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Mortar finite element discretization of

the time dependent nonlinear Darcy’s equations

by Karima Amoura1, Christine Bernardi2, and Samira Saadi3

Abstract: We consider the non stationary flow of a viscous incompressible fluid in a
rigid homogeneous porous medium provided with mixed boundary conditions. Since the
medium is nonhomogeneous, its permeability is only piecewise continuous. We are thus
led to use the mortar method to handle these discontinuities. We propose a space and
time discretization of the full system. We prove optimal a priori error estimates, which
confirms the interest of the discretization.

Résumé: Nous considérons l’écoulement instationnaire d’un fluide visqueux incompres-
sible dans un milieu poreux rigide avec conditions aux limites mixtes. Comme le milieu
n’est pas homogène, sa perméabilité est seulement continue par morceaux, ce qui nous
amène à utiliser la méthode d’éléments finis avec joints pour traiter ces discontinuités. Nous
proposons une discrétisation en temps et en espace du système complet. Nous prouvons
des estimations d’erreur a priori qui s’avèrent optimales, ce qui confirme l’intérêt de la
discrétisation.
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Université Badji-Mokhtar, Faculté des Sciences, Département de Mathématiques,
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1. Introduction.

Let Ω be a bounded connected domain in Rd, d = 2 or 3, with a Lipschitz-continuous
boundary ∂Ω. We assume that this boundary is divided into two disjoint parts Γ1 and
Γ2 such that ∂Γ1 and ∂Γ2 are Lipschitz-continuous submanifolds of ∂Ω. Let also T be a
positive real number. We are interested in studying the following model, first suggested
by K.R. Rajagopal [14], for the flow of a viscous incompressible fluid in a rigid saturated
porous medium 

∂tu+ α(·, p)u+ grad p = f in Ω×]0, T [,

divu = 0 in Ω×]0, T [,

p = p1 on Γ1×]0, T [,

u · n = g2 on Γ2×]0, T [,

u|t=0 = u0 in Ω,

(1.1)

where the unknowns are the velocity u and the pressure p of the fluid. Indeed this system
models the flow of a viscous incompressible fluid in a rigid saturated porous medium. It
seems rather realistic from a mechanical point of view, at least when the coefficient α
which is linked to the permeability of the medium and the viscosity of the fluid satisfies
the following conditions:
• When p is fixed, the function: x 7→ α(x, p) is piecewise constant. Indeed, the previous
equations model the flow in a porous medium, but underground porous media are most
often nonhomogeneous, made of several components such as clay or calcalenite, and the
values of α for these different components are very different (the ratio of the maximal value
to the minimal one is often of order 106, see [6, Table 1] for instance);
•Where the pressure presents high variations, for instance induced by the boundary values,
the coefficient α depends on these values in an exponential way. We refer to [14] for details
on the way of deriving this model.
The data are a density of body forces f (which most often represents the gravity action),
the boundary pressure p1 and the boundary flux g2, and also the initial condition u0.

We refer to [3] for a first work on this nonlinear problem in the steady case and for
a simple three-dimensional geometry. On the other hand, piecewise constant coefficients
α with possible high variations have been handled in [1] and [6], while time-dependent
Darcy’s equations have been studied in [5] and more recently in [10] for a piecewise constant
coefficient α. However, up to our knowledge, combining the three difficulties of nonlinearity,
nonhomogeneity and time dependence has not been considered up to now. We also recall
that, even in the basic case of a constant coefficient α (and also for the stationary problem),
system (1.1) admits several variational formulations. We have chosen to work with one
of them in view of the discretization and according to the approach proposed in [2]. We
first write this space variational formulation which is equivalent to problem (1.1) when the
partition of ∂Ω into Γ1 and Γ2 is smooth enough. Next we prove the existence of a solution
by handling separately the boundary conditions, uncoupling the unknowns and applying
the Cauchy–Lipschitz theorem for the velocity, the Brouwer fixed point theorem for the
pressure. We also establish a uniqueness result.
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The time discretization that we propose relies on the Euler’s implicit scheme, however
we have decided to treat the nonlinear term in an explicit way to make the implementation
both simpler and less expensive. For the space discretization, we combine the mortar
element method introduced in [7] with the use of nonconforming finite elements proposed
in [2, §4], which involves the elements due to M. Crouzeix and P.-A. Raviart [9]. Such a
discretization has already been studied in [6] in the simpler case of a linear steady problem
with piecewise constant coefficient α. We describe the corresponding discrete problem and
prove the existence of a solution. Next, we prove a priori error estimates for this problem
which turn out to be fully optimal.

Fo simplicity, we work with a fixed time step and a triangulation which does not
depend on the time. Note however that a very similar mortar finite element discretization
has been studied in [6] in the linear stationary case and that, by combining the arguments in
this paper with those in [4], we could perform the a posteriori analysis of the discretization
for variable time steps and triangulations, see also [5] for similar results. However the
adaptation of either the time step or the mesh seems useless since there is neither birth
nor transport of singularities of the solution. So we omit this a posteriori analysis.

An outline of the paper is as follows.
• In Section 2, we write the variational formulation of problem (1.1) and investigate its
wellposedness in appropriate Sobolev spaces.
• Section 3 is devoted to the description of the time semi-discrete problem and of the full
discrete problem. We also prove the existence of a solution.
• In Section 4, we perform the a priori analysis of the discretization and prove optimal
error estimates.

Acknowledgement: We thank Professor Frédéric Hecht for his clever comments on this
paper which allow us to grealy improve it.
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2. Variational formulation and well-posedness.

From now on, we assume that Γ1 has a positive measure in ∂Ω. Before writing the
variational formulation of problem (1.1), we make precise the assumptions that we make
on the coefficient α: For each ξ in R, the mapping: x 7→ α(x, ξ) is piecewise constant,
more precisely equal to a constant αi(ξ) on each subdomain Ωi, 1 ≤ i ≤ I, of a partition
of Ω without overlap. We make the further and realistic assumption (the medium is rigid)
that this partition is independent of ξ. Next, we assume that each mapping: ξ 7→ αi(ξ),
1 ≤ i ≤ I, is
(i) bounded and positive on R: There exist positive constants αi[ and αi] such that

∀x ∈ Ωi,∀ξ ∈ R, αi[ ≤ αi(x, ξ) ≤ αi]; (2.1)

(ii) Lipschitz–continuous on R: There exists a constant αi∗ such that

∀x ∈ Ωi,∀ξ1 ∈ R,∀ξ2 ∈ R, |αi(x, ξ1)− αi(x, ξ2)| ≤ αi∗ |ξ1 − ξ2|. (2.2)

We denote by α[ and α], the min of the αi[ and the max of the αi], 1 ≤ i ≤ I, respectively.
The main idea for the introduction of this notation is that all ratios αi]/αi[ are of reasonable
size and will not be taken into account in the next estimates while the ratio α]/α[ can be
very large.

In what follows, the scalar product defined on L2(Ω) or L2(Ω)d is denoted by (·, ·).
We use the whole scale of Sobolev spaces Hs(Ω), s ≥ 0, equipped with the norm ‖ · ‖Hs(Ω)

and seminorm | · |Hs(Ω), and their subspaces Hs
0(Ω). In view of the boundary conditions

in (1.1), we introduce the space

H1
4(Ω) =

{
q ∈ H1(Ω); q = 0 on Γ1

}
. (2.3)

Since the traces on Γ2 of functions in H1
4(Ω) belong to H

1/2
00 (Γ2) (see [13, Chap. 1, Th.

11.7] for the definition of this last space), we introduce its dual space H
1/2
00 (Γ2)′ and denote

by 〈·, ·〉Γ2
the duality pairing between H

1/2
00 (Γ2)′ and H

1/2
00 (Γ2).

For any separable Banach space E equipped with the norm ‖ · ‖E , we denote by
C 0(0, T ;E) the space of continuous functions from [0, T ] with values in E. For each s ≥ 0,
we also introduce the space Hs(0, T ;E) in the following way: When s is an integer, it is
the space of measurable functions on ]0, T [ with values in E such that the mappings: v 7→
‖∂`tv‖E , 0 ≤ ` ≤ s, are square-integrable on ]0, T [; otherwise, it is defined by interpolation
between Hbsc+1(0, T ;E) and Hbsc(0, T ;E), where bsc stands for the integer part of s.

Assuming the data (f,u0, p1, g2) sufficient smooth for the next equations to make
sense, we now consider the following variational problem:

Find (u, p) in C 0(0, T ;L2(Ω)d)× L2(0, T ;H1(Ω)) such that

u(x, 0) = u0(x) for a.e. x in Ω

and p(x, t) = p1(x, t) for a.e. (x, t) in Γ1×]0, T [,
(2.4)
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and, for a.e. t in ]0, T [,

∀v ∈ L2(Ω)d,
(
∂tu,v

)
+
(
α(·, p)u,v

)
+
(
v,grad p

)
= (f ,v),

∀q ∈ H1
4(Ω),

(
u,grad q

)
= 〈g2, q〉Γ2 .

(2.5)

Indeed standard density arguments yield the equivalence of this problem with system (1.1).

Proposition 2.1. Assume that the partition of ∂Ω into Γ1 and Γ2 is sufficiently smooth
for D(Ω∪Γ2) to be dense in H1

4(Ω). Then, problems (1.1) and (2.4)− (2.5) are equivalent
in the sense that a pair (u, p) in C 0(0, T ;L2(Ω)d)× L2(0, T ;H1(Ω)) is a solution of (1.1)
(in the distribution sense) if and only if it is a solution of (2.4)− (2.5).

To prove the well-posedness of problem (2.4)− (2.5), we begin with a priori estimates
on the solution. To do this, we consider the norm on L2(Ω)

‖v‖α =
( I∑
i=1

αi[

∫
Ωi

v2(x) dx
) 1

2

. (2.6)

Its extension to L2(Ω)d is obvious. We also define its “dual” norm

‖v‖α−1 =
( I∑
i=1

α−1
i[

∫
Ωi

v2(x) dx
) 1

2

. (2.7)

Analogous norms were introduced in [1] in the simpler case of a piecewise constant co-
efficient α, see also [6, §2]. It can also be noted that, owing to the Poincaré–Friedrichs
inequality, the mapping: q 7→ ‖grad q‖α−1 is a norm on H1

4(Ω).

Lemma 2.2. The following inf-sup condition holds

∀q ∈ H1
4(Ω), sup

v∈L2(Ω)d

(
v,grad q

)
‖v‖α

≥ ‖grad q‖α−1 . (2.8)

Proof: When taking v equal to α−1
i[ grad q on each Ωi, 1 ≤ i ≤ I, we obtain(

v,grad q
)

= ‖grad q‖2α−1 and ‖v‖α = ‖grad q‖α−1 ,

which yields the desired condition.

The next statement requires the introduction of the kernel

V(Ω) =
{
v ∈ L2(Ω)d; ∀q ∈ H1

4(Ω),
(
v,grad q

)
= 0
}
. (2.9)

It is readily checked that this kernel admits the following characterization

V(Ω) =
{
v ∈ L2(Ω)d; div v = 0 in Ω and v · n = 0 on Γ2

}
. (2.10)
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Lemma 2.3. For any data

f ∈ L2(0, T ;L2(Ω)d), u0 ∈ L2(Ω)d, and g2 ∈ C 0(0, T ;H
1/2
00 (Γ2)′), (2.11)

the following a priori estimate holds for any solution (u, p) of problem (2.4)− (2.5)

sup
0≤t≤T

‖u(t)‖L2(Ω) +
(∫ T

0

‖u(t)‖2α dt
) 1

2

≤ 3
(∫ T

0

‖f(t)‖2α−1 dt
) 1

2

+ ‖u0‖L2(Ω)d + c(α) ‖g2‖C 0(0,T ;H
1/2
00 (Γ2)′)

,

(2.12)

where the constant c(α) only depends on the coefficient α.

Proof: Owing to the inf-sup condition (2.8) and the continuity of the trace operator

from H1
4(Ω) into H

1/2
00 (Γ2), for all t in [0, T ], there exists (see [12, Chap. I, Lemma 4.1])

an isomorphism B from H
1/2
00 (Γ2)′ into the orthogonal of V(Ω) (for the scalar product

associated with the norm ‖ · ‖α) such that, when setting w(t) = Bg2(t),

∀q ∈ H1
4(Ω),

(
w(t),grad q

)
= 〈g2(t), q〉Γ2 , (2.13)

and also
‖w(t)‖α ≤ c(α) ‖g2(t)‖

H
1/2
00 (Γ2)′

. (2.14)

Next, we observe that the function u∗ = u−w belongs to V(Ω) and satisfies

∀v ∈ V(Ω),
(
∂tu
∗,v
)

+
(
α(·, p)u∗,v

)
= (f ,v)−

(
∂tw,v

)
−
(
α(·, p)w,v

)
. (2.15)

Taking v equal to u∗ in this equation gives, with c = max1≤i≤I
αi]
αi[

,

1

2
dt‖u∗‖2L2(Ω)d + ‖u∗(t)‖2α ≤ (‖f‖α−1 + α

− 1
2

[ ‖∂tw(t)‖L2(Ω)d + c ‖w(t)‖α)‖u∗(t)‖α

≤ 1

2
(‖f‖α−1 + α

− 1
2

[ ‖∂tw(t)‖L2(Ω)d + c ‖w(t)‖α)2 +
1

2
‖u∗(t)‖2α,

whence, by integrating with respect to t,

‖u∗(t)‖2L2(Ω)d − ‖u0‖2L2(Ω)d +

∫ t

0

‖u∗(s)‖2α ds

≤ 3
(∫ t

0

‖f(s)‖2α−1 ds+ α−1
[

∫ t

0

‖∂tw(s)‖2L2(Ω)d ds+ c2
∫ t

0

‖w(s)‖2α ds
)
.

When combined with (2.14), this yields the desired estimate.

We have not made precise the dependence of the constant c(α) in (2.12) with respect
to the different αi first for simplicity but also because, in practical situations, Γ2 intersects
a few number of subdomains Ωi.

We are now in a position to derive the main result of this section, namely the existence
of a solution to problem (2.4) − (2.5). However its rather technical proof requires some
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preliminary results. Assuming that the data satisfy (2.11), we need the function w intro-
duced in the proof of Lemma 2.3, which satisfies (2.13) and (2.14), and also the harmonic
lifting p̃1 of any extension of p1 in H1/2(∂Ω), which satisfies for a.e. t in (0, T ),

‖p̃1(t)‖H1(Ω) ≤ c ‖p1(t)‖H1/2(Γ1). (2.16)

Next, we set: u∗ = u −w, p∗ = p − p̃1, and we observe that the pair (u∗, p∗) belongs to
C 0(0, T ;V(Ω))× L2(0, T ;H1

4(Ω)) and satisfies, for a.e. t in ]0, T [,

∀v ∈ L2(Ω)d,(
∂tu
∗,v
)

+
(
α∗(·, p∗)u∗,v

)
+
(
α∗(·, p∗)w,v

)
+
(
v,grad p∗

)
= (f∗,v),

(2.17)

where obviously the new function f∗ is equal to f − ∂tw− grad p̃1 and the function α∗ is
defined by

∀(x, t) ∈ Ω×]0, T [, ∀ξ ∈ R, α∗(x, t, ξ) = α
(
x, ξ + p̃1(x, t)

)
. (2.18)

It is readily checked that the function α∗ satisfies the same properties (2.1) and (2.2) as
the cofficient α, with the same constants αi[, αi], and αi∗. Finally, it follows from the
definition (2.9) of V(Ω) that L2(Ω)d is the orthogonal sum of V(Ω) and gradH1

4(Ω), so
that problem (2.17) can be written as the sum of two coupled equations:

∀q ∈ H1
4(Ω),

(
α∗(·, p∗)u∗,grad q

)
+
(
α∗(·, p∗)w,grad q

)
+
(
grad p∗,grad q

)
= (f∗,grad q),

(2.19)

and

∀v ∈ V(Ω),
(
∂tu
∗,v
)

+
(
α∗(·, p∗)u∗,v

)
+
(
α∗(·, p∗)w,v

)
= (f∗,v). (2.20)

We begin with a preliminary lemma. We skip its proof since the result is a direct conse-
quence of the Cauchy–Lipschitz theorem and the separability of V(Ω) (see [5, Thm 2.4] for
a similar result).

Lemma 2.4. For any data

f ∈ L2(0, T ;L2(Ω)d), u0 ∈ L2(Ω)d, p1 ∈ L2(0, T ;H1/2(Γ1)),

and g2 ∈ H1(0, T ;H
1/2
00 (Γ2)′),

(2.21)

and for any function p∗ in L2(0, T ;L2(Ω)), problem (2.20) provided with the initial con-
dition u∗(·, 0) = u0 − w(·, 0) has a unique solution u∗ in C 0(0, T ;V(Ω)). Moreover this
solution satisfies

sup
0≤t≤T

‖u∗(t)‖L2(Ω) +
(∫ T

0

‖u∗(t)‖2α dt
) 1

2

≤ 3
(∫ T

0

‖f(t)‖2α−1 dt
) 1

2

+ ‖u0‖L2(Ω)d

+ c(α) ‖p1‖L2(0,T ;H1/2(Γ1)) + c(α) ‖g2‖H1(0,T ;H
1/2
00 (Γ2)′)

.

(2.22)
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We call F the mapping: p∗ 7→ u∗, where u∗ is the solution exhibited in Lemma
2.4. It is readily checked from this lemma that F is continuous from L2(0, T ;L2(Ω)) into
C 0(0, T ;L2(Ω)d) and also, thanks to (2.22), that its range is bounded.

Theorem 2.5. Assume that the partition of ∂Ω into Γ1 and Γ2 is sufficiently smooth for
D(Ω ∪ Γ2) to be dense in H1

4(Ω). For any data (f , u0, p1, g2) satisfying (2.21), problem
(2.4)− (2.5) has a solution (u, p) in C 0(0, T ;L2(Ω)d)×L2(0, T ;H1(Ω)). Moreover, its part
u satisfies (2.12) and its part p satisfies

(∫ T

0

‖p‖2H1(Ω) dt
) 1

2 ≤ c α]
(
‖f‖L2(0,T ;L2(Ω)d) + ‖u0‖L2(Ω)d

+ c(α)
(
‖p1‖L2(0,T ;H1/2(Γ1) + ‖g2‖C 0(0,T ;H

1/2
00 (Γ2)′)

))
.

(2.23)

Proof: The main idea is to apply Brouwer’s fixed point theorem to problem (2.19). Several
steps are needed for that.
1) For a.e. t in (0, T ), we first define a mapping Φ from H1

4(Ω) into its dual space by

∀p ∈ H1
4(Ω),∀q ∈ H1

4(Ω),

〈Φ(p), q〉 =
(
α∗(·, p)F(p),grad q

)
+
(
α∗(·, p)w,grad q

)
+
(
grad p,grad q

)
− (f∗,grad q),

where w is still the lifting introduced in the proof of Lemma 2.3. This mapping is contin-
uous and moreover satisfies

〈Φ(p), p〉 ≥ |p|2H1(Ω) − c0(t)|p|H1(Ω),

where c0(t) is given by
c0(t) = 2c1 α] + ‖f∗(t)‖L2(Ω)d ,

and c1 stands for the right-hand side of (2.22). Thus, 〈Φ(p), p〉 is nonnegative on the sphere
with radius c0(t).
2) It follows from the density assumption that there exists an increasing sequence (Hn)n
of finite-dimensional subspaces of H1

4(Ω) such that ∪n∈NHn = H1
4(Ω). For each n, the

restriction of the mapping Φ to Hn satisfies exactly the same properties as previously, so
that applying Brouwer’s fixed point theorem (see [12, Chap. IV, Cor. 1.1] for instance)
yields for each n the existence of a function pn in Hn so that

∀qn ∈ Hn, 〈Φ(pn), qn〉 = 0 and |pn|H1(Ω) ≤ c0(t).

3) Owing to the Poincaré–Friedrichs inequality, the seminorm |·|H1(Ω) is a norm on H1
4(Ω).

Since the sequence (pn)n is bounded in this norm, there exists a subsequence, still denoted
by (pn)n for simplicity, which converges to a function p∗ weakly in H1(Ω) and strongly
in L2(Ω) (we use here the compactness of the imbedding of H1(Ω) into L2(Ω)). It thus
follows from the weak lower semi-continuity of the norm that

|p∗(t)|H1(Ω) ≤ c0(t).
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Then, using a Poincaré–Friedrichs inequality, combining this with (2.16) and integrating
the square of the result with respect to t gives estimate (2.23).
4) The function pn satisfies for all qm in Hm, m ≤ n,(
α∗(·, pn)F(pn),grad qm

)
+
(
α∗(·, pn)w,grad qm

)
+
(
grad pn,grad qm

)
= (f∗,grad qm).

Thanks the continuity of the mapping F on L2(0, T ;L2(Ω)), the sequence (F(pn))n con-
verges to F(p∗) strongly in L2(0, T ;L2(Ω)). We now set: u∗ = F(p∗). On the other
hand, since

(
pn(x, t)

)
converges to p∗ a.e. in Ω×]0, T [, the sequence

(
α∗(·, pn) grad qm

)
n

converges to α∗(·, p∗) grad qm a.e. in Ω×]0, T [ and, for a.e. t, is bounded by α] grad qm
which is square-integrable; thus applying the Lebesgue dominated convergence theorem
implies that

(
α∗(·, pn) grad qm

)
n

converges to α∗(·, p∗) grad qm in L2(Ω). By combining
these convergence properties, we observe that p∗ satisfies for all qm in Hm,(
α∗(·, p∗)u∗,grad qm

)
+
(
α∗(·, p∗)w,grad qm

)
+
(
grad p∗,grad qm

)
= (f∗,grad qm).

Finally, the density of ∪m∈NHm in H1
4(Ω) implies that p∗ is a solution of problem (2.19).

To conclude, the pair (u = u∗ +w, p = p∗ + p̃1) is a solution of problem (2.4)− (2.5) and
satisfies (2.12) and (2.23).

Remark 2.6. Some further regularity properties can be derived on the solution (u, p) if
the data are smooth enough, for instance:
(i) By formally taking v equal to ∂tu

∗ in (2.20) and with a little more regularity on the
data, we obtain that the part u belongs to H1(0, T ;L2(Ω)d).
(ii) By using an extension of [5, Prop. 2.5] to the case of mixed boundary conditions, it
can be checked that, if the data are smooth enough and when the coefficient α is constant,
the solution (u, p) belongs to H1(0, T ;Hs(Ω)d) × L2(0, T ;Hs+1(Ω)) for a real number
s > 0 only depending on the geometry of Ω. However, in the case of pressure dependent
permeability α, this property seems much more difficult to establish.

We conclude with a uniqueness result.

Proposition 2.7. If problem (2.4) − (2.5) admits a solution (u, p) such that its part u
belongs to Lρ(Ω)d with ρ > 2 in dimension d = 2 and ρ ≥ 3 in dimension d = 3 and
satisfies for an appropriate constant κ(

max
1≤i≤I

αi∗
)

sup
0≤t≤T

‖u(t)‖Lρ(Ω)d ≤ κ, (2.24)

then this solution is unique.

Proof: Let (u1, p1) and (u2, p2) be two solutions of problem (2.4)−(2.5), with u1 satisfying
(2.24). It is readily checked that the pair (u† = u1 − u2, p

† = p1 − p2) belongs to
C 0(0, T ;V(Ω)) × L2(0, T ;H1

4(Ω)) and satisfies (note that this requires the definition of
V(Ω))

∀q ∈ H1
4(Ω),

(
α(p2)u†,grad q

)
+
(
grad p†,grad q

)
=
((
α(p2)− α(p1)

)
u1,grad q

)
,

∀v ∈ V(Ω),
(
∂tu
†,v
)

+
(
α(p2)u†,v

)
) =

((
α(p2)− α(p1)

)
u1,v

)
.

(2.25)
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1) Taking q equal to p† in the first equation (2.25) yields

|p†|H1(Ω) ≤ α] ‖u†‖L2(Ω)d +
(

max
1≤i≤I

αi∗
)
‖p†‖Lρ∗ (Ω)‖u1‖Lρ(Ω)d ,

with 1
ρ + 1

ρ∗ = 1
2 . Using the imbedding of H1(Ω) into Lρ

∗
(Ω) and the Poincaré–Friedrichs

inequality thus yields

|p†|H1(Ω) ≤ α] ‖u†‖L2(Ω)d + c
(

max
1≤i≤I

αi∗
)
|p†|H1(Ω)‖u1‖Lρ(Ω)d .

Thus, choosing the constant κ in (2.24) smaller than 1/2c yields

|p†|H1(Ω) ≤ 2α] ‖u†‖L2(Ω)d . (2.26)

2) On the other hand, by taking v equal to u† in the second equation (2.25), we obtain

1

2
dt‖u†‖2L2(Ω)d ≤

(
max

1≤i≤I
αi∗
)
‖p†‖Lρ∗ (Ω)‖u1‖Lρ(Ω)d‖u†‖L2(Ω)d ,

whence, by the same arguments as in the first part of the proof,

dt‖u†‖L2(Ω)d ≤ c
(

max
1≤i≤I

αi∗
)
|p†|H1(Ω)‖u1‖Lρ(Ω)d .

Combining this with (2.26) yields

dt‖u†‖L2(Ω)d ≤ α] ‖u†‖L2(Ω)d .

Since u†(·, 0) is zero, integrating this inequality between 0 and t and applying Grönwall’s
lemma (see [11, Chap. V, Lemma 1.8] for instance) imply that ‖u†‖L2(Ω)d is zero. Thus,
u1 and u2 coincide.
3) Finally, combining the previous result with (2.26) gives that p1 and p2 are equal.

Even if condition (2.24) is not too restrictive, we try to avoid it in what follows.
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3. The semi-discrete and discrete problems.

We first describe the time semi-discrete problem constructed from the Euler’s scheme.
Next, we consider the fully discrete problem obtained by combining this scheme with the
mortar finite element method used for the space discretization.

The time semi-discrete problem

For already explained reasons, we have decided to work with a fixed time step, that
we denote by δt, and with an explicit treatment of the nonlinear term α(·, p). For this, we
need an initialization step.

Initialization step: For each i, 1 ≤ i ≤ I, we fix a constant αi satisfying αi[ ≤ αi ≤ αi]
and we denote by α the function equal to αi on each Ωi. Next, assuming that the data f , p1

and g2 belong to C 0(0, T ;L2(Ω)), C 0(0, T ;H
1
2 (Γ1)) and C 0(0, T ;H

1
2
00(Γ2)′), respectively,

we consider the linear steady Darcy problem

Find (ũ0, p0) in L2(Ω)d ×H1(Ω) such that

p0 = p1(·, 0) on Γ1, (3.1)

and
∀v ∈ L2(Ω)d,

(
α(·) ũ0,v

)
+
(
v,grad p0

)
= (f(·, 0),v),

∀q ∈ H1
4(Ω),

(
ũ0,grad q

)
= 〈g2(·, 0), q〉Γ2 .

(3.2)

Standard arguments (see the inf-sup condition (2.8)) yield that problem (3.1)− (3.2)
has a unique solution. Moreover, when applying an Uzawa-like algorithm, we observe
that this problem is equivalent to the Laplace equation with piecewise constant diffusion
coefficient and mixed boundary conditions

Find p0 in H1(Ω) satisfying (3.1) and such that

∀q ∈ H1
4(Ω),

( 1

α(·)
grad p0,grad q

)
= (

1

α(·)
f(·, 0),grad q)− 〈g2(·, 0), q〉Γ2 . (3.3)

Solving this problem is not expensive. Moreover, for what follows, we only need p0. Indeed,
we initialize the sequence (un, pn) by (u0, p

0).

Iteration step: At each step n, 1 ≤ n ≤ N (with T = N δt), assuming that (un−1, pn−1)
is known, we consider the following problem

Find (un, pn) in L2(Ω)d ×H1(Ω) such that

pn = p1(·, nδt) on Γ1, (3.4)

and

∀v ∈ L2(Ω)d,
(un − un−1

δt
,v
)

+
(
α(·, pn−1)un,v

)
+
(
v,grad pn

)
= (f(·, nδt),v),

∀q ∈ H1
4(Ω),

(
un,grad q

)
= 〈g2(·, nδt), q〉Γ2

.

(3.5)
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It can be noted that, since (un−1, pn−1) is known, this problem can be written as a standard
steady Darcy equation. Thus, the next statement is easily derived by using the inf-sup
condition (2.8).

Proposition 3.1. For any data

f ∈ C 0(0, T ;L2(Ω)d), u0 ∈ L2(Ω)d, p1 ∈ C 0(0, T ;H1/2(Γ1)),

and g2 ∈ C 0(0, T ;H
1/2
00 (Γ2)′),

(3.6)

problem (3.4)− (3.5) for 1 ≤ n ≤ N has a unique solution (un, pn) in L2(Ω)d ×H1(Ω).

The fully discrete problem

From now on, we assume that each Ωi is a polygon (d = 2) or a polyhedron with a
Lipschitz-continuous boundary (d = 3). For each i, 1 ≤ i ≤ I, let (T ih )hi be a regular
family of triangulations of Ωi (by triangles or tetrahedra), in the usual sense that:
• For each hi, Ωi is the union of all elements of T ih ;
• The intersection of two different elements of T ih , if not empty, is a vertex or a whole edge
or a whole face of both of them;
• The ratio of the diameter hK of any element K of T ih to the diameter of its inscribed
circle or sphere is smaller than a constant σ independent of hi.
As usual, hi stands for the maximum of the diameters hK , K ∈ T ih . We also intro-
duce the triangulation Th equal to the union of the T ih and we denote by h the I–tuple
(h1, h2, . . . , hI). In what follows, c, c′, . . . stand for generic constants which may vary from
line to line but are always independent of h. We make the further (and non restrictive)
assumption that both Γ1 and Γ2 are the unions of whole edges (d = 2) or whole faces
(d = 3) of elements of Th.

We first introduce the local discrete spaces. For each k ≥ 0, Pk(K) stands for the
space of restrictions to K of polynomials with d variables and total degree ≤ k. Thus, the
discrete space of velocities on each Ωi is defined as

Xih =
{
vh ∈ L2(Ωi)

d; ∀K ∈ T ih , vh|K ∈ P0(K)d
}
. (3.7)

On the other hand, the discrete space of pressures Mi
h is the space of functions qh in L2(Ωi)

such that their restrictions to each K in T ih belongs to P1(K) and which are continuous at
the midpoint of each edge (d = 2) or at the barycenter of each face (d = 3) of all elements
of T ih (see [9] for more details on the corresponding finite element and [2] for its first use
for Darcy’s equations).

The global discrete space of velocities is then constructed in an obvious way:

Xh =
{
vh ∈ L2(Ω)d; vh|Ωi ∈ Xih, 1 ≤ i ≤ I.

}
. (3.8)

However, defining the global discrete space of pressures requires some further notation
linked to the mortar method.
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Let S stand for the skeleton of the decomposition

S =
I⋃
i=1

∂Ωi \ ∂Ω. (3.9)

As usual for the mortar element method, see [7, Section 2], we introduce a further decom-
position of S into disjoint open parts

S =
M⋃
m=1

γ +
m and γ+

m ∩ γ+
m′ = ∅, 1 ≤ m < m′ ≤M,

where each γ+
m is

• a part of an edge of an Ωi, denoted by Ω+
m, in dimension d = 2,

• a part of a face of an Ωi, denoted by Ω+
m, in dimension d = 3.

The choice of the γ+
m is not unique but is made independently of the discretization. We

also define E+
mh as the set of edges (d = 2) or faces (d = 3) γ+

m ∩ ∂K, for all K in T ih for
the i such that Ωi = Ω+

m. In order to enforce the matching conditions through S, we need
the space

W+
mh =

{
ϕh ∈ L2(γ+

m); ∀e ∈ E+
mh, ϕh|e ∈ P0(e)

}
, (3.10)

see [6, §3] for this choice. We associate with each piecewise regular function q its mortar
function Φm(q): On each γ+

m and for each Ωi 6= Ω+
m, the restriction of Φm(q) to γ+

m ∩ ∂Ωi
is equal to the trace of q|Ωi . The discrete space of pressures is the space Mh of functions
qh in L2(Ω) such that
(i) their restriction to each Ωi, 1 ≤ i ≤ I, belongs to Mi

h,
(ii) the following matching condition holds on each γ+

m, 1 ≤ m ≤M ,

∀ϕh ∈W+
mh,

∫
γ+
m

(
qh|Ω+

m
− Φm(qh)

)
(τ )ϕh(τ ) dτ = 0, (3.11)

where τ denotes the tangential coordinate(s) on γ+
m.

The space M4h is the space of functions in Mh which vanish on Γ1.

We also introduce the discrete products, for all functions v and w in L2(Ω),

(v, w)ih =
∑
K∈T i

h

∫
K

v(x)w(x) dx, (v, w)h =
I∑
i=1

(v, w)ih,

with obvious extension to vector-valued functions. We are thus in a position to define the
discrete problems.

Initialization step: Let E ikh , k = 1 and 2, be the set of edges (d = 2) or faces (d = 3)
of elements of T ih which are contained in Γk. We thus introduce the approximation p0

1h of
p1(·, 0) defined by

∀e ∈ E i1h , p0
1h|e =

1

meas(e)

∫
e

p1(τ , 0) dτ , 1 ≤ i ≤ I. (3.12)
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We also denote by A1 the set of midpoints of each edge (d = 2) or barycenters of
each face (d = 3) of elements of Th that belong to Γ1. In view of problem (3.1) − (3.3),
assuming from now on that the function g2 belongs to C 0(0, T ;L2(Γ2)), we consider the
discrete problem:

Find p0
h in Mh such that

∀a ∈ A1, p0
h(a) = p0

1h(a), (3.13)

and

∀qh ∈M4h ,
( 1

α(·)
grad p0

h,grad qh
)
h

= (
1

α(·)
f(·, 0),grad qh)h −

I∑
i=1

∑
e∈Ei2

h

∫
e

g2(τ , 0)qh(τ ) dτ.
(3.14)

A further (non restrictive) assumption is needed for proving the well-posedness of this
problem.

Assumption 3.2. For each i, 1 ≤ i ≤ I, and each m, 1 ≤ m ≤ M , such that ∂Ωi ∩ γ+
m

has a positive measure in S, ∂Ωi contains an element of E+
mh.

Proposition 3.3. If Assumption 3.2 holds, for any data

f ∈ C 0(0, T ;L2(Ω)d), u0 ∈ L2(Ω)d, p1 ∈ C 0(0, T ;H1/2(Γ1)),

and g2 ∈ C 0(0, T ;L2(Γ2)),
(3.15)

problem (3.13)− (3.14) has a unique solution p0
h in Mh.

Proof: Since problem (3.13) − (3.14) results into a square linear system, it suffices to
check that its solution for zero data is zero. When p0

1h, f(·, 0) and g2(·, 0) are equal to
zero, taking qh equal to p0

h (which now belongs to M4h ) yields that grad p0
h is zero on each

K in Th, so that p0
h is constant on each K. Thus, the continuity conditions which appear

in the definition of each Mi
h imply that p0

h is constant on each Ωi. It follows from the
definition (3.10) of the W+

mh that the matching conditions (3.11) are local on each e in
E+
mh so that, due to Assumption 3.2, p0

h is constant on Ω. Thus the boundary conditions
(3.13) imply that it is zero, whence the desired result.

Finally, we introduce the orthogonal projection operator Πh from L2(Ω)d onto Xh and
we initialize the sequence (unh, p

n
h) by (Πhu0, p

0
h).

Iteration step: At each step n, 1 ≤ n ≤ N , we introduce the approximation pn1h of
p1(·, nδt) defined by

∀e ∈ E i1h , pn1h|e =
1

meas(e)

∫
e

p1(τ , nδt) dτ , 1 ≤ i ≤ I. (3.16)

Next, assuming that (un−1
h , pn−1

h ) is known, we consider the following problem
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Find (unh, p
n
h) in Xh ×Mh such that

∀a ∈ A1, pnh(a) = pn1h(a), (3.17)

and

∀vh ∈ Xh,
(unh − un−1

h

δt
,vh
)

+
(
α(·, pn−1

h )unh,vh
)

+
(
vh,grad pnh

)
h

= (f(·, nδt),vh),

∀qh ∈M4h ,
(
unh,grad qh

)
h

=
I∑
i=1

∑
e∈Ei2

h

∫
e

g2(τ , nδt)qh(τ ) dτ.

(3.18)

Remark 3.4. In the implementation of this problem, the term α(·, pn−1
h ) is most often

replaced by its Lagrange interpolate αh(·, pn−1
h ): On each K in Th, αh(·, pn−1

h ) belongs to
P1(K) and is equal to α

(
a, pn−1

h (a)
)

at the d + 1 vertices a of K. Then, all integrals in
the previous problem are easily computed by the trapeze formula. We do not take this
modification into account for simplicity.

There also, this problem is well-posed, as stated in the next proposition.

Proposition 3.5. If Assumption 3.2 holds, for any data f , u0, p1, and g2 satisfying
(3.15), problem (3.17)− (3.18) has a unique solution (unh, p

n
h) in Xh ×Mh.

Proof: There also, problem (3.17)− (3.18) results into a square linear system, so that it
suffices to check that the only solution of the next problem: Find (unh, p

n
h) in Xh ×M4h

such that

∀vh ∈ Xh,
(unh
δt
,vh
)

+
(
α(·, pn−1

h )unh,vh
)

+
(
vh,grad pnh

)
h

= 0,

∀qh ∈M4h ,
(
unh,grad qh

)
h

= 0,
(3.19)

is zero. First, taking vh equal to unh and using (2.1) yields that unh is zero. Second, defining
vh as equal to the gradient of pnh on each K in Th and using the same arguments as in the
proof of Proposition 3.3 yields that pnh is zero. This concludes the proof.

It must be noted that Assumption 3.2 is not at all restrictive: It always holds when
the hi are small enough. Thus, we have exhibited discrete problems which are well-posed
when the data satisfy very weak regularity conditions.
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4. Error estimates.

As now standard for elliptic or parabolic problems, the a priori analysis of the dis-
cretization relies on the approach proposed by F. Brezzi, J. Rappaz and P.-A. Raviart [8].
We first write another formulation of the continuous problem.

Let α the function introduced in Section 3, i.e. the function which is piecewise con-
stant, equal to αi on each Ωi. We denote by T the operator which associates with any
data (f ,u0, p1, g2) satisfying (2.21) the solution (u, p) of the problem: Find (u, p) in
C 0(0, T ;L2(Ω)d)× L2(0, T ;H1(Ω)) satisfying (2.4) and such that, for a.e. t in ]0, T [,

∀v ∈ L2(Ω)d,
(
∂tu,v

)
+
(
α(·)u,v

)
+
(
v,grad p

)
= (f ,v),

∀q ∈ H1
4(Ω),

(
u,grad q

)
= 〈g2, q〉Γ2 .

(4.1)

It is readily checked that this problem has a unique solution (see [5, Thm 2.1] for the case
of boundary conditions on the pressure only). Moreover, the operator F is continuous from
the space of data introduced in (2.21) with values in C 0(0, T ;L2(Ω)d) × L2(0, T ;H1(Ω)).
With the notation U = (u, p), problem (2.4)− (2.5) can equivalently be written

F(U) = U − T G(U) = 0, with G(U) =
(
f +

(
α(·)− α(·, p)

)
u,u0, p1, g2

)
. (4.2)

Similarly, with any data (f,u0, p1, g2) satisfying (3.15), we associate the sequence
(unh, p

n
h)1≤n≤N defined as follows:

(i) u0
h is equal to Πhu0;

(ii) for 1 ≤ n ≤ N , (unh, p
n
h) is the solution of the problem: Find (unh, p

n
h) in Xh ×Mh

satisfying (3.17) and such that

∀vh ∈ Xh,
(unh − un−1

h

δt
,vh
)

+
(
α(·)unh,vh

)
+
(
vh,grad pnh

)
h

= (f(·, nδt),vh),

∀qh ∈M4h ,
(
unh,grad qh

)
h

=
I∑
i=1

∑
e∈Ei2

h

∫
e

g2(τ , nδt)qh(τ ) dτ,
(4.3)

where pn1h is defined by (3.16).

With each sequence (vn)0≤n≤N , we associate the function iδtv which is affine on each
interval [(n− 1) δt, nδt], 1 ≤ n ≤ N , and equal to vn in nδt, 0 ≤ n ≤ N (iδt stands for the
time Lagrange interpolation operator and can also be applied to continuous functions on
[0, T ]). With each sequence (qn)0≤n≤N , we associate the functions π+

δtq and π−δtq, which are
constant, equal to qn and qn−1, respectively, on each interval [(n− 1) δt, nδt], 1 ≤ n ≤ N .
Thus, denoting by δ the discretization parameter (δt, h), we introduce the operator Tδ
which associates with the data (f ,u0, p1, g2) the pair Uδ = (iδtuh, π

+
δtph). Thus, the

discrete problems (3.13)− (3.14) and (3.17)− (3.18) can equivalently be written

Fδ(Uδ) = Uδ − TδGδ(Uδ) = 0,

with Gδ(U) =
(
f +

(
α(·)− α(·, π−δtp)

)
iδtu,u0, p1, g2

)
.

(4.4)
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Some properties of the operators T and Tδ

To go further, we make an assumption that is slightly stronger than Assumption 3.2
but still non restrictive.

Assumption 4.1. For each m, 1 ≤ m ≤ M , let E−mh be the set of the edges (d = 2) or
faces (d = 3) e of all triangulations T ih such that Ωi does not coincide with Ω+

m and that
the intersection e∩ γ+

m has a positive measure. There exists a mapping Ψm from E−mh into
E+
mh such that the matrix Am with coefficients

meas(Ψm(e) ∩ e′), e ∈ E−mh, e
′ ∈ E−mh,

is invertible.

We now introduce the quantity, defined on all functions qh in Mh,

‖qh‖α−1∗h =
(∑
i=1

α−1
i[

∑
K∈T i

h

|qh|K |2H1(K)

) 1
2

. (4.5)

Indeed, the following lemma states that it is a norm on Mh. We refer to [6, Lemma 10]
for its proof.

Lemma 4.2. If Assumption 4.1 holds, there exists a constant c independent of h and α
such that

∀qh ∈Mh, ‖qh‖L2(Ω) ≤ c α
1
2

] ‖qh‖α−1∗h. (4.6)

Exactly the same argument as for Lemma 2.2 leads to the discrete inf-sup condition.

Lemma 4.3. The following inf-sup condition holds

∀qh ∈Mh, sup
vh∈Xh

(
vh,grad qh

)
h

‖vh‖α
≥ ‖qh‖α−1∗h. (4.7)

In view of the next estimates, we introduce the space

Z = C0(0, T ;L2(Ω)d)× L2(0, T ;H1(Ω)), (4.8)

provided with the norm

‖V ‖Z = sup
0≤t≤T

‖v(t)‖L2(Ω) +
(∫ T

0

‖v(t)‖2α dt+

∫ T

0

‖q‖2H1(Ω) dt
) 1

2

. (4.9)

Note moreover that this norm is fully equivalent on all V = (iδtv, π
+
δtq) to

‖V ‖Z,δt = max
0≤n≤N

‖vn‖L2(Ω) +
(
δt

N∑
n=0

‖vn‖2α + δt

N∑
n=1

‖qn‖2H1(Ω)

) 1
2

, (4.10)
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and on all V = (iδtvh, π
+
δtqh) with vh in Xh and qh in Mh, to

‖V ‖Z,δ = max
0≤n≤N

‖vnh‖L2(Ω) +
(
δt

N∑
n=0

‖vnh‖2α + δt

N∑
n=1

∑
K∈Th

‖qnh‖2H1(K)

) 1
2

. (4.11)

Lemma 4.4. The following stability property holds for any f in C0(0, T ;L2(Ω)d) and u0

in L2(Ω)d

‖Tδ(f ,u0, 0, 0)‖Z,δ ≤ c
((
δt

N∑
n=1

‖f(·, nδt)‖2α−1

) 1
2 + ‖u0‖L2(Ω)d

)
. (4.12)

Proof: We set: (uh, ph)1≤n≤N = Tδ(f ,u0, 0, 0). By taking vh equal to unh in (4.3) and
noting that pnh belongs to M4h , we obtain

‖unh‖2L2(Ω) + δt ‖unh‖2α ≤ (un−1
h ,unh) + δt (f(·, nδt),unh),

whence, by using twice the inequality ab ≤ 1
2a

2 + 1
2b

2,

‖unh‖2L2(Ω)d + δt ‖unh‖2α ≤ ‖un−1
h ‖2L2(Ω)d + δt ‖f(·, nδt)‖2α−1 .

Thus, summing on n and using the definition of Πh yields the bound for the first two terms
of ‖Tδ(f ,u0, 0, 0)‖Z,δ. To bound the third one, we take vh equal to grad pnh in (4.3) and
observe that both (unh,grad pnh) and (un−1

h ,grad pnh) vanish, which leads to( ∑
K∈Th

‖grad pnh‖2L2(K)d

) 1
2 ≤ c (‖unh‖α + ‖f(·, nδt)‖α−1).

We conclude by taking the square of this inequality, multiplying by δt and summing on
the n, finally using the generalized Poincaré-Friedrichs inequality (4.6).

We skip the proof of the next lemma since it relies on very standard arguments for the
Euler’s scheme applied to a linear problem (see [5] for Darcy’s equations) and to the same
arguments as in [6, Section 4] for the mortar finite element discretization. Let h stand for
the maximum of the hi, 1 ≤ i ≤ I.

Lemma 4.5. Assume that there exists a positive constant λ independent of h such that

sup
1≤m≤M

sup
meas(∂Ω`∩γ+

m)>0

α` h`

α+
m h

+
m

< λ, with h+
m = min

K∈Tm+
h

,meas(∂K∩γ+
m)>0

hK . (4.13)

For any data f , u0, p1 and g2 satisfying (3.15) such that T (f ,u0, p1, g2) belongs to the
space

Z+ =
(
C1(0, T ;L2(Ω)d) ∩ C0(0, T ;H1(Ω)d)

)
∩ ×L2(0, T ;H2(Ω)), (4.14)

the following error estimate holds

‖(T − Tδ)(f ,u0, p1, g2)‖Z,δ ≤ C(f ,u0, p1, g2)
(
δt+ h), (4.15)

17



where the constant C(f ,u0, p1, g2) only depends on the norm of T (f ,u0, p1, g2) in Z+.

The next result is derived from Lemmas 4.4 and 4.5 in a standard way.

Corollary 4.6. If condition (4.13) is satisfied, the following convergence property holds
for any f in C 0(0, T ;L2(Ω)d) and u0 in L2(Ω)d,

lim
δ→(0,0)

‖(T − Tδ)(f ,u0, 0, 0)‖Z,δ = 0. (4.16)

Preliminary lemmas

As standard for applying the theory of [8], we are led to make some assumptions on
the solution (u, p) that we want to approximate. We denote by D the differential operator
with respect to U .

Assumption 4.7. The solution U = (u, p) of problem (2.4)− (2.5)
(i) belongs to the space Z++ defined by

Z++ =
(
C1(0, T ;L2(Ω)d) ∩ C0(0, T ;H1(Ω)d)

)
×
(
H1(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω))

)
,

(4.17)

(ii) is such that DF(U) is an isomorphism of the space C 0(0, T ;L2(Ω)d)×L2(0, T ;H1(Ω)).

It can be noted that part (ii) is much weaker than the uniqueness result estalished in
Proposition 2.7 since it only yields the local uniqueness of the solution. To go further, we
introduce:
1) The space Xδ of continuous functions which are affine on each interval ](n− 1)δt, nδt[,
1 ≤ n ≤ N , and such that their value at each point tn belongs to Xh;
2) The space Mδ of functions which are constant, equal to a function of Mh, on each
interval ](n− 1)δt, nδt[, 1 ≤ n ≤ N .
Due to part (i) of Assumption 4.7, it is readily checked that there exists a function u∗δ in
Xδ which satisfies

sup
0≤t≤T

‖u(·, t)− u∗δ(·, t)‖L2(Ω)d ≤ c(u) (δt+ h); (4.18)

and a function p∗δ in Mδ such that

‖p− p∗δ‖L2(0,T ;H1
∗(Ω)) ≤ c(p) (δt+ h). (4.19)

Here, H1
∗ (Ω) means the space of piecewise functions in H1(Ω), its norm is the Hilbertian

sum of the norms of H1(K) on all K in Th.
We set U∗δ = (u∗δ , p

∗
δ).

Let finally Eδ stand for the space of endomorphisms of Xδ ×Mδ.

Lemma 4.8. If Assumption 4.7 and condition (4.13) hold, there exists a positive real
number δ0 such that, if δt+ h ≤ δ0, the operator DFδ(U∗δ ) is an isomorphism of the space
Xδ ×Mδ. Moreover the norm of its inverse is bounded independently of δ.
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Proof: We use the expansion

DFδ(U) = DF(U) + (T − Tδ)DG(U) + Tδ
(
DG(U)−DG(U∗δ )

)
+ Tδ

(
DG(U∗δ )−DGδ(U∗δ )

)
.

Owing to part (ii) of Assumption 4.7, it suffices to check that the last three terms tend to
zero when δ tend to (0, 0).
1) We have, for W = (w, r) in Xδ ×Mδ,

DG(U).W =
((
α(·)− α(·, p)

)
w − α′(p)ru, 0, 0, 0

)
.

When W runs through the unit sphere of Xδ×Mδ and since this space is finite-dimensional,
DG(U).W runs through a compact set of C 0(0, T ;L2(Ω)d). Thus, it follows from Corollary
4.6 that

lim
δ→(0,0)

‖(T − Tδ)DG(U)‖Eδ = 0. (4.20)

2) By combining Lemma 4.4 and the continuity of the operator DG, we deduce from (4.18)
and (4.19) that

lim
δ→(0,0)

‖Tδ
(
DG(U)−DG(U∗δ )

)
‖Eδ = 0. (4.21)

3) Since iδt and π−δt are equal to the identity on Xδ and Mδ, respectively, we have, for
W = (w, r) in Xδ ×Mδ,

DGδ(U∗δ ).W =
((
α(·)− α(·, p∗δ)

)
w − α′(p∗δ)ru, 0, 0, 0

)
= DG(U∗δ ).W,

whence

Tδ
(
DG(U∗δ )−DGδ(U∗δ )

)
= 0. (4.22)

We obtain the desired result from (4.20), (4.21) and (4.22).

We skip the proof of the next lemma since it is a direct consequence of Lemma 4.4,
the definition of DGδ and the Lipschitz continuity of α.

Lemma 4.9. There exists a neighbourhood of U∗δ in Xδ ×Mδ such that the following
Lipschitz property holds for any Vδ = (vδ, qδ) in this neighbourhoood

‖Tδ
(
DGδ(U∗δ )−DGδ(Vδ)

)
‖Eδ

≤ c(u, p)
(

sup
0≤t≤T

‖u∗δ(·, t)− vδ(·, t)‖L2(Ω)d + ‖p∗δ − qδ‖L2(0,T ;H1
∗(Ω)

)
.

(4.23)

The last lemma provides an estimate of the quantity ‖Fδ(U∗δ )‖Z .

Lemma 4.10. If Assumption 4.7 and condition (4.13) hold, the following estimate for the
quantity εδ = ‖Fδ(U∗δ )‖Z is satisfied:

εδ ≤ c(u, p) (δt+ h). (4.24)
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Proof: Recalling that F(U) = 0, we have

εδ ≤ ‖(T − Tδ)G(U)‖Z + ‖Tδ
(
G(U)− G(U∗δ )

)
‖Z + ‖Tδ

(
G(U∗δ )− Gδ(U∗δ )

)
‖Z .

The estimate for the first term is an immediate consequence of Lemma 4.5, the estimate for
the second term is easily derived from Lemma 4.4, the continuity of G, (4.18) and (4.19).
Finally, for the same reasons as in the proof of Lemma 4.8, the last term is zero. This
concludes the proof.

The final result

Owing to Lemmas 4.8 to 4.10, all assumptions needed for applying [8, Thm 1] (see
also [12, Chap. IV, Thm 3.1]) are satisfied. This leads to the final a priori error estimate.

Theorem 4.11. If Assumption 4.7 and condition (4.13) hold, there exist a positive real
number δ∗0 and a neighbourhood of U∗δ in Xδ ×Mδ such that, if δt + h ≤ δ∗0 , problems
(3.13)− (3.14) has a unique solution such that the associated pair (uδ, pδ) belongs to this
neighbourhood. Moreover, the following error estimate holds

sup
0≤t≤T

‖u(·, t)− uδ(·, t)‖L2(Ω)d + ‖p− pδ‖L2(0,T ;H1
∗(Ω) ≤ c(u, p) (δt+ h). (4.25)

Estimate (4.25) is fully optimal. Moreover, condition (4.13) is often verified in practi-
cal situations and the convergence of the method can be proved with a weaker assumption
on the regularity of (u, p) than required in Assumption 4.7. So the mortar finite element
method that we propose seems very efficient for the discretization of this rather complex
problem.
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[3] M. Azäıez, F. Ben Belgacem, C. Bernardi, N. Chorfi — Spectral discretization of Darcy’s

equations with pressure dependent porosity, Appl. Math. Comput. 217 (2010), 1838–1856.

[4] A. Bergam, C. Bernardi, Z. Mghazli — A posteriori analysis of the finite element discretization

of some parabolic equations, Math. Comput. 74 (2005), 1117–1138.

[5] C. Bernardi, V. Girault, K.R. Rajagopal — Discretization of an unsteady flow through a porous

solid modeled by Darcy’s equations, Math. Models Methods Appl. Sci. 18 (2008), 2087–2123.

[6] C. Bernardi, F. Hecht, Z. Mghazli — Mortar finite element discretization for the flow in a non

homogeneous porous medium, Comput. Methods Appl. Mech. Engrg. 196 (2007), 1554–1573.

[7] C. Bernardi, Y. Maday, A.T. Patera — A new nonconforming approach to domain decomposi-
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Thesis, Université Pierre et Marie Curie, Paris (2009).

[11] V. Girault, P.-A. Raviart — Finite Element Approximation of the Navier–Stokes Equations,

Lecture Notes in Mathematics 749, Springer-Verlag (1979).

[12] V. Girault, P.-A. Raviart — Finite Element Methods for Navier–Stokes Equations, Theory and

Algorithms, Springer–Verlag (1986).
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