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Scaling limit of the path leading to the leftmost particle

in a branching random walk

Xinxin CHEN

Université Paris VI

Summary. We consider a discrete-time branching random walk defined on
the real line, which is assumed to be supercritical and in the boundary case.
It is known that its leftmost position of the n-th generation behaves asymp-
totically like 3

2 lnn, provided the non-extinction of the system. The main
goal of this paper, is to prove that the path from the root to the leftmost
particle, after a suitable normalizatoin, converges weakly to a Brownian
excursion in D([0, 1],R).

Keywords. Branching random walk; spinal decomposition.

1 Introduction

We consider a branching random walk, which is constructed according to a point process

L on the line. Precisely speaking, the system is started with one initial particle at the origin.

This particle is called the root, denoted by ∅. At time 1, the root dies and gives birth

to some new particles, which form the first generation. Their positions constitute a point

process distributed as L. At time 2, each of these particles dies and gives birth to new

particles whose positions – relative to that of their parent – constitute a new independent

copy of L. The system grows according to the same mechanism.

We denote by T the genealogical tree of the system, which is clearly a Galton-Watson

tree rooted at ∅. If a vertex u ∈ T is in the n-th generation, we write |u| = n and denote its

position by V (u). Then {V (u), |u| = 1} follows the same law as L. The family of positions

(V (u); u ∈ T) is viewed as our branching random walk.
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Throughout the paper, the branching random walk is assumed to be in the boundary

case (Biggins and Kyprianou [5]):

(1.1) E
[ ∑

|u|=1

1
]
> 1, E

[ ∑

|x|=1

e−V (x)
]
= 1, E

[ ∑

|x|=1

V (x)e−V (x)
]
= 0.

For any y ∈ R, let y+ := max{y, 0} and log+ y := log(max{y, 1}). We also assume the

following integrability conditions:

E
[ ∑

|u|=1

V (u)2e−V (u)
]

< ∞,(1.2)

E[X(log+X)2] < ∞, E[X̃ log+ X̃ ] <∞,(1.3)

where

X :=
∑

|u|=1

e−V (u), X̃ :=
∑

|u|=1

V (u)+e
−V (u).

We define In to be the leftmost position in the n-th generation, i.e.

(1.4) In := inf{V (u), |u| = n},

with inf ∅ := ∞. If In < ∞, we choose a vertex uniformly in the set {u : |u| = n, V (u) =

In} of leftmost particles at time n and denote it by m(n). We let [[∅, m(n)]] = {∅ =:

m
(n)
0 , m

(n)
1 , . . . , m

(n)
n := m(n)} be the shortest path in T relating the root ∅ to m(n), and

introduce the path from the root to m(n) as follows

(In(k); 0 ≤ k ≤ n) := (V (m
(n)
k ); 0 ≤ k ≤ n).

In particular, In(0) = 0 and In(n) = In. Let σ be the positive real number such that

σ2 = E
[∑

|u|=1 V (u)2e−V (u)
]
. Our main result is as follows.

Theorem 1.1 The rescaled path ( In(⌊sn⌋)
σ
√
n

; 0 ≤ s ≤ 1) converges in law in D([0, 1],R), to a

normalized Brownian excursion (es; 0 ≤ s ≤ 1).

Remark 1.2 It has been proved in [1], [11] and [2] that In is around 3
2
lnn. In [3], the

authors proved that, for the model of branching Brownian motion, the time reversed path

followed by the leftmost particle converges in law to a certain stochastic process.

Let us say a few words about the proof of Theorem 1.1. We first consider the path

leading to m(n), by conditioning that its ending point In is located atypically below 3
2
lnn−z
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with large z. Then we apply the well-known spinal decomposition to show that this path,

conditioned to {In ≤ 3
2
lnn−z}, behaves like a simple random walk staying positive but tied

down at the end. Such a random walk, being rescaled, converges in law to the Brownian

excursion (see [9]). We then prove our main result by removing the condition of In. The

main strategy is borrowed from [2], but with appropriate refinements.

The rest of the paper is organized as follows. In Section 2, we recall the spinal decom-

position by a change of measures, which implies the useful many-to-one lemma. We prove a

conditioned version of Theorem 1.1 in Section 3. In Section 4, we remove the conditioning

and prove the theorem.

Throughout the paper, we use an ∼ bn (n→∞) to denote limn→∞
an
bn

= 1; and let (ci)i≥0

denote finite and positive constants. We write E[f ; A] for E[f1A]. Moreover,
∑

∅
:= 0 and

∏
∅
:= 1.

2 Lyons’ change of measures and spinal decomposition

For any a ∈ R, let Pa be the probability measure such that Pa((V (u), u ∈ T) ∈ ·) =
P((V (u)+a, u ∈ T) ∈ ·). The corresponding expectation is denoted by Ea. Let (Fn, n ≥ 0)

be the natural filtration generated by the branching random walk and let F∞ := ∨n≥0Fn.

We introduce the following random variables:

(2.1) Wn :=
∑

|u|=n

e−V (u), n ≥ 0.

It follows immediately from (1.1) that (Wn, n ≥ 0) is a non-negative martingale with respect

to (Fn). It is usually referred as the additive martingale. We define a probability measure

Qa on F∞ such that for any n ≥ 0,

(2.2)
dQa

dPa

∣∣∣∣
Fn

:= eaWn.

For convenience, we write Q for Q0.

Let us give the description of the branching random walk under Qa in an intuitive way,

which is known as the spinal decomposition. We introduce another point process L̂ with

Radon-Nykodin derivative
∑

x∈L e
−x with respect to the law of L. Under Qa, the branching

random walk evolves as follows. Initially, there is one particle w0 located at V (w0) = a.

At each step n, particles at generation n die and give birth to new particles independently

according to the law of L, except for the particle wn which generates its children according
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to the law of L̂. The particle wn+1 is chosen proportionally to e−V (u) among the children

u of wn. We still call T the genealogical tree of the process, so that (wn)n≥0 is a ray in T,

which is called the spine. This change of probabilities was presented in various forms; see,

for example [15], [11] and [8].

It is convenient to use the following notation. For any u ∈ T \ {∅}, let ←−u be the parent

of u, and

∆V (u) := V (u)− V (←−u ).

Let Ω(u) be the set of brothers of u, i.e. Ω(u) := {v ∈ T : ←−v = ←−u , v 6= u}. Let δ denote

the Dirac measure. Then under Qa,
∑

|u|=1 δ∆V (u) follows the law of L̂. Further, We recall

the following proposition, from [11] and [15].

Proposition 2.1 (1) For any |u| = n, we have

(2.3) Qa[wn = u|Fn] =
e−V (u)

Wn

.

(2) Under Qa, the random variables
(∑

v∈Ω(wn)
δ∆V (v), ∆V (wn)

)
, n ≥ 1 are i.i.d..

As a consequence of this proposition, we get the many-to-one lemma as follows:

Lemma 2.2 There exists a centered random walk (Sn; n ≥ 0) with Pa(S0 = a) = 1 such

that for any n ≥ 1 and any measurable function g : Rn → [0,∞), we have

(2.4) Ea

[ ∑

|u|=n

g(V (u1), . . . , V (un))

]
= Ea[e

Sn−ag(S1, . . . , Sn)],

where we denote by [[∅, u]] = {∅ =: u0, u1 . . . , u|u| := u} the ancestral line of u in T.

Note that by (1.3), S1 has the finite variance σ2 = E[S2
1 ] = E[

∑
|u|=1 V (u)2e−V (u)].

2.1 Convergence in law for the one-dimensional random walk

Let us introduce some results about the centered random walk (Sn) with finite variance,

which will be used later. For any 0 ≤ m ≤ n, we define S[m,n] := minm≤j≤n Sj, and

Sn = S [0,n]. We denote by R(x) the renewal function of (Sn), which is defined as follows:

(2.5) R(x) = 1{x=0} + 1{x>0}
∑

k≥0

P(−x ≤ Sk < Sn−1).
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For the random walk (−Sn), we define S−
[m,n], S

−
n and R−(x) similarly. It is known (see [10]

p. 360) that there exists c0 > 0 such that

(2.6) lim
x→∞

R(x)

x
= c0.

Moreover, it is shown in [13] that there exist C+, C− > 0 such that for any a ≥ 0,

Pa

(
Sn ≥ 0

)
∼ C+√

n
R(a);(2.7)

Pa

(
S−
n ≥ 0

)
∼ C−√

n
R−(a).(2.8)

We also state the following inequalities (see Lemmas 2.2 and 2.4 in [4], respectively).

Fact 2.3 (i) There exists a constant c1 > 0 such that for any b ≥ a ≥ 0, x ≥ 0 and n ≥ 1,

(2.9) P
(
Sn ≥ −x; Sn ∈ [a− x, b− x]

)
≤ c1(1 + x)(1 + b− a)(1 + b)n−3/2.

(ii) Let 0 < λ < 1. There exists a constant c2 > 0 such that for any b ≥ a ≥ 0, x, y ≥ 0

and n ≥ 1,

(2.10) Px(Sn ∈ [y + a, y + b], Sn ≥ 0, S [λn,n] ≥ y) ≤ c2(1 + x)(1 + b− a)(1 + b)n−3/2.

Before we give the next lemma, we recall the definition of lattice distribution (see [10],

p. 138). The distribution of a random variable X1 is lattice, if it is concentrated on a set of

points α+ βZ, with α arbitrary. The largest β satisfying this property is called the span of

X1. Otherwise, the distribution of X1 is called non-lattice.

Lemma 2.4 Let (rn)n≥0 be a sequence of real numbers such that limn→∞
rn√
n

= 0. Let

f : R+ → R be a Riemann integrable function. We suppose that there exists a non-increasing

function f : R+ → R such that |f(x)| ≤ f(x) for any x ≥ 0 and
∫
x≥0

xf(x)dx < ∞. For

0 < ∆ < 1, let F : D([0,∆], R)→ [0, 1] be continuous. Let a ≥ 0.

(I) Non-lattice case. If the distribution of (S1 − S0) is non-lattice, then there exists a

constant C1 > 0 such that

(2.11) lim
n→∞

n3/2E
[
F
(S⌊sn⌋
σ
√
n
; 0 ≤ s ≤ ∆

)
f(Sn − y); Sn ≥ −a, S [∆n,n] ≥ y

]

= C1R(a)

∫

x≥0

f(x)R−(x)dxE[F (es; 0 ≤ s ≤ ∆)],

uniformly in y ∈ [0, rn].
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(II) Lattice case. If the distribution of (S1 − S0) is supported in (α + βZ) with span β,

then for any d ∈ R,

(2.12) lim
n→∞

n3/2E
[
F
(S⌊sn⌋
σ
√
n
; 0 ≤ s ≤ ∆

)
f(Sn − y + d); Sn ≥ −a, S [∆n,n] ≥ y − d

]

= C1R(a)β
∑

j≥⌈− d
β
⌉

f(βj + d)R−(βj + d)E[F (es; 0 ≤ s ≤ ∆)].

uniformly in y ∈ [0, rn] ∩ {αn+ βZ}.

Proof of Lemma 2.4. The lemma is a refinement of Lemma 2.3 in [2], which proved the

convergence in the non-lattice case when a = 0 and F ≡ 1. We consider the non-lattice case

first. We denote the expectation on the left-hand side of (2.11) by χ(F, f). Observe that for

any K ∈ N+,

χ(F, f) = χ
(
F, f(x)1(0≤x≤K)

)
+ χ

(
F, f(x)1(x>K)

)
.

Since 0 ≤ F ≤ 1, we have χ
(
F, f(x)1(x>K)

)
≤ χ

(
1, f(x)1(x>K)

)
, which is bounded by

∑

j≥K

Ea

[
f(Sn − y − a); Sn ≥ 0, S [∆n,n] ≥ y + a, Sn ∈ [y + a+ j, y + a+ j + 1]

]
.

Recall that |f(x)| ≤ f(x) with f non-increasing. We get that

χ
(
1, f(x)1(x>K)

)
≤

∑

j≥K

f(j)Pa

[
Sn ≥ 0, S [∆n,n] ≥ y + a, Sn ∈ [y + a + j, y + a+ j + 1]

]
.

It then follows from (2.10) that

(2.13) χ
(
1, f(x)1(x>K)

)
≤ 2c2(1 + a)

(∑

j≥K

f(j)(2 + j)
)
n−3/2.

Since
∫∞
0
xf (x)dx < ∞, the sum

∑
j≥K f(j)(2 + j) decreases to zero as K ↑ ∞. We thus

only need to estimate χ
(
F, f(x)1(0≤x≤K)

)
. Note that f is Riemann integrable. It suffices to

consider χ
(
F, 1(0≤x≤K)

)
with K a positive constant.

Applying the Markov property at time ⌊∆n⌋ shows that

χ
(
F, 1(0≤x≤K)

)
= Ea

[
F
(S⌊sn⌋ − a

σ
√
n

; 0 ≤ s ≤ ∆
)
; Sn ≤ y + a +K,Sn ≥ 0, S[∆n,n] ≥ y + a

]

= Ea

[
F
(S⌊sn⌋ − a

σ
√
n

; 0 ≤ s ≤ ∆
)
ΨK(S⌊∆n⌋); S⌊∆n⌋ ≥ 0

]
,(2.14)
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where ΨK(x) := Px

[
Sn−⌊∆n⌋ ≤ y + a +K, Sn−⌊∆n⌋ ≥ y + a

]
. By reversing time, we obtain

that ΨK(x) = P
[
S−
m ≥ (−Sm) + (y + a− x) ≥ −K

]
with m := n− ⌊∆n⌋.

We define τn as the first time when the random walk (−S) hits the minimal level during

[0, n], namely, τn := inf{k ∈ [0, n] : −Sk = S−
n }. Define also κ(z, ζ ;n) := P(−Sn ∈

[z, z + ζ ], S−
n ≥ 0) for any z, ζ ≥ 0. Then,

ΨK(x) =

m∑

k=0

P
[
τm = k; S−

m ≥ (−Sm) + (y + a− x) ≥ −K
]

=
m∑

k=0

P
[
− Sk = S−

k ≥ −K; κ(x− y − a, S−
k +K;m− k)

]
,

(2.15)

where the last equality follows from the Markov property.

Let ψ(x) := xe−x2/21(x≥0). Combining Theorem 1 of [6] with (2.7) yields that

(2.16) κ(z, ζ ;n) = P0

[
− Sn ∈ [z, z + ζ ]; Sn ≥ 0

]
=
C−ζ

σn
ψ
( z

σ
√
n

)
+ o(n−1),

uniformly in z ∈ R+ and ζ in compact sets of R+. Note that ψ is bounded on R+. Therefore,

there exists a constant c3 > 0 such that for any ζ ∈ [0, K], z ≥ 0 and n ≥ 0,

(2.17) κ(z, ζ ;n) ≤ c3
(1 +K)

n+ 1
.

Let kn := ⌊√n⌋. We divide the sum on the right-hand side of (2.15) into two parts:

(2.18) ΨK(x) =
kn∑

k=0

+
m∑

k=kn+1

P
[
− Sk = S−

k ≥ −K; κ(x− y − a, S−
k +K;m− k)

]
.

By (2.16), under the assumption that y = o(
√
n), the first part becomes that

C−
σm

ψ
(x− a
σ
√
m

) kn∑

k=0

E
[
S−
k +K;−Sk = S−

k ≥ −K
]
+ o(n−1)

kn∑

k=0

P
[
− Sk = S−

k ≥ −K
]

(2.19)

=
C−
σm

ψ
(x− a
σ
√
m

)∫ K

0

R−(u)du+ o(n−1),

where the last equation comes from the fact that
∑

k≥0E
[
S−
k + K;−Sk = S−

k ≥ −K
]
=∫ K

0
R−(u)du. On the other hand, using (2.17) for κ(x − y − a, S−

k + K;m − k) and then

applying (i) of Fact 2.3 imply that for n large enough, the second part of (2.18) is bounded
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by

m∑

k=kn+1

c3
1 +K

m+ 1− kP
(
S−
k ≥ −K, −Sk ∈ [−K, 0]

)

≤ c4

m∑

k=kn+1

(1 +K)3

(m+ 1− k)k3/2 = o(n−1).

(2.20)

By (2.19) and (2.20), we obtain that as n goes to infinity,

(2.21) ΨK(x) = o(n−1) +
C−

σ(n− ⌊∆n⌋)ψ
( x− a
σ
√
n− ⌊∆n⌋

)∫ K

0

R−(u)du,

uniformly in x ≥ 0 and y ∈ [0, rn]. Plugging it into (2.14) and then combining with (2.7)

yield that

χ(F, 1(0≤x≤K)) = o(n−3/2) +
C−

σ(1−∆)n

∫ K

0

R−(u)du

×C+R(a)√
∆n

Ea

[
F
(S⌊sn⌋ − a

σ
√
n

; 0 ≤ s ≤ ∆
)
ψ
( S∆n − a
σ
√

(1−∆)n

)∣∣∣S∆n ≥ 0
]
.

Theorem 1.1 of [7] says that under the conditioned probabilityPa

(
·
∣∣∣S∆n ≥ 0

)
, (

S⌊r∆n⌋

σ
√
∆n

; 0 ≤
r ≤ 1) converges in law to a Brownian meander, denoted by (Mr; 0 ≤ r ≤ 1). Therefore,

χ(F, 1(0≤x≤K)) ∼
C−C+R(a)

σn3/2(1−∆)
√
∆

∫ K

0

R−(u)duE
[
F
(√

∆Ms/∆; 0 ≤ s ≤ ∆
)
ψ
(√∆M1√

1−∆

)]
.

It remains to check that

(2.22)
1

(1−∆)
√
∆
E
[
F
(√

∆Ms/∆; 0 ≤ s ≤ ∆
)
ψ
(√∆M1√

1−∆

)]
=

√
π

2
E
[
F (es; 0 ≤ s ≤ ∆)

]
.

Let (Rs; 0 ≤ s ≤ 1) be a standard three-dimensional Bessel process. Then, as is shown in

[12],

1

(1−∆)
√
∆
E
[
F
(√

∆Ms/∆; 0 ≤ s ≤ ∆
)
ψ
(√∆M1√

1−∆

)]

=

√
π

2

1

(1−∆)
√
∆
E
[ 1

R1

F
(√

∆Rs/∆; 0 ≤ s ≤ ∆
)
ψ
( √∆R1√

1−∆

)]
,

=

√
π

2
E
[ 1

(1−∆)3/2
e−

R2
∆

2(1−∆)F
(
Rs; 0 ≤ s ≤ ∆

)]
,
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where the last equation follows from the scaling property of Bessel process. Let (rs; 0 ≤ s ≤
1) be a standard three-dimensional Bessel bridge. Note that for any ∆ < 1, (rs; 0 ≤ s ≤ ∆)

is equivalent to (Rs; 0 ≤ s ≤ ∆), with density (1−∆)−3/2 exp(− R2
∆

2(1−∆)
) (see p. 468 (3.11) of

[16]). Thus,

1

(1−∆)
√
∆
E
[
F
(√

∆Ms/∆; 0 ≤ s ≤ ∆
)
ψ
(√∆M1√

1−∆

)]
=

√
π

2
E
[
F (rs; 0 ≤ s ≤ ∆)

]
.

Since a normalized Brownian excursion is exactly a standard three-dimensional Bessel bridge,

this yields (2.22). Therefore, (2.11) is proved by taking C1 =
√

π
2
C−C+

σ
.

The proof of the lemma in the lattice case is along the same lines, except that we use

Theorem 2 (instead of Theorem 1) of [6]. �

3 Conditioning on the event {In ≤ 3
2
lnn− z}

On the event {In ≤ 3
2
lnn− z}, we analyze the sample path leading to a particle located

at the leftmost position at the nth generation. For z ≥ 0 and n ≥ 1, let an(z) :=
3
2
lnn− z if

the distribution of L is non-lattice and let an(z) := αn+β⌊
3
2
lnn−αn

β
⌋−z if the distribution of

L is supported by α+ βZ. This section is devoted to the proof of the following proposition.

Proposition 3.1 For any ∆ ∈ (0, 1] and any continuous functional F : D([0,∆], R) →
[0, 1],

(3.1) lim
z→∞

lim sup
n→∞

∣∣∣∣E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)∣∣∣In ≤ an(z)

]
− E

[
F (es; 0 ≤ s ≤ ∆)

]∣∣∣∣ = 0.

We begin with some preliminary results.

For any 0 < ∆ < 1 and L, K ≥ 0, we denote by J∆
z,K,L(n) the following collection of

particles:

(3.2)
{
u ∈ T : |u| = n, V (u) ≤ an(z), min

0≤k≤n
V (uk) ≥ −z+K, min

∆n≤k≤n
V (uk) ≥ an(z+L)

}
.

Lemma 3.2 For any ε > 0, there exists Lε > 0 such that for any L ≥ Lε, n ≥ 1 and

z ≥ K ≥ 0,

(3.3) P
(
m(n) 6∈ J∆

z,K,L(n), In ≤ an(z)
)
≤

(
eK + ε(1 + z −K)

)
e−z.

9



Proof. It suffices to show that for any ε ∈ (0, 1), there exists Lε ≥ 1 such that for any

L ≥ Lε, n ≥ 1 and z ≥ K ≥ 0,

(3.4) P
(
∃|u| = n : V (u) ≤ an(z), u 6∈ J∆

z,K,L(n)
)
≤

(
eK + ε(1 + z −K)

)
e−z.

We observe that

(3.5) P
(
∃|u| = n : V (u) ≤ an(z), u 6∈ J∆

z,K,L(n)
)
≤ P

(
∃u ∈ T : V (u) ≤ −z +K

)

+P
(
∃|u| = n : V (u) ≤ an(z), min

0≤k≤n
V (uk) ≥ −z +K, min

∆n≤k≤n
V (uk) ≤ an(z + L)

)
.

On the one hand, by (2.4),

P
(
∃u ∈ T : V (u) ≤ −z + k

)
≤

∑

n≥0

E

[ ∑

|u|=n

1{V (u)≤−z+K<mink<n V (uk)}

]
(3.6)

=
∑

n≥0

E[eSn; Sn ≤ −z +K < Sn−1] ≤ e−z+K .

On the other hand, denoting An(z) := [an(z)− 1, an(z)] for any z ≥ 0,

P
(
∃|u| = n : V (u) ≤ an(z), min

0≤k≤n
V (uk) ≥ −z +K, min

∆n≤k≤n
V (uk) ≤ an(z + L)

)

= Pz−K

(
∃|u| = n : V (u) ≤ an(K), min

0≤k≤n
V (uk) ≥ 0, min

∆n≤k≤n
V (uk) ≤ an(K + L)

)

≤
∑

ℓ≥L+K

j=K+ℓ∑

j=K

Pz−K

(
∃|u| = n : V (u) ∈ An(j), min

0≤k≤n
V (uk) ≥ 0, min

∆n≤k≤n
V (uk) ∈ An(ℓ)

)
.

According to Lemma 3.3 in [2], there exist constants 1 > c5 > 0 and c6 > 0 such that for

any n ≥ 1, L ≥ 0 and x, z ≥ 0,

Px

(
∃u ∈ T : |u| = n, V (u) ∈ An(z), min

0≤k≤n
V (uk) ≥ 0, min

∆n≤k≤n
V (uk) ∈ An(z + L)

)
(3.7)

≤ c6(1 + x)e−c5Le−x−z.

Hence, combining (3.6) with (3.5) yields that

P
(
∃|u| = n : V (u) ≤ an(z), u 6∈ J∆

z,K,L(n)
)

≤ e−z+K +
∑

ℓ≥L

∑

0≤j≤ℓ

c6(1 + z −K)e−c5(ℓ−j)e−z−j

≤
(
eK + c7

∑

ℓ≥L

e−c5ℓ(1 + z −K)
)
e−z,
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where the last inequality comes from the fact that
∑

j≥0 e
−(1−c5)j <∞. We take Lε = −c8 ln ε

so that c7
∑

ℓ≥L e
−c5ℓ ≤ ε for all L ≥ Lε. Therefore, for any L ≥ Lε, n ≥ 1 and z ≥ K ≥ 0,

(3.8) P
(
∃|u| = n : V (u) ≤ an(z), u 6∈ J∆

z,K,L(n)
)
≤

(
eK + ε(1 + z −K)

)
e−z,

which completes the proof. �

For b ∈ Z+, we define

(3.9) En = En(z, b) := {∀k ≤ n− b, min
u≥wk,|u|=n

V (u) > an(z)}.

We note that on the event En ∩ {In ≤ an(z)}, any particle located at the leftmost position

must be separated from the spine after time n− b.

Lemma 3.3 For any η > 0 and L > 0, there exist K(η) > 0, B(L, η) ≥ 1 and N(η) ≥ 1

such that for any b ≥ B(L, η), n ≥ N(η) and z ≥ K ≥ K(η),

(3.10) Q
(
E cn, wn ∈ J∆

z,K,L(n)
)
≤ η(1 + L)2(1 + z −K)n−3/2.

We feel free to omit the proof of Lemma 3.3 since it is just a slightly stronger version of

Lemma 3.8 in [2]. It follows from the same arguments.

Let us turn to the proof of Proposition 3.1. We break it up into 3 steps.

Step (I) (The conditioned convergence of ( In(⌊sn⌋)
σ
√
n

; 0 ≤ s ≤ ∆) for ∆ < 1 in the non-lattice

case)

Assume that the distribution of L is non-lattice in this step. Recall that an(z) =
3
2
lnn−z.

The tail distribution of In has been given in Propositions 1.3 and 4.1 of [2], recalled as follows.

Fact 3.4 ([2]) There exists a constant C > 0 such that

(3.11) lim
z→∞

lim sup
n→∞

∣∣∣e
z

z
P(In ≤ an(z))− C

∣∣∣ = 0.

Furthermore, for any ε > 0, there exist Nε ≥ 1 and Λε > 0 such that for any n ≥ Nε and

Λε ≤ z ≤ 3
2
lnn− Λε,

(3.12)
∣∣∣e

z

z
P(In ≤ an(z))− C

∣∣∣ ≤ ε. �

For any continuous functional F : D([0,∆], R)→ [0, 1], it is convenient to write that

(3.13) Σn(F, z) := E

[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)
1{In≤an(z)}

]
.
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In particular, if F ≡ 1, Σn(1, z) = P(In ≤ an(z)). Thus,

(3.14)
Σn(F, z)

Σn(1, z)
= E

[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)∣∣∣In ≤ an(z)

]
.

Let us prove the following convergence for 0 < ∆ < 1,

(3.15) lim
z→∞

lim sup
n→∞

∣∣∣Σn(F, z)

Σn(1, z)
−E[F (es, 0 ≤ s ≤ ∆)]

∣∣∣ = 0.

Proof of (3.15). For any n ≥ 1, L ≥ 0 and z ≥ K ≥ 0, let

(3.16) Πn(F ) = Πn(F, z,K, L) := E

[
F
(In(sn)
σ
√
n

; 0 ≤ s ≤ ∆
)
1{m(n)∈J∆

z,K,L(n)}

]
.

By Lemma 3.2, we obtain that for L ≥ Lε, n ≥ 1 and z ≥ K ≥ 0,

(3.17)
∣∣∣Σn(F, z)− Πn(F )

∣∣∣ ≤
(
eK + ε(1 + z −K)

)
e−z.

Note that m(n) is chosen uniformly among the particles located at the leftmost position.

Thus,

Πn(F ) = E

[ ∑

|u|=n

1(u=m(n), u∈J∆
z,K,L(n))

F
(V (u⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)]

= E

[
1∑

|u|=n 1(V (u)=In)

∑

|u|=n

1(V (u)=In, u∈J∆
z,K,L(n))

F
(V (u⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)]
.

Applying the change of measures given in (2.2), it follows from Proposition 2.1 that

(3.18) Πn(F ) = EQ

[
eV (wn)

∑
|u|=n 1(V (u)=In)

1(V (wn)=In, wn∈J∆
z,K,L(n))

F
(V (w⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)]
.

In order to estimate Πn, we restrict ourselves to the event En. Define

Λn(F ) := EQ

[
eV (wn)

∑
|u|=n 1(V (u)=In)

1(V (wn)=In, wn∈J∆
z,K,L(n))

F
(V (w⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)
; En

]
.

In view of Lemma 3.3, for any b ≥ B(L, η), n ≥ N(η) and z ≥ K ≥ K(η),

∣∣∣Πn(F )− Λn(F )
∣∣∣ ≤ EQ

[
eV (wn); wn ∈ J∆

z,K,L(n), E cn
]

(3.19)

≤ e−zn−3/2Q
(
E cn, wn ∈ J∆

z,K,L(n)
)

≤ η(1 + L)2(1 + z −K)e−z.
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On the event En ∩ {In ≤ an(z)}, Λn(F ) equals

EQ

[
eV (wn)

∑
u>wn−b,|u|=n 1(V (u)=In)

1(V (wn)=In, wn∈J∆
z,K,L(n))

F
(V (w⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)
; En

]
.

Let, for x ≥ 0, L > 0, and b ≥ 1,

fL,b(x) := EQx

[
eV (wb)−L1{V (wb)=Ib}∑

|u|=b 1{V (u)=Ib}
, min
0≤k≤b

V (wk) ≥ 0, V (wb) ≤ L

]

≤ Qx

(
min
0≤k≤b

V (wk) ≥ 0, V (wb) ≤ L
)
.(3.20)

We choose n large enough so that ∆n ≤ n− b. Thus, applying the Markov property at time

n− b yields that

(3.21) Λn(F ) = n3/2e−zEQ

[
F
(V (w⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)
fL,b(V (wn−b)− an(z + L));

min
0≤k≤n−b

V (wk) ≥ −z +K, min
∆n≤k≤n−b

V (wk) ≥ an(z + L), En
]
.

Let us introduce the following quantity by removing the restriction to En:

(3.22) ΛI
n(F ) := n3/2e−zEQ

[
F
(V (w⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)
fL,b(V (wn−b)− an(z + L));

min
0≤k≤n−b

V (wk) ≥ −z +K, min
∆n≤k≤n−b

V (wk) ≥ an(z + L)
]
.

We immediately observe that

(3.23)
∣∣∣Λn(F )− ΛI

n(F )
∣∣∣ ≤ n3/2e−zQ

(
fL,b(V (wn−b)− an(z + L)),

min
0≤k≤n−b

V (wk) ≥ −z +K, min
∆n≤k≤n−b

V (wk) ≥ an(z + L); (En)c
)
.

By (3.20), we check that
∣∣∣Λn(F ) − ΛI

n(F )
∣∣∣ ≤ n3/2e−zQ(wn ∈ J∆

z,K,L(n), (En)c). Applying

Lemma 3.3 again implies that

(3.24)
∣∣∣Λn(F )− ΛI

n(F )
∣∣∣ ≤ η(1 + L)2(1 + z −K)e−z.

Combining with (3.19), we obtain that for any b ≥ B(L, η), z ≥ K ≥ K(η) and n large

enough,

(3.25)
∣∣∣Πn(F )− ΛI

n(F )
∣∣∣ ≤ 2η(1 + L)2(1 + z −K)e−z.
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Note that (V (wk); k ≥ 1) is a centered random walk under Q and that it is proved in [2]

that fL,b satisfies the conditions of Lemma 2.4. By (I) of Lemma 2.4, we get that

(3.26) lim
n→∞

ΛI
n(F ) = αI

L,bR(z −K)e−zE[F (es, 0 ≤ s ≤ δ)],

where αI
L,b := C1

∫
x≥0

fL,b(x)R−(x)dx ∈ [0,∞). Thus, by (3.25), one sees that for any

b ≥ B(L, η) and z ≥ K ≥ K(η),

(3.27) lim sup
n→∞

∣∣∣Πn(F )−αI
L,bR(z−K)e−zE[F (es, 0 ≤ s ≤ ∆)]

∣∣∣ ≤ 2η(1+L)2(1+ z−K)e−z.

Going back to (3.17), we deduce that for any L ≥ Lε, b ≥ B(L, η) and z ≥ K ≥ K(η),

lim sup
n→∞

∣∣∣Σn(F, z)− αI
L,bR(z −K)e−zE[F (es, 0 ≤ s ≤ ∆)]

∣∣∣

≤ 2η(1 + L)2(1 + z −K)e−z +
(
eK + ε(1 + z −K)

)
e−z.

Recall that limz→∞
R(z)
z

= c0. We multiply each term by ez

z
, and then let z go to infinity to

conclude that

(3.28) lim sup
z→∞

lim sup
n→∞

∣∣∣e
z

z
Σn(F, z)− αI

L,bc0E[F (es, 0 ≤ s ≤ ∆)]
∣∣∣ ≤ 2η(1 + L)2 + ε.

In particular, taking F ≡ 1 gives that

(3.29) lim sup
z→∞

lim sup
n→∞

∣∣∣e
z

z
P(In ≤ an(z))− αI

L,bc0

∣∣∣ ≤ 2η(1 + L)2 + ε.

It follows from Fact 3.4 that |C − αI
L,bc0| ≤ 2η(1 + L)2 + ε. We thus choose 0 < ε < C/10

and 0 < η ≤ ε
2(1+Lε)2

so that 2C > αI
Lε,b

c0 > C/2 > 0.

Therefore, for any ε ∈ (0, C/10), 0 < η ≤ ε
2(1+Lε)2

, L = Lε and b ≥ B(Lε, η),

(3.30) lim sup
z→∞

lim sup
n→∞

∣∣∣∣
Σn(F, z)

Σn(1, z)
− E[F (es, 0 ≤ s ≤ ∆)]

∣∣∣∣ ≤
4ε

C/2− 2ε
,

which completes the proof of (3.15) in the non-lattice case.

Step (II) (The conditioned convergence of ( In(sn)
σ
√
n
; 0 ≤ s ≤ ∆) for ∆ < 1 in the lattice

case) Assume that the law of L is supported by α + βZ with span β. Recall that an(0) =

αn+ β⌊
3
2
lnn−αn

β
⌋ and that an(z) = an(0)− z. We use the same notation of Step (I). Let us

prove

(3.31) lim
βZ∋z→∞

lim sup
n→∞

∣∣∣Σn(F, z)

Σn(1, z)
− E[F (es, 0 ≤ s ≤ ∆)]

∣∣∣ = 0.
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Suppose that z ∈ βZ. Whereas the arguments of Step (I), we obtain that for any L ≥ Lε,

b ≥ B(L, η), z ≥ K ≥ K(η) and n sufficiently large,

(3.32)
∣∣∣Σn(F, z)− ΛII

n (F )
∣∣∣ ≤ 2η(1 + L)2(1 + z −K)e−z +

(
eK + ε(1 + z −K)

)
e−z,

where

ΛII
n (F ) = ΛII(F, z,K, L, b) := ean(0)e−zEQ

[
F
(V (w⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ ∆
)
×

fL,b
(
V (wn−b − an(z + L))

)
; min

0≤k≤n−b
V (wk) ≥ −z +K, min

∆n≤k≤n−b
V (wk) ≥ an(z + L)

]
.

Under Q, the distribution of V (w1)−V (w0) is also supported by α+βZ. Let d = d(L, b) :=

β⌈αb−L
β
⌉ − αb+ L and λn := n3/2e−an(0). Recall that fL,b is well defined in (3.20), it follows

from (II) of Lemma 2.4 that

(3.33) lim
n→∞

λnΛ
II
n (F ) = αII

L,bR(z −K)e−zE[F (es, 0 ≤ s ≤ ∆)].

where αII
L,b := C1β

∑
j≥0 fL,b(βj + d)R−(βj + d) ∈ [0,∞). Observe that 1 ≤ λn ≤ eβ.

Combining with (3.32), we conclude that

(3.34) lim sup
βZ∋z→∞

lim sup
n→∞

∣∣∣e
z

z
λnΣn(F, z)− αII

L,bc0E[F (es, 0 ≤ s ≤ ∆)]
∣∣∣ ≤ eβ(2η(1 + L)2 + ε).

We admit for the moment that there exist 0 < c9 < c10 <∞ such that αII
L,b ∈ [c9, c10] for

all L, b large enough. Then take ε < c9c0
4eβ

, L = Lε, η = ε
2(1+Lε)2

and b ≥ B(Lε, η) so that

eβ(2η(1 + L)2 + ε) < c9c0/2 ≤ αII
Lε,b

c0/2 ≤ 2c10c0. Note that Σn(F,z)
Σn(1,z)

=
ez

z
λnΣn(F,z)

ez

z
λnΣn(1,z)

. We thus

deduce from (3.34) that

(3.35) lim sup
βZ∋z→∞

lim sup
n→∞

∣∣∣Σn(F, z)

Σn(1, z)
− E[F (es, 0 ≤ s ≤ ∆)]

∣∣∣ ≤ 4ε

c9c0/eβ − 2ε
,

which tends to zero as ε ↓ 0.
It remains to prove that αII

L,b ∈ [c9, c10] for all L, b large enough. Instead of investigating

the entire system, we consider the branching random walk killed at 0. Define

(3.36) Ikilln := inf{V (u) : |u| = n, V (uk) ≥ 0, ∀0 ≤ k ≤ n},

and we get the following fact from Corollary 3.4 and Lemma 3.6 of [2].
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Fact 3.5 ([2]) There exists a constant c11 > 0 such that for any n ≥ 1 and x, z ≥ 0,

(3.37) Px(I
kill
n ≤ an(z)) ≤ c11(1 + x)e−x−z.

Moreover, there exists c12 > 0 such that for any n ≥ 1 and z ∈ [0, an(1)],

(3.38) P(Ikilln ≤ an(z)) ≥ c12e
−z.

Even though Fact 3.5 is proved in [2] under the assumption that the distribution of L is

non-lattice, the lattice case is actually recovered from that proof.

Analogically, let mkill,(n) be the particle chosen uniformly in the set {u : |u| = n, V (u) =

Ikilln , min0≤k≤n V (uk) ≥ 0}. Moreover, let Σkill
n (1, z) := P

[
Ikilln ≤ an(z)

]
and Πkill

n (1, z, z, L) :=

P
[
Ikilln ≤ an(z), m

kill,(n) ∈ J∆
z,z,L(n)

]
. By (3.7) again, we check that for all L ≥ Lε,

∣∣∣Σkill
n (1, z)−Πkill

n (1, z, z, L)
∣∣∣(3.39)

≤ P
[
∃|u| = n : V (u) ≤ an(z); min

0≤k≤n
V (uk) ≥ 0; min

∆n≤k≤n
V (uk) ≤ an(z + L)

]

≤ εe−z.

Recounting the arguments of Step (1), one sees that for any L ≥ Lε, b ≥ B(L, η), z ≥ K(η)

and n sufficiently large,

(3.40)
∣∣∣Πkill

n (1, z, z, L)− Λkill
n

∣∣∣ ≤ 2η(1 + L)2e−z,

where

(3.41) Λkill
n := EQ

[
fkill(V (wn−b)); min

0≤k≤n−b
V (wk) ≥ 0, min

∆n≤k≤n−b
V (wk) ≥ an(z + L)

]
,

with fkill(x) := EQx

[ eV (wb)1
{V (wb)=Ikill

b
}

∑
|u|=b 1{V (u)=Ikill

b
, min0≤j≤b V (uj)≥0}

; min0≤k≤b V (wk) ≥ an(z + L), V (wb) ≤

an(z)
]
. For ε > 0 and n sufficiently large, it has been proved in [2] that

(3.42)
∣∣∣ezΛII

n (1, z, z, L, b)− Λkill
n

∣∣∣ ≤ ε.

Recalling the convergence (3.33) with K = z and F ≡ 1, we deduce from (3.39), (3.40) and

(3.42) that for any L ≥ Lε, b ≥ B(L, η) and z ≥ K(η),

(3.43) lim sup
n→∞

∣∣∣λnΣkill
n (1, z)− αII

L,be
−z
∣∣∣ ≤ eβ

(
2η(1 + L)2 + 2ε

)
e−z,
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since R(0) = 1 and 1 ≤ λn ≤ eβ. Fact 3.5 implies that c12 ≤ ezλnP(Ikilln ≤ an(z)) ≤ c11e
β.

Hence, we obtain that

(3.44) c12 − eβ
(
2η(1 + L)2 + 2ε

)
≤ αII

L,b ≤ eβc11 + eβ
(
2η(1 + L)2 + 2ε

)
.

Let c10 := c11e
β + c12 and c9 := 3c12/4 > 0. For any ε < e−βc12/12, we take L = Lε and

η ≤ ε/2(1 + Lε)
2. Then c10 > αII

L,b ≥ c9 > 0 for b ≥ B(Lε, η). This completes the second

step.

Step (III)(The tightness) Actually, it suffices to prove the following proposition.

Proposition 3.6 For any η > 0,

(3.45) lim
δ→0

lim sup
z→∞

lim sup
n→∞

P
(

sup
0≤k≤δn

|In(n− k)− In| ≥ ησ
√
n
∣∣∣In ≤ an(z)

)
= 0.

The first two steps allow us to obtain the following fact whether the distribution is lattice

or non-lattice.

Fact 3.7 There exist constants c13, c14 ∈ (0,∞) such that

(3.46) c13 ≤ lim inf
z→∞

lim inf
n→∞

ez

z
P(In ≤ an(z)) ≤ lim sup

z→∞
lim sup
n→∞

ez

z
P(In ≤ an(z)) ≤ c14.

Proof of Proposition 3.6. First, we observe that for any M ≥ 1 and δ ∈ (0, 1/2),

P
(

sup
0≤k≤δn

|In(n− k)− In| ≥ δσ
√
n, In ≤ an(z)

)

≤ P
(
m(n)

n 6∈ J1/2
z,0,L(n), In ≤ an(z)

)
+P

(
In(n− ⌊δn⌋) ≥Mσ

√
δn, In ≤ an(z)

)
+ χ(δ, z, n).

where χ(δ, z, n) := P
(
m

(n)
n ∈ J1/2

z,0,L(n), In(n−⌊δn⌋) ≤Mσ
√
δn, sup0≤k≤δn |In(n−k)−In| ≥

ησ
√
n
)
.

It follows from Lemma 3.2 that for any ε > 0, if L ≥ Lε, n ≥ 1 and z ≥ 0,

(3.47) P
(
m(n)

n 6∈ J1/2
z,0,L(n), In ≤ an(z)

)
≤ (1 + ε(1 + z))e−z.

Then dividing each term of (3.47) by P(In ≤ an(z)) yields that

P
(

sup
0≤k≤δn

|In(n− k)− In| ≥ ησ
√
n
∣∣∣In ≤ an(z)

)
(3.48)

≤ (1 + ε(1 + z))e−z

P(In ≤ an(z))
+P

(
In(n− ⌊δn⌋) ≥Mσ

√
δn

∣∣∣In ≤ an(z)
)
+

χ(δ, z, n)

P(In ≤ an(z))
.
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On the one hand, by Fact 3.7,

(3.49) lim sup
z→∞

lim sup
n→∞

(1 + ε(1 + z))e−z

P(In ≤ an(z))
≤ ε

c13
.

On the other hand, Steps (I) and (II) tell us that for any 1 > δ > 0 and M ≥ 1,

(3.50) lim sup
z→∞

lim sup
n→∞

P
[
In(n− ⌊δn⌋) ≥Mσ

√
δn

∣∣∣In ≤ an(z)
]
= P[e1−δ ≥M

√
δ],

which, by Chebyshev’s inequality, is bounded by E[e1−δ]

M
√
δ

= 4
√
1−δ

M
√
2π
. Consequently,

lim sup
z→∞

lim sup
n→∞

P
(

sup
0≤k≤δn

|In(n− k)− In| ≥ ησ
√
n
∣∣∣In ≤ an(z)

)
(3.51)

≤ ε

c13
+

2

M
+ lim sup

z→∞
lim sup
n→∞

χ(δ, z, n)

P(In ≤ an(z))
.

Let us estimate χ(δ, z, n). One sees that

χ(δ, z, n) ≤ E
[ ∑

|u|=n

1{u∈J1/2
z,L (n); sup0≤k≤δn |V (un−k)−V (u)|≥ησ

√
n; V (un−⌊δn⌋)≤Mσ

√
δn}

]
.

By Lemma 2.4, it becomes that

χ(δ, z, n) ≤ E
[
eSn ;Sn ≤ an(z), Sn ≥ −z, S [n/2,n] ≥ an(z + L),

Sn−⌊δn⌋ ≤Mσ
√
δn, sup

0≤k≤δn
|Sn−k − Sn| ≥ ησ

√
n
]

≤ n3/2e−zΥ(δ, z, n),

where Υ(δ, z, n) := P
(
Sn ≤ an(z), Sn ≥ −z, S [n/2,n] ≥ an(z + L), Sn−⌊δn⌋ ≤Mσ

√
δn,

sup0≤k≤δn |Sn−k − Sn| ≥ ησ
√
n, Sn−⌊δn⌋ ≤Mσ

√
δn

)
.

Reversing time yields that

(3.52) Υ(δ, z, n) ≤ P
(
S−
n ≥ −an(0), S−

n/2 ≥ −L, −Sn ∈ [−an(z),−an(z + L)],

sup
0≤k≤δn

| − Sk| ≥ ησ
√
n,−S⌊δn⌋ ≤Mσ

√
δn− an(z + L)

)
.

Applying the Markov property at time ⌊δn⌋, we obtain that

(3.53) Υ(δ, z, n) = E
[
Θ(−S⌊δn⌋); S

−
δn ≥ −L, sup

0≤k≤δn
| − Sk| ≥ ησ

√
n
]
,
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where Θ(x) := 1{x≤Mσ
√
δn−an(z+L)}Px

(
S−
(1/2−δ)n ≥ −L, S−

(1−δ)n ≥ −an(0),−Sn−⌊δn⌋ ∈ [−an(z),
− an(z + L)]

)
. Reversing time again implies that

Θ(x) ≤ 1{x≤Mσ
√
δn}P

(
S(1−δ)n ≥ −z − L,

S [n/2,(1−δ)n] ≥ an(z + 2L), Sn−⌊δn⌋ ∈ [x+ an(z + L), x+ an(z)]
)
.

By (2.10), Θ(x) ≤ c15(1+ z+L)(1+L)(1+Mσ
√
δn+2L)n−3/2. Plugging it into (3.53) and

taking n large enough so that 1 + 2L < ησ
√
δn, we get that

Υ(δ, z, n) ≤ c15(1 + z)(1 + L)2n−3/2(M + η)σ
√
δnE

[
S−
δn ≥ −L, sup

0≤k≤δn
| − Sk| ≥ ησ

√
n
]
.

Recall that χ(δ, z, n) ≤ e−zn3/2Υ(δ, z, n). We check that

(3.54) χ(δ, z, n) ≤ c15e
−z(1 + z)(1 + L)2(M + η)σ

×EL

[
sup

0≤k≤δn
(−Sk) ≥ ησ

√
n
∣∣∣S−

δn ≥ 0
](√

δnPL

[
S−
δn ≥ 0

])
.

On the one hand, by Theorem 1.1 of [7], EL

[
sup0≤k≤δn(−Sk) ≥ ησ

√
n
∣∣∣S−

δn ≥ 0
]
converges to

P(sup0≤s≤1Ms ≥ η/
√
δ) as n→∞. On the other hand, (2.7) shows that

√
δnPL

[
S−
δn ≥ 0

]

converges to C−R−(L) as n→∞. Therefore,

lim sup
n→∞

χ(δ, z, n) ≤ c15e
−z(1 + z)(1 + L)2(M + η)σC−R−(L) × P( sup

0≤s≤1
Ms ≥ η/

√
δ).

Going back to (3.51) and letting z →∞, we deduce from Fact 3.7 that

(3.55) lim sup
z→∞

lim sup
n→∞

P
(

sup
0≤k≤δn

|In(n− k)− In| ≥ ησ
√
n
∣∣∣In ≤ an(z)

)

≤ ε

c13
+

2

M
+
c15(1 + L)2(M + η)σC−R−(L)×P(sup0≤s≤1Ms ≥ η/

√
δ)

c13
.

Notice that P(sup0≤s≤1Ms ≥ η/
√
δ) decreases to 0 as δ ↓ 0. Take M ≥ 2/ε. We conclude

that for any 0 < ε < c13,

(3.56) lim sup
δ→0

lim sup
z→∞

lim sup
n→∞

P
(

sup
0≤k≤δn

|In(n− k)− In| ≥ ησ
√
n
∣∣∣In ≤ an(z)

)
≤ ε

c13
+ ε,

which completes the proof of Proposition 3.6. And Proposition 3.1 is thus proved. �
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4 Proof of Theorem 1.1

Let us prove the main theorem now. It suffices to prove that for any continuous functional

F : D([0, 1],R)→ [0, 1], we have

(4.1) lim
n→∞

∣∣∣∣E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)]
− E

[
F (es, 0 ≤ s ≤ 1)

]∣∣∣∣ = 0.

Proof of (4.1). Define for A ≥ 0,

(4.2) Z[A] := {u ∈ T : V (u) ≥ A > max
k<|u|

V (uk)}.

For any particle u ∈ Z[A], there is a subtree rooted at u. If |u| ≤ n, let

In(u) := min
v≥u,|v|=n

V (v).

Moreover, assume mu
n is the particle uniformly chosen in the set {|v| = n : v ≥ u, V (v) =

In(u)}. Similarly, we write [[∅, mu
n]] := {∅ =: mu

0 , m
u
1 , · · · , mu

n}. The trajectory leading

to mu
n is denoted by {V (mu

k); 0 ≤ k ≤ n}. Let ωA be the particle uniformly chosen in

{u ∈ Z[A] : |u| ≤ n, In(u) = In}.
Let YA := {maxu∈Z[A] |u| ≤ M, maxu∈Z[A] V (u) ≤ M}. Then for any ε > 0, there exist

M :=M(A, ε) large enough such that P(Yc
A) ≤ ε. It follows that

∣∣∣E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)]
−E

[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
;YA, |In − an(0)| ≤ A/2

]∣∣∣(4.3)

≤ ε+ P[|In − an(0)| ≥ A/2].

We then check that for n ≥M ,

E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
;YA, |In − an(0)| ≤ A/2

]
(4.4)

= E
[ ∑

u∈Z[A]

1(u=ωA)F
(V (mu

⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
;YA, |In − an(0)| ≤ A/2

]
.

Define another trajectory {Ṽ (mu
k); 0 ≤ k ≤ n} as follows.

(4.5) Ṽ (mu
k) :=

{
V (u) if k < |u|;
V (mu

k) if |u| ≤ k ≤ n.
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It follows that

E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
;YA, |In − an(0)| ≤ A/2

]
(4.6)

= E
[ ∑

u∈Z[A]

1(u=ωA)F
( Ṽ (mu

⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
;YA, |In − an(0)| ≤ A/2

]
+ on(1),

where on(1)→ 0 as n goes to infinity.

Define the sigma-field GA := σ{(u, V (u), In(u)); u ∈ Z[A]}. Note that on YA, In =

minu∈Z[A] In(u) as long as n ≥M . One sees that YA∩{|In−an(0)| ≤ A/2} is GA-measurable

for all n large enough. Thus,

E
[ ∑

u∈Z[A]

1(u=ωA)F
( Ṽ (mu

⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
;YA, |In − an(0)| ≤ A/2

]
(4.7)

= E
[ ∑

u∈Z[A]

1(u=ωA)E
[
F
( Ṽ (mu

⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)∣∣∣GA, u = ωA

]
;YA, |In − an(0)| ≤ A/2

]
.

Further, we notice by the branching property that conditioned on {(u, V (u)); u ∈ Z[A]},
the subtrees generated by u ∈ Z[A] are independent copies of the original one, started from

V (u), respectively. Therefore, given YA ∩ {|In − an(0)| ≤ A/2},

1(u=ωA)E
[
F
( Ṽ (mu

⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)∣∣∣GA, u = ωA

]

= 1(u=ωA)E
[
F
(I(⌊s(n− |u|)⌋)

σ
√
n− |u|

; 0 ≤ s ≤ 1
)∣∣∣In−|u| ≤ an(−ru)

]
+ on(1),

where ru := min{minv∈Z[A]\{u} In(v) − an(0), A/2} − V (u) is independent of In−|u|. Thus,

(4.6) becomes that

E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
;YA, |In − an(0)| ≤ A/2

]
(4.8)

= E
[ ∑

u∈Z[A]

1(u=ωA)E
[
F
(I(⌊s(n− |u|)⌋)

σ
√
n− |u|

; 0 ≤ s ≤ 1
)∣∣∣In−|u| ≤ an(−ru)

]
;

YA, |In − an(0)| ≤ A/2
]
+ on(1).

The event YA ∩ {|In− an(0)| ≤ A/2} ensures that A/2+M ≥ −ru ≥ A/2. The conditioned

convergence has been given in Proposition 3.1. We need a slightly stronger version here.
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According to Proposition 3.1, for any ε > 0, there exists zε > 0 such that for all z ≥ zε,

(4.9) lim sup
n→∞

∣∣∣E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)∣∣∣In ≤ an(z)

]
− E[F (es, 0 ≤ s ≤ 1)]

∣∣∣ < ε.

Thus, for any z ≥ zε, there exists Nz ≥ 1 such that for any n ≥ Nz,

(4.10)
∣∣∣E

[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)∣∣∣In ≤ an(z)

]
− E[F (es, 0 ≤ s ≤ 1)]

∣∣∣ < 2ε.

Take A = 2zε and K =M . We say that for n sufficiently large,

(4.11) sup
z∈[zε,zε+K]

∣∣∣E
[
F
(I(⌊s(n)⌋)

σ
√
n

; 0 ≤ s ≤ 1
)∣∣∣In ≤ an(z)

]
−E[F (es, 0 ≤ s ≤ 1)]

∣∣∣ ≤ 3ε.

In the lattice case, (4.11) follows immediately. We only need to prove it in the non-lattice

case.

Recall that Σn(F, z) = E
[
F
(

In(⌊sn⌋)
σ
√
n

; 0 ≤ s ≤ 1
)
; In ≤ an(z)

]
with 0 ≤ F ≤ 1. Then,

for any ℓ > 0 and z ≥ 0,

∣∣∣Σn(F, z)

Σn(1, z)
− Σn(F, z + ℓ)

Σn(1, z + ℓ)

∣∣∣(4.12)

≤
∣∣∣Σn(F, z)− Σn(F, z + ℓ)

Σn(1, z)

∣∣∣+
∣∣∣Σn(F, z + ℓ)

Σn(1, z)
− Σn(F, z + ℓ)

Σn(1, z + ℓ)

∣∣∣

=
1

Σn(1, z)

(∣∣∣Σn(F, z)− Σn(F, z + ℓ)
∣∣∣+ Σn(F, z + ℓ)

Σn(1, z + ℓ)

∣∣∣Σn(1, z + ℓ)− Σn(1, z)
∣∣∣
)
.

Since 0 ≤ F ≤ 1, the two following inequalities

∣∣∣Σn(F, z)− Σn(F, z + ℓ)
∣∣∣ = E

[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
; an(z + ℓ) < In ≤ an(z)

]

≤ P(an(z + ℓ) < In ≤ an(z)),

and Σn(F,z+ℓ)
Σn(1,z+ℓ)

≤ 1 hold. Note also that |Σn(1, z+ ℓ)−Σn(1, z)| = P(an(z + ℓ) < In ≤ an(z)).

It follows that
∣∣∣Σn(F, z)

Σn(1, z)
− Σn(F, z + ℓ)

Σn(1, z + ℓ)

∣∣∣ ≤ 2
P(an(z + ℓ) < In ≤ an(z))

P(In ≤ an(z))
(4.13)

= 2− 2
P(In ≤ an(z + ℓ))

P(In ≤ an(z))
.

In view of Fact 3.4, we take 3
2
lnn− Λε′ ≥ ℓ+ z > z ≥ Λε′ so that for any n ≥ Nε′,

(4.14)
P(In ≤ an(z + ℓ))

P(In ≤ an(z))
≥ (C − ε′)(z + ℓ)e−z−ℓ

(C + ε′)ze−z
≥ C − ε′
C + ε′

e−ℓ.
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For ε′ = Cε/8 > 0, we choose ζ = ε
4
so that C−ε′

C+ε′
e−ζ ≥ 1 − ε

2
. As a consequence, for any

Λε′ ≤ z ≤ 3
2
lnn− Λε′ − ζ , 0 ≤ ℓ ≤ ζ and n ≥ Nε′,

(4.15)
∣∣∣Σn(F, z)

Σn(1, z)
− Σn(F, z + ℓ)

Σn(1, z + ℓ)

∣∣∣ ≤ 2
(
1− C − ε′

C + ε′
e−ℓ

)
≤ ε.

For ε > 0, zε can be chosen so that [zε, zε +K] ⊂ [Λε′,
3
2
lnn − Λε′] for n ≥ eKNε′. For

any integer 0 ≤ j ≤ ⌈K/ζ⌉, let zj := zε + jζ . Then [zε, zε +K] ⊂ ∪0≤j≤⌈K/ζ⌉[zj , zj+1]. Take

N ′
ε = max0≤j≤⌈K/ζ⌉{Nzj , e

KNε′}. By (4.10) and (4.15), we conclude that for any n ≥ N ′
ε,

sup
z∈[zε,zε+K]

∣∣∣E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)∣∣∣In ≤ an(z)

]
− E[F (es, 0 ≤ s ≤ 1)]

∣∣∣

≤ sup
0≤j≤⌈K/ζ⌉

∣∣∣Σn(F, zj)

Σn(1, zj)
− E[F (es, 0 ≤ s ≤ 1)]

∣∣∣+ sup
0≤j<⌈K/ζ⌉

sup
zj≤z≤zj+1

∣∣∣Σn(F, z)

Σn(1, z)
− Σn(F, zj)

Σn(1, zj)

∣∣∣

≤ 3ε.

We continue to prove the main theorem. Since
∑

u∈Z[A] 1(u=ωA) = 1, we deduce from (4.8)

and (4.11) that for n sufficiently large,

∣∣∣E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)
;YA, |In − an(0)| ≤ A/2

]
− E[F (es, 0 ≤ s ≤ 1)]

∣∣∣

≤ 3εP(YA; |In − an(0)| ≤ A/2) + on(1) +P(Yc
A) +P(|In − an(0)| ≥ A/2)

≤ 4ε+ on(1) +P(|In − an(0)| ≥ A/2).

Going back to (4.3), we conclude that for n large enough,

∣∣∣E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)]
−E[F (es, 0 ≤ s ≤ 1)]

∣∣∣ ≤ 5ε+2P(|In− an(0)| ≥ A/2) + on(1).

Let n go to infinity and then make ε ↓ 0. Therefore,

lim sup
n→∞

∣∣∣E
[
F
(In(⌊sn⌋)

σ
√
n

; 0 ≤ s ≤ 1
)]
−E[F (es, 0 ≤ s ≤ 1)]

∣∣∣(4.16)

≤ lim sup
z→∞

lim sup
n→∞

2P(|In − an(0)| ≥ z).

It remains to show that lim supz→∞ lim supn→∞P(|In − an(0)| ≥ z) = 0. Because of Fact

(3.7), it suffices to prove that

(4.17) lim sup
z→∞

lim sup
n→∞

P(In ≥ an(0) + z) = 0.
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In the non-lattice case, Theorem 1.1 of [2] implies it directly. In the lattice case, we see that

for n large enough,

(4.18) P(In ≥ an(0) + z) ≤ E
[ ∏

u∈Z[A]

(1− Φu(z, n));YA

]
+ ε,

with Φu(z, n) := P(In−|u| ≤ an(V (u)− z)). Take A = 2z here. Then it follows from Fact 3.7

that for n large enough and for any particle u ∈ Z[A],

(4.19) Φu(z, n) ≥ c13/2(V (u)− z)ez−V (u) ≥ c13
4
V (u)ez−V (u).

(4.18) hence becomes that

lim sup
n→∞

P(In ≥ an(0) + z) ≤ E
[ ∏

u∈Z[A]

(1− c13
4
V (u)ez−V (u));YA

]
+ ε

≤ E
[
exp

(
− c13

4
ez

∑

u∈Z[A]

V (u)e−V (u)
)]

+ ε.

It has been proved that as A goes to infinity,
∑

u∈Z[A] V (u)e−V (u) converges almost surely to

some limit D∞, which is strictly positive on the set of non-extinction of T, (see (5.2) in [2]).

We end up with

(4.20) lim sup
z→∞

lim sup
n→∞

P(In ≥ an(0) + z) ≤ ε,

which completes the proof of Theorem 1.1. �
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[2] Äıdékon, E. (2011+). Weak convergence of the minimum of a branching random walk.
ArXiv:1101.1810
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