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A case of adaptation through a mutation in a
tandem duplication during experimental
evolution in Escherichia coli
Ram P Maharjan1†, Joël Gaffé2,3†, Jessica Plucain2,3, Martin Schliep1, Lei Wang4,5, Lu Feng4,5, Olivier Tenaillon6,7,
Thomas Ferenci1† and Dominique Schneider2,3*†

Abstract

Background: DNA duplications constitute important precursors for genome variation. Here we analyzed an
unequal duplication harboring a beneficial mutation that may provide alternative evolutionary outcomes.

Results: We characterized this evolutionary event during experimental evolution for only 100 generations of an
Escherichia coli strain under glucose limitation within chemostats. By combining Insertion Sequence based
Restriction Length Polymorphism experiments, pulsed field gel electrophoresis and two independent genome
re-sequencing experiments, we identified an evolved lineage carrying a 180 kb duplication of the 46’ region of the
E. coli chromosome. This evolved duplication revealed a heterozygous state, with one copy harboring a 2668 bp
deletion that included part of the ogrK gene and both the yegR and yegS genes. By genetically manipulating ancestral
and evolved strains, we showed that the single yegS inactivation was sufficient to confer a frequency dependent fitness
increase under the chemostat selective conditions in both the ancestor and evolved genetic contexts, implying that
the duplication itself was not a direct fitness contributor. Nonetheless, the heterozygous duplicated state was relatively
stable in the conditions prevailing during evolution in chemostats, in striking contrast to non selective conditions in
which the duplication resolved at high frequency into either its ancestral or deleted copy.

Conclusions: Our results suggest that the duplication state may constitute a second order selection process providing
higher evolutionary potential. Moreover, its heterozygous nature may provide differential evolutionary opportunities in
alternating environments. Our results also highlighted how careful analyses of whole genome data are needed to
identify such complex rearrangements.

Keywords: Experimental evolution, Chemostats, Escherichia coli, Duplication, Heterozygous duplication, Insertion
sequence elements, Frequency-dependent selection, Indirect selection

Background
Chromosomal duplications influence adaptive processes

by potentially impacting on either short-term or long-

term evolutionary outcomes. In the short term, duplica-

tions may confer higher fitness owing to increased gene

dosage [1-3]. Indeed, they overcome limited expression

of specific functions when microbial populations evolve

for instance under conditions of lactose limitation in

Escherichia coli [1,4], glucose limitation in yeast [5,6], or

antibiotic pressure in Salmonella [2,3]. Moreover, the

flexibility associated with the potential transient nature

of duplication events may provide evolutionary advan-

tages in fluctuating environments or relaxed selection

[1]. Over longer evolution, duplication events can en-

hance survival abilities by buffering against deleterious

mutations [7]. They may also provide important path-

ways to genetic innovation, opening opportunities for

the emergence of novel functions and the expansion of

gene families [6,8,9]. Genome sequences have confirmed

the contribution of DNA duplications to evolutionary

processes [8,10]. Gene duplication may be related to
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evolutionary divergence [11] by providing intermediates

during the duplication-divergence process [12]. Different

models have been proposed to identify the selective

forces for gene duplication, including a neutral event

followed by accumulation of mutations [8], the evolution

of intermediates with secondary functions [13], and

complementary loss-of-functions in each of the dupli-

cated copies [14]. Chromosomal duplication is associ-

ated with the potential for increased genetic variation

that may result in an equilibrium between organismal

robustness against deleterious mutations and evolvability

with potentially beneficial mutations that may arise in a

copy of a duplicated region, thereby contributing to

evolved phenotypes.

Most information on evolution through duplication re-

lies on retrospective comparative analyses of available

genomes [8]. However, direct observation of the rise and

segregation of duplications is much scarcer owing to

their rarity, instability and the subtle phenotypic effects

they may confer. Bacterial evolution experiments [15]

provide opportunities to identify intermediates during

duplication processes. However, only few duplication

events have been detected in these experiments, except

during high temperature adaptation [16] where evolved

clones contained on average 0.2 large duplication com-

pared to 9.2 SNPs and short indels [17]. Most mutations

identified during laboratory evolution experiments in-

clude SNPs and short indels [18-21] that have been

shown to explain many evolved phenotypes. Consequently,

little information is available over short time-frames on the

dynamics of duplication processes, including the diver-

gence of duplicated copies. Hence, to the best of our

knowledge, no data with co-linear wild-type and mu-

tant alleles are available during evolution experiments,

whereas duplications have been commonly found by

classical genetics in Salmonella populations adap-

ting to diverse conditions including nutrient-limited

chemostats [3,22].

We designed evolution experiments during which an E.

coli ancestral strain was propagated as large populations

(>1010 bacteria) for ~100 generations within chemostats

under glucose or phosphate limitation [23,24]. Chemostats

are continuous culture systems in which the bacteria de-

plete substrates but are maintained in constant population

numbers over extended periods. Mutations improve fit-

ness in this environment, allowing population sweeps. The

initial selection is for better utilization (transport and scav-

enging) of limiting nutrient but, after ~50 generations,

populations diversify into separate lineages with diverse

phenotypes and eventually evolve cross-feeding polymor-

phisms [19,23-26]. Many SNPs, deletions, IS movements

and short indels have been identified that explained the

functional changes that occurred in different phenotypic

groups [19,27]. However, the genetic bases of the metabo-

lic changes and fitness benefits of some groups of clones

have not yet been identified. In particular, one group of

clones producing unusually elevated acetate levels and re-

duced growth yield is not characterized by the typical im-

proved glucose transport [28] and lacks all the regulatory

changes identified so far in other clones from the same

populations [23].

Here, we combined Insertion Sequence-based Restric-

tion Length Polymorphism, pulsed-field gel electrophor-

esis and genome re-sequencing to characterize one

representative of this group of clones. We identified a

novel chromosomal duplication, one copy of which was

altered by a deletion that conferred higher fitness under

the conditions prevailing in the chemostat. This duplica-

tion may constitute an evolutionary intermediate [12].

Hence, the duplication is readily resolved into a single

copy, either ancestral or evolved, the resolution fre-

quency being higher under non-selective conditions.

Owing to its instability, we had difficulties to detect the

duplication by genome re-sequencing. Hence, we missed

the duplication during a first genome re-sequencing at-

tempt of the focal clone. Only the discrepancy between

the data generated by our combined approaches led us

to carefully re-examine the genome and to identify the

duplication. This instability may explain the under-

representation of large duplications observed during la-

boratory bacterial evolution experiments.

Results
Initial characterization of BW4005

The evolved clone BW4005 was previously characterized

phenotypically by comparison to its ancestor, and

exhibited a lower growth yield, a higher production of

acetate from glucose in chemostat culture, and a lack of

obvious difference in glucose uptake [28]. At the eco-

logical level, BW4005 was present in low proportion in

its glucose-limited evolving population and displayed

negative frequency-dependent fitness when competed

with the ancestor [19]. By contrast, no genetic informa-

tion was available to explain these phenotypic and eco-

logical traits, even after re-sequencing the genome of a

clone, called BW4005.1, recovered from the initial gly-

cerol stock of BW4005, by using a combination of 454

and Illumina technologies. Indeed, we detected a single

mutation compared to the ancestor, consisting of a short

deletion in ahpC encoding the alkyl hydroperoxide sub-

unit involved in peroxide resistance (Table 1). As shown

below, this mutation did not contribute to increased fit-

ness in the chemostats. Moreover, the genome sequence

of BW4005.1 was inconsistent with previously detected

changes in the RFLP profiles of another clone isolated

independently from the same glycerol stock of BW4005,

called BW4005.2, using the mobile genetic element IS3 as

a probe [27]. Indeed, while the RFLP-IS3 profile of the
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ancestral strain BW2952 revealed four IS3-containing

EcoRV genomic fragments of 1.7, 2.6, 4.6, and 10.6 kb,

respectively, with hybridization intensities proportional

to the relative molecular weight of these fragments

(Figure 1a), the one of BW4005.2 showed a fifth hybridiz-

ing fragment of ~7.9 kb with a hybridization intensity

stronger than expected from its molecular weight

(Figure 1a). This was unlikely to be due to contamination,

since both clones harbored the ahpC mutation (Table 1).

Genomic rearrangements in BW4005

We characterized the genomic sequences adjacent to IS3

in the 7.9-kb fragment specific to BW4005.2 by inverse

PCR experiments. One side (right on Figure 1b) cor-

responded to the gatD gene with the IS3 insertion at

exactly the same position (2,061,936) as observed in the

ancestor for the IS3 element contained in the 10.6-kb hy-

bridizing fragment. This particular ancestral IS3 is inserted

between positions 2,060,677 and 2,061,936. The other side

corresponded to a genomic sequence (2,058,010) located

2668 bp upstream in the ancestral genome. Therefore, this

fifth IS3 probably resulted from an IS3 transposition event

at position 2,058,010 followed by a recombination event

between this new IS3 copy and the one located in the an-

cestral genome between positions 2,060,677 and 2,061,936

within gatD. These events subsequently resulted in the

2668-bp deletion of the intervening fragment, affecting

the two genes yegR and yegS and part of ogrK (Figure 1c).

However, two features of the RFLP-IS3 pattern suggested

a more complex rearrangement (Figure 1a): the two 10.6

and 7.9 kb IS3-hybridizing fragments were co-existing in

BW4005.2, indicating the presence of two copies of at

least gatD, and the 7.9 kb fragment presented a hybridiz-

ing intensity higher than expected from its molecular

weight compared to the four other hybridizing fragments.

Altogether, these data might be explained by the presence

in the chromosome of BW4005.2 of a tandem duplication

containing two heterozygous copies, with and without the

IS3-generated deletion respectively (Figure 1c). We then

performed PFGE experiments with XbaI-digested genomic

DNA of BW2952 and BW4005.2 (Figure 1d). We found

two extra XbaI fragments of 61.5 and 19 kb in BW4005.2

compared to BW2952, which also suggested the presence

of a complex rearrangement.

These genomic rearrangements were not detected by

genome sequencing in the clone BW4005.1. Since both

clones BW4005.1 and BW4005.2 were derived from a

single cycle of growth after plating the initial glycerol

stock of BW4005 onto LB solid medium, we hypothe-

sized that the rearrangements were present in the ori-

ginal evolved clone, but were characterized by a high

instability. We therefore investigated the stability of the

genomic rearrangements by isolating six additional

clones, called BW4005.C1 to BW4005.C6, after plating

the initial glycerol stock of BW4005 onto LB medium,

and analyzing them by RFLP-IS3 and PFGE (Figure 1e).

The RFLP-IS3 profiles were checked for the presence or

absence of the 10.6 and 7.9 kb IS3-hybridizing frag-

ments. Hence, their simultaneous presence was diagnos-

tic of the putative heterozygous duplication while the

presence of only the first or second fragment indicated

the resolution of the putative duplication into the ances-

tral or deleted copy, respectively. Similarly, the PFGE

profiles were checked for the presence or absence of the

two 61.5 and 19 kb bands. The RFLP-IS3 profiles re-

vealed that four (BW4005.C1 to BW4005.C4) of the six

clones had lost either one of the putative duplicated

DNA copies (Figure 1e), with clones BW4005.C1 and

BW4005.C2 harboring the single deleted copy and

BW4005.C3 and BW4005.C4 the ancestral copy. The

two last clones, BW4005.C5 and BW4005.C6, retained

the putative heterozygous duplication. Consistent with

the RFLP-IS3 profiles, the PFGE analysis showed that

clones BW4005.C1 and BW4005.C2 retained only the 19

kb band, while BW4005.C3 and BW4005.C4 had the an-

cestral profile, and BW4005.C5 and BW4005.C6 har-

bored the two extra fragments (Figure 1e). These results

indicated the high genetic instability of the putative du-

plication as well as its capacity for resolution into alter-

native states.

Moreover, both RFLP and PFGE experiments, using

genomic DNA isolated from different independent cul-

tures of BW4005.C6, exhibited variation in the intensity

of the additional bands (Figure 1 and data not shown),

which further suggested the instability of the genetic re-

arrangement. This instability may provide an explanation

for the discrepancies between the RFLP/PFGE experi-

ments and the genome re-sequencing results and is con-

sidered in more detail below.

Table 1 List of mutations found in BW4005.1 and BW4005.C6

Event number Genome positiona Gene name Type Present inb

1 541,030 ahpC 3-bp deletion BW4005.1
BW4005.C6

2 2,058,010-2,060,677 ogrK-yegS-yegR 2668-bp deletion BW4005.C6

3 1,993,429-2,172,740 NAc ~180-kb duplication BW4005.C6
aThe positions are given according to the genome sequence of the ancestor strain BW2952 [29]. bThe genome sequence of BW4005.1 was first obtained and

detected only the first mutation, while the one of BW4005.C6 was obtained afterwards and contained the three mutations. cNot applicable.
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Characterization of a heterozygous duplication by

genome re-sequencing

To address the discrepancies between the different ap-

proaches, we decided to re-sequence the genome of

BW4005.C6 that harbored the complex rearrangement

(Figure 1e). We now detected three mutations compared

to BW2952 (Table 1): the same in-frame 3-bp deletion

in ahpC, the 2668-bp deletion of ogrK-yegR-yegS, and a

duplication of ~180 kb extending from genomic

positions 1,993,429 to 2,172,740. The duplicated frag-

ment is localized between two IS5 elements (Figure 2),

and therefore likely resulted from a recombination event

between one and the other of these two IS5 copies dur-

ing DNA replication. We further validated the presence

of the duplication by three additional tests: first, we

PCR-amplified and sequenced the new junction se-

quence resulting from the duplication by using the

primers FrontR and FrontF (Table 2, Figure 2). Both the
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Figure 1 Genomic rearrangements in the evolved clone BW4005 sampled from a glucose-limited chemostat. (a) RFLP-IS3 of EcoRV-
digested genomic DNA of BW2952 and BW4005.2 [24]. A fifth hybridizing fragment (arrow) with stronger hybridization intensity was detected in
BW4005.2. (b,c) Maps showing the genomic regions corresponding to the 10.6 and 7.9 kb EcoRV IS3-hybridizing fragments, including the sequences
adjacent to IS3 in BW2952 (b) and BW4005.2 (c). Genomic coordinates (given in parentheses) and gene orientations (horizontal boxes) are based on
the genome sequence of BW2952 [29]. Vertical arrows indicate EcoRV restriction sites, and horizontal arrows show locations of primers used to identify
the junction of the duplicated region (Table 2). The triangle shows the location of the 2668-bp deletion in BW4005.2. (d) PFGE of XbaI-digested
genomic DNA of BW2952 and BW4005.2. The additional bands in BW4005.2 compared to BW2952 are shown by arrows. (e) RFLP-IS3 and PFGE profiles
of six clones (BW4005.C1 to BW4005.C6) derived from the initial glycerol stock of BW4005. The sizes of relevant bands are indicated on the left.
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size and sequence of the PCR products confirmed the

duplication. Second, an additional IS5-containing

EcoRV restriction fragment of 1.5 kb should be pro-

duced at the junction of the duplication (Figure 2) and

should therefore be detected by RFLP-IS5. This was in-

deed shown to be the case (data not shown). Finally,

the PFGE profiles with the additional XbaI bands were

easily explained on the basis of the duplicated genome

sequence (Figure 2).

Phenotypic effects of the rearrangements

We next investigated the relationships between the com-

plex chromosomal rearrangements and the phenotypes

known for BW4005. We measured the growth yield,

acetate production, and fitness of the three clones

BW4005.C2, BW4005.C3 and BW4005.C6 compared to

the ancestor BW2952. These three clones are genotypi-

cally different (Figure 1e): the duplication has been re-

solved into the deleted or ancestral copy in BW4005.C2

Extra XbaI fragments

1,902,475

1,996,533

94 kb

2.067,132

2,115,549

2,045,357

48.8 kb

48.4 kb

1,996,533

61.5 kb

2.067,132

2,115,549

2,045,357

48.8 kb 48.4 kb

19kb
XbaI digest

IS5 IS3 IS5 IS3 IS5

∆ogrK yegSRogrK yegSR1,993,429 2,172,740

New junction

2,172,740

FrontF FrontR FrontRFrontF

BW4005.2

Figure 2 Map of the genomic rearrangement in the 46’ region of the BW4005 chromosome. The top map shows both the ~180 kb
duplication of the ancestral chromosomal region, that extends between the two IS5 elements located at positions 1,993,429 and 2,172,740, and
the relevant IS3 elements contained within that duplication. The copy on the right carries the 2668-bp deletion containing part of ogrK and all of
yegR and yegS. The bottom line shows the restriction map derived from the PFGE profile of XbaI-digested genomic DNA of BW4005.2. Vertical
arrows indicate locations of XbaI sites and horizontal lines with arrows indicate the locations of primers used for the identification of the new
junction generated by the duplication (shown in the box). The sizes of the different XbaI fragments are indicated between the vertical arrows. For
gel documentation of the BW4005.2 PFGE profiles showing the extra XbaI bands of 61.5 and 19 kb (indicated by dashed lines), see Figure 1d,e.
Genome positions of XbaI restriction sites are based on the genome sequence of BW2952 [29].

Table 2 List of primers used in this study

Primer
name

Direction Genome
positiona

Sequence (5'-3')b Used for

IS3F1 Forward 2,057,888 CGCTGTACCGACTCATAAGT Detection of ogrK-yegSR
deletion

IS3R1 Reverse 2,061,063 GATGCTGAACTCAGCCTGATG Detection of ogrK-yegSR
deletion

IS3R2 Reverse 2,059,299 CATTCCTTCCTCACGCAAC Detection of ogrK-yegSR
deletion

IS5F1 Forward 2,172,688 CACCATCAACTGTCTCACCA Detection of duplication

IS5R1 Reverse 1,993,645 GACCCGCAGATGATGATTAC Detection of duplication

DelF Forward 2,057,748 CACCGTAACGCTGTTTTGACCG Detection of ogrK-yegSR
deletion

DelR Reverse 2,062,009 GGATCTTGAGCTCAATTACGCGC Detection of ogrK-yegSR
deletion

IS3EF Forward NAc GCTGCTACGATAATGCCTGCG Inverse PCR

IS3ER Reverse NAc GCGTTCAGCAAGCTTCAGGG Inverse PCR

FrontR Forward 1,993,555 GTACATTATGCCTGTTCCGAG Detection of duplication

FrontF Reverse 2,172,636 TCGTATTATTGGCGGTCCC Detection of duplication

ogrKAmpF1 Forward 2,057,979 GGCTTGTACGCGCATGTGCGGCATGCTGGCATAAGAGTTGGTAGCTCTTGATC Strain construction

yegSAmpF2 Forward 2,058,495 CTCACTCTCCACATTTGAATGTCAGACGAGCGACAGAGTTGGTAGCTCTTGATC Strain construction

yegRAmpF3 Forward 2,059,218 CATGGCAGAATTTCCCGCCAGCTTACTGATTCTTAGAGTTGGTAGCTCTTGATC Strain construction

ogrKAmpR1 Reverse 2,058,472 GGTAAGCGTCAAATATGCGCGTTCTGGCTGTGCCATTCAAATATGTATCCGCT Strain construction

yegSAmpR2 Reverse 2,059,189 TGATTGGTCTGTAGATAGTGTAGAGCAGAAAACCATTCAAATATGTATCCGCT Strain construction

yegRAmpR3 Reverse 2,060,666 GACCGTTATTCTCGACAGCGGAAGTACGACAATGCATTCAAATATGTATCCGCT Strain construction
aThe positions are given according to the genome sequence of the ancestor strain BW2952 [29]. bSequences in bold are homologous to the bla antibiotic

resistance gene. cNot applicable; these primers are complementary to sequences inside the IS3 elements.
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and BW4005.C3, respectively, while BW4005.C6 con-

tains the heterozygous duplication. As shown in Table 3,

BW4005.C2 and BW4005.C6 had similar evolved pheno-

types (decreased fitness at a 50:50 ratio, reduced yield,

and high acetate production under glucose limitation),

while BW4005.C3 had phenotypic properties similar to

the ancestor. These results suggested that the 2668-bp

deletion was the main contributor to the BW4005

evolved phenotypes, and not the ahpC mutation. More-

over, the presence of the heterozygous duplication

seemed to confer similar phenotypes compared to the

2668-bp deletion alone.

We next investigated the respective phenotypic contri-

bution of each of the yegR and yegS genes, by first mov-

ing the 2668-bp deletion and second inactivating them

individually into the ancestral genetic background. We

found that both the 2668-bp deletion and yegS-inactivated

strains exhibited the evolved phenotypes, while the

yegR-inactivated strain had phenotypes indistinguishable

from the ancestor (Table 3).

Stability of the duplication

An important unresolved question is whether the dupli-

cation itself conferred a benefit under the chemostat se-

lection conditions. Since evolved phenotypic attributes

were not specifically provided by the duplicated state,

we tested this indirectly by comparing the population

dynamics of the duplication in two environments:

non-selective conditions in LB batch cultures and

the glucose-limited chemostat selection environment

(Figures 1e and 3). The clone BW4005.C6, harboring the

heterozygous duplication, was grown either in LB

medium for three 24-hour growth cycles or for three

days in chemostats in low-frequency competition with

MC4100 to mimic the evolution experiment (Materials

and methods). In each case, 32 individual clones,

sampled at each day interval, were analyzed for the pres-

ence of the genomic rearrangements by colony-PCR

using the primer pairs IS5F1/IS5R1, IS3F1/IS3R1, and

IS3F1/IS3R2. The primer pair IS5F1/IS5R1was specific-

ally designed to detect the new junction produced by the

duplication, and IS3F1/IS3R1 and IS3F1/IS3R2 to detect

the 2668-bp IS3-mediated deletion (Figure 3a-c). Under

the non-selective conditions (Figure 3e), the proportion

of clones harboring the heterozygous duplication de-

creased significantly by the third 24-hour growth cycle

(t-test: P < 0.05), with the concomitant significant in-

crease of the proportion of clones with single ancestral

or deleted copies (t-test: P < 0.05). By contrast, the pro-

portion of clones harboring the heterozygous duplication

was high and stable over the three days under the ori-

ginal selection condition (Figure 3d). These results

showed the genetic instability of the heterozygous dupli-

cation under non-selective conditions, in stark contrast

to its stability over a short-term period in the glucose-

limited conditions prevailing during the evolution experi-

ment. However and despite these stability differences, we

were unable to distinguish phenotypically (Table 3) the

clones harboring the heterozygous duplication and the

single deleted copy (even the reconstructed clone with the

specific yegS inactivation in the ancestral genetic back-

ground had identical evolved phenotypes).

Discussion
Evolution experiments propagating bacterial populations

in glucose- or phosphate-limited chemostats have been

extensively developed to understand the dynamics of

adaptive processes [19,24-26,28]. Genes involved in

transport and consumption of glucose [30-32], encoding

global regulators of gene expression [33,34] and DNA

repair enzymes [27,35] have been shown to be changed

during evolution. However, several evolved clones

Table 3 Phenotypic traits of ancestral, evolved and reconstructed E. coli strains

Strains Description Yielda Acetate
productionb

Fitness (S h-1)c

50:50 1:99

BW2952 Ancestor 1.00 - 1.00 1.00

BW4005.2 Derivative of evolved isolate BW4005 0.89 ± 0.02 + −0.04 ± 0.01 0.06 ± 0.01

BW4005.C2 Derivative of BW4005 (DO)d 0.74 ± 0.08 + −0.09 ± 0.01 ND

BW4005.C3 Derivative of BW4005 (WT)d 0.98 ± 0.03 - −0.02 ± 0.01 ND

BW4005.C6 Derivative of BW4005 (HD)d 0.83 ± 0.05 + −0.04 ± 0.01 ND

BW6029 BW2952 yegS::bla 0.85± 0.03 + −0.02 ± 0.01 0.09± 0.04

BW6030 BW2952 yegR::bla 1.01 ± 0.02 - 0.01 ± 0.01 −0.01 ± 0.01

BW6031 BW2952 ∆ogrK-yegS-yegR::bla 0.88 ± 0.02 + −0.05 ± 0.01 0.11± 0.04
aGrowth yields are shown relative to the ancestral strain BW2952 and were obtained from 24-hour glucose-limited chemostats by measuring the optical density of

the cultures at 600 nm. Values are from three independent measurements.
bAcetate production was tested with 24-hour chemostat cultures. +, acetate present at 2–5 mg l-1; -, below the detection limit (< 0.15 mg l-1). Data were from at

least three independent biological repeats with less than 10% standard errors.
cCompeting strains were mixed at 50:50 or 1:99 ratios after individual acclimation in the chemostat evolution conditions. Changes in the proportions of the competitors

after 24 hours were used to calculate fitness values. Data presented are mean ± SEM from at least two independent experiments. ND, not determined.
dSymbols are identical to the legend of Figure 3.
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followed alternative evolutionary pathways not uncov-

ered by whole-genome sequencing. Here, we identified

one such path, consisting of complex chromosomal

rearrangements that included a large 180-kb duplication

of the 46’ chromosomal region followed by the diver-

gence of the two tandem duplicated copies. One copy

experienced a 2668-bp deletion removing part of the

ogrK gene and both yegR and yegS. We showed that the

duplication was highly unstable under non-selective con-

ditions but not in the conditions prevailing during evo-

lution. However, the duplication per se did not provide

any of the phenotypic traits associated with the adapta-

tion of these evolved clones in the chemostats. In

striking contrast, inactivating yegS in the ancestral back-

ground was sufficient to confer all evolved phenotypes.

The benefit conferred by the yegS deletion, together

with the dominance of the deleted allele over its ances-

tral counterpart, are difficult to infer owing to the lack

of information about YegS. Indeed, YegS is annotated as

a putative diacylglycerol kinase potentially involved in

the response to acid stress [36]. A yegS knockout results

in the loss of mannose and acetate consumption [37].

Diacylglycerol is a lipid second messenger in many or-

ganisms [38], and the yegS deletion may result in alter-

ations of regulatory and/or metabolic networks owing to

changes in lipid signaling pathways in E. coli.
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Figure 3 Stability of the duplication and phenotypes of the different derived genotypes. (a) Chromosomal map of the duplication in
BW4005 showing primer pairs used to follow the fate of the duplication. The same symbols as in Figure 2 are used. (b) Example of PCR
experiments to score the state of the genomic rearrangement, by using the three primer pairs IS5F1/IS5R1, IS3F1/IS3R1 and IS3F1/IS3R2. WT and
DO stand for the presence of the single ancestral or 2668-bp deleted copy, respectively, and HD for the presence of the heterozygous
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scoring the heterozygous duplication state. (d,e) Stability of the heterozygous duplication under the selective conditions of the chemostat (d)
and non-selective conditions of LB batch cultures (e). In (d), BW4005.C6 harboring the heterozygous duplication was mixed 1:99 with the
MC4100 reference strain after individual acclimation in separate chemostats. Samples were taken every 24 hours for three days and appropriate
dilutions were plated onto LB plates with or without 30 μg ml-1 kanamycin. At each time point, we sampled 32 well-separated colonies from
Kan-plates and scored them for the IS5-mediated duplication and IS3-mediated deletion. In (e), an overnight culture of BW4005.C6 was diluted
100-fold into LB liquid medium and grown for 24 hours. This growth cycle was repeated for two additional days and the proportion of the
different genotypes was followed as in (b). The data presented are the average of two independent cultures in each case.
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Previous studies, with Salmonella typhimurium popu-

lations propagated in arabinose- or melibiose-limited

chemostats [22], detected 96 and 25%, respectively, of

cells harboring araE or melB duplications that emerged

within only 50–100 hours of incubation. The amplified

genes are responsible for arabinose or melibiose uptake

and are therefore under strong selection for elevated ex-

pression levels under these conditions. In Salmonella,

duplications and rearrangements also occur upon pro-

longed storage of strains and in clinical settings [39,40].

In contrast, in the glucose-limited chemostat popula-

tions of E. coli, the major early adaptive changes involve

a series of regulatory mutations increasing the levels of

glucose transport components [19,24-26,28,41]. Earlier

studies of lactose-limited chemostats also showed that

the first selective sweeps were by lac-constitutive mu-

tants, only later followed by DNA amplifications [4].

Therefore, one may speculate whether inherent differ-

ences between Salmonella and E. coli may exist for du-

plication rates and/or costs. Interestingly, the BW4005

lineage carrying the duplication emerged later as a mi-

nority clone, with an adaptive pathway very different

from the other clones in the chemostat population [19],

since its fitness was shown to be frequency dependent.

While many duplication (and amplification) events

have been detected in classical genetic studies where

strong selection was applied, it is not the case during la-

boratory evolution experiments, with one notable excep-

tion [16,17]. We showed here that this may be merely

linked to the high instability of the duplication events

under non-selective conditions. Hence, a single over-

night growth cycle was sufficient to generate at high fre-

quency offspring that lost the duplication (Figure 1e).

Most analyses of evolved clones sampled from evolution

experiments involve culture cycles under non-selective

conditions for further analyses. We show here that such

experimental practices may result in the loss of duplica-

tion events and that sampling single clones may lead to

an underestimation of these chromosomal rearrange-

ments. Therefore, storing and analyzing evolved isolates

must be carefully performed. Instabilities in bacterial

stocks are well-known [39,42,43] and our data em-

phasize the importance of minimizing sub-culturing

steps. It was only good fortune that at least one clone,

randomly sampled from the original chemostat popula-

tion, retained the duplication.

A comprehensive view of the stability of genome du-

plications is yet missing at the evolutionary, ecological

and molecular levels. The RecA protein is involved in

homologous recombination and is important in resolv-

ing duplications [44]. On the other hand, some bacterial

duplications may be stable, including those involving re-

combination at rRNA (rrn) operons [39,45]. Here, we

observed that the heterozygous duplication was much

more stable under the glucose-limited chemostat condi-

tions than under non-selective conditions (Figure 3).

Therefore, it might confer a direct selective advantage in

the evolution regime. However, all evolved phenotypes

were related to either the 2668-bp deletion alone or the

single inactivation of yegS. Hence, the duplication by it-

self does probably not confer a direct benefit to the

evolved cells, in contrast to duplications that result in a

gene-dosage advantage [1-3].

Several reasons may explain the stability differences in

selective and non-selective conditions. First, the reso-

lution components may be differentially regulated in

various environments. Second, the fitness cost of the du-

plication may be larger during rapid growth resulting in

higher instability. Moreover, we showed that the hetero-

zygous duplication had no fitness disadvantage over the

single deletion copy, suggesting little fitness cost in

chemostats. Third, the duplication may represent a pre-

cursor enhancing the likelihood of the substitution of a

beneficial mutation through an increase in the muta-

tional target and in local mutation rates. As such, the

contribution of the duplication in the evolution of

BW4005 may involve a second-order selection process

[46] that has been shown to occur during experimental

evolution with E. coli [47]. Finally, our results are not

consistent with the model for divergence after duplica-

tion [2], in which selection continuously favors both the

maintenance of the duplicated copies and the divergence

of one copy from the parental one.

A fascinating property of the evolved duplication is its

ability to resolve into either the ancestral or deleted copy

that may provide robustness by buffering against dele-

terious mutations. On the other hand, the capacity to re-

cover the ancestral chromosome when selection is

removed endows the evolved strain with increased

evolvability in alternative environments. Finally, the

demonstration of ancestral and evolved copies inside a

duplication provides a newly documented example of an

evolutionary intermediate, with different selection pres-

sures acting on the two copies providing the basis of

evolutionary divergence.

Conclusions
We identified for the first time during laboratory evolu-

tion experiments the presence of a heterozygous dupli-

cation, one copy presenting a small deletion that was

shown to be dominant and beneficial under the selective

conditions. Studies of the stability of the duplicated

genotype under different environmental conditions re-

vealed that it was unlikely to have been submitted to dir-

ect selection during evolution but rather to indirect

selection. This duplication therefore balances the robust-

ness and evolvability traits of the bacterial populations

evolving in the glucose-limited chemostats.
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Methods
All bacterial strains used in this study are listed in Table 4.

The E. coli K-12 strain BW2952 [29], a kanamycin-

resistant derivative of MC4100, was used as the ancestor

to initiate glucose-limited chemostats that were fed with

0.02% wt/vol glucose in minimal medium A [48] with a

0.1 h-1 dilution rate, as previously described [49]. This

study focused on the BW4005 evolved strain, one of 41

randomly sampled clones from the 26-day sample

(representing ~90 generations of evolution) of one such

chemostat [24]. These 41 evolved clones were preserved

as glycerol suspensions at −80°C directly after sampling.

During this study, eight clones, called respectively

BW4005.1, BW4005.2 and BW4005.C1 to BW4005.C6,

were directly derived from the initial glycerol stock of

BW4005.

Competitions in chemostats were performed between

the kanamycin-resistant, tetracycline-sensitive evolved

clone BW4005.C6 derived from BW2952 and the

kanamycin-susceptible tetracycline–resistant BW3454

strain, which was used as the common reference ances-

tral competitor.

Outside chemostats, strains were grown in LB liquid

or solid medium. Allelic exchange was performed using

LB+sucrose plates without NaCl and supplemented with

50% sucrose. When necessary, antibiotics were added:

chloramphenicol or kanamycin each at 30 μg ml-1, and

ampicillin at 100 μg ml-1.

Strain construction

The 2668-bp deletion from the BW4005 evolved clone

was moved into the ancestral genome by allelic exchange

using the suicide plasmid pKO3 [51]. Briefly, a 1100-bp

PCR fragment with about 550 bp of adjacent sequences

on each side of the deletion was obtained using BW4005

genomic DNA and the primers DelR and DelF (Table 2),

and then cloned into pKO3. The obtained plasmid was

introduced by electro-transformation into BW2952 and

chloramphenicol-resistant cells, formed after chromo-

somal integration of the plasmid, were selected. Resist-

ant clones were streaked onto LB+sucrose plates to

select for cells that lost the plasmid. Indeed, pKO3 car-

ries the sacB gene that makes cells carrying that plasmid

susceptible to killing by sucrose. These cells were then

screened by PCR and scored for the presence of the de-

letion allele by the size of the PCR products. We

constructed yegS::bla and yegR::bla derivatives of BW2952

using homologous flanking sequences as described [50].

The primer sets used for strain constructions are listed in

Table 2.

Phenotypic assays

Analysis of extracellular acetate in culture media from

individual chemostats inoculated with different bacterial

strains was performed after filtration through a Milex®

filter unit (Millpore, Ireland, 0.22 μm) by using an assay

kit for acetic acid with the UV method (Boehringer

Mannheim/R-Biopharm, Germany), according to the ma-

nufacturer’s guidelines. The growth yields were inferred by

measuring the optical density at 600 nm of 24-hour

chemostat cultures growing in the exact same conditions

prevailing during the evolution experiment.

Pairwise competition experiments and fitness estimation

Each bacterial strain was competed against a metC::Tn10

derivative, called BW3454 (Table 4), of the BW2952 ances-

tral strain [29], under the same conditions used during the

chemostat evolution experiment, except that the medium

was supplemented with 4 μg ml-1 methionine. Before

mixing the two competitors, each strain was independ-

ently acclimated by overnight growth in the glucose-

limited chemostats to ensure identical physiological state.

The fitness of the competing strains was calculated as the

selection coefficient S, as described [19].

Table 4 List of strains used in this study

Strain Relevant genotype Source

MC4100
F- araD139 ∆(argF-lac)U169 rspL150 deoCl relA1 thiA
ptsF25 flb5301 rbsR

[29]

BW2952 MC4100 malG::λplacMu55f(malG::lacZ) [29]

BW3454 MC4100 metC162::Tn10 [25]

BW4005
Chemostat evolved clone sampled after 90
generations

[19,24]

BW4005.
C1

Colony 1 derived from BW4005
This
study

BW4005.
C2

Colony 2 derived from BW4005
This
study

BW4005.
C3

Colony 3 derived from BW4005
This
study

BW4005.
C4

Colony 4 derived from BW4005
This
study

BW4005.
C5

Colony 5 derived from BW4005
This
study

BW4005.
C6

Colony 6 derived from BW4005
This
study

DY330 W3110 ∆lacU169 gal490 λcl857 ∆(cro-bioA) [50]

BW6026 DY330 yegS::bla
This
study

BW6027 DY330 yegR::bla
This
study

BW6028
DY330 ogrK-yegS-yegR::bla

This
study

BW6029 BW2952 yegS::bla
This
study

BW6030 BW2952 yegR::bla
This
study

BW6031
BW2952 ∆ogrK-yegS-yegR::bla

This
study
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Genome re-sequencing

A first single colony of BW4005, called BW4005.1, was

isolated after streaking the original glycerol suspension

on LB plate and incubating overnight at 37°C. The

BW4005.1 clone was then inoculated into 10 ml LB and

grown overnight at 37°C. This culture was used for gen-

omic DNA extraction as described [29]. Whole genome

re-sequencing of BW4005.1 was performed by 454 and

single-end Solexa technologies [33]. Briefly, a total of

216,058 single-end reads with an average length of 404

bps, giving a 19.08X coverage of the genome, were

generated using the GS FLX system (Roche, Welwyn

Garden City, Hertfordshire, UK) and assembled to 78

contigs with 454 Newbler assembler (http://www.454.

com/products/analysis-software/). A total of 8,862,831

single-end reads with an average length of 33 bps were

generated using the Solexa Genome Analyzer (Illumina,

Little Chesterford, Essex), giving a 63.9× coverage. All

Solexa reads were mapped to the contigs generated from

Newbler using MAQ [52]. The order of the contigs was

determined based on BLASTn alignments with the gen-

ome sequence of BW2952 as the reference (Genbank ac-

cession number NC_012759). By analyzing these data, we

found a few sequencing errors in the original BW2952 gen-

ome sequence (Additional file 1: Table S1). All 78 sequence

gaps in BW4005 and 151 suspected SNP sites were filled or

checked by sequencing PCR products with ABI 3730XL ca-

pillary sequencer (Applied Biosystems, Foster City, Califor-

nia, USA).

In our second genome re-sequencing attempt, a second

colony derived independently from the same initial gly-

cerol stock of BW4005, and called BW4005.C6 (see below,

Table 4), was grown as described above. (BW4005.C6 was

confirmed by our molecular analyses to harbor the hete-

rozygous duplication). Its genomic DNA was extracted,

checked and re-sequenced on the Illumina Genome

Analyzer platform using single-end 36-bp reads (GATC-

Biotech, Germany). Candidate mutations were identified

in comparison to the ancestral BW2952 genome [29]

using a recently developed computational pipeline [17].

Genome sequencing data have been deposited in the ENA

Sequence Read Archive (ERP002251).

RFLP-IS and characterization of IS adjacent sequences by

inverse PCR

Restriction fragment length polymorphism (RFLP) using

internal fragments of IS3 and IS5 as probes (RFLP-IS3

and RFLP-IS5, respectively) was performed with gen-

omic DNA of BW2952, BW4005 and derived clones as

described previously [27]. Genomic sequences adjacent

to relevant IS3 elements were identified by inverse PCR

experiments [27], using primers IS3ER and IS3EF

(Table 2) that are complementary to the extremities of

IS3 and oriented toward its flanking regions. Briefly,

after EcoRV digestion of genomic DNA from clone

BW4005.2 and fractionation by agarose gel electrophor-

esis, the relevant DNA fragments were extracted from

the gel, self-ligated and submitted to PCR using the

primers IS3ER and IS3EF. The obtained PCR products

were then sequenced to identify the IS3 genomic

neighborhood.

Detection of the junction fragment of the duplication and

analysis of the duplication stability

The new junction fragment generated by the duplication

event was detected by PCR experiments using the two

primer pairs FrontR/FrontF and IS5F1/IS5R1 (Table 2).

The stability of the duplication was assessed by sub-

culturing the evolved clone BW4005 in two different

environments: non-selective LB medium and the chemo-

stat evolution conditions. For non-selective conditions,

the initial glycerol stock of BW4005 was plated onto LB

solid media and incubated overnight at 37°C. Six col-

onies were sampled and grown for 12 hours in LB liquid

medium at 37°C, the resulting clones being called

BW4005.C1 to BW4005.C6. The BW4005.C6 clone, that

was shown to retain the duplication after culture, was

further inoculated by a 1:100 dilution into two inde-

pendent McCartney bottles, each containing 5 ml LB,

and incubated for 24 hours at 37°C with shaking at 200

rpm. These dilution/growth cycles were repeated for a

total of three times. At each of the three steps, 100 μl of

the appropriately diluted 24-hour cultures were plated

onto LB solid medium and 32 well-separated colonies,

16 deriving from each of the two independent

McCartney bottles, were sampled for DNA extraction

and subsequent PCR analysis to score for the presence

or absence of the duplication. For selective chemostat

conditions, glucose-limited chemostats of BW4005.C6

and MC4100 were mixed after 16 hours of acclimation.

Owing to the negative frequency-dependent fitness and

low frequency of BW4005 in the initial chemostat evolu-

tion experiment [19], we mixed BW4005.C6 with

MC4100 at a ratio of 1:99 and this co-culture was

maintained for three days. Once every day, we sampled

32 colonies derived from BW4005.C6 after plating ap-

propriate dilutions on LB plates and scoring for colonies

resistant to kanamycin.

Pulsed-field gel electrophoresis (PFGE)

PFGE was performed using a CHEF Mapper system

(Bio-Rad Laboratories, Hercules, CA, USA) according to

the procedure described by the US CDC PulseNet

program (http://www.cdc.gov/pulsenet/pathogens/pfge.

html). XbaI-digested genomic DNAs of BW2952,

BW4005 and derived clones were separated at 6.0 V/cm

for 19 hours at 14°C, with increasing pulse times of

6–36 s and an angle of 120°.
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Additional file

Additional file 1: Table S1. lists the sequencing errors that were
detected in the genome of the ancestor BW2952 that was previously
sequenced [29].
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polymorphism; RFLP-IS3: Restriction fragment length polymorphism with IS3
as probe; RFLP-IS5: Restriction fragment length polymorphism with IS5 as
probe; SNP: Single-nucleotide polymorphism.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RM carried out the physiological and fitness assays on all clones and
constructed knockout strains. JG performed the RFLP-IS experiments. JG and
JP constructed mutant strains. MS performed PFGE experiments. LW and LF
were responsible for the genome sequencing and comparative genomics
studies of BW4005.1. OT analyzed the genome sequence of BW4005.C6. DS
and TF conceived the study, its design and coordination, and wrote the
manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank the Australian Research Council for grant support (to TF). This work
was also supported by the National Basic Research Program of China (973
Program) [2009CB522603] and the National Natural Science Foundation of
China (NSFC) Key Program [31030002] (to LW and LF); the Agence Nationale
de la Recherche (ANR) Program “Blanc” (ANR-08-BLAN-0283-01, to DS),
Centre National de la Recherche Scientifique, and Université Joseph Fourier
(to DS); and the Agence Nationale de la Recherche (ANR) Program
“Génomique” (ANR-08-GENM-023, to DS and OT). JP thanks the French
Ministry of Research and the Université Joseph Fourier for a PhD fellowship.

Author details
1School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006,
Australia. 2Laboratoire Adaptation et Pathogénie des Micro-organismes,
Université Joseph Fourier Grenoble, BP 170, F-38042, Grenoble cedex 9,
France. 3CNRS UMR5163, F-38042, Grenoble cedex 9, France. 4TEDA School of
Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street,
Tianjin 300457, P.R. China. 5Key Laboratory of Molecular Microbiology and
Technology, Ministry of Education, 23 Hongda Street, Tianjin 300457, P. R.
China. 6INSERM, UMR-S 722, F-75018, Paris, France. 7Université Paris Diderot,
Sorbonne Paris Cité, UMR-S 722 INSERM, F-75018, Paris, France.

Received: 22 October 2012 Accepted: 8 March 2013

Published: 3 July 2013

References

1. Kugelberg E, Kofoid E, Reams AB, Andersson DI, Roth JR: Multiple pathways

of selected gene amplification during adaptive mutation. Proc Natl Acad

Sci USA 2006, 103:17319–17324.
2. Sun S, Berg OG, Roth JR, Andersson DI: Contribution of gene amplification

to evolution of increased antibiotic resistance in Salmonella typhimurium.

Genetics 2009, 182:1183–1195.
3. Andersson DI, Hughes D: Gene amplification and adaptive evolution in

bacteria. Annu Rev Genet 2009, 43:167–195.
4. Novick A, Horiuchi T: Hyper-production of beta-galactosidase by

Escherichia coli bacteria. Cold Spring Harbor Symp Quant Biol 1961,
26:239–245.

5. Brown CJ, Todd KM, Rosenzweig RF: Multiple duplications of yeast hexose

transport genes in response to selection in a glucose-limited

environment. Mol Biol Evol 1998, 15:931–942.
6. Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F,

Botstein D: Characteristic genome rearrangements in experimental

evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2002,
99:16144–16149.

7. Wagner A: The role of population size, pleiotropy and fitness effects of

mutations in the evolution of overlapping gene functions. Genetics 2000,
154:1389–1401.

8. Zhang J: Evolution by gene duplication: an update. Trends Ecol Evol 2003,
18:292–298.

9. Blount ZD, Barrick JE, Davidson CJ, Lenski RE: Genomic analysis of a key

innovation in an experimental Escherichia coli population. Nature 2012,
489:513–518.

10. Gevers D, Vandepoele K, Simillion C, Van de Peer Y: Gene duplication and

biased functional retention of paralogs in bacterial genomes. Trends

Microbiol 2004, 12:148–154.
11. Taylor JS, Raes J: Duplication and divergence: The evolution of new

genes and old ideas. Annu Rev Genet 2004, 38:615–643.
12. Ohno S: Evolution by Gene Duplication. New York: Springer-Verlag; 1970.
13. Afriat L, Roodveldt C, Manco G, Tawfik DS: The latent promiscuity of newly

identified microbial lactonases is linked to a recently diverged

phosphotriesterase. Biochemistry 2006, 45:13677–13686.
14. Force A, Lynch M, Pickett FB, Amores A, Yan Y-l, Postlethwait J: Preservation

of duplicate genes by complementary, degenerative mutations. Genetics

1999, 151:1531–1545.
15. Hindre T, Knibbe C, Beslon G, Schneider D: New insights into bacterial

adaptation through in vivo and in silico experimental evolution. Nat Rev

Microbiol 2012, 10:352–365.
16. Riehle MM, Bennett AF, Long AD: Genetic analysis of the adaptation to

temperature stress: a role for gene duplications. Am Zool 2000,
40:1188–1189.

17. Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long
AD, Gaut BS: The molecular diversity of adaptive convergence.

Science 2012, 335:457–461.
18. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF:

Genome evolution and adaptation in a long-term experiment with

Escherichia coli. Nature 2009, 461:1243–1247.
19. Maharjan R, Ferenci T, Reeves P, Li Y, Liu B, Wang L: The multiplicity of

divergence mechanisms in a single evolving population. Genome Biol

2012, 13:R41.
20. Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR,

Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BO:
Comparative genome sequencing of Escherichia coli allows observation

of bacterial evolution on a laboratory timescale. Nat Genet 2006,
38:1406–1412.

21. Velicer GJ, Raddatz G, Keller H, Deiss S, Lanz C, Dinkelacker I, Schuster SC:
Comprehensive mutation identification in an evolved bacterial

cooperator and its cheating ancestor. Proc Natl Acad Sci USA 2006,
103:8107–8112.

22. Sonti RV, Roth JR: Role of gene duplications in the adaptation of

Salmonella typhimurium to growth on limiting carbon sources. Genetics

1989, 123:19–28.
23. Ferenci T: Bacterial physiology, regulation and mutational adaptation in a

chemostat environment. Adv Microb Physiol 2008, 53:169–229.
24. Maharjan R, Seeto S, Notley-McRobb L, Ferenci T: Clonal adaptive radiation

in a constant environment. Science 2006, 313:514–517.
25. Wang L, Spira B, Zhou ZM, Feng L, Maharjan RP, Li XM, Li FF, McKenzie C,

Reeves PR, Ferenci T: Divergence involving global regulatory gene

mutations in an Escherichia coli population evolving under phosphate

limitation. Genome Biol Evol 2010, 2:478–487.
26. Kinnersley MA, Holben WE, Rosenzweig F: E Unibus Plurum: Genomic

analysis of an experimentally evolved polymorphism in Escherichia coli.

PLoS Genet 2009, 5(11):e1000713.
27. Gaffe J, McKenzie C, Maharjan RP, Coursange E, Ferenci T, Schneider D:

Insertion sequence-driven evolution of Escherichia coli in chemostats.

J Mol Evol 2011, 72:398–412.
28. Maharjan R, Seeto S, Ferenci T: Divergence and redundancy of transport

and metabolic rate-yield strategies in a single Escherichia coli population.

J Bacteriol 2007, 189:2350–2358.
29. Ferenci T, Zhou ZM, Betteridge T, Ren Y, Liu Y, Feng L, Reeves PR, Wang L:

Genomic sequencing reveals regulatory mutations and recombinational

events in the widely used MC4100 lineage of Escherichia coli K-12.

J Bacteriol 2009, 191:4025–4029.
30. Maharjan R, McKenzie C, Yeung A, Ferenci T: The basis of antagonistic

pleiotropy in hfq mutations that have opposite effects on fitness at slow

and fast growth rates. Heredity 2013, 110:10–18.

Maharjan et al. BMC Genomics 2013, 14:441 Page 11 of 12

http://www.biomedcentral.com/1471-2164/14/441

http://www.biomedcentral.com/content/supplementary/1471-2164-14-441-S1.doc


31. Notley-McRobb L, Ferenci T: Adaptive mgl-regulatory mutations and

genetic diversity evolving in glucose-limited Escherichia coli populations.

Environ Microbiol 2013, 111:10–18.
32. Notley-McRobb L, Ferenci T: The generation of multiple coexisting mal-

regulatory mutations through polygenic evolution in glucose-limited

populations of Escherichia coli. Environ Microbiol 1999, 1:45–52.
33. Maharjan R, Zhou ZM, Ren Y, Li Y, Gaffe J, Schneider D, McKenzie C, Reeves

PR, Ferenci T, Wang L: Genomic identification of a novel mutation in hfq

that provides multiple benefits in evolving glucose-limited populations

of Escherichia coli. J Bacteriol 2010, 192:4517–4521.
34. Notley-McRobb L, King T, Ferenci T: rpoSmutations and loss of general stress

resistance in Escherichia coli populations as a consequence of conflict

between competing stress responses. J Bacteriol 2002, 184:806–811.
35. Notley-McRobb L, Seeto S, Ferenci T: Enrichment and elimination of mutY

mutators in Escherichia coli populations. Genetics 2002, 162:1055–1062.
36. Bakali HMA, Herman MD, Johnson KA, Kelly AA, Wieslander Å, Hallberg BM,

Nordlund P: Crystal structure of YegS, a homologue to the mammalian

diacylglycerol kinases, reveals a novel regulatory metal binding site.

J Biol Chem 2007, 282:19644–19652.
37. Ito M, Baba T, Mori H: Functional analysis of 1440 Escherichia coli genes

using the combination of knock-out library and phenotype microarrays.

Metab Eng 2005, 7:318–327.
38. Almena M, Mérida I: Shaping up the membrane: diacylglycerol coordinates

spatial orientation of signaling. Trends Biochem Sci 2011, 36:593–603.
39. Porwollik S, Wong RM-Y, Helm RA, Edwards KK, Calcutt M, Eisenstark A,

McClelland M: DNA amplification and rearrangements in archival Salmonella

enterica Serovar Typhimurium LT2 cultures. J Bacteriol 2004, 186:1678–1682.
40. Matthews TD, Rabsch W, Maloy S: Chromosomal rearrangements in

Salmonella enterica Serovar Typhi strains isolated from asymptomatic

human carriers. mBio 2011, 2:e00060-11.
41. Notley-McRobb L, Ferenci T: Experimental analysis of molecular events

during mutational periodic selections in bacterial evolution. Genetics

2000, 156:1493–1501.
42. Faure D, Frederick R, Wloch D, Portier P, Blot M, Adams J: Genomic

changes arising in long-term stab cultures of Escherichia coli. J Bacteriol

2004, 186:6437–6442. e00060-11.
43. Spira B, de Almeida TR, Maharjan R, Ferenci T: The uncertain consequences

of transferring bacterial strains between laboratories - rpoS instability as

an example. BMC Microbiol 2011, 11:248.
44. Reams AB, Kofoid E, Savageau M, Roth JR: Duplication frequency in a

population of Salmonella enterica rapidly approaches steady state with

or without recombination. Genetics 2010, 184:1077–1094.
45. Liu SL, Sanderson KE: The chromosome of Salmonella paratyphi A is

inverted by recombination between rrnH and rrnG. J Bacteriol 1995,
177:6585–6592.

46. Tenaillon O, Taddei F, Radman M, Matic I: Second-order selection in

bacterial evolution: selection acting on mutation and recombination

rates in the course of adaptation. Res Microbiol 2001, 152:11–16.
47. Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE: Second-

order selection for evolvability in a large Escherichia coli population.

Science 2011, 331:1433–1436.
48. Miller J: Experiments in Molecular Genetics. Cold Spring Harbor, N.Y. Cold

Spring Harbor Laboratory; 1972.
49. Notley-McRobb L, Seeto S, Ferenci T: The influence of cellular physiology

on the initiation of mutational pathways in Escherichia coli populations.

Proc R Soc Lond Ser B-Biol Sci 2003, 270:843–848.
50. Yu DG, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL: An efficient

recombination system for chromosome engineering in Escherichia coli.

Proc Natl Acad Sci USA 2000, 97:5978–5983.
51. Link AJ, Phillips D, Church GM: Methods for generating precise deletions

and insertions in the genome of wild-type Escherichia coli - application

to open reading frame characterization. J Bacteriol 1997, 179:6228–6237.
52. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome Res 2008, 18:1851–1858.

doi:10.1186/1471-2164-14-441
Cite this article as: Maharjan et al.: A case of adaptation through a
mutation in a tandem duplication during experimental evolution in
Escherichia coli. BMC Genomics 2013 14:441.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Maharjan et al. BMC Genomics 2013, 14:441 Page 12 of 12

http://www.biomedcentral.com/1471-2164/14/441


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Initial characterization of BW4005
	Genomic rearrangements in BW4005
	Characterization of a heterozygous duplication by genome re-sequencing
	Phenotypic effects of the rearrangements
	Stability of the duplication

	Discussion
	Conclusions
	Methods
	Strain construction
	Phenotypic assays
	Pairwise competition experiments and fitness estimation
	Genome re-sequencing
	RFLP-IS and characterization of IS adjacent sequences by inverse PCR
	Detection of the junction fragment of the duplication and analysis of the duplication stability
	Pulsed-field gel electrophoresis (PFGE)

	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

