix

N 1404 l1—oy
Q = ( 10 14a ) (2.3)
2 2
with oy, € [—1,1).
e (£n)n is an i.i.d. sequence valued in {1,...,m}, independent of (.J,,), with distribution

law: p; = P, =] € (0,1),i=1,...,m.

In this case, (J,) is an irreducible Markov chain with probability transition matrix given
by:

1nQ ... pm@

S (24)
PR ... pm@Q

We could model in general (J,), as a Markov chain with transition matrix Q = (g;;)

involving 2m(2m — 1) parameters, while under the above assumption, the matrix @ in (2.4))

involves only m + 1 parameters to be estimated. Actually, on real data, we often observe

that the number of consecutive downward and consecutive upward jumps are roughly equal.
We shall then consider the symmetric case where

ay = o = (2.5)

In this case, we have a nice interpretation of the parameter a € [—1,1).

Lemma 2.1 In the symmetric case, the invariant distribution of the Markov chain (Jp)n

is T = (%, %), and the invariant distribution of (Jp)n is m = (P17, ..., pm®). Moreoever,

we have:

a = corrﬂ(jn,Jn_l), Vn > 1, (2.6)

where corr, denotes the correlation under the stationary probability P, starting from the
instial distribution 7.

Proof. We easily check that under the symmetric case, #Q = # for # = (1/2,1/2), which
means that 7 is the invariant distribution of the Markov chain (J,),. Consequently, 7 =
(p17t, ..., pm7) satisfies 7Q) = m, i.e. 7 is the invariant distribution of (.J,,),, and so under



Py, (Ju)n (resp. (Jn)n) is distributed according to # (resp. 7). Therefore, E;[.J,] = 0 and
Var,[.J,] = 1. We also have for all n > 1, by definition of Q:

PR 1+ A 1-— -
Eﬂ' [Jnt]nfl] = Eﬂ‘|: 9 a(Jnfl)Q - 9 a(Jnfl)2:| = Q,
which proves the relation for a. O

Lemma[2.I|provides a direct interpretation of the parameter « as the correlation between
two consecutive price return directions. The case @ = 0 means that price returns are
independent, while & < 0 (resp. a > 0) corresponds to a mean-reversion (resp. trend) of
price return.

We also have another equivalent formulation of the Markov chain, whose proof is trivial
and left to the reader.

Lemma 2.2 In the symmetric case, the Markov chain (jn)n can be written as:

Jo = Jp1Bn, n>1,

where (By,)y, is a sequence of i.i.d. random variables with Bernoulli distribution on {+1, —1},
and parameter (1+a)/2, i.e. of mean E[B,] = «. The price increment Markov chain (Jp)n
can also be written in an explicit induction form as:

Jn = Jn-1Gn, (2.7)
where ((y)n is a sequence of i.i.d. random variables valued in E = {+1,—1,...,+m,—m},

and with distribution: P[¢, = k] = pr(1 + sign(k)a)/2.

The above Lemma, is useful for an efficient estimation of a. Actually, by the strong law
of large numbers, we have a consistent estimator of a:

e J 1N - .
W = 2N = SN
o = S = kJk—1-
=1 k-1 "= 1

The variance of this estimator is known, equal to 1/n, so that this estimator is efficient and
we have a confidence interval from the central limit theorem:

V(@™ — a) @, N(0,1), asn — oo.

The estimated parameter for the chosen dataset is & = —87.5%, which shows as expected
a strong anticorrelation of price returns. In the case of several tick jumps m > 1, the
probability p; = P[¢,, = i| may be estimated from the classical empirical frequency:

m _1¢ .
pg”)znglgw, i=1,...,m



2.2 Tick times modeling

In order to describe volatility clustering, we look for a counting process (N;) with an
intensity increasing every time the price jumps, and decaying with time. We propose a
modeling via Markov renewal process.

Let us denote by S,, = T,, — T,,—1, n > 1, the inter-arrival times associated to (Ny). We
assume that conditionally on the jump marks (J,)n, (Sp)n is an independent sequence of
positive random times, with distribution depending on the current and next jump mark:

Fz(t) = P[Sn+1§t|t]n:ia<]n+1:j]7 (’L,])EE
We then say that (7},, Jn)n is a Markov Renewal Process (MRP) with transition kernel:
P[Jn-l—l:jasn-‘rl St’ Jn:Z] = QijFij(t)7 (27.7) € E.

In the particular case where Fj; does not depend on 4, j, the point process (Ny) is indepen-
dent of (J,,), and called a renewal process, Moreover, if F' is the exponential distribution,
N is a Poisson process. Here, we allow in general dependency between jump marks and
renewal times, and we refer to the symmetric case when Fj; depends only on the sign of ij,
by setting:

F+(t) = Fij(t), if 15 > 0, F_(t) = Fij(t), if 15 < 0. (28)

In other words, F (resp. F_) is the distribution function of inter-arrival times given
two consecutive jumps in the same (resp. opposite) direction, called trend (resp. mean-
reverting) case. Let us also introduce the marked hazard function:

1
hij(t) = I(Siﬁ)l SIP’[t <Sp41 <t+0, Jyy1 =75 >t, Jy=1], t>0, (2.9)
for ¢,j € E, which represents the instantaneous probability that there will be a jump with
mark j, given that there were no jump during the elapsed time ¢, and the current mark is
i. By assuming that the distributions Fj; of the renewal times S,, admit a density f;;, we
may write h;; as:

fii(t)

hi(t) = VT Qij Nijs

where
Hi(t) = PlSup <t|Ju=1 = Y ¢;Fi(t),
JjeEE
is the conditional distribution of the renewal time in state i. In the symmetric case (2.5)),

(2.8), we have

1+ sign(ij)a

hij(t) = pj( 5 )/\sign(z‘j)(t)’



with jump intensity

o fa®)
where fi is the density of F., and
1 1—
F(t) = ;O‘m(t) + - AF ).

Markov renewal processes are used in many applications, especially in reliability. Cla-
ssical examples of renewal distribution functions are the ones corresponding to the Gamma
and Weibull distribution, with density given by:

Bs—1_—t/0 B—1
o e = 5(G) e

0
where § > 0, and € > 0 are the shape and scale parameters, and I" (resp. I';) is the Gamma

fGam (t) -

(resp. lower incomplete Gamma) function:

LB = /Ooosﬂ_le_sds, ry(B) = /Otsﬁ_le_sds, (2.11)

2.3 Statistical procedures

We design simple statistical procedures for the estimation of the distribution and jump
intensities of the renewal times. Over an observation period, pick a subsample of i.i.d.
data:

{Spg =T —Tg—1: k s.t. Jy_1 =1, Jp =7j},
and set:
Lj = #{kst Jy_1=1, Jy =7}
I, = #{kst Jy_1=1},
with cardinality respectively n;; and n;. In the symmetric case, we also denote by
I. = ##{ks.t. sign(Jy_1Ji) = £},
with cardinality ny. We describe both parametric and nonparametric estimation.

e Parametric estimation

We discuss the parametric estimation of the distribution Fj; of the renewal times when
considering Gamma or Weibull distributions with shape and scale parameters 3;;, 6;;. We
can indeed consider the Maximum Likelihood Estimator (MLE) (ﬁij, éij), which are solution
to the equations:

s T(By) 1 1
lnﬁij - = J = In(— Sk - — In Sk
L'(Bi;) <"ij ; ) N ;
. 1 e 1
bi; = Esnij, with Sy, = @Zsk
? k=1



i j shape scale
+1 +1 | 0.27651097 2187
-1 -1 | 0.2806104 2565.371
+1 -1 | 0.07442401 1606.308
-1 41 | 0.06840708 1508.155

Table 1: Parameter estimates for the renewal times of a Gamma distribution

There is no closed-form solution for Bz’j, which can be obtained numerically e.g. by Newton
method. Alternatively, since the first two moments of the Gamma distribution S ~ T'(3, 0)
are explicitly given in terms of the shape and scale parameters, namely:

(E[S])” 1 E[S]

Var[S]’ 6  Var[S]’

B = (2.12)

we can estimate [3;; and 6;; by moment matching method, i.e. by replacing in (2.12)) the
mean and variance by their empirical estimators, which leads to:

Q2
By = e L S
Mg .. Mg
— 1] —
> (S = Sn,y)? > (Sk = Sn,y)?
k=1 k=1

We performed this parametric estimation method for the Euribor on the year 2010,
from 10h to 14h, with one tick jump, and obtain the following estimates in Table

We observed that the shape and scale parameters depend on the product ¢j rather than
on i and j separately. In other words, the distribution of the renewal times are symmetric
in the sense of . Hence, we performed again in Table the parametric estimation
(,5’+, §+) and (BN_, 9~_) for the shape and scale parameters by distinguishing only samples for
ij = 1 (the trend case) and ij = —1 (the mean-reverting case). We also provide in Figure
graphical tests of the goodness-of-fit for our estimation results. The estimated value B+,
and B_ < 1 for the shape parameters, can be interpreted when considering the hazard rate
function of Sy,4+1 given current and next marks:

N 1
AL(t) = 1(;{51 SP[t < Spt1 <t +0|S, > tysign(JyJnt1) = £
f+(t)
= >
1 —F:t(t)’ t20,

when Fy admits a density fi (Notice that Ay differs from Ai). Ay (t) (resp. A_(t)) is the
instantaneous probability of price jump given that there were no jump during an elapsed
time ¢, and the current and next jump are in the same (resp. opposite) direction. For the
Gamma distribution with shape and scale parameters (3,0), the hazard rate function is
given by:
t )ﬁ -1 o—t/0

S\Gam(t) 1\, =

0T (8) —Te(B)’

8



ij shape scale
+1 (trend) 0.276225  2397.219
-1 (mean-reverting) | 0.07132677 1561.593

Table 2: Parameter estimates in the trend and mean-reverting case

and is decreasing in time if and only if the shape parameter 5 < 1, which means that
the more the time passes, the less is the probability that an event occurs. Therefore, the
estimated values B+, and B_ < 1 are consistent with the volatility clustering: when a jump
occurs, the probability of another jump in a short period is high, but if the event does not
take place soon, then the price is likely to stabilize. Using this modeling, a long period of
constant price corresponds to a renewal time in distribution tail. On the contrary, since
renewal times are likely to be small when 5 < 1, most of the jumps will be extremely close.
We also notice that the parameters in the trend and mean-reverting case differ significantly.
This can be explained as follows: trends, i.e. two consecutive jumps in the same direction,
are extremely rare (recall that o =~ —90%), since, in order to take place, market orders
either have to clear two walls of liquidity or there must be a big number of cancellations.
Since these events are caused by specific market dynamic, it is not surprising that their
renewal law differ from the mean-reverting case.
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Figure 1: QQ plot and histogram of F_ (left) and F; (right). Euribor3m, 2010, 10h-14h.

e Non parametric estimation

Since the renewal times form an i.i.d. sequence, we are able to perform a non parametric
estimation by kernel method of the density f;; and the jump intensity. We recall the smooth



kernel method for the density estimation, and, in a similar way, we will give the one for h;;
and \;;. Let us start with the empirical histogram of the density, which is constructed as
follows. For every collection of breaks

{O<t1<...<tM§OO}, Op 1= tre1 — U

we bin the sample (Sy = T, — Tk—1)k=1,...n and define the empirical histogram of f;; as:

1 #{k e Lij |ty < Sp <t}
o nij '

it =

By the strong law of large numbers, when n;; — oo, this estimator converges to

1

S ]P)[tr < Sk: < tTJrl]v

which is a first order approximation of f;;(t.). Anyway, this estimator depends on the
choice of the binning, which has not necessarily small (nor equal) §,’s. The corresponding
non parametric (smooth kernel) estimator of the density is given by a convolution method:

fif @) = L > Kyt —Sk),

1.
i s
t kEL;j

where Kj(x) is a smoothing scaled kernel with bandwidth b. In our example we have chosen
the Gaussian one, given by the density of the normal law of mean 0 and variance b%. In
practice, many softwares provide already optimized version of non-parametric estimation of
the density, with automatic choice of the bandwidth and of the kernel (here Gaussian). For
example in R, this reduces to the function density, applied to the sample {Sy | k € I;;}.
In the symmetric case, the histogram reduces to:

i#{k €l | ty < Sk < tr-i—l}

hst
t pr—
+ ( 7") 67‘ Ny )

while the kernel estimator is given by:

PO = o Y Kt S

kely

Figure [2| shows the result obtained for the kernel estimation of fi(¢), compared to the
corresponding histogram. The non parametric estimation confirms the decreasing form of
both of the densities, whose interpetation is that most of the jump of the stock price takes
place in a short period of time (less than second), even though some renewal times can go
to hours.

We use similar technique to estimate the marked hazard function h;; defined in ([2.9)).
By writing

1P[t < Sp <t+6, Jp=j| Jp1 =1

hij(t) = : :
i) = hms P[Sy > s | Jo_1 = ]

10
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Figure 2: Nonparametric estimation of the densities f, and f_

we can define the empirical histogram of h;; as

i#{ke[ij|tT§Sk<tr+5}
57" #{k € Iz ’ Sk ztr} ’

hst
hij" (tr)

and the associated smooth kernel estimator by

1
#{kel| Sy >t}

hPE) = Y Kyt —Sk)

kel;;

Notice that this nonparametric estimator is factorized as
WP () = oy L RTP
v = (50) (e

where 2 is the estimator of ¢;; and n"—;th (t) is the kernel estimator of the jump intensity

i

Xij(t) = liiﬁf()t). Thus, we can either estimate )\;; and multiply by the estimator of g;; to

obtain h;; or vice versa, obtaining the same estimators. In the symmetric case, we have:

i#{keli]tr§5k<tr+6}
0, #{k | Sk >t} ’

W (ty)

while
1

W) = > Ky(t—Sk) HESh > 1)

kel+

Figure [3] shows the result obtained for Ai, compared to the corresponding histogram.
The interpretation is the following: immediately after a jump the price is in an unstable

11



condition, which will probably leads it to jump again soon. If it does not happen, the price
gains in stability with time, and the probability of a jump becomes smaller and smaller.
Moreover, due to mean-reversion of price returns, the intensity of consecutive jumps in the
opposite direction is larger than in the same direction, which explains the higher value of
A_ compared to Aj.

Non parametric estimation of lambda— Non parametric estimation of lambda+
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Figure 3: Nonparametric estimation of the jump intensities Ay and A_

2.4 Price simulation

The simulation of the price process (2.1)) with a Markov renewal model is quite simple,
much easier than any other point process modeling microstructure noise. This would allow
the user, even when NV, is better fit by a more complex point process, to have a quick proxy
for its price simulation. Choose a starting price Py at initial time Tp.

Initialization step: e Set Pg =F

e draw Jy from initial (e.g. stationary) law m
Inductive step: k — 1 — k (next price and next timestamp)

e Draw Ji according to the probability transition, and set Pk = Pk_l + Ji.
e Draw Sy ~ Fj, ., and set T, = Tj_1 + Sk.

Once (T, f’k) keN is known, the price process is given by the piecewise constant process:

P = By, Tp<t<Tgy.

We show in Figure[4 some simulated trajectories of the price process based on the estimated
parameters of the Euribor3m.

12
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2.5 Semi-Markov property
Let us define the pure jump process,
Iy = Jn, (2.13)

which represents the last price increment. Then, [ is a semi-Markov process in the sense
that the pair (I, S;) is a Markov process, where

St = t_Trm Tn§t<Tn+17

is the time spent from the last jump price. Moreover, the price process (F;) is embedded
in a Markov process with three observable state variables: (P, Iy, S;) is a Markov process
with infinitesimal generator:

Lolpivs) = 20 + > hi(s)elp+4.5,0) — ¢(p,i,5)],
jerE

which is written in the symmetric case (2.5 and (2.8) as

1+«

) > pilep + sign(i)j sign(i);,0) = e(p, . )]
j=1

a6 (F52) X pilelp — sien(i)j, —sian(0)7,0) — o(p, . )]
j=1

. 0
Lopivs) = S5+ o)

where Ay is the jump intensity defined in (2.10]).
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2.6 Comparison with respect to Hawkes processes

In a recent work [3] (see also [9]), the authors consider a tick-by-tick model for asset price
by means of cross-exciting Hawkes processes. More precisely, the stock price jumps by one
tick according to the dynamics:

P, = N —N;, (2.14)

where N7 is a point process corresponding to the number of upward and downward jumps,
with coupling stochastic intensities:

t
A= A +/ o(t —u)dN, (2.15)
—0oQ

where Ao, > 0 is an exogenous constant intensity, and ¢ is a positive decay kernel. This
model, which takes into account in the intensity the whole past of the price process, provides
a better good-fit of intraday data than the MRP approach, and can be easily extended to
the multivariate asset price case. However, it is limited to unitary jump size, and presents
some drawbacks especially in view of applications to trading optimization problem. The
price process in — is embedded into a Markovian framework only for the case of
exponential decay kernel, i.e. for

Sp(t) = 7€_Bt1R+(t)7

with 0 < v < . In this case, the Markov price system consists of P together with the
stochastic intensities (AT, A7). But in contrast with the MRP approach, the additional
state variables (AT, A7) are not directly observable, and have to be computed from their
dynamics , which requires a “precise” estimation of the three parameters A, v, and
B. In that sense, the MRP approach is more robust than the Hawkes approach when
dealing with Markov optimization problem. Notice also that in the MRP approach, we can
deal not only with parametric forms of the renewal distributions (which involves only two
parameters for the usual Gamma and Weibull laws), but also with non parametric form
of the renewal distributions, and so of the jump intensities. Simulation and estimation in
MRP model are simple since they are essentially based on (conditional) i.i.d. sequence of
random variables, with the counterpart that MRP model can not reproduce the correlation
between inter-arrival jump times as in Hawkes model.

We finally mention that one can use a combination of Hawkes process and semi Markov
model by considering a counting process IV; associated to the jump times (7,,), independent
of the price return (J,), and with stochastic intensity

t
AN o= Aot7 / e PU=WgN,, (2.16)
0

with A\oo > 0, and 0 < v < (. In this case, the pair (I3, \;) is a Markov process, and
(Py, I, \¢) is a Markov process with infinitesimal generator:

. 0 o .
Lo(p,i,l) = B(u—ﬁ)afi + 0> aileo+ 4.5, L+7) — o(p,i,0)],
JjEE
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which is written in the symmetric case (2.5)) as:

Lo(p,i ) = Blp— ﬁ)g‘g
+ £<1 ; 04) ij [o(p + sign(i)j, sign(i)j, £ + ) — (p, 1, 0)]
=1
+(252) S pilelp — sign(i)j, —sin(i)j, € + ) — ¢(p,,0)
=1

3 Scaling limit
We now study the large scale limit of the price process constructed from our Markov renewal
model. We consider the symmetric case (2.5)) and ([2.8]), and denote by

Ft) = 1—1—04F+(t)+1—a

the distribution function of the sojourn time S,,. We assume that the mean sojourn time
is finite:

o - 1
o= / tdF(t) < oo, and weset A= —.
0 H

By classical regenerative arguments, it is known (see [11]) that the Markov renewal process
obeys a strong law of large numbers, which means the long run stability of price process:

Py
? — C, a.s.

when t goes to infinity, with a limiting constant ¢ given by:
1 .
c = = Z 5 55 Js
K i,jEE

where E = {1,—1,...,m,—m}, fi;; = fooo tdFi;(t), Q = (gij) is the transition matrix ([2.4))
of the embedded Markov chain (Jy,),, and m = (m;) is the invariant distribution of (J,)n.
In the symmetric case and , we have g;; = pj;|(1 + sign(j)a)/2, m = pj;/2, and
so ¢ = 0. We next define the normalized price process:

P
P — Ty e0,1],
t \/T [ ]
and address the macroscopic limit of P(T) at large scale limit 7" — oco. From the func-

tional central limit theorem for Markov renewal process, we obtain the large scale diffusive
behavior of price process.

Proposition 3.1

—
Sy
=

lim P

T—o00

Il
q
=

oo
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where W = (Wy)yep0,1) 98 a standard Brownian motion, and o, the macroscopic variance,
is explicitly given by

21+Oz] (3.1)

11—«

o2 = X|Var(g,) + (Eléa))

Proof. From [I1I], we know that a functional central limit theorem holds for Markov
renewal process so that

pD (ﬂ; o W

oo

d
when T goes to infinity (here L; means convergence in distribution), where o__ is given by
o2 = X\62 with A = 1/j, and

Z miqi; H;

ijEE

Qe
2 ™

with

Hij = j+gi—y
9= (9i)i (I — Q + 1)1
b=(bi), bi = > Qijj:

JEE

and II is the matrix defined by II;; = 7;. In the symmetric case (2.5)), a straightforward
calculation shows that

m
b, = sign(i Z = sign(i)aE[E,],
and then
g = sign(i)lf‘ E[¢,], i€ E={l—1,...,m,—m}.
Thus,
J ifi5 >0
Hj = j+22E[,] ifj>0,i<0
j——IE[g] if  <0,7>0.

Therefore, a direct calculation yields

ﬁ)=:§jjﬁ+‘4* El¢.])?

2 14+«
1—a

= Var(&,) + (E[fn])
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4 Mean Signature plot

In this section, we aim to provide through our Markov renewal model a quantitative justifi-
cation of the signature plot effect, described in the introduction. We consider the symmetric
and stationary case, i.e.:

(H)

(i) The price return (J,), is given by (2.2) with a probability transition matrix Q for
(Jp)n = (sign(Jy))n in the form:

. 14+« 11—«
Q — 2 2
11—« 1+«
2 2

(ii) (INV¢) is a delayed renewal process: for n > 1, S, has distribution function F' (indepen-
dent of i, j), with finite mean i = fooo t dF(t) =: 1/\ < 0o, and finite second moment,
and Sp has a distribution with density (1 — F'(t))/f.

for some a € [-1,1) .

It is known that the process N is stationary under (H)(ii) (see [§]), and so the price
process is also stationary under the stationary probability P., i.e. the distribution of
P, — P, does not depend on t but only on increment time 7. In this case, the empirical
mean signature plot is written as:

_ 1

2
V(r) = T Z Er[(Pir — Pi—1y7)7]
ir<T
1 2
= ;Eﬂ'[(PT _PO) ] (41)
Notice that if P, = oW, where W; is a Brownian motion, then V is a flat function:

V(1) = o2, while it is well known that on real data V is a decreasing function on 7 with
finite limit when 7 — oo. This is mainly due to the anticorrelation of returns: on a short
time-step the signature plot captures fluctuations due to returns that, on a longer time-
steps, mutually cancel. We obtain the closed-form expression for the mean signature plot,
and give some qualitative properties about the impact of price returns autocorrelation. The
following results are proved in Appendix.

Proposition 4.1 Under (H), we have:

. —2a(B[£,])2\ 1 — Go(T)
Vir) = ”g°+< 1—a ) (1-a)r’

where 0% is the macroscopic variance given in 1) and Go(t) := E[a!Nt] is given via its

(oo}

Laplace-Stieltjes transform:

. 1— F(s)

Ga(s) = 1-Al—a)———2— a#0, 4.2
(s) ( )S(l_aF(s)) # (4.2)
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F(s) := Oof e StdF (t). Alternatively, Gy, is given directly by the integral form:

(07

Galt) = 1—/_\<1_a>(t—(1—a)/0th(u)du), (4.3)

where QV(t) = Z " F*™ (1), and F*™ s the n-fold convolution of the distribution func-
n=0

tion F, i.e. F*M(t) = [J F*=D(t —w)dF(u), F¥ O = 1.

Corollary 4.1 Under (H), we obtain the asymptotic behavior of the mean signature plot:
V(o) := lim V(1) = o?

T—00

V(0T) = lim V(1) \E[€2].

I

>

=
-~

Moreover,

Remark 4.1 In the case of renewal process where F' is the distribution function of the
Gamma law with shape 8 and scale 6, it is known that F*(") is the distribution function a
the Gamma law with shape nS and scale 8, and so:
F*(n)(t) _ Ft/9(”5)7
I'(np)
where I is the Gamma function, and I'; is the lower incomplete Gamma functions defined in
. Plugging into , we obtain an explicit integral expression of the mean signature
plot, which is computed numerically by avoiding the inversion of the Laplace transform
. Notice that in the special case of Poisson process for N, i.e. F'is the exponential

distribution of rate A, the function Gy, is explicitly given by : Gy (t) = e 1=,
Remark 4.2 The term ai equal to the limit of the mean signature plot when time step
observation 7 goes to infinity, corresponds to the macroscopic variance, and V (07) = AE[¢2]
is the microstructural variance. Notice that while afo increases with the price returns auto-
correlation «, the limiting term V(0%) does not depend on a, and the mean signature plot
is flat if and only if price returns are independent, i.e. & = 0. In the case of mean-reversion
(a < 0), V(0T) > o2, while in the trend case (o > 0), we have: V(07) < 2. We display
in Figures [o| plot example of the mean signature plot function for a Gamma distribution
when varying «. We also compare in Figure [6] the signature plot obtained from empirical
data on the Euribor, the signature plot simulated in our model with estimated parameters,
and the mean signature for a Gamma distribution with the estimated parameters. This
example shows how the signature plot decreasing form is a consequence (rather coarse)
of the microstructure noise, and that the shape parameters of the gamma law, which is
responsible for the volatility cluster, is able to reproduce the convexity of the signature plot
shape.
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Figure 5: 7 — V(1) when varying price return autocorrelation a. Left: a > 0. Right: o < 0
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Figure 6: Comparison of signature plot: empirical data, simulated and computed

5 Conclusion and extensions

In this paper we used a Markov renewal process (7, ), to describe the tick-by-tick
evolution of the stock price and reproduce two important stylized facts, as the diffusive
behavior and the decreasing shape of the mean signature plot towards the diffusive variance.
Having in mind a direct application purpose, we decided to sacrifice the autocorrelation of
inter-arrival times in order to have a fast and simple non-parametric estimation, perfect
simulation and the suitable setup for a market making application, presented in a companion
paper [10]. Aware of the model limits, and with an eye to statistical arbitrage, the next
step is to extend the structure of the counting process NV, for example to Hawkes process,
to have a better fit, and the structure of the Markov chain (J,,), to a longer memory binary
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processes, able to recognize patterns. Another direction of study will be the extension to
the multivariate asset price case.

A Appendix: Mean signature plot

The price process F; is given by

Nt oo
P = P0+ij = ZLnth:n, (A1)
k=1 n=0
where

n
Lp = Y Jiy n>1, Ly = 0.
k=1

Lemma A.1 Under (H), we have

o2 20 1 —a”

"N 1-—al-a

Ex[L7]

where o__ is defined in (3.1).

Proof. By writing that L, = L,,_1 + fnjn, we have forn > 1

(Ela])?,

E-[L2] = Er[L2_+&J2+ 26 Ln-1Jn)

= Eo[L21] +Ee[€2] +2(E[n])" D Br[Jiu],

= E.[L2 )] +E.[€2] +2(E[6])" Y En[Jido] (A.2)

where we used the fact that J2 = 1, (&), are i.i.d, and independent of (.J,),, in the second

A~

equality, and the stationarity of (J,), in the third equality. Now, from the Markov property
of (jk) 1 with probability transition matrix Q in (2.3) and (2.5), we have for any k > 1:

E, |:]E7r [jk|jk—1] jo}
- 5[5 (5

= aE; [jk—ljl)]a

Er[JkJo]

from which we obtain by induction:

Plugging into (A.2)), this gives

E.[I2] = E.[I2,]+E.[e2]+ 22

l—«o

(1—a" ) (E[ga))".

By induction, we get the required relation for E, [LZ]. O

n

Consequently, we obtain the following expression of the mean signature plot:
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Proposition A.1 Under (H), we have

_ - 200 1 —Gu(7) 2
Vir) = ai e (—ar (El&.))", 7>0, (A.3)

where Go(t) == Ex[aMNt] = 320 [ a"Pr [Ny = n].

Proof. From (4.1)) and (A.1)), we see that the mean signature plot is written as
Vi) = LY BN, =
T) = = ™ b =nj
T n=0 ! i

since the renewal process N is independent of the marks (.J,,). Together with the expression
of Ex[L2] in Lemma this yields

_ 02 Er[N,] 200 1 — Gy(1) 2
Vv = = — El&.])".
(7) A T l—a (1—a)r ( S ])
Finally, since E;[N,] = A7 by stationarity of N, we get the required relation. O

We now focus on the finite variation function G, that we shall compute through its
Laplace-Stieltjes transform:

Gols) = / e StdGo(t), s>0.

We recall the convolution property for Laplace-Stieltjes transform
G+«H = G.H )
where

GxH(t) = /tG(t — s)dH(s).

Let us consider the function ), defined by:

Qalt) = > a"Px[N; >n], (A4)

n=0

Lemma A.2 Under (H), we have for all o # 0,

Go = <1—$)Qa+é (A5)
Duls) = 1+a2<11__£%). (A.6)

Proof. 1. For any a # 0, t > 0, we have

Ga(t) = ian}pw[m =n| = ia”(]P’w[Nt >n] —Pr [N, >n+ 1})
n=0 n=0

o 1 o
= S a"P N >0 - —(Za”IP’W[Nt > ] — Py[N; > 0})
n=0 a n=0

= Qa(t) - é(@a(t) - 1)7
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which proves (A.5)).

2. Recall that for the delayed renewal process IV, the first arrival time S; is distributed
according to the distribution A with density A(1 — F). Let us denote by N° the no-delayed
renewal process, i.e. with all interarrival times S = 79 — T?_, distributed according to F,
and by QY the function defined similarly as in with N replaced by N°. Then,

Qu(t) = 1+a) PNy >n+1]
n=0

[e.9]
=1 +a2a"IP’7r[Sl + 10 < 1]
n=0

o0
— +aEﬂ[Za”]Pﬂ[T,? <t—88 < t]}
n=0

= 1+aE, [Qg(t — Sl)lslgt]
= 14 aQ° « A1), (A7)

By taking the Laplace-Stieltjes transform in the above relation, and from the convolution
property, we get

Qo = 1+aQlA. (A.8)

By same arguments as in || and 1) we get C/QE =1+ a@ﬁ, and so

— 1
0 = — A9
Q= —— (A.9)
Now, from the relation A(t fo ))du, and by taking Laplace-Stieltjes transform
we get:
~ B ~
A(s) = =(1=F(s)). (A.10)
S

By substituting (A.9) and (| into ( -, we get the required relation O

From the relations (|A.5) in the above Lemma, we immediately obtain the expres-
sion for the Laplace Stleltjes transform G Let us now derive the alternative integral

expression ) for Gg.

Lemma A.3 Under (H), we have for all a # 0:
¢
Qat) = 1+M—-A1- a)/ Q% (u)du, (A.11)
0
with
> ()
n=0
and F*") is the n-fold convolution of the distribution function F.

22



Proof. We rewrite the expression (A.6|) Laplace-Stieltjes transform as

Guls) = 1+°201=F) Y (aF)"
n=0
— 1+ %A ia"((ﬁ)" - (ﬁ)n“). (A.12)

n=0

Let us now consider the function GO (resp. Q) defined similarly as for G, (resp. Qa)
with N replaced by N the no-delayed renewal process with all interarrival times SO =
T9 —T9_, distributed according to F. Then,

aot) = Za"(mv? > n] = Py [Nf >+ 1))

Therefore, the Laplace-Stieltjes transform of G is written also as

& - o (B - <ﬁ>"+1).

n=0
By defining the function I9( fo GY (u)du, we then see from that
Qu(s) = 1+alll,
and thus
Qu() = 1+ad /0 "6 (). (A.13)
Finally, by same arguments as in (|A.5)), we have
= (e

and plugging into (A.13)), we get the required result. O

By using (A.5) and (| m, we then obtain the integral expression (4.3]) of the function
G, as in Pr0p081t10n Finally, we derive the asymptotic behavior of the mean signature

plot.

Proposition A.2 Under (H), we get:

V() = TILHOIOV(T) = o2, (A.14)
V(") = 1%111/7) = JAE[¢]], (A.15)

and

V(01) > V(oco) ifand onlyif a <O0.
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Proof. By observing that the function G, is stricly bounded in 7 by 1 for any o € [-1,1),
we easily obtain from the expression (A.3)) the limit for V(7) when 7 goes to infinity.

On the other hand, by substituting the integral formula (4.3]) of the function G, into the
expression (A.3)) of the mean signature plot, we have:

Vi = ot - EEl)(5) (- - a)1 [ Q)

11—« a

lim — Y(s)ds = Q%0) = 1,

Jim = ] Qals)ds Q0(0)
we deduce that

_ 2\ 2

lim V = o - E[¢.])7, A.16

Jm Vi) = o -, (Blé) (A.16)
which gives (} from the expression 1} of ai. Finally, we immediately see from (|A.16])
that V(0%) > V(c0o) if and only if a < 0. O
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