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Abstract. In order to test parameters of the peculiar dynamics occurring in barchan fields, and compute
statistical analysis over large numbers of dunes, we build and study an agent-based model, which includes
the well-known physics of an isolated barchan, and observations of interactions between dunes. We showed
in a previous study that such a model, where barchans interact through short-range sand recapture and
collisions, reproduces the peculiar behaviours of real fields, namely its spatial structuring along the wind
direction, and the size selection by the local density. In this paper we focus on the mechanisms that drives
these features. In particular, we show that eolian remote sand transfer between dunes ensures that a dense
field structures itself into a very heterogeneous pattern, which alternates dense and diluted stripes in the
wind direction. In these very dense clusters of dunes, the accumulation of collisions leads to the local
emergence of a new size for the dunes.

1 Introduction

Barchans are very common dunes [1], found not only in
Earth deserts and at the bottom of the ocean, but also
on other bodies in the solar system like Mars [2], Venus
and Titan [3]. Physics of an isolated barchan is now quite
well understood [4]. Barchans form when a small amount
of sand is blown by an unidirectional flow on a flat, non-
erodible surface. Their specific crescentic shape (Fig. 1)
is due to the presence of a recirculation bubble at the
downwind side, which acts as a sand trap, whereas sand is
blown from the dune at its horns. Barchans can also catch
sand transported by the wind, but though a fixed point
exists for their size, they are unstable structures. They can
either shrink and disappear, if they are smaller than the
equilibrium size and thus catch less sand than they lose,
or grow to become giant barchans if they are bigger than
the equilibrium size and thus catch more sand than they
lose [4].

But barchans are almost never isolated. They are found
in fields that sometimes gather thousands of dunes (Fig. 1),
which sizes follow what seems to be a log-normal distri-
bution [5], very different from what would be an assembly
of giant barchans. Furthermore, some barchan fields – for
example in Morocco (Fig. 1) – exhibit odd features, that
cannot be explained by the simple juxtaposition of single
dune dynamics. They are structured in sharp, well-defined
corridors along the wind direction, each characterised by
a specific density and mean size for the dunes. These two
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Fig. 1. Barchan field in Western Morocco. The black arrow
indicates the wind direction. The right part is a zoom of the
black rectangle area.

quantities seem to be correlated: the denser the corridor,
the smaller the mean size [6]. External parameters – wind,
sand and soil properties – cannot be held responsible, as
it has been shown that they usually are constant all over
the field [6].



2 Mathieu Génois et al.: Spatial structuring and size selection in an agent-based model for barchan fields.

In a field, barchans interact with each other through
highly non linear events, that perturb their isolated be-
haviour by redistributing the sand and sometimes anni-
hilating or creating dunes. These interactions may there-
fore be responsible for the peculiar features of the field.
This hypothesis has been made previously [7] and used
in several models of multiple types – continuous [8–11,7],
cellular automatons [12,13], agent-based models [14]. In
a previous paper [15] we built a model of the last kind,
where particles are the dunes themselves. We were then
able to simulate large assemblies and compute and study
long time scales, global behaviours for the field. The model
takes into account the physics of isolated barchans and
computes remote interactions between dunes through sand
recapture and collisions. We have shown that the imple-
mentation of these interactions is sufficient for the system
to reproduce both the spatial structuring of the field along
the wind direction, and the local anticorrelation between
the density and the mean size of dunes.

In this paper, we seek to understand by which mech-
anisms these features emerge. We will describe the model
in details, in particular the peculiar ways two dunes can
interact. The model is controlled by eight physical fac-
tors, from which we build six independent adimensional
parameters. The effects of these parameters are precisely
described, especially for the two that control the phe-
nomenology of collisions. We then recapitulate the two
asymptotic behaviours – dilute and dense – for the field,
previously described in [15], and relate their characteris-
tics to the microscopic dynamics of the dunes. We show
that these features have an impact on the behaviour of
large scale quantities, and we take the example of the to-
tal volume of sand in the system, which evolution signs
very accurately the cross-over between dilute and dense
dynamics. We then focus in the dense regime on the spa-
tial structuring of the field into dense stripes along the
wind direction, due to the remote interaction between
dunes, and the size selection in these structures, which
is the result of the collision processes, amplified by the
spatial structuring. We finally show that such size selec-
tion can emerge from the simple, random accumulation
of local interaction, and thus be considered as a collective
phenomenon.

2 Model of a barchan field

The model is agent-based. The barchan field is seen as
an assembly of agents – dunes – which interact with each
other through sand capture and collisions. The whole phe-
nomenology of the model is based on observations from
real fields [6,4] and from small-scale experiments under
water [16,17]. We build a minimal model, i.e. we include
only the essential ingredients for the system dynamics,
with a limited number of parameters. The model is there-
fore built with strong assumptions. The point of our work
is to show that a simple model can reproduce the global,
non trivial behaviours of this system. We seek to under-
stand the underlying mechanisms of these behaviours, us-
ing a minimum set of parameters.

Barchans can be considered as self-similar objects, so
that their geometry is fully described by only one of their
dimensions. In our case we choose their width w. Each
agent is thus a cube, characterised by its position (x, y)
and its width w at each time t. This is a strong approxima-
tion of the physics of one barchan, as we do not consider
its particular geometry, aside from the specific behaviours
it generates. The cubic agents have a volume w3 and fol-
low the physics of isolated barchans. The coordinates x
and y and the width w are continuous variables, whereas
time is discretised in time steps of value ∆t.

The wind direction sets the y axis of the field. The
wind blows in the direction of decreasing y. We consider
the field far away from its source, so that there is no global
sand flux on the field. The volume of an isolated dune
evolves only because of sand loss, according to:

w3(t+∆t) = w3(t)− Φ∆t (1)

where the constant Φ is the volume of sand each dune
loses, per unit of time. For a real barchan, sand loss oc-
curs only at its two horns, in two cones due to diffusion
processes. In the model, we do not take into account the
spatial repartition of this loss, and consider that the sand
loss is uniform along the width of the dune.

The law (1) is valid until the dune reaches a minimum
size wm. Under this size – which existence is verified for
real dunes [16] – a barchan can no longer keep its partic-
ular shape and becomes a simple dome that quickly loses
sand and vanishes [4]. Thus, in the model, whenever a
dune becomes smaller than wm, it is removed from the
field.

Each dune moves along the wind direction with a speed
determined by:

v =
α

w
(2)

where α is a mobility coefficient for the dunes, related
to characteristics of the wind and the sand grains. This
inverse law is typical for barchan dunes [4].

A real barchan field is structured along the wind direc-
tion, from its source, where dunes are injected, to its van-
ishing point. With the model, we seek to study potential
steady states for the field dynamics, so we impose periodi-
cal conditions on both directions, and lose the structure of
a real field. However, we still need a source term in order
to feed the field, so we add a dune injection term. Dunes
with a fixed size wn are nucleated in the field, at random
time and position, at a mean rate λ by surface unit. This
strong, random, external forcing also ensures that every
behaviour of the system will be robust.

Interactions exist between dunes through sand cap-
ture. The sand lost by an upwind dune can be caught by
a downwind one, if the sand has not yet be blown away
by lateral diffusion. We thus define a maximum distance
of interaction d0, which allows us to tune the range of this
interaction. Whenever two dunes overlay along the direc-
tion perpendicular to the wind, and the distance between
them along the wind direction is less than d0 (see Fig 2a),
the downwind one catches a fraction of the sand lost by



Mathieu Génois et al.: Spatial structuring and size selection in an agent-based model for barchan fields. 3

+

+

a) b)

Wind

w′

w

σ d < d0

x

y

r < ε r > ε

s
=

1
s
<

1

b
ef

o
re

a
ft

er
b

ef
o
re

a
ft

er

C T

F P

Fig. 2. Diagram of dunes interactions. a) Sand capture. b)
Collisions : C: coalescence, F: fragmentation, T: sand redistri-
bution with total overlap, P: sand redistribution with partial
overlap. For each type is drawn the situation before and af-
ter the collision. The levels of grey indicate the sections of the
dunes which merge during the collision.

the upwind one, proportional to the ratio of the overlay
length σ and the size of the upwind dune:

QΦ =
σ

w′
Φ (3)

The change of size of the dune is immediate, in order to
conserve its aspect ratio.

In addition, dunes can collide. Indeed, due to the par-
ticular law for their speed (eq. (2)), small dunes travel
faster than large ones. In the model, a collision occurs
when two dunes overlay along the x direction, and the
centre of mass of the upwind one runs over the downwind
one’s. As dunes in the model do not have hard cores and
are merely points with one variable that mimics their spa-
tial extent, they can overlap. So a collision event consists
of three parts: an overlap time before the collision, the
colliding event itself, and an overlap time after the colli-
sion, until the dunes engendered by the collision go apart
or collide again. This way of simulating collisions between
dunes is in the end a good way to also simulate the life-
time of the complex structures that are formed in real
fields whenever two dunes collide [18].

The phenomenology of real collisions is very wide. We
summarise it into three elementary types of collision: co-
alescence, sand redistribution, and fragmentation. These
basic types can combine to solve complex collisions involv-
ing more than two dunes and short-time series of collisions.
Collision types are derived from the main mechanism of
a collision: the presence of the upwind dune modifies the
wind flow, which destabilises the section of the downwind
dune it overlays, leading to its ejection. The remaining
part may then be gathered by the upwind dune to form a
new one. As we restrict the collision process to this only

mechanism, the total volume of sand is conserved during
a collision, and the collision phenomenology is entirely de-
termined by the local geometry, i.e. the relative positions
and sizes of the two dunes. Two parameters r and s charac-
terise this geometry (see Fig. 2a) by comparing the overlay
length σ to the sizes of the dunes that collide:

r =
σ

w
(4)

s =
σ

w′
(5)

If the overlay is complete (s = 1), there are two possi-
bilities. If the upwind dune is big enough compared to the
other one, i.e. r greater than a certain limit value εt, the
collision occurs exactly as previously described: the flow
destabilises the section of the downwind dune, which is
ejected, while the remaining parts and the upwind dune
merge into a new one. This is the sand redistribution with
full overlap (case T in Fig. 2). As the number of dunes
is conserved, this collision only consists in a simple re-
distribution of the sand. If the upwind dune is too small
compared to the other one (r < εt), the flow is not able to
destabilise the downwind one, and the two simply merge.
That is the coalescence (case C in Fig. 2).

When the overlay is not complete (s < 1), there are
also two possibilities. If the collision is grazing, i.e. r is
smaller than a certain limit value εp, the destabilisation
process is the same, but the two remaining dunes stay
separated. It is the fragmentation (case F in Fig. 2). If the
collision is not grazing (r > εp), the phenomenology is the
same as when s = 1, r > εt: the section of the downwind
dune that is overlapped is ejected, and the remaining part
and the upwind dune merge. It is the sand redistribution
with partial overlap (case P in Fig. 2).

The diagram in Fig. 2b summarised the phenomenol-
ogy of collisions. Each type of collision conserves the total
volume of sand during the event. The new volume of each
dune is simply the sum of the section volumes that com-
pose it. The positions of the dunes after a collision are also
computed according to the configuration of the collision.
As dunes are built by one or several sections of the collid-
ing dunes, their lateral position is simply the barycenter of
the sections they are built from. Their longitudinal coor-
dinate is set to the one of the former downwind dune. Fi-
nally, the algorithm combines these three types of collision
to solve more complex events, as multiple dunes collisions
or successive collisions between dunes coming from the
same initial pair. Modifications of the volumes described
in Fig. 2b can be summarised by the following graph (each
pair of brackets stands for a single dune):
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{w3}
+

{w′3}
→



{w3 + w′3} if s = 1, r < εt

{σw2}
+

{w2(w − σ)} if s < 1, r < εp

+

{w′3}

{σw2}
+ if r > εt or r > εp

{w2(w − σ) + w′3}

(6)

The evolution of the volume of each dune can therefore
be expressed by a single equation:

w3
k(t+∆t) = w3

k(t) +

−1 +
∑
j

σkj
wj

Φ∆t+ C (7)

where the sum is done on all dunes j that supply the dune
k, and C stands for the effect of all collisions the dune k
undergoes.

3 Parameters of the model

Eight physical parameters control the dynamics of the
model. They are:

– wn [L]: size of nucleated dunes,
– wm [L]: minimum size of dunes,
– d0 [L]: limit distance of interaction,
– Φ [L3T−1]: volume of sand lost by each dune at each

time step,
– λ [L−2T−1]: rate of dune nucleation, by surface unit,
– α [L2T−1]: mobility coefficient for barchans,
– εt (no dim.): limit parameter for collisions when s = 1.
– εp (no dim.): limit parameter for collisions when s < 1.

The first three are typical lengths, the next three define
three time scales for the dynamics. As there are only two
dimensions in the system – length and time – and εt and
εp are already dimensionless, we build four dimensionless
control parameters: two aspect ratios and two time ratios.

3.1 Aspect ratios

With the three typical lengths in the model, we define two
aspect ratios:

δ =
wm
wn

(8)

∆ =
wn
d0

(9)

δ compares the minimum size of dunes to the nucleation
size. It sets the range of dune sizes. ∆ compares the nu-
cleation size to the limit distance of eolian interaction. It
controls the range of this interaction.

3.2 Time ratios

Three typical times for the dynamics of the field can be
built. We define the time for a dune of size wn to disappear
by sand loss only:

τd =
w3
n − w3

m

Φ
, (10)

the mean time of dune nucleation on a surface d20:

τn =
1

λd20
, (11)

and a collision time, defined as the time for a dune of
size wm to catch a dune of size wn within a distance d0,
assuming that there is no sand loss:

τc =
d0
α

(
w−1m − w−1n

)−1
. (12)

The two remaining control parameters compare these times:

ξ =
τd
τn

=
w3
n − w3

m

Φ
λd20 (13)

and:

η =
τd
τc

=
w3
n − w3

m

Φ

α

d0

(
w−1m − w−1n

)
(14)

These parameters control the dynamics of the field. ξ
compares the sand loss to the dune injection, and so the
relative importance of the dissipation and the forcing. η
compares the relative importance of isolated dynamics –
sand loss – to collision dynamics.

3.3 Limit parameters for the collisions

3.3.1 Diagram of the collisions

The values of εt and εp determinate the relative propor-
tion of each type of collision. These phenomena are en-
tirely deterministic, and are based on the geometry of the
collision, namely the relative offset and sizes of the dunes.
We thus calculate the diagram of the collisions, depending
on the size ratio of the dunes πi and their lateral offset θi
before the collision, defined as:

πi =
w′i
wi

(15)

θi =
|xi − x′i|
wi

(16)

where the prime marks the variables of the upwind dune,
and the subscript i designates values before the collision.

The diagram is shown on Fig. 3. The line d1 of equa-
tion:

πi = 2θi − 1 (17)

delimits the domain of the existence for the collision, given
by |xi − x′i| < (wi +w′i)/2. Beyond this limit, the upwind
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dune no longer overlaps the downwind one, and there is no
collision. In the same way, there is also the limit πi < 1,
which ensures that the upwind dune is the smallest and
therefore the fastest. Finally, both parameters are strictly
positive by definition, so πi > 0 and θi > 0,

The line d2 of equation:

πi = −2θi + 1 (18)

marks out the full overlap (on the left), and partial overlap
(on the right) areas. Its equation is derived from the limit
on the lateral offset |xi − x′i| < (wi − w′i)/2.

Into the full overlap area, the limit r = εt between
coalescence and sand redistribution can be rewritten as
σi = εtwi. As s = 1, σi = w′i and the two areas are
marked out in the diagram by the line d3 of equation:

πi = εt (19)

Into the partial overlap area, the limit r = εp between
fragmentation and sand redistribution becomes σi = εpwi.
As s < 1, σi depends on the offset |xi − x′i|, and the
equation of the line d4 that delimits these behaviours is
given by:

πi = 2(θi + εp)− 1 (20)

0 0.5 1
0

1

θi

πi

C

F

T

P

d1

d2

d3

d4

a

b

c1

c2

c3

Fig. 3. Diagram of the collisions, depending on the intial offset
ratio θi and size ratio πi, for εt = 0.3 and εp = 0.4. As d4 is
mobile, the curves a, c2 and c3 are drawn to their full extent.
The unused parts for this particular example are plot in dots.

These four lines define the three types of collision: co-
alescence (C), fragmentation (F), and sand redistribution
with a distinction between redistribution with total (T)
and partial (P) overlap. Among these limits, only d3 and
d4 depend on the limit parameters εt and εp, and are
thus mobile. We can then calculate, within each pair of
collisions, the particular values of εt and εp for which the

surface of the regions in the diagram, and so the proba-
bilities of the collisions, are equal. This is achieved when:

εt = εp = 1− 1√
2
' 0.293 (21)

3.3.2 Sand redistribution & Dune shifts in collisions

We look at how collisions affect the relative offsets in size
and position between two dunes. This will give us infor-
mation about how collisions modify both the size and the
spatial distributions of dunes in the field. We define the
relative difference ω between the sizes as:

ω =
w − w′

w
= 1− π (22)

where w and w′ respectively designate the downwind and
the upwind dune before the collision. We calculate the
different limits ωf > ωi (the difference between the sizes
of the dunes grows with the collision), ωf = 0 (after the
collision the two dunes have the same size, meaning there
will probably be another collision), and θf > θi (the dunes
are more apart after the collision), using the deterministic
phenomenology of the collision for the volumes (eq. (6))
and the reconstruction of the centre of mass through the
geometry of the collision.

For the coalescence (C), since there is only one dune
left after the collision, we have by definition πf = θf = 0,
and thus no particular limit in the behaviour.

For the fragmentation (F), we do not consider the
small dune ejected. We define the ratios with the upwind
dune and the remaining part of the downwind dune. Thus,
we always have ωf < ωi, meaning that difference between
the sizes always decreases, and θf > θi, meaning that the
offset distance between the dunes increases. Yet ωf can be
positive or negative. We uncover two sub-regions of this
area, separated by the curve a of equation:

θi = π3
i +

πi − 1

2
(23)

Around this limit, dunes have roughly the same size after
the collision, so they probably will collide again.

For sand redistribution, arbitrary rules are necessary
to define which dune is which. The ejected part of the for-
mer downwind dune will be considered as the new upwind
dune of size w′, while the fusion of the upwind dune and
the remaining parts of the downwind one will be consid-
ered as the new downwind dune of size w.

When the overlap is total (T), we always have ωf < ωi
and θf < θi. Both the difference between the sizes and the
distance between the dunes decrease during the collision.
As for the fragmentation, ωf can be positive or negative.
The curve b of equation:

πi = π0 =

√
5− 1

2
' 0.618 (24)

delimits the sub-region where ωf > 0 (below) and the
one where ωf < 0 (above). This limit also ensures the
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existence of a particular value for εt, as d3 is mobile. If
εt > π0, the behaviour set by ωf > 0 disappears.

Partial overlap sand redistribution (P) is more compli-
cated, as all behaviours are possible. There are therefore
three limits. The line c1 of equation:

θi =
πi − π3

i

2
(25)

marks out the ωf > 0 (right part) and ωf < 0 (left part)
areas. The line c2 of equation:

θi =
1 + πi − π3

i + π4
i − 2π6

i

2(1 + π3
i )

(26)

marks out the ωf > ωi (right part) and ωf < ωi (left part)
areas. The line c3 of equation:

θi =
−3π3

i + πi +
√

9π6
i − 10π4

i + 4π3
i + π2

i − 4πi + 4

4
(27)

marks out the θf > θi (left part) and θf < θi (right part)
areas.

θi

πi

d2

d4c1

c2

c3

I

II

III

IV

V

Fig. 4. Detail of the sand redistribution with partial overlap
collision area (P) of the diagram of collisions.

I ωf > 0 ωf > ωi θf < θi

II ωf > 0 ωf < ωi θf < θi

III ωf > 0 ωf < ωi θf > θi

IV ωf < 0 ωf < ωi θf > θi

V ωf < 0 ωf < ωi θf < θi

Table 1. The five different behaviours of the P collision.

These limits define five different combinations as shown
on Figure 4. Table 1 recapitulates these behaviours. In re-
gions IV and V we have ωf < 0. The difference in sizes

increases only in region I, in all the other regions this gap
decreases. Finally, the collision makes dunes move away
from each other in regions III and IV, while it brings
them closer in regions I, II and V.

The geometry of these limits also ensures that there
exists a particular value for εp. If εp > 0.806, the d4 limit
goes beyond the intersection of c1 and c3 and the region
III disappears.

3.4 Settings of the model

In this study, we focus on the evolution of the dynam-
ics when Φ changes, i.e. when the lifetime of the dunes
changes. Both ξ and η are inversely proportional to Φ, so
η ∝ ξ and we choose ξ to follow the evolution of the sys-
tem. The two aspect ratios δ and ∆ are kept constant,
as the limit overlay values εt and εp. These parameters
are purely geometric, their effect on the behaviour should
only modulate the underlying dynamics set by ξ and η,
modulations we are not interested in for this study.

The field is a square of size 32×32. The length scale is
d0, which value is arbitrary fixed to 1. We then fix ∆ = 0.1
to ensure that interactions between dunes are of moderate
range, and δ = 0.1 to mimic the observed range of sizes for
barchans. For the simulations to stay relevant, we impose
that the fastest dune in the field takes 10 time steps to
travel along a length unit d0. This fixes α to 0.001, as the
value of one time step ∆t is set to 1. The nucleation is
rather low, one dune every two time steps for the whole
field, which sets the value for λ. Finally, we impose εt =
εp = 0.5 to ensure all described collision behaviour exist.
Parameters values are summarised in Table 2.

d0 1

wn 0.1

wm 0.01

∆t 1

α 10−3

λ 2−11

Φ [7× 10−8; 5× 10−5]

εt 0.5

εp 0.5

δ 0.1

∆ 0.1

ξ [10−2; 7]

η [1.8; 1260]

Table 2. Parameters of the simulations. Based on typical sizes
and speeds of dunes in Morocco, a unit of length corresponds
to ∼1 km and a unit of time corresponds to ∼1 year.

Simulations are usually carried for 105∆t. In the fol-
lowing results, means are of two sorts: field scale quantities
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are averaged both in time and over several simulations; lo-
cal quantities are averaged on the field, in time and over
several simulations.

4 Dilute dynamics

For each Φ, the system reaches a fluctuating, out of equi-
librium, steady state. This indicates that local dissipation
always compensates the large scale forcing. The system
adjusts its dynamics by itself.

These steady states are of two kinds [15]. In the dilute
regime (ξ � 1), dunes live not long enough to interact
with their neighbours, which are too far away. The simple
balance between Φ and λ leads to the stationary state. As
dunes do not interact, the whole dynamics can be ana-
lytically derived from this balance [15]. In particular, the
mean density of the field is then:

ρ =
ξ

d20
= ξ∗ (28)

The mean density grows linearly with ξ, and is in fact
exactly the typical density ξ∗ defined by the comparison
between the time scales of sand loss and nucleation. Sim-
ulations concur with this results. Providing that the di-
luted field hypothesis is valid, i.e. there are no collisions
(Fig. 5a), the density grows linearly with ξ.

From eq. 1 and the fact that the nucleation rate λ is a
constant, we can derive the dune size distribution, which
is given by:

p(w) =
3w2

w3
n − w3

m

(29)

As seen on Fig. 5b, this distribution is quadratic, and thus
tends to promote large dunes. Dunes are nucleated at a
size wn, and then simply lose sand, which generates the
smooth decrease of the distribution, until dunes reach the
minimum size wm.
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Fig. 5. a) Mean density of the field as a function of ξ. The
red line shows ρ = ξ∗. b) Size distribution for ξ = 0.488, (see
Table 2 for the other parameters). The red line shows the the-
oretical distribution.
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Fig. 6. Transient behaviour for ξ = 0.039 and N0 = 120 (see
Table 2 for the other parameters). Comparison between the
simulation (—) and the theory (—), calculated as the sum of
the evolution of the initial population (—) and the nucleated
population (—).

When the non-interacting dunes hypothesis is verified
at each moment, one can analytically derive the whole
evolution of the system, including the transient behaviour.
The main idea of this calculus is that the whole popula-
tion can be divided into two sub-populations which – by
definition of the dilute hypothesis – do not interact with
each other:

– the initial population, which decreases and vanishes at
a finite time ti,

– the nucleated population, which does not exist at the
initial moment t0, and replaces entirely the initial pop-
ulation at ti.

The time of disappearance ti is equal to the time at
which the biggest dune of the initial population disap-
pears. This time is given by:

ti =
(2wn − wm)3 − w3

m

Φ
(30)

since the sizes of the initial population follow a uniform
distribution centred on wn with a cutoff at wm. By de-
riving the evolution of the size distribution for each pop-
ulation, one finds that the number of dunes of the initial
population decreases according to:

Ni(t) =
N0

2(wn − wm)

(
2wn − wm −

(
w3
m + Φt

)1/3)
(31)

where N0 is the initial number of dunes in the field, until
Ni reaches 0 at ti. In the same time, the nucleated popu-
lation appears, following (with S = L` the surface of the
field):

Nn(t) = λSt (32)

until the system reaches its stationary state, where sand
loss and sand injection through nucleation are equal. This
takes exactly τd, the time used to define both ξ and η (see
eq. (10)). After τd the number of dunes is stable:

Nn(t) = ξ∗S (33)

We compare the theoretical evolution of the total num-
ber of dunes to the simulation on Fig. 6, where we can see
the perfect agreement between the two of them.
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5 The dense regime

5.1 Field characteristics
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For ξ > 1, the system still reaches a stationary state,
but the density of the field explodes (Fig. 7a). The regime
is thus called dense [15]. As the density increases, the colli-
sion rate increases too (Fig. 7a). Dunes live longer, there-
fore they are likely to interact with each other and to
collide. Among the collisions, fragmentation becomes the
most frequent type for dense fields (Fig. 7b), so there is
a feedback effect on the density. As the collision rate in-
creases, the fragmentation becomes the most frequent type
and collisions generates more dunes in the field, leading to
even more collisions.

This increase of the field density is not homogeneous.
The field becomes structured, with very dense areas elon-
gated along the wind direction separated by much more
dilute inter-regions (Fig. 10a), whereas the dilute field is
homogeneous. These dense areas are clusters of dunes,
which appear progressively as the field becomes denser.
We study the fluctuations of the local density by looking
at the relation between n, the mean number of dunes in
a square of side d, and its variance σ2

n, when d changes.
The relation between σ2

n and n is usually a power law
σ2
n ∝ nβ . In the dilute field the value of the exponent β is

one, and the fluctuations follow the normal σ2
n ∝ n law. It

confirms that in this regime the field is purely randomly
populated (Fig. 7c). On the contrary, the dense field ex-
hibits “giant” fluctuations of the local density, since the
exponent β is greater than one: we observe a σ2

n ∝ n1+0.67

behaviour (Fig. 7d). These fluctuations may be related
to what appears on systems where collective phenomena
emerge, such as Vicsek models [19] where similar expo-
nents on giant number fluctuations are found.

5.2 Global scales

5.2.1 Fluctuations
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Fig. 8. a) Spectrum and b) distribution of the fluctuations
of the number of dunes in the system, for ξ = 0.488 (5 × 105

events). The red line shows a gaussian fit of the distribution. c)
Spectrum and d) distribution of the fluctuations of the number
of dunes in the system, for ξ = 2.93 (2.5× 106 events).

Global quantities of the field fluctuate around their
mean value. In the dilute regime, these fluctuations ex-
hibit a usual brownian I ∼ f−2 spectrum (Fig. 8a) with a
gaussian distribution (Fig. 8b). It means that the dynam-
ics of this regime is essentially noise-driven, i.e. driven by
the random nucleation of dunes. This is not surprising,
since no other dynamics than the rapid fading of dunes
takes place in the system, because of the short lifetime of
the dunes.

In the dense field, the spectrum of the fluctuations is
no longer characteristic of a brownian noise, but exhibits
an over-representation of small frequencies (Fig. 8c), i.e.
long time scales. On the same time, the distribution of the
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fluctuations (Fig. 8d) is no longer gaussian and presents
large deviations. Long time scales and large deviations are
easily linked to the dynamics of the clusters, which drags
the system away from its stationary state by giant bursts
of the number of dunes, and slowly relaxes because of sand
loss.

5.2.2 Case of the total volume of sand Q

The interacting dynamics between dunes has strong effects
on the small scale phenomenology. But these features can
also be traced at the field’s scale.

The total volume of sand in the system, defined as:

Q =

N∑
k=1

w3
k = N

〈
w3
〉

(34)

is not conserved at the scale of the field because of the
dune nucleation and the sand loss, due to the effect of both
the loss rate Φ and the minimum size wm. This quantity is
thus strongly related to the out of equilibrium dynamics
of the system, and its behaviour signs very precisely its
change. Indeed, the difference between dilute and dense
dynamics in the system is obvious on the evolution of Q
(Fig. 9a). As Q depends on the volume of dunes, it will be
mechanically affected by any change on the large dunes
population, whereas it will require massive modifications
of the small dunes population to change its behaviour. In
the dilute regime, the size distribution does not change
much but for small dunes only (few collisions, leading to a
weak erosion of the large dunes population and few little
dunes). Thus

〈
w3
〉

is roughly constant. Q is therefore pro-
portional to the stationary number of dunes N in the field,
and thus increases linearly with ξ (cf. Part 4), as shown on
Fig. 9b. The theoretical slope, given by the mean volume
of the dilute regime V̄ = 5× 10−4, fits very well the sim-
ulation data. Q keeps this linear behaviour much longer
than any other quantity of the field, as it is only sensitive
to strong modifications of the size distribution.

It is only when ξ > 1 that the population is largely
transformed and Q is affected. What happens then is an
odd feature of the model: the total volume of sand satu-
rates, and then slowly decreases. If we allow ourselves to
a simple analogy, the system reacts like a spring with two
different regimes. In the dilute field, the system selects a
steady state with more and more sand as ξ increases, just
like a spring in its linear mode spreads more and more
as heavier weights are suspended to. But this behaviour
does not go to infinity: at some point, the system begins
to resist to the external forcing. Q saturates and slowly
decreases (Fig. 9a). For the spring, it is as if beyond the
linear mode of low deformations there was a non-linear ef-
fect, that makes its stiffness increase with the spreading,
to the point it actually makes the spring shorten. For the
model, this feature signs the highly non-linear aspect of
the system dynamics.

As for the previous discussions, this change of behaviour
is only a consequence of the fragmentation process. The
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Fig. 9. a) Total volume of sand Q as a function of ξ. b) Linear
behaviour of Q for small ξ. Comparison between the simula-
tions (◦) and the theoretical strict dilute regime (—). c) Ero-
sion of the size distribution in the dense regime, as ξ increases :
2.93 (—), 5.37 (—), 6.84 (—). d) Cumulative distributive func-
tion of the volumes of dunes, for ξ = 0.977 (—), 1.95 (—), 2.93
(—), 6.84 (—). This shows how each population contributes to
the total volume Q.

large dunes which are responsible for the linear behaviour
of Q are no longer able to maintain their isolated dynam-
ics. Apparition of the collisions leads to the emergence of
a peak of small dunes (see Part. 7), and drastic increase of
the global sand loss. Indeed, as the number of dunes ex-
plodes these new dunes are much closer to the minimum
size, therefore likely to disappear. Moreover, in the inter-
val between the peak of small dunes and the nucleation
mode lies a consistent density of dunes of intermediate
sizes. This population arises directly because of the cas-
cade of collisions from the nucleation size wn to the peak
size w̃. They are the intermediate state between the two
typical sizes, and can be rather large dunes. Therefore any
change of their distribution will affect Q. Indeed, as the
field gets very dense, the collision dynamics becomes more
and more efficient and erodes this population (Fig. 9c).
This increases again the sand loss, making its effect exceed
the forcing, and thus tends to make Q saturate and then
decrease. The large dunes population eventually shrinks,
and becomes insignificant. It contributes less and less to
the total volume of sand, as seen on Fig. 9d, and eventu-
ally the peak population at w̃ remains the only significant
one.
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6 Spatial structuring in the dense regime

Spatial structuring in clusters is one of the two main fea-
tures that appear in the dense regime (Fig. 10a), and is
responsible for its peculiar dynamics. Its development as
ξ – and therefore the density – increases can be tracked
by its effect on the spatial correlation of the density. We
define a density correlation a for both directions:

ax(d) =
〈ρ(x)ρ(x+ d)〉 − 〈ρ(x)〉2

〈ρ(x)2〉 − 〈ρ(x)〉2
(35)

ay(d) =
〈ρ(y)ρ(y + d)〉 − 〈ρ(y)〉2

〈ρ(y)2〉 − 〈ρ(y)〉2
(36)

Along the x direction the correlation decreases very
fast and becomes zero at a length scale ∼ wn, confirming
that pretty much nothing happens in the transverse direc-
tion. However, along the wind direction y the correlation is
not negligible (Fig. 10c). Its decreasing with the distance
d is not purely exponential, it is therefore not possible to
simply extract an accurate correlation length through a
fit. However we can study its evolution by determining for
each ξ the distance dc at which the correlation reaches
a certain value a0 (Fig. 10d). For ξ < 1, the correlation
length is too small and falls under the resolution of the
algorithm. For ξ > 1, dc increases and saturates for high
values of ξ. This seems to indicate that the structuring of
the field reaches a maximum.

In order to study the dynamics of these structures, we
define a cluster formally as a population of dunes which
interact with each other, and thus form a connected tree of
interactions, disconnected from the rest of the dunes. As
clusters are very dense, sand capture is very important in-
side such structures. This interactions sustain small dunes
by providing sand, and so they keep the cluster cohesive.
Dunes on the upwind front are the only one which actu-
ally lose sand. Dunes in the front grow due to the sand
incoming from the ones behind them, then slow down and
get caught up, and so on. They are also responsible for
the sharp edges of the clusters. Dunes may be cast aside
by collisions, but if they do they lose the sand supply and
thus quickly vanish. We test a model without sand cap-
ture. In this model, clusters do not appear (Fig. 10b). The
quick decrease of the correlation of the density along the
wind direction confirms the lack of spatial structuring in
such a system (Fig. 10c).

Clusters are the response of the system to balance sand
loss and sand gain. As there is no global sand influx, each
barchan – if isolated – can only disappear. Thus the “equi-
librium” state of the system would be an empty field. In
the dilute regime, the sand loss is large enough for dunes to
quickly vanish without interacting. As ξ increases, dunes
lose less and less sand, their lifetime increases and collision
dynamics appears. As we saw, this leads to the fragmenta-
tion of the dunes, via the clusters. In these structures sand
is more or less conserved, except at the upwind frontier.
Through fragmentations, the number of dunes increases
and, as each one of them loses a constant volume Φ per
unit of time, the potential total sand loss increases. As
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Fig. 10. a) Aspect of a dense field for ξ = 2.93. Each point is a
dune. b) Aspect of the field for a simple model without eolian
sand capture between dunes, for ξ = 2.93. c) Correlation along
the wind direction for ξ = 2.93, for the full model (—), and
the simple model without eolian sand capture between dunes
(—). d) Correlation length as a function of ξ for a0 = 0.1 and
different lengths of the field: L = 32 (◦), 64 (◦), 128 (◦), 256
(◦).

dunes in a cluster exchange sand, there is sand loss only at
the upwind side. Because clusters are not strictly aligned
along the wind direction, and often make a small angle
with it, or have complex shapes, thus sand loss occurs on
a frontier of significant length. The accumulation of colli-
sions inside the cluster also dissipates dunes via the effect
of the minimum size wm. As a result, the apparition of
clusters increases the sand loss for the whole system.

In the dense regime, this response gets heavier as Φ de-
creases (i.e. ξ increases). Eventually, all dunes in the field
become part of a cluster, and therefore interacts with their
neighbours, as seen on Fig. 11a. More than an increase of
the number of clusters, it is the number of dunes each clus-
ter gathers that increases (Fig. 11b). The clusters grow in
size, and one can expect that the longest reaches the di-
mension of the system. That actually happens for small,
finite systems (Fig. 11c). However, these long clusters do
not connect with themselves, for two reasons. First, their
overall direction is slightly bent, therefore their end do
not catch their beginning through the periodic boundaries.
Secondly, the big clusters are formed by a very transient
reunion of smaller clusters. They usually aggregate and
decompose within a few time steps, a too short time to
get a self-interacting cluster. Furthermore, when we in-
crease the length of the system, the size of the largest
cluster grows but slower than L (Fig. 11d), meaning that
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for a system of infinite length the possibility of looping
clusters vanishes.

7 Size selection

7.1 A collective phenomenon due to collisions

In addition to spatial structuring, when ξ increases the
mean size of the dunes decreases and saturates to a small
value, distinct from the minimum size wm (Fig. 12a). The
size distribution becomes strongly peaked around a se-
lected width w̃, close to but distinct from the minimum
size wm (Fig. 13a). Nevertheless, the distribution still ex-
hibits a mode around the nucleation size wn, similar to the
nucleation mode of the distribution in the dilute regime.

The cascade from the nucleation mode to the new
mode is a consequence of the main mechanism occurring
in the dense field. The collision rate in the dense field is
very high, and the main collision type is the fragmenta-
tion (see Fig. 7). This type of collision increases the num-
ber of dunes in the field, but as the total volume of sand
is conserved during a collision, it produces smaller dunes.
The accumulation of collisions thus tends to reduce the
mean size in the field. Dunes nucleated go through lots of
collisions, and the products of these collisions gradually
go from wn to w̃, which produce the “fat-tail” region in-
between the two modes of the distribution. Furthermore,

this effect is not linear. The fragmentation collision pro-
duces two small dunes for each large one it splits. Hence,
the population of small dunes grows fast, which generates
the peak.
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Since clusters are the densest parts of the field, it is
pretty clear that this process mainly occurs inside these
structures. This assumption is confirmed by plotting the
conditional size distributions inside and outside clusters
(Fig.12c&d), and the relation between local mean size and
density (Fig. 12b). Small dunes are generated and thus
gathered in clusters, where they do not lose sand anymore,
and have a long lifetime. As a result, small dunes stay a
very long time in the field, whereas large dunes cannot
live long before getting hit and split by collisions. Inter-
clusters region then gather only nucleated dunes, small
dunes that escape from clusters, and remain of vanishing
clusters.

7.2 Modeling the size selection

7.2.1 Random collisions approximation

We have shown that the accumulation of fragmentations
is the main mechanism for the selection of a particular
size. Clusters apparition can be seen as a collective phe-
nomenon, in response to the decreasing efficiency of sand
loss in each dune. Though the dense field is very heteroge-
neous, clusters themselves seem to be quite homogeneous.
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Therefore we can imagine that collisions are occurring at
random inside clusters. From the collision diagram (Fig. 3)
we can compute the theoretical occurrence probability for
each type of dune, as a function of the size of the down-
wind colliding dune. Having the numerical distribution of
the sizes, we can calculate these probabilities for the sta-
tionary, dense field, and compare them to the numerical
values (Table 3). Though the agreement is not perfect,
the result is good enough to prove that, in the first ap-
proximation, the collision process inside clusters is indeed
random.

Analytic Numerical

Coalescence 0.6% 2%

Fragmentation 53.5% 50%

Sand redistribution s = 1 38.9% 35%

Sand redistribution s < 1 6.9% 13%

Table 3. Comparison between analytic and numerical proba-
bilities for each type of collision.

7.2.2 Mean-field models

We push forward this hypothesis by building a mean-field
model in which pairs of dune randomly collide. All dunes
collide at each time step. The type of the collision is ran-
domly chosen according to the probabilities pc, pf and
pr = 1 − pc − pf . The new volumes of the dunes are also
randomly chosen, but their choice follows the conservation
of the total volume during a collision. The effect of the
minimum size wm is kept, and at each time step dunes
of size wn are nucleated. The system reaches a station-
ary state in which the size distribution of the population
(Fig. 13b), though not exactly the same as the one from
the full model (Fig. 13a), exhibits similar characteristics:
a peak for a small size, close but distinct from the mini-
mum size wm, a second mode at the nucleation size wn,
and a cascade between the two of them.

Though simpler than the full model, we did not man-
age to analytically solve such a mean-field model, be-
cause of the highly non linear terms due to collisions phe-
nomenology. In order to get some analytic insights of how
random events accumulation can produce a size selection,
we reduce again the phenomenology to a simple markovian
process for particles. The volume of a dune then evolves
according to:

Vn+1 = cVn (37)

where its value at the time n+1 is given by its value at the
time n multiplied by a random coefficient c that includes
the collisions phenomenology. This process is equivalent
to randomly choose a point (π, θ) in the collision diagram
(Fig. 3) at each time step, and compute the effect on the
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Fig. 13. Comparison of the size distributions: a) Agent-
based model, b) Mean-field model with random collisions, for
pc = 0.2, pf = 0.5, pr = 0.3. c) Markovian model. d) Non con-
servative markovian model. All distributions are normalised so
that their integral is 1. The vertical scale in a) is logarithmic.

dune. The c operator can therefore be explicitly written:

c(π, θ) = (1 + θ3)HC(π, θ)

+

(
1− 1 + θ

2
+ π

)
HF (π, θ)

+ (1− θ + θ3)HT (π, θ)

+

(
1− 1 + θ

2
+ π + θ3

)
HP (π, θ)

+ 1×HId(π, θ)

(38)

The point chosen in the collision diagram is define by its
coordinates (π, θ), which are random numbers evenly dis-
tributed in the interval [0, 1]. The c operator contains five
terms, namely in order of occurrence in eq. 38: coalescence,
fragmentation, sand redistribution with full overlap, sand
redistribution with partial overlap, plus the case when the
point (π, θ) falls out of the domain of existence for colli-
sions. These terms are calculated from the effect of each
collision on the volume of the dune (see eq. 6), and delim-
ited by HK(π, θ) functions, which return 1 when the point
(π, θ) is in the region K of the collision diagram, and 0
otherwise. The main advantage of this model is that the
volume of a dune at a time step n can be explicitly written:

Vn = V0

n∏
k=1

ck (39)

Numerical computation of this model generates a log-normal
distribution for the sizes of the dunes (Fig. 13c). This
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would be consistent with the field observations reported
in [5]. The ck are independent, positive, identically dis-
tributed, random variables which distribution is square
integrable. Although their distribution is not gaussian, it
seems that the central limit theorem applies in this case,
so that the distribution of their product, and Vn, tend to
a log-normal as n → ∞. This model serves only as an
interpretation for the barchan field behaviour, so we are
not interested in mathematically proving this convergence.
This model, though it explains very simply how random
collisions manage to select a size, is incomplete. The max-
imum of the distribution tends to zero when the number
of collisions tends to infinity, meaning that the selected
size tends to zero.

Indeed, the model lacks the vanishing size and the nu-
cleation process. We include these features into the previ-
ous model, to build a non conservative markovian model
for dunes. In this model, at a time n, populations of dunes
with different size distributions cohabit in the field. Dunes
injected at the time n have gone through only one itera-
tion of the markovian process, and thus their size follow
the distribution of cn. Dunes that were injected a step
before follow the distribution of cn× cn−1, and so on. Dis-
tributions do not go down to p (

∏n
k=1 ck), as dunes reach

the limit value wm after a finite number of iteration um.
This imposes an effective cutoff to the progression in n.
The global size distribution will therefore be the sum of
these distribution, stopped at this effective cutoff um:

p(V ) =

um∑
u=1

p

(
u∏
k=1

ck

)
(40)

This distribution is thus the sum of distributions that con-
verge to log-normals, each taken at successive steps of this
convergence. Because of this cutoff, the maximum value
of p(V ) does not tend to zero, but is blocked to a certain
value w̃ close to but distinct from wm (Fig. 13d). The size
selection is thus a collective phenomenon, the result of the
competition between the effect of the minimum size wm
and the sum of perfectly random processes that converge
to log-normal distributions.

8 Conclusion

We have presented in this paper a precise study of an
agent-based model for barchan fields. This geophysical
system exhibits interesting features, in particular a spatial
structuring and a size selection in its dense regime. Our
model takes into account the well known physics of iso-
lated dunes, and two interaction processes: remote sand
exchange and collisions. The model is intrinsically non
conservative, because of sand loss and dune nucleation.
However, it always leads – in the range of parameters we
studied – to a stationary state for the field. These station-
ary states range from dilute to dense as the control pa-
rameter ξ – which compares sand loss to dune nucleation
– increases. The dilute field is sparse, homogeneous, with
dunes that barely interact with each other and which sizes

are close to the nucleation size. The dense field is strongly
heterogeneous and composed of dunes that interact a lot.
A typical size emerges from these interactions. Due to this
particular dynamics, the total volume of sand in the field
increases with ξ in the dilute regime, then saturates and
decreases in the dense regime.

The peculiar features of real barchan fields – spatial
structuring and size selection – prove to be related to the
interactions between dunes. As the stationary state of the
field gets denser, local high densities are unstable and en-
genders clusters of dunes through avalanches of collisions.
Sand recapture is then responsible for the growth and the
upkeep of these well-defined, elongated clusters. Their ap-
parition creates then giant fluctuations of density in the
field.

Clusters, as they are very dense structures, cause an
increase of the collision rate. Among collisions, the frag-
mentation type is the most frequent. We showed that the
accumulation of collisions leads to the selection of a new,
small size for the dunes. Collision type frequencies can be
accurately calculated by a purely random phenomenology,
allowing us to develop a mean-field model based on such
a random phenomenology, and a simpler non conservative
markovian model. Both show a size selection similar to
what occurs in the agent-based model.

Size selection and spatial structuring are not indepen-
dent phenomena. Collisions generate clusters, and in re-
turn clusters are responsible to the accumulation of colli-
sions that enables the size selection. The increase of dunes
lifetime inside a cluster enhance this size selection, by al-
lowing small dunes to live a much longer time. These small
dunes, escaping from clusters, ensure then the apparition
of new clusters.

We can conclude from this study that dune-dune inter-
actions, and in particular fragmenting collisions and sand
recapture, are key mechanisms that can explain the global,
non trivial behaviour of real fields. We showed that their
presence is also sufficient to trigger both the spatial struc-
turing in dense corridors and the size selection by the local
density. The paradox between the instability of isolated
barchans and large fields observations can be explained
by considering the effect of these non trivial, non linear
interactions between barchans. Moreover, barchan fields
can then be linked to the wide class of systems where
large-scale physics emerges through collective behaviour
and self-organisation.

Only a fraction of the possible behaviours of the model
has been explored. The model has a large phase diagram,
controlled by six dimensionless parameters: the limit over-
laps εt and εp, the two aspect ratios δ and ∆ and the two
typical times ratios ξ and η. In this study, only one pa-
rameter – the sand loss Φ – has been modified, meaning
that in the (ξ, η) space, we only have explored a η ∝ ξ
line. The exploration of the rest of the diagram of such
a fully non conservative system should reveal some other
odd and interesting features.
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