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NUMERICAL MODELING OF SHALLOW NON-NEWTONIAN
FLOWS:

PART I. THE 1D HORIZONTAL DAM BREAK PROBLEM
REVISITED

PIERRE SARAMITO1, CLAUDE SMUTEK2, AND BENOÎT CORDONNIER2,3

(Communicated by Yanping Lin)

Abstract. The dam break problem shallow approximation for laminar flows of power-law non-
Newtonian fluids is numerically revisited under a time and space second order adaptive method.
Theoretical solutions are compared with experimental measurements from the literature and new
ones made of silicon. Asymptotic behaviours are solved numerically and from autosimilar solu-
tions. The obtained theoretical results are finally compared with experiments. These comparisons
confirm the validity of the shallow approximation equations for non-Newtonian fluids subject to
the horizontal dam break problem.

Key words. fluid mechanics ; non-Newtonian fluid ; power-law model ; asymptotic analysis ;
shallow water theory

1. Introduction

Barré de Saint-Venant [27] developed in 1887 the firsts shallow water theory for
fast Newtonian flows: the flow was driven by inertia terms while viscous effects
were neglected. This study was first motivated by hydraulic engineering applica-
tions. More recently slower Newtonian flows [19] and the effect of viscous terms [13]
were investigated. Both the manufacturing processes (concretes, foods) and the en-
vironmental applications (e.g. mud flows [11, 20], volcanic lava [14], dense snow
avalanches [2] or submarine landslides [15]) require more complex non-Newtonian
rheologies. For these rheologies, shallow approximations were first studied for a
viscoplastic fluid by Lui and Mei [21] and revisited by Balmforth and Craster [6].
See [8, 3] for recent reviews on this subject. The dam break problem in a hori-
zontal channel is a standard problem of fluid mechanics which finds applications in
numerous environmental or industrial processes that is used as a standard bench-
mark for evaluating the shallow water approximations. One may also note the
recent interest in a similar benchmark, the Bostwick consistometer, used in food
industry [23, 22, 24, 7]. Despite these numerous applications and theoretical devel-
opment, only few experimental measurements are available for the elemental case
of the horizontal dam break problem. The Newtonian case has been investigated
with glucose in [26] while the non-Newtonian one was discussed in [7] for power-law
fluids. Furthermore, the nonlinear reduced equation obtained by the asymptotic
method in the shallow limit does not admit an explicit solution and composite [18]
or autosimilar solutions [17, 25, 5] were proposed instead (see also [4]). Thus, all
available works are based on some simplifications and a direct numerical resolution
without any simplification is of the utmost interest to fully solve this nonlinear
problem, especially its long-time behaviour.
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The aim of this paper is to bring a new robust and efficient numerical method for
the resolution of the shallow approximation of the dam break problem and beyond,
adjoin some new experimental measurements to the non-Newtonian power-law case.
The present numerical scheme provides a fully automatic space-adaptive feature
which enables an accurate capture of the front position and also is able to predict
accurately the long-time behaviour of the model. Moreover, the proposed adaptive
algorithm naturally extends to both viscoplastic flows and shallow approximations
of three-dimensional free surface flows. The problem is solved for various power law
indexes and a general front propagation rule xf (t) is proposed for any power-law
index n.

This manuscript has been divided as follow: Section 2 introduces the dam break
problem statement and section 3 the reduced problem obtained after the asymp-
totic analysis under the shallow flow approximation. Section 4 develops details of
the numerical resolution of this nonlinear problem. Section 5 presents the numer-
ical results and finally, section 6 develops the experimental measurements and the
comparison between theory and experiments for the presents results and previous
measurements available in the literature.

2. Problem statement

−L x

h0(t)

H

hb(t)

Γw(t)

y

0

Γf(t) : y = h(t, x)

xf(t)

Figure 1. Schematic view of the dam break problem.

The classical bidimensional dam break problem for a quasi-Newtonian power-law
fluid model is considered. It leads to the following problem:
find the velocity field u and the pressure field p, defined for all time t > 0 and in
the time-dependent domain Ω(t), such that:

ρ

(
∂u

∂t
+ u.∇u

)
− div

(
2κ |D(u)|n−1D(u)

)
+∇p = ρg in ]0,+∞[×Ω(t),(1a)

divu = 0 in ]0,+∞[×Ω(t),(1b)
u(t=0) = 0 in Ω(0),(1c)

u = 0 on ]0,+∞[×Γw(t),(1d)
σ.n = 0 on ]0,+∞[×Γf(t),(1e)

where ρ is the density constant, κ the consistency constant, n > 0 the power-law
index and g the gravity force vector. When n = 1, the fluid is Newtonian, with
the classical Navier-Stokes equations. The shear thinning behaviour is associated
with 0 < n < 1 and the shear thickening behaviour to n > 1. The notation |D(u)|
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denotes the second invariant of the rate of deformation tensor D(u) = (∇u +
∇uT )/2. Here, (1a) and (1b) are respectively the momentum and mass conservation
equations for an isochoric fluid. These equations are completed with the appropriate
initial and boundary conditions: an initial condition for the velocity (1c), adhesion
at the wall of the reservoir (1d), and equilibrium at the free surface (1e), where
surface tension is neglected. Here, σ = −p.I + 2κ |D(u)|n−1D(u) is the total stress
tensor. The pressure outside the free surface is supposed to be constant (i.e. the
atmospheric pressure). Since the pressure is defined here up to a constant, we can
conveniently define the atmospheric pressure as zero. The fluid domain and the
free surface are respectively defined for all time t ≥ 0 by

Ω(t) = {(x, y) ∈ ]− L,+∞[×]0, H[; φ(t, x, y) < 0},
Γf(t) = {(x, y) ∈ ]− L,+∞[×]0, H[; φ(t, x, y) = 0},

where φ(t, x, y) = y−h(t, x) is the indicator function of the flow domain, and h(t, x)
is the flow height for a given time t and position x (see Fig. 1). The wall part of the
flow domain boundary is Γf(t) = ∂Ω(t)− Γf(t). The flow domain is transported by

the velocity:
∂φ

∂t
+ u.∇φ = 0 which may equivalently be written:

∂h

∂t
(t, x) + ux(t, x, h(t, x))

∂h

∂x
(t, x) = uy(t, x, h(t, x)), ∀(t, x) ∈]0,+∞[×]0; +∞[,(1f)

where u = (ux, uy). This equation is completed with the initial condition

h(t=0, x) =

{
H when − L < x < 0,
0 when x > 0.

(1g)

3. The reduced problem

In the context of Bingham [9] fluids, Liu and Mei [21] proposed an asymptotic
analysis for slow flows and small H/L ratio. Revisited in [6], this analysis has also
been extended to an Herschel-Bulkley [16] fluid or a fluid with a power-law index
n (see also [7]). For a fluid with a power-law index, the height h(t, x) is the single
remaining unknown of the reduced problem:
(P ): find h, defined in ]0,+∞[×]− L,+∞[, such that

∂h

∂t
−
(ρg
K

) 1
n ∂

∂x

(
qn

(
h,
∂h

∂x

))
= 0 in ]0,+∞[×]− L,+∞[(2a)

∂h

∂x
(t,−L) =

∂h

∂x
(t,+∞) = 0, ∀t ∈]0,+∞[(2b)

h(0, x) =

{
H when x < 0
0 otherwise(2c)

where, for all ξ ≥ 0 and ζ ∈ R:

qn(ξ, ζ) =

{
0, when ζ = 0,
n

2n+1ξ
2+ 1

n |ζ| 1n sgn(ζ), otherwise

Problem (2) is a highly nonlinear degenerate parabolic problem similar to the so-
called p-Laplacian problem (with p = 1 + 1/n). Its numerical resolution requires
some care, as the flux qn vanishes when either h or ∂h/∂x vanish. We introduce
the dimensionless quantities:

ĥ =
h

H
, x̂ =

x

L
, t̂ =

t

T
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where

T =
L

H

(
KL

ρgH2

) 1
n

Then, the dimensionless reduced problem becomes:
(P̂ ): find ĥ, defined in ]0,+∞[×]− 1,+∞[, such that

∂ĥ

∂t̂
− ∂

∂x̂

(
qn

(
ĥ,
∂ĥ

∂x̂

))
= 0 in ]0,+∞[×]− 1,+∞[(3a)

∂ĥ

∂x̂
(t̂,−1) =

∂ĥ

∂x̂
(t̂,+∞) = 0, ∀t̂ ∈]0,+∞[(3b)

ĥ(0, x̂) =

{
1 when x̂ < 0
0 otherwise(3c)

This is a parabolic nonlinear problem, with only n as a parameter. One may observe
that this problem does not reduces to the usual shallow water model introduced by
Barré de Saint-Venant [27] for turbulent flows. From our analysis the viscous term
is not neglected but the inertia one is removed during the asymptotic analysis.

4. Numerical resolution

This section focuses on time and space approximations of the reduced problem.
A semi-implicit time approximation scheme is first presented, and improved by a
fixed-point internal loop. Each step requires the resolution of a linear second-order
elliptic sub-problem.

4.1. Time approximation and algorithms. Notice that the initial condition
h0(x) is discontinuous. The diffusive term smears out this initial discontinuity
instantaneously when the fluid starts to slump and the solution of the parabolic
problem presents a sharp transition at the vicinity of t = 0. For that reason, we opt
for a second order fully implicit and variable time step algorithm. The time step is
set small at the vicinity of t = 0 and increases with a geometric progression. Let
(tm)m≥0 denotes the time discretization sequence and ∆tm = tm+1 − tm, m ≥ 0
be the time step. The first-order time derivative is approximated by the following
second-order finite difference scheme, defined for all function ϕ ∈ C0 by:

∂ϕ

∂t
(tm+1) =

2∆tm + ∆tm−1
∆tm(∆tm + ∆tm−1)

ϕ(tm+1)− ∆tm + ∆tm−1
∆tm∆tm−1

ϕ(tm)

+
∆tm

(∆tm + ∆tm−1)∆tm−1
ϕ(tm−1) +O(∆t2m + ∆t2m−1)

We introduce (ĥm)m≥0 with ĥm(x̂) ≈ ĥ(m∆t̂, x̂) recursively defined by the following
algorithm:

algorithm 1

• m = −1, 0: ĥ0 := ĥ−1 := ĥ(t̂ = 0)
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• m ≥ 1: given ĥm−1 and ĥm, find ĥm+1 such that:

2∆tm + ∆tm−1
∆tm(∆tm + ∆tm−1)

ĥm+1 − d

dx̂

(
νn

(
ĥm+1,

dĥm+1

dx̂

)
dĥm+1

dx̂

)

=
∆tm + ∆tm−1

∆tm∆tm−1
ĥm − ∆tm

(∆tm + ∆tm−1)∆tm−1
ĥm−1 in ]− 1,+∞[(4a)

dĥm+1

dx̂
(−1) =

dĥm+1

dx̂
(+∞) = 0(4b)

where, for all ξ ≥ 0 and ζ ∈ R:

νn(ξ, ζ) =

{
0, when ζ = 0,
n

2n+1ξ
2+ 1

n |ζ|−1+ 1
n sgn(ζ), otherwise

Algorithm 1 corresponds to an implicit second-order backward discretization scheme
with variable time step. This scheme is used for all the computations undertaken in
the next sections. The initial time-dependent problem is transformed to a sequence
of nonlinear sub-problems (4a)-(4b), since, at each iteration m, ĥm+1 is unknown.
The simplest idea is to solve each sub-problem by using an inner fixed-point loop:
algorithm 2.a

• k = 0: ϕ0 := ĥm

• k ≥ 1: given ϕk, find ϕk+1 such that:

αmϕ
k+1 − d

dx̂

(
νn

(
ϕk,

dϕk

dx̂

)
dϕk+1

dx̂

)
= fm in ]− 1,+∞[

dϕk+1

dx̂
(−1) =

dϕk+1

dx̂
(+∞) = 0

where

αm =
2∆tm + ∆tm−1

∆tm(∆tm + ∆tm−1)

fm =
∆tm + ∆tm−1

∆tm∆tm−1
ĥm − ∆tm

(∆tm + ∆tm−1)∆tm−1
ĥm−1

Algorithm 2.a reduces to an elliptic second order differential equation with non-
constant coefficients. The k loop stops for a residual term lower than a given
tolerance ε > 0. Then, we set ĥm+1 := ϕk. Notice that there are two imbricated
loops here: an outer one, the m loop, associated to the time discretisation, and a
inner one, the k loop, associated to the fixed point algorithm. At convergence of the
inner loop, subproblem (4) is fully solved and thus, the scheme is a fully implicit
second order one.

In practice, we observe that this algorithm converges only for n ∈]1/2, 2[ and
poorly converge for large meshes. Thus, in order to solve the nonlinear sub-
problem (4a)-(4b), we defined a more robust algorithm:
algorithm 2.b

• k = 0: ϕ0 := ĥm

• k ≥ 1: given ϕk, find ϕk+1 such that:

αmϕ
k+1 − d

dx̂

(
µn
(
ϕk
) ∣∣∣∣dϕk+1

dx̂

∣∣∣∣
1
n

)
= fm in ]− 1,+∞[(5a)

dϕk+1

dx̂
(−1) =

dϕk+1

dx̂
(+∞) = 0(5b)
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where, for all ξ ≥ 0:
µn(ξ) =

n

2n+ 1
ξ2+

1
n

For a fixed iteration k ≥ 0, observe that the sub-problem (5a)-(5b) is still nonlinear.
This is the so-called p-Laplacian problem, with p = 1 + 1/n > 1. Let Lp(−1,+∞)
andW 1,p(−1,+∞) denote the usual Sobolev functional spaces [1]. Observe that the
solution of (5a)-(5b) is characterised as the minimum of the following energy-like
function, defined for all ϕ ∈W 1,p(−1,+∞) by:

Jk,m(h) =
αm
2

∫ +∞

−1
ϕ2 dx+

n

n+ 1

∫ +∞

−1
µn(ϕk)|ϕ′|1+ 1

n dx−
∫ +∞

−1
fmĥdx

Following [12, p. 128], we consider the quantity δ = ϕ′ ∈ Lp(−1,+∞) as an in-
dependent variable. The constraint δ − ϕ′ = 0 is enforced by using a Lagrange
multiplier τ ∈ Lp

′
(−1,+∞), where p′ = 1 − 1/p = 1/(1 + n). The following

augmented Lagrangian is then introduced by:

Lk,m((ϕ, δ); τ) =
αm
2

∫ xe

−1
ϕ2 dx+

n

n+ 1

∫ xe

−1
µn(ϕk)|δ|1+ 1

n dx−
∫ xe

−1
fm ϕdx

+

∫ xe

−1
(ϕ′ − δ) τ dx+

β

2

∫ xe

−1
|ϕ′ − δ|2 dx

where β > 0 is the augmentation parameter of the Lagrangian. The previous
minimisation problem is equivalent to a saddle point problem:

inf
(ϕ,δ)∈W 1,p×Lp

sup
τ∈Lp′

Lm,k((ϕ, δ); τ)

The solution is independent of β since the solution of the saddle point problem
satisfies δ = ϕ′. An Uzawa minimisation algorithm for finding the saddle point of
Lm,k is written:
algorithm 3

• l = 0: let δ0 and τ0 arbitrarily chosen.
• l ≥ 0: let δl and τl being known, find ϕl+1 such that

(6)
{

αϕl+1 − βϕ′′l+1 = f − (τl − βδl) in ]− 1, xe[
ϕ′l+1(−1) = ϕ′l+1(+∞) = 0

then, we compute δl+1 in a point-by-point way:

(7) δl+1(x) = Φn,β
(
µn(ϕk(x)), τl(x) + βϕ′l+1(x)

)
and finally, we compute explicitly τl+1 as:

(8) τl+1 = τl + β(ϕ′l+1 − δl+1)

Problem (6) is linear and standard which yields to a really fast solution especially
in one space dimension. The nonlinearity of the problem is treated in (7) where
the function Φn,β is defined for all µ̄, ζ ∈ R by:

Φn,β(µ̄, ζ) = arg min
δ∈R

µ̄ n

n+ 1
|δ|1+ 1

n +
β

2
δ2 − ζ δ

Since this minimisation problem in R is convex, its solution δ ∈ R is unique and then
Φn,β is well defined. The minimisation problem is also differentiable and its solution
satisfies µ̄|δ| 1n sgn(δ) + βδ − ζ = 0 where sgn denotes the sign function. Note that
when n = 1, i.e. the Newtonian model, the computation is explicit: δ = ζ/(µ̄+ β).
In the general case of the power-law model, when n > 0, we consider the Newton
algorithm:
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• q = 0: let δ0 given.
• q ≥ 0: let δq being known and compute

δq+1 = δq −
µ̄|δq|

1
n sgn(δq) + βδq − ζ
1
n µ̄|δq|

1
n−1 + β

In practice, the Newton algorithm is initialised with δ0 = ζ/(µ̄+β) and we observe
that the convergence is very fast. Also, algorithms 2.b and 3 are combined in a
flatten algorithm, where only one iteration of the l inner loop is performed. This
leads to an efficient and robust strategy for the numerical resolution of the nonlinear
problem.

10−4

10−3

10−2

10−1

0

1

-1 0 1

ĥ(t̂, x̂)

x̂

x̂

10−4

10−3

10−2

10−1

0

1

-1 0 1

ĥ(t̂, x̂)

x̂

x̂

Figure 2. Adaptive subdivision for the dam break problem n =
0.9, t = 15: 1145 elements.

4.2. Space approximation and adaptive subdivision. The problem is dis-
cretized with respect to the space variable x̂ by a quadratic finite element method
in a bounded interval ] − 1, x̂e[, where x̂e is chosen sufficiently large. The matrix
of the subproblems involves a bandwidth equal to five and the linear system can
efficiently be solved with a direct method. The numerical implementation is based
on the finite element library rheolef [28].

At each time step, we used a mesh adaptive procedure based on a criterion χ
related to the flow rate plus a time derivative term:

χ(t̂, x̂) =

νn(ĥ, ∂ĥ
∂x̂

)(
∂ĥ

∂x̂

)2

+

(
∂ĥ

∂t̂

)2
1/2

The time derivative term is approximated by the previous second order scheme.
The time step is locally optimized for minimizing the local interpolation error χ:

∆x̂(t̂, x̂) = min

(
∆x̂−2min,max

(
∆x̂−2max,

∣∣∣∣∂2χ∂x̂2

∣∣∣∣))
where ∆x̂min = 10−4 and ∆x̂max = 10−1. At time tm, a subdivision is then
automatically generated as x̂i+1 = x̂i + ∆x̂(t̂m, x̂i), i ≥ 0, and x̂0 = −1. As shown
on Fig. 2, this procedure is able to capture the front position despite important
local gradients and infers the singularity of the solution. The discretization step
tends to ∆x̂min. Conversely, downstream and beyond the front, the solution is zero
and the discretization step is ∆x̂max.
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Second order backward difference schemes (BDF2) are well known in the context
of stiff systems of ordinary differential equations. Extension to the context of partial
differential equations are considered in some rare occasions (see [28] and references
herein). Concerning the space discretization, the finite quadratic element polynoms
chosen here contrast with the simple afine polynomials used in [29] or [10]. The
present numerical scheme provides a fully automatic space-adaptive feature which
enables an accurate capture of the front position whereas only a constant space
step discretization has been considered in [29, 10]. This one-dimensional adaptive
feature is provided by the Rheolef finite element library [28].

5. Numerical results and comments

First are presented the numerical results for the case n = 1 (i.e. Newtonian
fluid).

0

0.5

0.684

1

-1 -0.5 0 0.5x

L

h(t, x)

H
(a)

0

0.5

1

-1 0 1 2 3x

L

h(t, x)

H
(b)

Figure 3. Evolution of the free surface for n = 1: (a) for small
times (t/T = 0, 0.24, 0.48, . . . , 2.4, from left to right); (b) for
medium times (t/T = 2.4, 12, 24, . . . , 120, from left to right).

5.1. Position of the free surface. For short times, front position and upstream
level move rapidly, but at the dam position (x = 0) the fluid height remains constant
h(t, x=0) ≈ 0.684H (Fig. 3.a). For larger times, when t > T , the fluid height starts
to decrease significantly at the dam position (Fig. 3.b), while the front position and
the free surface in the reservoir move slower. This behaviour is associated with the
beginning of a second flow regime. For long times (see Fig. 4.a) the envelope of
free surfaces follows a L/(L + x) law while the front position and the flow height
in the reservoir show a power-law character. Before going further in the analysis of
long-time behaviour, we will discuss first the more classical dam position h(t, 0) at
small times.

For x = 0 the initial condition h(t= 0, x) is not continuous; the left value is 1
while the right value is zero. Therefore, the exact solution h is also not regular for
short times and the convergence becomes difficult in the vicinity of t = 0. Fig. 4.b
shows the convergence study for ∆t̂ = 10−3, 10−4 and 10−5 while ∆x̂ = 10−4. The
plot, in logarithmic scale, shows that the fluid height at the dam position tends to
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10−2

10−1

1

10−1 100 101 1021+
x

L

h(t, x)

H (a)

−1

100

0.684

101

10−6 10−3 100 103t

T

h(t, 0)

H (b)

∆t̂ = 10−3

∆t̂ = 10−4

∆t̂ = 10−5

−0.2

Figure 4. Evolution of the free surface when n = 1: (a) for large
times (t/T = 1.2, 1.2 × 101, 1.2 × 102, . . . , 1.2 × 107, from left to
right); (b) flow height h(t, 0) at the dam.

remain constant for any arbitrary short time, while the corresponding height is not
defined for (t, x) = (0, 0). This result suggests that convergence of h(t, x= 0) also
occurs when t becomes small, though in a weaker sense than the usual continuous
one. In practice, and for all computations in this paper, both the time steps ∆t̂ and
element sizes ∆x̂ are automatically adapted. Remark also that h(t, x=0) presents
a decreasing power-law behaviour for long times. Fig. 4.b shows the long-time
behaviour. The time approximation uses a geometrical progression tm+1 = α tm
where α = 100.01 in order to match efficiently both short and long-time asymptotic
behaviours. This approximation uses 100 time steps per decade. For long times
h(t, x=0) behaves as t−1/5.

5.2. The front position. Fig. 5.a shows the front position for various values of n.
Observe the overall change in slope in the logarithmic scale plot. For short times,
xf (t) behaves as

√
t while for long times it behaves as t1/5. The problem admits two

similarity solutions associated to the short- and long-time behaviours [19, 26, 7].
This analysis suggests the following scaling law:

(9)
xf (t)

L
≈


0.284

(
t

T

)1/2

if t < 2.5T

1.133

(
t

T
+ 1.221

)1/5

− 1 otherwise

The scaling law is not plotted here since there is no further perceptible difference on
a graphical representation. More precisely, the relative error is less than 5% and the
maximum is always reached in the transition regime while the relative error outside
the transition regime is less than 1%. There is a clear advantage of using (9)
over classic similarity solutions, which provide only the long-time behaviour. Here,
both small-time and long-time behaviours are covered, and the transition regime
accuracy is higher than with the direct approaches. Since the purpose of the scaling
law is to obtain an easy-to-use formula, (9) will be of great interest for practical
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10−2

10−1

1

102

10−3 100 103 105t

T

xf (t)

T

(a)
1/2

1/5

n = 2.0
n = 1.0
n = 0.5
n = 0.27

0.1

0.5

0.684

1.0

10−4 1 104t

T

h(t,−L)

H
h(t, 0)

H

(b)

−1/5

Figure 5. (a) Front position xf (t) for various n; (b) Flow height
h(t,−L) in the reservoir when n = 1.

applications as no more numerical computations will be required to predict the
front position.

The general extension to any n > 0 writes:

xf (t)

L
≈


an

(
t

T ∗

) n
1+n

, when
t

T ∗
< α

bn

(
t

T ∗
+ cn

) n
3+2n

− 1, otherwise

where

an =
1

3
+ 0.944

(
n

1 + 0.548n

)0.85

,

bn =

{
2(1 + n)n+4

2 + n

(
3 + 2n

n

)n
β

(
1

1 + n
,

3 + n

2 + n

)−2−n} 1
3+2n

,

cn = α−
(

1 + anα
n

1+n

bn

) 3+2n
n

,

T ∗ =
1 + 2n

n
(2 + 2n)

1
nT.

Constant bn is provided by explicit formula associated to long times flow regime,
while an is obtained numerically. Here β(., .) denotes the beta function. The
continuity between the two flow regimes is enforced at some dimensionless transition
time t/T∗ = α. It requires an appropriate cn and α = 2.5 was used for practical
comparisons with direct numerical computations.

5.3. Flow height in the reservoir. Fig. 5.b presents the computation of reser-
voir height h(t, x = −1) at position x = −1 when n = 1. For short times, the
height at the dam position and the end of the reservoir remain constants (i.e.
h(t, 0)/H = 0.684 and h(t,−L) = 1) while the surface shape rearranges. For long



SHALLOW VISCOPLASTIC FLUIDS 11

times, h(t,−L) exhibits a power law t−0.2 behavior that matches those of h(t, 0).
As a result, for long times, the flow height in the reservoir becomes roughly constant
versus x and decreases versus time as:

h(t, x)

H
≈ 0.535

(
t

T

)−1/5
, −L ≤ x ≤ 0 and t/T∗ � 2.5

A similar behavior is observed for different values of n.

10−3

10−2

10−1

0.684
1

10−4 10−2 100 102

x/L

hmax(x)/H

−1

100

102

104

106

108

10−4 10−2 100 102

x/L

tmax(x)/T

5

1/5

Figure 6. When n = 1: (a) maximum flow height hmax(x); (b)
time of maximum flow height tmax(x).

5.4. Maximum flow height. For an observer located at x > 0, the maximum
height denoted by hmax(x) is reached at time t = t∗max(x) (see Figs. 6). Observe
that, as expected, hmax(x) ≈ 0.684H for small x while hmax(x) decreases in 1/x
for large x, as illustrates the envelope of free surfaces on Fig. 4. All together, it
suggests the following scaling law:

(10)
hmax(x)

H
≈ 0.684

L

L+ x

where the coefficients are provided by a non-linear least-square fitting.
Once the maximum flow height is reached, the time behaves as x5 for large x

and x1/5 for small x and the time of the peak streamflow may express as:

(11) tmax(x) ≈ 2
( x
L

)1/5
+ 2.1

{(
L+ x

L

)5

− 1

}

6. Comparisons with experiments

We opposed our theoretical findings to some experiments performed with silicon.
In the first paragraph we present the experimental setup while this section ends
with the comparison between theory and both experiments for silicon and previous
measurements available in the literature for other various materials.
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Figure 7. Experimental set-up: (a) face view, where the red line
indicates the free surface as generated by image processing; (b) top
view.

6.1. Experimental set-up. We used a transparent synthetic polymer SGM 36.
Made by Dow Corming (USA), SGM 36 is the industrial code of a polymer liquid
between 200 and 550 K. It consists in linear polydimethylsiloxane molecules. In
the presented flow conditions, this material can be considered as a Newtonian fluid
and its viscosity is 4 × 104 Pa s at room temperature [30]. We used an horizontal
channel (see Fig. 7.a) of width W , confined between two plates of Plexiglas, with a
reservoir of length L and height H. Fig. 7.b shows that the flow front is relatively
flat, suggesting that the slump is largely two-dimensional and the side walls do not
have much effect. (see also Fig. 6 in [7] or Fig. 8 in [26] for similar considerations).
Slip at the side walls is enforced with a penetrating grease but the fluid sticks at the
wood bottom boundary. Both widths W = 115 mm and 225 mm have been tested
in order to check that tridimensional effects are negligible and that measurements
are independent of the width W . Both reservoir lengths L = 160 mm and 320 mm
have been tested. In all experiments the initial flow height H = 115 mm remains
constant. Digital photography of the front view are performed with a period of 20
seconds. Using an image processing tool, we are able to extract the flow profiles
and the successive front positions xf .

6.2. Comparisons. We note that in the numerical simulations of the dam-break
problem the whole bulk of fluid was assumed to be released instantaneously, i.e.
the time needed for the gate to open was neglected. In the experimental apparatus,
the removal of the gate is gradual. It starts to move at t = 0 and is completely
raised after a non negligible time. In our modelling, the time to fully open the gate
can be interpreted as a delay t = t0. Since this delay is not known, it should be
adjusted with experimental measurements for a non distorted comparison.

Most experimental results was obtained for Newtonian fluids (n = 1), while
very few measurements are available for non-Newtonian power-law fluids. Figs. 8.a
to 8.c confirm that our computations compare well with various measurements
on Newtonian fluids, as obtained by others authors or by us (Fig. 8.c). Fig. 8.a
compares our prediction with measurements obtained with some corn sirup [7,
Fig. 7.a]. Fig. 8.b compares also with a glucose solution [26]. For both materials
a good concordance exists between predictions and measurements. The small time
flow regime on Fig. 8.b develops a slope of one suggesting a first inertia flow regime.
However, the comparison with the corresponding Ritter solution xf = (gH)

1
2 t is



SHALLOW VISCOPLASTIC FLUIDS 13

10−2

10−1

100

101

10−210−1 100 101 102 103 104

t/T

xf (t)

L

(a) sirup

run 1
run 2

simulation n = 1.0
10−2

10−1

100

101

10−210−1 100 101 102 103 104

t/T

xf (t)

L

(b) glucose

L = 110 mm
L = 440 mm

simulation n = 1

10−2

10−1

100

101

10−210−1 100 101 102 103 104

t/T

xf (t)

L

(c) silicon

L = 160 mm
L = 400 mm

simulation n = 1.0
10−2

10−1

100

101

10−210−1 100 101 102 103 104

t/T

xf (t)

L

(d) gum

H = 22 mm, run 1
H = 22 mm, run 2
H = 32 mm, run 1
H = 32 mm, run 2
simulation n=0.5

Figure 8. Front position: comparison between experimental mea-
surements and theoretical predictions with (a) corn sirup [7,
Fig 7.a] ; (b) glucose [26] ; (c) silicon ; (d) gum [7, Fig 9.b].

not satisfactory and such a slope is better explained by the lifting of the dam.
The complete set of flow and material parameters used for all the comparison in
this paragraph are summarised in table 1. Fig. 8.c shows the comparisons with our
present measurements on silicon. Fig. 8.d compares with the only one measurement
available to our knowledge for a power-law fluid on the dam break problem: it is
a xantham gum [7, Fig 9.b] associated with a power-law index n = 0.5. Likewise
the Newtonian case the small time flow regime is not related to inertia effects and
could be due to the lifting of the dam.

Let us come back to the present measurements on silicon. Fig. 9 shows the free
surface profiles for the two reservoir lengths with the same height H = 11.5 cm and
widthW = 22.5 cm. The profiles are globally in good concordance with some small
discrepancies. The theory predicts a lower profile at upstream and a higher one at
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L(cm) H(cm) ρ(g/cm3) n K(m.k.s)

sirup 40 2.2 1.40 1.0 4
glucose 11, 44 5.5 1.40 1.0 12
silicon 16, 40 11.5 1.40 1.0 40 000
gum 40 2.2, 3.2 1.00 0.5 7.5

Table 1. Flow and material parameters used for the comparisons.

downstream. A possible explanation of this discrepancies could be the development
of localised viscoelastic effects in the front region, where shear rates are higher.

0

1

-1 0 1

(a))H

x/L

silicon t = 440 s
silicon t = 2000 s

simulation n = 0.9

0

1

-1 0 1

(b))H

x/L

silicon t = 880 s
silicon t = 2480 s

simulation n = 0.9

Figure 9. Free surface : comparison between theoretical predic-
tion with n = 0.9 and experimental measurements with silicon
when H = 115mm and W = 225mm: (a) L = 440mm , and (b)
L = 160mm .

7. Conclusion

Using silicon, this paper appends new measurements of the non-Newtonian
power-law case for the horizontal dam break problem. Based on a new time-space
second-order adaptive algorithm, the shallow approximation of the problem has
been solved and solutions compared with both silicon and other measurements for
Newtonian and non-Newtonian materials. These comparisons confirm the valid-
ity of the slow flow shallow approximation equations for the horizontal dam break
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problem for these materials. The numerical resolution of this nonlinear problem
point out difficulties associated to two kinds of sharp transitions. The first sharp
transition is related to variation in time, at the vicinity of t = 0. In order to handle
this transition, an implicit second order time approximation and a varying time
step adaptation is developed. A second sharp transition is related to space, at the
vicinity of the front position x = xf (t), where a second order polynomial approxi-
mation and an automatic space-mesh adaptation is developed. Finally the adaptive
numerical algorithm is seen as a good candidate to handle three-dimensional free
surface flows on complex topographies. Actually under development, this last im-
provement may find practical interests for geophysical flows such as mud or volcanic
lava flows.
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