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émanant des établissements d’enseignement et de
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Orthogonal Designs and a Cubic Binary Function
Sophie Morier-Genoud Valentin Ovsienko

Abstract—Orthogonal designs are fundamental mathematical
notions used in the construction of space time block codes for
wireless transmissions. Designs have two important parameters,
the rate and the decoding delay; the main problem of the theory
is to construct designs maximizing the rate and minimizing the
decoding delay.

All known constructions of CODs are inductive or algorithmic.
In this paper, we present an explicit construction of optimal
CODs. We do not apply recurrent procedures and do calculate
the matrix elements directly. Our formula is based on a cubic
function in two binary n-vectors. In our previous work (Comm.
Math. Phys., 2010, and J. Pure and Appl. Algebra, 2011), we
used this function to define a series of non-associative algebras
generalizing the classical algebra of octonions and to obtain sum
of squares identities of Hurwitz-Radon type.

Index Terms—Orthogonal designs, decoding delay, maximal
rate, peak-to-average power ratio, space-time codes, generalized
octonions.

I. INTRODUCTION

Orthogonal designs first appeared in the classical work
of Hurwitz [13], [14] and Radon [17], in order to solve
the problem of sum of squares identities (also known as
composition of quadratic forms). This problem can be for-
mulated in different ways and related to many mathematical
questions (normed division algebras, vector fields on spheres,
Clifford modules, immersion of projective spaces in euclidean
spaces...) arising in different fields. The general problem is
widely open and keep inspiring work of many mathematicians,
see [18] and [20] for surveys. In the 1970’s, orthogonal designs
and their generalizations have been extensively studied from
combinatorial and number theoretic viewpoints, see Geramita
et al. [6]–[9] and references therein.

Orthogonal designs keep attracting much attention, since
they are used to construct space-time block codes for wireless
communication with multiple transmit antennas. This idea was
introduced by Tarokh, Jafarkhani and Calderbank [12], as a
generalization of the Alamouti scheme [3] for wireless com-
munication with two antennas. Space-time block codes built
out of the orthogonal designs achieve full transmit diversity
and have a simple maximum likelihood decoding algorithm.

In this paper, we describe a method of construction of
orthogonal designs. Unlike all known constructions which are
inductive, i.e., use block matrices of small sizes to construct
bigger matrices, our construction calculates elements of the
matrices directly. In particular, we construct designs satisfying
optimal criteria of [10] and [1], [2]. We also construct designs
of type [12] and [5] defined by matrices that have no zero
elements.

S. Morier-Genoud, Université Paris 6, IMJ, UFR 929 de Mathématiques,
Case 247, 4 pl. Jussieu, 75005 Paris, France; sophiemg@math.jussieu.fr

V. Ovsienko, CNRS, ICJ, Université Lyon 1, 43 bd. du 11 novembre 1918,
69622 Villeurbanne cedex, France; ovsienko@math.univ-lyon1.fr

A. Definitions and known results

Definition 1: A real orthogonal design (ROD) of type
[p, n, k] is a matrix G of size p × n with real entries
0,±x1, · · · ,±xk, satisfying

GT G =
(
x21 + · · ·+ x2k

)
In,

where GT is the transpose matrix of G.
Definition 2: A complex orthogonal design (COD) of pa-

rameters [p, n, k] is a matrix H of size p × n with complex
entries 0,±z1, · · · ,±zk, and their conjugates ±z∗1 , · · · ,±z∗k ,
satisfying

H∗H =
(
|z1|2 + · · ·+ |zk|2

)
In,

where H∗ is the complex conjugate transpose of H .
Definition 3: Given a [p, n, k]-(R or C)OD, the ratio k

p is
called the rate of the design and the parameter p is called the
decoding delay of the design.

The main problem in the construction of real or complex
orthogonal designs is to maximize the rate k

p and minimize
the delay p for a given n. The following answers have been
provided

1) [p, n, k]-ROD of rate 1 exist for all n, and in this case
the minimum delay is p = 2δ(n), where

δ(n) =



n
2 if n = 2, 4, 6 mod 8 ,

n−1
2 if n = 1, 7 mod 8 ,

n+1
2 if n = 3, 5 mod 8 ,

n
2 − 1 if n = 0 mod 8.

This is a way to formulate the classical theorem or
Hurwitz and Radon.

2) Using a doubling process of ROD of rate 1, Tarokh et al.
[12] obtain COD of rate 1

2 and decoding delay 2δ(n)+1;
We will denote by TJCn this class of CODs, the
parameters are [

2δ(n)+1, n, 2δ(n)
]
.

3) Liang [10] proves that the maximal rate of a [p, n, k]-
COD with n 6= p is 1

2 + 1
n , if n is even, and 1

2 + 1
n+1 ,

if n is odd.
4) Adams et al. [1] and [2] find a tight lower bound for

the decoding delay p in a non-square COD achieving
the maximal rate given by a binomial coefficient. Let
n = 2m− 1 or n = 2m, then

p ≥
(

2m

m− 1

)
,

for n = 0, 1, 3 mod 4 and

p ≥ 2

(
2m

m− 1

)
,
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for n = 2 mod 4. We will denote by LAn the class of
CODs achieving the maximal rate and minimal decoding
delay.

5) Liang [10] and Lu et al. [11] give algorithms to produce
designs of type LAn. Another construction is given
in [4].

6) Das and Rajan [5] construct CODs of rate 1
2 and

decoding delay 2δ(n). We will denote by DRn this class
of CODs, the parameters are[

2δ(n), n, 2δ(n)−1
]
.

It is interesting that the decoding delay of these CODs
is twice lower than that of TJCn.

Let us stress that CODs of rate 1
2 are of interest, since for

large values of n the maximal rate is almost 1
2 . For instance,

for n = 12 the COD LAn has rate 7
12 and decoding delay

792, whereas DRn has rate 1
2 and decoding delay 64, see [5]

for a comparative table.

B. Main results and organization of the paper

The goal of this article is to present a unified construction
of RODs and CODs.

We start with an explicit formulas for the matrices G of
size 2r × 2r satisfying the conditions of ROD. The rows and
columns of the matrices are labelled by elements in the set Zr2,
i.e., of r-vectors with coefficients 0 and 1. The entries in the
matrices are given by an explicit function f : Zr2 × Zr2 → Z2.
We then explain an easy way to reduce a RODs to a CODs.

With our method we construct RODs with parameters:

•
[
2δ(2r), 2r, 2δ(2r)

]
,

that will produce CODs with same parameters as TJCn

(using a doubling process) and with same parameters
as DRn (using a reduction process), provided n 6= 1
mod 8;

•
[
2
(
r+1
(m−1

)
, 2r, 2

(
r
m

)]
, if r = 0, 1, 3 mod 4,[

4
(
r+1
(m−1

)
, 2r, 2

(
r
m

)]
, if r = 0 mod 4,

where m is defined by r = 2m−1 or 2m. These RODs
will reduce to COD with same parameters as LAn.

The paper is organized as follows. The next section contains
the main ingredients of our approach. We construct RODs with
parameters that are twice the parameters of the optimal CODs.

Section III describes the reduction from the [p, n, k]-RODs
to
[
p
2 ,

n
2 ,

k
2

]
-CODs, leading to optimal CODs of type LAn.

Section IV presents a procedure that allows us to construct
a
[
p
2 , n, k

]
-COD out of a [p, n, k]-ROD, provided the ROD is

stable under the duality. We thus obtain the CODs of types
TJCn and DRn. Let us mention that the corresponding
matrices have no zero entries.

Proofs of technical statements, as well as properties of the
binary functions we use, are collected in Appendix.

II. GENERAL CONSTRUCTION OF RODS

A. Combinatorics over Z2

We denote by Zr2 the set of r-vectors u = (u1, . . . , ur),
where ui = 0 or 11. The Hamming weight |u| of an element
is the number of non-zero component, i.e.

|u| = # {ui = 1}1≤i≤r .

The sum of two elements u and v is just the sum componen-
twise modulo 2. Every element is a sum of the basis vectors

εj = (0, . . . , 0, 1, 0, . . . , 0),

with 1 at j-th position. We will also consider the element of
maximal weight r:

ε = (1, 1, . . . , 1).

We will use the involution on Zr2, that we call the “hat duality”:

û = u+ ε1, (1)

i.e., the change of 1st coordinate.
The following function in two arguments f : Zr2×Zr2 → Z2

plays the key rôle in our approach:

f(u, v) =
∑
i<j<k

(uiujvk + uivjuk + viujuk) +
∑
i≤j

uivj ,

We will also use the function in one variable α(u) := f(u, u),
given explicitly by

α(u) =
∑
i<j<k

uiujuk +
∑
i≤j

uiuj .

The value of α(u) depends only on the weight of u:

α(u) =

{
0 if |u| = 0 mod 4,
1, otherwise.

The function f is used in all the constructions to determine
signs, while α is used as a “statistic” to select good elements
of Zr2. Properties of f and α are presented in Appendix.

B. General construction of RODs

In this section, we construct (p × n)-matrices whose rows
and columns are indexed by subsets W ⊂ Zr2 and V ⊂ Zr2 of
cardinality p and n, respectively.

We define the matrix Gu, u ∈ Zr2 by

Gu =

v

...

...

· · · Gw,vu · · ·
...

 w

where the entry in position (w, v) is

Gw,vu =

{
(−1)f(u,v), if u = v + w,

0, otherwise.

1We use the notation Z2 = {0, 1} for the abelian group of rank 2, other
notations: F2 and Z/2Z are also often used.
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The following properties are obvious:
1) the matrix Gu has at most one nonzero element on each

row and on each column;
2) if V = W = Zr2, then Gu is a (2r × 2r)-matrix with

exactly one non-zero element on each row and column.
Definition 4: We call U, V,W an admissible triple if the

following two conditions are satisfied:
1)

W = U + V,

i.e., u + v ∈ W for all u ∈ U and v ∈ V and every
element w ∈W can be written in the form w = u+ v.

2) If a non-zero element w ∈W decomposes in two ways:
w = u+ v = u′ + v′ then

α(u+ u′) = α(v + v′) = 1. (2)

Theorem 1: If U, V,W is an admissible triple, then one has:
(i) GTu Gu = In, for all u ∈ U .
(ii) GTu Gu′ +GTu′ Gu = 0, for all u 6= u′ ∈ U .

This theorem is proved in [16] and [15]. For the sake of
completeness, we include the proof into Appendix.

Corollary 1: If U, V,W is an admissible triple, then
(i) the matrix

G =
∑
u∈U

xuGu

is a ROD with parameters [#W,#V,#U ] in real variables xu,
u ∈ U , where # is the cardinality of a set;

(ii) in the case of rate 1, i.e., where k = p, the matrix G
has no zero entries.

Our next task is to construct admissible triples U, V,W .
We will use the fact that the function α vanishes only on the
elements whose weight is a multiple of 4. Note that the easiest
way to guarantee condition (2) is to choose the set V so that
α(v + v′) = 1 for all v, v′ ∈ V .

C. RODs of rate 1

In this section, we provide triples of sets U, V,W that
produce real orthogonal designs

G =
∑
u∈U

xuGu

of rate 1, with minimum delay, i.e. the parameters of G are[
2δ(n), n, 2δ(n)

]
, (provided n 6= 1 mod 8).

Case r = 0, 1, 2 mod 4. One chooses the following subsets

V =
{
εj , ε̂j , 1 ≤ j ≤ r

}
,

U = W = Zr2,

whereˆ is the duality (1). Then G is a [2r, 2r, 2r]-ROD. 2

2This ROD is optimal, except for the case r = 0 mod 4, where, according
to the Hurwitz-Radon theorem, there is a [2r, 2r + 1, 2r]-ROD. We do not
dwell here on a more involved construction to produce such a ROD.

Case r = 3 mod 4. One chooses the following subsets

V =
{
ε, ε̂, εj , ε̂j , 1 ≤ j ≤ r

}
,

U = W = Zr2,

the G is a [2r, 2r + 2, 2r]-ROD.

D. Non-square RODs of rate 1
2 + 1

2m

All the RODs below have maximal rate 1
2 + 1

2m , when
r = 2m or 2m− 1.

Case r = 1, 2 mod 4. Consider r = 2m− 1 or r = 2m and
choose the set U of the elements of weight m and their dual,
the set V is chosen as in the first case:

U = {u, û : |u| = m} ,

V =
{
εj , ε̂j , 1 ≤ j ≤ r

}
,

It follows that the space W = U + V is:

W = {u : |u| = m− 1, m, m+ 1}
⋃

{u : u1 = 1 , |u| = m+ 2}
⋃

{u : u1 = 0 , |u| = m− 2} .

The matrix G is a ROD with parameters[
2
(
r+1
m−1

)
, 2r, 2

(
r
m

)]
,
[
4
(

r
m−1

)
, 2r, 2

(
r
m

)]
,

for odd r and even r, respectively.

Case r = 0 mod 4. Consider r = 2m (where m is even) and
choose the following subsets

U = {u : u1 = 1 , |u| = m}
⋃

{u : u1 = 0 , |u| = m− 1} ,

V =
{
ε, ε̂, εj , ε̂j , 2 ≤ j ≤ n

}
,

W = {u : u1 = 1 , |u| = m− 1,m+ 1}
⋃

{u : u1 = 0 , |u| = m− 2,m} ,

then G is a
[
2
(

r
m−1

)
, 2r, 2

(
r−1
m−1

)]
-ROD.

Case r = 3 mod 4. Consider r′ := r + 1 and apply
the previous case with r′ = 0 mod 4 to obtain a[
2
(
r+1
m−1

)
, 2r + 2, 2

(
r
m

)]
-ROD, where r = 2m−1. Removing

two columns, we obtain a
[
2
(
r+1
m−1

)
, 2r, 2

(
r
m

)]
-ROD.

In each of the above cases, condition (2) is satisfied for all
v, v′ ∈ V .

To finish this section, let us mention that the binary nu-
meration have already been efficiently used in [4], [5] to
construct RODs and CODs of maximal rate. In particular,
subsets of Zr2 similar to our sets U, V and W were described.
The main difference of our approach is the function f and
explicit construction of the matrices.
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III. REDUCTION FROM ROD TO COD

In this section, we present a procedure to reduce a
[2p, 2n, 2k]-ROD to a [p, n, k]-COD. Such a procedure is not
always possible, it requires nice properties of sets U, V,W .
We first describe the general procedure of reduction and then
apply it to RODs of rate 1 constructed in Section II-C.

A. The general procedure

The main idea is to use a duality

̂ : Zr2 → Zr2
defined by û = u + e, where the element e ∈ Zr2 satisfies
f(e, e) = 1, and to choose sets U, V and W stable under the
duality:

Û = U, V̂ = V, Ŵ = W,

In practice, we use the hat duality (1), i.e., e = ε1.
Given a ROD of type [2p, 2n, 2k] defined by sets U, V

and W in Zr2, our goal is to reduce it to a COD with
parameters [p, n, k]. The method consists in two steps.
First, we introduce splitting of the sets U, V,W , in order to
decompose the matrices G =

∑
u∈U xuGu into admissible

(2 × 2)-blocks. Second, we replace the admissible blocks by
complex variables, zu = xu + ixû or z∗u = xu − ixû.

STEP 1: We fix the following splitting of U

U0 := {u ∈ U : f(u, e) = 0} ,

U1 := {u ∈ U : f(u, e) = 1} .
(3)

Note that Û0 = U1, cf. Property (b) of f in Appendix.
We now need to find subsets V0, V1, W0 and W1 satisfying

the following conditions

V = V0
⊔
V1, V1 = V̂0;

W = W0

⊔
W1, W1 = Ŵ0;

W0 = U0 + V0 = U1 + V1;
W1 = U0 + V1 = U1 + V0,

(4)

where
⊔

denotes the disjoint union.
These splitting induce a natural decomposition of the ma-

trices Gu into (2× 2)-blocks whose columns are labelled by
(v, v̂) ∈ V0 × V1 and the rows by (w, ŵ) ∈W0 ×W1 :

Gu =

v v̂

...
...

...
...

· · · · · ·G̃w,vu· · · · · ·
...

...

 w
ŵ

where u = v + w and so û = v + ŵ = v̂ + w.
For u ∈ U0 (and therefore û ∈ U1), the non-zero blocks are

of the form

G̃w,vu =

(
(−1)f(u,v) 0

0 (−1)f(u,v̂)

)

and

G̃w,vû =

(
0 (−1)f(û,v)

(−1)f(û,v̂) 0

)
;

non-zero blocks are located at the same place in Gu and Gû.
Moreover, since f is linear in the 2nd variable,

f(u, v̂) = f(u, v) + f(u, e) = f(u, v),

f(û, v̂) = f(û, v) + f(û, e) = f(û, v) + 1,

so that the entries in the blocks of Gu are of the same sign
and those of Gû are of the opposite sign.

STEP 2: The matrix G =
∑
u∈U xuGu decomposes into

(2× 2)-blocks, and the non-zero blocks are of two types

(T1) ±

(
xu xû

−xû xu

)
, or (T2) ±

(
xu −xû
xû xu

)
.

We construct a complex matrix H from G by substituting to
the block (T1) the complex variable ±zu and to the block (T2)
the complex conjugate variable ±z∗u. More precisely, the entry
of H in position (w, v) ∈W0 × V0 is

Hw,v =

{
(−1)f(v+w,v)zv+w, if f(v̂ + w, v) = f(v + w, v),

(−1)f(v+w,v)z∗v+w, otherwise,

if v + w ∈ U0, and Hw,v = 0, otherwise.

Theorem 2: The constructed matrix H defines a COD with
parameters [p, n, k].

B. CODs of parameters LAn

As application of the above procedure, let us reduce the
RODs constructed in Section II-D, in order to obtain the
optimal CODs of type LAn. We need to describe here the
subsets U0, U1, V0, V1,W0,W1 satisfying (3) and (4).

From the expression of f we see that f(u, ε1) depends only
on the class |u| mod 4. More precisely

|u| mod 4 0 1 2 3

f(u, ε1) if u1 = 0 0 0 1 1

f(u, ε1) if u1 = 1 0 1 1 0

for an arbitrary u ∈ Zr2.

Case r = 1, 2 mod 4. Let now u ∈ U , so that |u| = m and
r = 2m− 1 or 2m. In this case, m is necessarily odd.
• if m = 1 mod 4, then for u ∈ U we have

f(u, ε1) = 0⇐⇒ u1 = 0,

in other words,

U0 = {u ∈ U |u1 = 0} , U1 = {u ∈ U |u1 = 1} .

We easily check that

V0 = {v ∈ V | v1 = 0} , V1 = {v ∈ V | v1 = 1} ,
W0 = {w ∈W |w1 = 0} , W1 = {w ∈W |w1 = 1} .

satisfies property (4).
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• if m = 3 mod 4, then for u ∈ U we have

f(u, ε1) = 0⇐⇒ u1 = 1,

in other words,

U0 = {u ∈ U |u1 = 1} , U1 = {u ∈ U |u1 = 0} .

We easily check that

V0 = {v ∈ V | v1 = 0} , V1 = {v ∈ V | v1 = 1} ,
W0 = {w ∈W |w1 = 1} W1 = {w ∈W |w1 = 0} .

again satisfies property (4).

Case r = 0 mod 4. In this case, m is defined by r = 2m, so
that m is even.
• If m = 0 mod 4, then for u ∈ U we have

f(u, ε1) = 0⇐⇒ u1 = 1,

in other words,

U0 = {u ∈ U |u1 = 1} , U1 = {u ∈ U |u1 = 0} .

We easily check that

V0 = {v ∈ V | v1 = 0} , V1 = {v ∈ V | v1 = 1} ,
W0 = {w ∈W |w1 = 1} , W1 = {w ∈W |w1 = 0} .

have the desired property.
• If m = 2 mod 4, then for u ∈ U we have

f(u, ε1) = 0⇐⇒ u1 = 0,

in other words,

U0 = {u ∈ U |u1 = 0} , U1 = {u ∈ U |u1 = 1} .

We easily check that

V0 = {v ∈ V | v1 = 0} , V1 = {v ∈ V | v1 = 1} ,
W0 = {w ∈W |w1 = 0} W1 = {w ∈W |w1 = 1} .

have the desired property.

IV. INDUCTION

The second procedure that we call induction allows one to
transform a [p, n, k]-ROD to a

[
p, n, k2

]
-COD. This induction

consists in complexification composed with reduction; it can
be applied whenever the set U , V and W are stable under an
involution ũ = u+ e for an element e satisfying f(e, e) = 1.

A. The general construction

STEP 1: We consider the splitting of U as in (3) and define
the following subsets of Zr+1

2 = Zr2 × 0 t Zr2 × 1

U ′ = U0 × 0 t U1 × 1,

V ′ = V × 0 t V × 1,

W ′ = W × 0 tW × 1.

For each u ∈ U , we embed the previous matrix Gu into a
twice bigger matrix, G(u,τ), where (u, τ) ∈ U ′, with columns

indexed by W ′ and rows indexed by V ′. The matrix G(u,τ) is
composed by (2× 2)-blocks:

G(u,τ) =

(v,0)(v̂,1)

...
...

...
...

· · · · · ·G̃w,vu· · · · · ·
...

...

 (w,0)

(ŵ,1)

,

where the non zero blocks correspond to (u, τ) = (v + w, τ)
and coincide with those of Gu. These data provide a
[2p, 2n, k]-ROD.

STEP 2: For each u ∈ U0, we define

G′u = xuG(u,0) + xûG(û,1).

These matrices decompose into blocks that are all of type
(T1) or (T2). We then apply the reduction procedure to obtain
a
[
p, n, k2

]
-ROD.

B. CODs with parameters TJCn and DRn

Consider the RODs of rate 1 constructed in Section II-C.

Following [12], one can apply the following obvious dou-
bling process:

G(2) :=

(
G
G′

)
where the variables xu in G are now considered as complex
variables, and G′ is copy of G associated to the conjugate
variables, i.e. is defined by

G′ =
∑
u∈U

x∗uGu.

The matrix G(2) is a COD of rate 1
2 , with parameters[

2δ(2r)+1, 2r, 2δ(2r)
]
,

that are precisely the parameters of TJCn, for even n.
Removing a column, we are led to CODs with parameters
TJCn, for odd n, except for n = 1 mod 8.

Applying the induction procedure to the RODs of rate 1,
leads to CODs with parameters[

2δ(2r), 2r, 2δ(2r)−1
]
,

that are precisely the parameters of DRn, for even n. Again,
removing a column, we obtain CODs of type DRn, for
odd n, except for n = 1 mod 8.

In both cases, the obtained CODs have no zero entries.

The missing case n = 1 mod 8 escapes from the technique
used in this paper. This is due to the fact that we do not obtain
a [2r, 2r + 1, 2r]-ROD with n = 0 mod 4.
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V. APPENDICES

A. Properties of the functions f and α.

The function f has quite remarkable properties that we
briefly discuss here.

It is impossible to reconstruct the function f from the
function in one variable α (which is nothing but the restriction
of f to the diagonal in Zr2 × Zr2). However, α contains the
essential characteristics of f , such as its symmetrization.

1) First polarization formula:

f(u, v) + f(v, u) = α(u+ v) + α(u) + α(v).

2) Second polarization formula:

f(u, v) + f(u, v + w) + f(u+ v, w) + f(v, w) =

α(u+ v + w)

+α(u+ v) + α(u+ w) + α(v + w)

+α(u) + α(v) + α(w).

These properties can be checked directly. Note that the expres-
sion in the right-hand-side of 1) is called the coboundary of α,
it has a deep cohomological meaning. The expression in the
left-hand-side of 2) is the coboundary of f , its measures the
non-associativity of a certain algebra defined by f , see [16].
Finally, the expression in the right-hand-side of 2) is called the
polarization of the cubic form α. Let us mention that, unlike
the theory of quadratic forms, the theory of cubic forms is not
well developed in characteristic 2, not much is known.

Let us also give here more elementary properties of f
already used in the above constructions:
(a) Linearity of f in 2nd variable:

f(u, v + v′) = f(u, v) + f(u, v′).

(b) Pseudo-linearity in 1st variable:

f(u+ v, v) = f(u, v) + f(v, v).

We invite the reader to consult [16] for more information
about f and α.

B. Proof of Theorem 1.

We apply the formula for matrices multiplication. The
coefficient in position (v, v′) in the product GTuGu′ is

(GTuGu′)v,v
′

=

{
(−1)f(u,v)+f(u

′,v′) if v + v′ = u+ u′,

0 otherwise.

This implies that GTuGu′ = In, and GTuGu′ + GTu′Gu = 0 if
and only if

(−1)f(u,v)+f(u
′,v′) + (−1)f(u

′,v)+f(u,v′) = 0

whenever v + v′ = u+ u′. The above condition is equivalent
to

f(u, v) + f(u′, v′) + f(u′, v) + f(u, v′) = 1.

Lemma 1: If u+ u′ = v + v′ then

f(u, v) + f(u′, v′) + f(u′, v) + f(u, v′) = α(u+ u′).

Proof: Rewrite the left-hand-side using v′ = u+u′+v and
the linearity in the 2nd variable, after cancellation of double
terms one obtains

f(u′, u) + f(u′, u′) + f(u, u) + f(u, u′).

This reduces to α(u+u′) using the first polarization formula.

Theorem 1 follows.

C. Proof of Theorem 2.

First notice that in each column of the matrix H the symbol
zu appears exactly once (“symbol zu” means one of the
following four elements: ±zu,±z∗u). This implies that the
diagonal entries in H∗H are all equal to∑

u∈U0

|zu|2.

It remains to show that the non-diagonal entries in H∗H are
all zero. We show that, in the hermitian product of two distinct
columns of H , the terms pairwise cancel.

Consider the four entries of H , in position (w, v), (w′, v),
(w′, v) and (w′, v′).

H =

v v′

...
...

· · · z1 · · · z2 · · ·
...

...
· · · z3 · · · z4 · · ·

...
...


w

w′

Case I: there exist u, u′ in U0 such that

u = v + w = v′ + w′, u′ = v + w′ = v′ + w.

In this case, the four entries are non zero and one has

z1, z4 ∈ {±zu, ±z∗u} , z2, z3 ∈ {±zu′ , ±z∗u′} .

The corresponding blocks in the matrix G

G =



...
...

· · · A1 · · · A2 · · ·
...

...
· · · A3 · · · A4 · · ·

...
...


come from xuGu + xûGû + xu′Gu′ + xû′Gû′ and therefore
satisfy

AT1 A2 +AT3 A4 = 0.

This translates to
z∗1z2 + z∗3z4 = 0.

Case II: there do not exist u, u′ in U0 such that

u = v + w = v′ + w′, u′ = v + w′ = v′ + w.

In this case at least one of the following situations holds

z1 = z4 = 0 or z2 = z3 = 0,
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and, again, z∗1z2 + z∗3z4 = 0.

We have proved that the columns of H are pairwise orthog-
onal (with respect to the hermitian product). And we conclude
finally that

H∗H =
(
Σu∈U0 |zu|2

)
In

where n = #V0.

D. Orthogonal designs and Hurwitz problem of sums of
squares

It is well-known that the existence of [p, n, k]-ROD is
related to the Hurwitz problem on composition of quadratic
forms, [14],[17] (see also [20] for a survey).

Definition 5: A Hurwitz sum of squares identity (SSI) of
size [p, n, k] is an identity(

a21 + · · · + a2k
) (
b21 + · · · + b2n

)
= c21 + · · · + c2p, (5)

where ci are bilinear expressions in ai and bi with integral
coefficients (the elements ai, bi, ci’s are considered here as
real variables). Such an identity will be referred as a [p, n, k]-
identity.

It is known that if such an identity holds then the integral
coefficients in the expressions of ci’s can be chosen among
{0, 1,−1}. Hurwitz proved the following fundamental theo-
rem. There exists a [p, n, k]-ROD if and only if there exists a
[p, n, k]-SSI.

Let us recall here how the equivalence can be established.
Since c’s are linear in a’s and b’s, one has

c =

 ∑
1≤i≤k

aiAi

 b, (6)

where b is a column-vector with components bi and c is a
column-vector with components ci, and where Ai are p × n
matrices (with entries 0, 1,−1) One then easily checks that
the identity (6) holds if and only if

ATi Ai = In, ATi Aj +ATj Ai = 0, ∀ i 6= j. (7)

Then, the matrix A =
(∑

1≤i≤k aiAi

)
is a [p, n, k]-ROD in

the variables ai’s.
A classical result of Hurwitz [13] states that [n, n, n]-SSI

exist if and only if n = 1, 2, 4, 8. This statement relies on
classification of normed division algebras, see [19] for a survey
on relations between division algebras and wireless communi-
cations. The case of [n, n, k]-SSI was solved independently by
Hurwitz [14] and Radon [17], this is the origin of the famous
Hurwitz-Radon function.

Let us mention that our previous results [16] and [15]
were formulated in terms of partial solutions to the Hurwitz
problem.
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