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Controlling discrete and continuous symmetries in ’superradiant’ phase transitions

Alexandre Baksic∗ and Cristiano Ciuti†

Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris 7 and CNRS,
Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

We explore theoretically the physics of a collection of two-level systems coupled to a single-mode
bosonic field in the non-standard configuration where each (artificial) atom is coupled to both field
quadratures of the boson mode. We determine the rich phase diagram showing ’superradiant’ phases
with different symmetries. We demonstrate that it is possible to pass from a discrete, parity-like Z2

symmetry to a continuous U(1) symmetry even in the ultrastrong coupling regime where the rotating
wave approximation for the interaction between field and two-level systems is no longer applicable.
By applying this general paradigm, we propose a scheme for the experimental implementation of
such continuous U(1) symmetry in circuit QED systems, with the appearance of photonic Goldstone
and amplitude modes above a critical point.

The collective ’superradiant’ coupling of a large num-
ber of two-level systems to a bosonic field has been at-
tracting a remarkable interest since the pioneering paper
by Dicke[1] and is now the focus of many recent studies
in cavity[2–6] and circuit [7–11] quantum electrodynam-
ics (QED). In particular, the well-known Dicke model
describes the coupling between a collection of two-level
systems and a single photon mode. For increasing atom-
field coupling such a model predicts a superradiant phase
transition [12–14], with a doubly degenerate ground state
above a critical value of the vacuum Rabi coupling. The
so-called ’superradiant’ phase ground state is character-
ized by a spontaneous polarization of the two-level sys-
tems and a spontaneous coherence of the boson field. The
Dicke Hamiltonian has a discrete Z2-symmetry: there is
no continuous U(1) symmetry due to the so-called non-
rotating wave terms of the interaction between the two-
level systems and the field, which cannot be neglected
in the so-called ultrastrong coupling regime [15–17] (a
recent work [18] instead considered a model neglecting
such non-rotating wave terms, which are however im-
portant for the large couplings required to have a su-
perradiant phase transition [13, 14]). Recent judicious
generalizations of the Dicke model have been explored
to control the corresponding Hamiltonian symmetry[10],
which however remains still discrete.

Phase transitions with artificial systems having a con-
tinuous U(1) symmetry are attracting a significant in-
terest, for example in Bose-Hubbard systems exploiting
ultracold atoms[19], due to the connections with the ex-
citing physics of the Anderson-Higgs mechanism[20, 21].
In this letter, we explore a model describing a collection
of two-level systems, each one coupled to both quadra-
tures of a boson mode. We show that by tuning the two
quadrature coupling constants it is possible to control the
symmetries of the system, with the possibility of having
a U(1)-symmetry even in presence of non-rotating wave
(anti-resonant) coupling terms. We determine the rich
phase diagram of such model and show the appearance
of Goldstone and amplitude (Higgs-like) mode on a line
of the phase diagram. We show one example of circuit

QED configuration where this kind of quantum model
can be implemented, by using capacitive and inductive
coupling of a Josephson junction artificial atom to a su-
perconducting resonator.

The Model - The model we introduce here describes
a collection of N two-level systems, each one interacting
with both the two quadratures of a bosonic mode (e.g.
the electric and the magnetic field of an electromagnetic
field). Namely, we consider the Hamiltonian

H = ~ω0Jz + ~ωa†a+
~ΩE√
N

(a+ a†)(J+ + J−)

+
~ΩM√
N

(a− a†)(J+ − J−), (1)

where ΩE and ΩM are the coupling constants, ω rep-
resents the frequency of the bosonic mode, while ω0 is
the transition frequency of each two-level system. The
angular momentum operator represents the collective
pseudo-spin associated to the collection of N two-level
systems (J+ = 1

2

∑
i σ

i
+, J− = 1

2

∑
i σ

i
−, Jz = 1

2

∑
i σ

i
z).

Note that the Hamiltonian terms proportional to a†J+

and aJ−, which do not conserve the number of bare
excitations, are the so-called non-rotating wave coupling
terms. These terms in general are responsible for
denying a continuous symmetry to the Hamiltonian.
However, since they describe the simultaneous creation
or destruction of two excitations, the parity of the
excitation number is conserved.

Symmetries - When ΩM 6= ΩE , the Hamiltonian in Eq.
(1) possesses a discrete Z2, parity symmetry [14], which
is composed of two other symmetries Π = TE ◦ TM that
can be broken separately :

(
a+ a†, i(a− a†), Jx, Jy

) TE−−→ (
−a− a†, i(a− a†),−Jx, Jy

)
(
a+ a†, i(a− a†), Jx, Jy

) TM−−→ (
a+ a†,−i(a− a†), Jx,−Jy

)
.

(2)

However, when we tune the couplings in such a way that
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ΩM = ΩE = Ω the Hamiltonian becomes :

H = ~ω0Jz + ~ωa†a+ 2
~Ω√
N

(aJ+ + a†J−). (3)

Importantly, non-rotating wave Hamiltonian terms can-
cel out in this Hamiltonian. Indeed, Eq. (3) is an Hamil-
tonian of the Tavis-Cummings [22] type which possesses
a U(1) symmetry characterized by the action of the op-
erator Rθ = exp (iθ(a†a+ Jz)):

R†θ
(
a, a†, J+, J−

)
Rθ = (ae−iθ, a†eiθ, J+e

iθ, J−e
−iθ).

(4)

Hence, depending on the coupling (ΩE and ΩM ) it is pos-
sible to tune the symmetry of the model and have a con-
tinuous symmetry even if we have consistently considered
the non-rotating wave coupling terms. The symmetries
of the considered Hamiltonian are summarized in Fig. 1.
The occurrence of symmetry breaking is due to phase
transitions, which are characterized in the following.

Phase diagram - In order to calculate the phase dia-
gram of the model in Eq. (1), we have used the Holstein-
Primakoff approach, by considering the transformation
(J+ = b†

√
N − b†b , J− =

√
N − b†b b , Jz = b†b − N

2 )
that represents angular momentum operators in terms
of bosonic operators b and b† in the Hamiltonian (1).
Then, we have followed a mean-field approach by shifting
the bosonic operators with respect to their mean value
[14] (a → α + c, b → β + d with α = 〈a〉 ∝

√
N and

β = 〈b〉 ∝
√
N). By keeping only the terms proportional

to N we obtain the mean value of the ground state energy
in terms of α, α∗, β and β∗ :

EG/~ =ω |α|2 + ω0 |β|2 +
[
ΩE(α+ α∗)(β + β∗)

+ ΩM (α− α∗)(β∗ − β)
]√

1− |β|
2

N
. (5)

If there is a non-zero value of α and β minimizing the
energy, it means that the ground state of the system has
a non-zero coherence of the boson field and a spontaneous
pseudo-spin polarization of the two-level systems. Those
coherences are the order parameters of the ’superradiant’
phase transition for this model. The minimization of EG
with respect to α∗ leads to:

α = −
(

ΩE
ω

(β + β∗) +
ΩM
ω

(β − β∗)
)√

1− |β|
2

N
. (6)

By substituting in Eq. (5), we obtain the expression
of the ground state energy in terms of β and β∗ only
(EG(β, β∗)). A subsequent minimization of this function
with respect to β and β∗ completes the job to the deter-
mine the ground state coherence.

To characterize the phases of the system, it is
convenient to introduce the following quantities:

ΩM

ΩE
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)
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FIG. 1: (Color online) Symmetry diagram of the model de-
scribed by Eq. (1) in the (ΩE ,ΩM ) plane . The broken sym-
metries are due to superradiant phase transitions. The defi-
nition of the critical coupling constants are in the text.
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FIG. 2: (Color online) Phase diagram of the model in the
(ΩE ,ΩM ) plane (thermodynamic limit).

µE = ωω0/4Ω2
E , µM = ωω0/4Ω2

M and Ωcr =
√
ωω0/2.

Our solutions show that there are four different regions
in the phase diagram versus the coupling constants :

i) A ’normal’ phase (see Fig. 3a) is obtained for
ΩE < Ωcr and ΩM < Ωcr. In the normal phase, there
is no ground state bosonic coherence and no pseudospin
polarization ((α, β) = (0, 0)).

ii) A phase, which we call superradiant ’Electric’
phase (see Fig. 3d) is obtained for ΩE > Ωcr and
ΩE > ΩM . The ground state possesses a real bosonic
coherence. The expressions for the order parameters are(

(α, β) = (∓ΩE

ω0

√
N(1− µ2

E),±
√

N
2 (1− µE))

)
. Note

that β real means a pseudospin polarization along
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FIG. 3: (Color online) Ground state energy EG(β, β∗)/N in

the (Re(β)/
√
N ,Im(β)/

√
N) plane at resonance (ω = ω0,

Ωcr = 0.5ω) for four different cases. a) ΩE = 0.1ω and
ΩM = 0.3ω: the system is in the normal phase, with a min-
imum in the origin. b) ΩE = ΩM = ω: the ground state
energy has the shape of a Mexican hat, with a circular valley
of degenerate minima. c) ΩE = 1ω and ΩM = 1.5ω: the
energy is anistropic, with two minima in the imaginary axis.
d) ΩE = 1.5ω and ΩM = 1ω: two minima in the real axis.

the x-direction (〈Jx〉 6= 0). This phase breaks the TE
symmetry.

iii) A superradiant ’Magnetic’ phase (see Fig.
3c) is achieved for ΩM > Ωcr and ΩM > ΩE ,
where the ground state possesses an imaginary
bosonic coherence. The order parameters are(

(α, β) = (∓iΩM

ω0

√
N(1− µ2

E),±i
√

N
2 (1− µE))

)
.

The pseudospin polarization is along the y-direction
(〈Jy〉 6= 0). Such a phase breaks the TM symmetry.

iv) A superradiant ’EM’ phase (fig. 3b) is ob-
tained for ΩM = ΩE and ΩE > Ωcr. Here
the ground state possesses a complex bosonic
coherence, while the pseudospin polarization is
along the θ direction. The order parameters are(

(α, β) = (−ΩE

ω0

√
N(1− µ2

E)eiθ,
√

N
2 (1− µE))eiθ

)
.

Such superradiant phase breaks the U(1) symmetry.
The behavior of the ground state energy as a function of
the order parameters is reported for four representative
cases in Fig. 3, in particular showing what happens in
the normal phase (panel a), in the EM phase (panel b),
in the ’Electric’ phase (panel c) and in the ’Magnetic’
phase (panel d). In Fig. 3(b) the ground state energy has
a Mexican hat profile which is the visual manifestation
of the broken U(1) symmetry.
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FIG. 4: (Color online) First (top panels) and second (bottom
panels) derivative of the ground state energy with respect to
ΩE (left panels) and ΩM (right panels) in the (ΩE ,ΩM ) plane.
The top panels show a diagonal line of first-order transition
points. The bottom panels indicate horizontal and vertical
lines of second-order transition points.

In order to determine the type of phase transitions,
we have studied the discontinuities of the ground state
energy at the transition points. Since ∂2EG/∂Ω2

E is
discontinuous at ΩE = Ωcr and ΩE > ΩM (see Fig. 4)
the transition from the normal state to the superradiant
Electric state is of second order. Analogously, the
transition from the normal to the superradiant Magnetic
phase is also of second order. On the other hand, since
∂EG/∂ΩE and ∂EG/∂ΩM are both discontinuous at
ΩE ,ΩM > Ωcr and ΩE = ΩM , the transition from super-
radiant Electric to superradiant Magnetic is of first order.

Excitation spectra - By generalizing the approach in
Ref. [14], it is possible to obtain the energies of the
bosonic excitations in each phase. In particular, there
are two ’polariton’ bosonic excitation branches: ε+ (ε−)
stands for the upper (lower) polariton branch energy.
The analytical expressions read:

(ε±/~)2 =
1

2

{
8Ω̃EΩ̃M + ω2 + ω̃2

0 ±
√

(ω2 − ω̃2
0)2

+16(Ω̃Eω̃0 + Ω̃Mω)(Ω̃Eω + Ω̃M ω̃0)
}
, (7)

with (ω̃0, Ω̃E , Ω̃M ) = (ω0,ΩE ,ΩM ) in the Normal phase,
(ω̃0, Ω̃E , Ω̃M ) = (ω0/µE ,ΩEµE ,ΩM ) in the superradiant
Electric phase and (ω̃0, Ω̃E , Ω̃M ) = (ω0/µM ,ΩE ,ΩMµM )
in the superradiant Magnetic phase.

The results for the energy of the lower polariton
branch have been plotted in the top panel of Fig. (5).
Note that there are three critical lines where the lower
polariton branch energy is zero (gapless excitation). We
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FIG. 5: (Color online) Lower (ε−, bottom panel) and upper
(ε+, top panel) polariton branches energy (in units of ~ω) on
resonance (ω = ω0) in the (ΩE ,ΩM ) plane (thermodynamic
limit).

also underline the presence of a Goldstone mode when
ΩE = ΩM > ΩcrM due to the breaking of the continuous
U(1) symmetry. The behavior of the upper polariton
branch is reported in the bottom panel of Fig. (5),
showing a finite-energy amplitude (Anderson-Higgs-like)
mode in the diagonal line of the phase diagram where
the Goldstone mode occurs.

Implementation in circuit QED systems - The rich
model explored in this letter can be implemented by using
circuit QED systems (see Fig. 6). The superconducting
circuit consists of a collection of Josephson junction ar-
tificial atoms coupled both inductively and capacitively
to a transmission line resonator. In the case of circuit
QED, the phase operator ϕ and the number operator N
are conjugate ([ϕ,N ] = i), playing a role similar to posi-
tion and momentum for mechanical degrees of freedom.
The Hamiltonian describing the circuit in Fig. 6 reads:

Hcirc =
∑
i

{
ECr

(N i
r)

2 + ELr
(ϕi+1
r − ϕir)2

+ ECJ
(N i

J)2 + ELJ
(ϕiJ)2 − EJ cos (ϕiJ + ϕext)

+GQ N i
JN

i+1
r +GL ϕ

i
J(ϕi+1

r − ϕir)
}
. (8)

At

Φi
f

Φi
J

L1

L2

Cg

CJ

Lr

Φi
r

Lr Lr

Φ1
r Φ2

r Φi−1
r

At At

Cr Cr Cr

C0

CrCr

C0

Φi+1
r

Lr

Φ1
r

Cr

≡

Φ(x)

Q(x)

Artificial atoms

FIG. 6: (Color online) Design of circuit QED system for the
implementation of the Hamiltonian (1). Each artificial atom
(obtained with a Josephson junction) is coupled both capaci-
tively and inductively to a transmission line resonator (equiv-
alent to a series of LC resonators).

For Cr >> Cg, CJ and Lr >> L1, L2, we have
ECr

= 2e2/Cr, ELr
= (h/2e)2/2Lr, ECJ

= 2e2/(Cg +
CJ), ELJ

= (h/2e)2(Lr + L1)/2(L1 + L2), GQ =
4e2Cg/Cr(Cg + CJ), GL = (h/2e)2L1/Lr(L1 + L2). By
quantizing the resonator modes [23], keeping only one
resonator mode and doing a two-level system approxi-
mation for the artificial atoms (quasi-resonant to the res-
onator mode) at the sweet spot of the Josephson atomic
Hamiltonian (ϕext = π), we obtain :

Hcirc/~ =ωresa
†a+ ωJJz +

∑
j

G̃jE(a+ a†)σjx

+ i
∑
j

G̃jM (a− a†)σjy. (9)

If the artificial atoms are identically coupled (G̃jE = G̃E)

and (G̃jM = G̃M ), we recover the Hamiltonian (1). Of
course, this is not the only possible implementation. Im-
portantly, it shows that ultrastrong coupling circuit QED
can give access to this kind of physics.

In conclusion, we have studied a new paradigm of
model where two-level artificial atom systems are coupled
to both quadratures of a bosonic field. In such a model,
which includes non-rotating wave terms of the atom-field
coupling, it is possible to control the symmetries of the
Hamiltonian in a remarkable way, with the possibility
of having a U(1) continuous symmetry even in the ul-
trastrong coupling regime. The phase diagram presents
4 types of superradiant phases, with one phase having
Goldston gapless excitations and amplitude mode excita-
tions. We have shown that by using circuit QED systems
it is possible to implement this double quadrature cou-
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pling scheme, paving the way to the exploration of rich
spontaneous symmetry breaking physics in photonic sys-
tems. Our theoretical paradigm could also stimulate im-
plementations with driven superfluid Bose-Einstein con-
densates in optical cavities[24].
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