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At least at the undergraduate level, most lectures and textbooks about hydrodynamics make use
of the so-called Eulerian picture, where pressure, temperature, velocity of the fluid are treated as
continuous fields defined by the value they take at each geometrical point of the reference frame the
fluid moves in. There nevertheless exists another possible description of the movement which consists
in labelling the fluid element themselves, and keep this labelling in the course of the motion. This
so-called Lagrangian picture is scarcely taught for it often brings in somehow involved mathematics,
although it occurs to be more intuitive than the Eulerian picture. In this paper, we try to illustrate
the latter feature on the exemple of the otherwise cumbersome problem of the Rayleigh acoustic
radiation pressure, and we argue that dealing with the mathematical difficulties implied by the
Lagrangian picture may be a good pedagogical opportunity to familiarize with tensorial calculus.

PACS numbers: 47.10.A-, 43.20.+g, 43.25.+y, 47.35.Rs

I. INTRODUCTION

Wave propagation in fluids is an important topic, generally considered as part of the widest domain of Fluid
Mechanics (FM)1,2. As a consequence, FM tools are used to deal with this topic. At the very centre of the latter
tools stands the so-called Eulerian picture13: to speak curtly, a (usely Galilean) reference frame is defined. At a given
point ~r of this frame, and at time t, the physical state of the fluid is described by a set of parameters: mass density
ρ, pressure P , fluid velocity (with respect to the frame) ~v, temperature T and so on. So that one deals with a set of
(coupled) continuous fields ρ(~r, t), P (~r, t), ~v(~r, t), T (~r, t), etc. For instance, in absence of any external force (gravity
or other), the movement of an inviscid14 fluid is ruled by the well-known Euler equation

ρ(~r, t)

(
∂~v

∂t
+ (~v ·

−−→
grad)~v

)
= −

−−→
gradP. (1)

Such a picture has many advantages. First, it is convenient to describe the dynamics of the fluid by means of
local equations coupling fields, exactly as in the Electromagnetism (EM) domain. Second, the Eulerian picture is
particularly well adapted to situations in which the fluid really flows: when studying the stream of a river passing at
some bridge, we are interested in the very behaviour of the water under this bridge at a time t, whichever the origin
or the past behaviour of this water.
Nevertheless, the Eulerian picture is not without a few drawbacks. First, let us glance at equation (1). The left-

hand side is obviously nonlinear in field ~v, due to the (~v ·
−−→
grad)~v term. In addition to the latter explicit nonlinearity,

an implicit further nonlinearity hides in the mass density term as soon as the fluid is compressible, since ρ(~r, t) is a
priori ~v-dependent. A second drawback of the Eulerian picture comes up when free boundary conditions between two
fluids have to be taken into account. Let us consider the example illustrated in figure 1: two different fluids – say 1
and 2 – are separated at rest by the (infinite) plane x = 0. Let us consider now a plane pressure wave propagating
from x = − ∞ in fluid 1 towards the boundary. As well known, this incident wave splits at the interface in two
parts: a reflected wave, travelling back to x = −∞ through medium 1, and a transmitted wave, travelling towards
x = ∞ through medium 2. It is a time-honoured undergraduate level exercice to determine the reflection and the
transmission coefficients at the interface. In principle, the answer is easy: one equalizes the fluid pressures

P1(interface) = P2(interface) (2a)

and fluid velocities

~v1(interface) = ~v2(interface), (2b)

which provides two equations enabling us to calculate both coefficients. The above process in undoubtedly correct,
but raises a nontrivial difficulty: where is the interface? At x = 0? Certainly not, since the interface itself moves back
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and forth, due to the wave motion. As a matter of fact, the x = 0 plane spends half time in medium 1, half time in
medium 2. Of course, locating the interface at x = 0 is the best approximation, and it leads to the the correct values
of the reflection and transmission coefficients, but it should be regarded as but a order-zero approximation.
In fact, the above-underlined difficulties of the Eulerian picture can be (up to a point) overcome in the framework of

an alternative picture, known as the Lagrangian picture3–5. It is precisely the aim of the present paper to sketch the
main features of the Lagrangian picture which is poorly taught in academic courses and scarcely used when studying
acoustic propagation in fluids.
To begin with, what is it all about? The philosophy of the Lagrangian picture can be outlined as follows. Contrary

to the Eulerian picture, which, as recalled above, labels the geometric points of the reference frame disregarding the
origin of the fluid elements passing through these points at time t, the Lagrangian picture labels the fluid elements
disregarding the exact position they occupy at time t. Let us detail hereafter how it works. With this aim, let us
consider a fluid at some time t0. We denote ~r0 the fluid element that occurs to stand at point ~r0 of the reference
frame at time t0. We shall henceforth keep this label ~r0 to denote this fluid element, whatever its further motion.
Thus, at time t, the fluid element ~r0 will be found at some point ~r given by

~r(~r0, t) = ~r0 + ~u(~r0, t), (3)

where ~u(~r0, t) is the displacement undergone by the fluid element ~r0 between times t0 and t. The physical state
of the fluid is still described by a set of continuous fields: mass density, pressure, velocity, temperature, etc. The
correspondance between both pictures is very simple. Superscripts E and L respectively standing for “Euler” and
“Lagrange”, we have, quantity A standing for whichever parameter ρ, P , ~v, T , etc.,

AE
(
~r(~r0, t), t

)
= AL(~r0, t), (4)

with ~r(~r0, t) given by (3). Concretely, the above equation (4) means that AL(~r0, t) denotes the actual value of
parameter A as undergone at time t by the fluid element labelled ~r0 which is currently at point ~r0 + ~u(~r0, t) of the
reference frame, i.e. AL(~r0, t) is numerically equal to AE

(
~r(~r0, t), t

)
.

We show in the present paper that the Lagrangian picture offers several advantages from a technical point of
view. To begin with, this picture rids us of spurious nonlinearities (for instance, the pseudo nonlinearity associated

with the (~v ·
−−→
grad)~v term in the left-hand side of the Euler equation (1)), and enables us to index and classify true

nonlinearities, allowing perturbative resolutions of the field equations. An example of such a simplification is provided
by the otherwise cumbersome problem of the so-called acoustic radiation pressure. A second technical advantage of
the Lagrangian picture appears when dealing with the afore-mentioned free boundary conditions between two fluids.
Let us go back to the example illustrated in figure 1, where two media are separated at rest by a plane interface
located at x = 0. Choosing the latter rest state of the system to implement the Lagrangian labelling of the fluid
elements, we denote x = 0 the right-hand face of the last slice of the (left) medium 1, as well as the left-hand face of
the first slice of the (right) medium 2. This labelling will “follow” the motion of the system and (provided of course
that no mixing occurs between the two fluids) the Lagrangian labelling of the interface will remain x = 0 throughout
the propagation of the acoustic wave, whatever the amplitude of the latter and without any approximation.

Moreover, and more generally, the Lagrangian labelling of the fluid particles can be easily visualized using passive
markers15. Observing the trajectories of the latter markers provides an experimental check for mathematical solutions
or simulations and, besides, is of interest for environmental problems (see for instance5).

Teaching the Lagrangian picture also offers some advantage from a pedagogical point of view. A very natural
way indeed to introduce continuous media dynamics consists in starting from a discrete description of matter: using
Newton’s Second Law, the dynamics of every fluid element is established, then merged into a continuous description
(typically, in lattice dynamics, this continuous description naturally emerges when the conditions of the centre of
Brillouin zone propagation are fulfilled). In this respect, the bridge with the Eulerian picture is a bit more delicate

(leading for instance to the spurious (~v ·
−−→
grad)~v nonlinearity mentioned above).

Nevertheless, our promotion of the Lagrangian picture would be incomplete if we did not stress the following feature.
Let us consider the position of a moving fluid at some initial time t0. Labelling the different fluid elements by their
position ~r0 with respect to the reference frame, we can of course choose a set of Cartesian coordinates: ~r0(x0, y0, z0).
But, in the course of the subsequent motion, we will have to take the distortion of the fluid elements into account in
order to write correctly the local balance equations (as (1) for instance, where both hand-sides have to be reconsidered
in the framework of the Lagrangian picture). Now, due to the a priori complex motion of the fluid, our coordinate
system is no longer Cartesian at any time t, but curvilinear. (Of course, we should never have the same problem
with the Eulerian picture, since then the choice of a Cartesian coordinate system to label the geometric points of the
reference frame can be made once for all.)
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medium 1

x = 0 x = + ∞

medium 2

x = – ∞

FIG. 1: Medium 1 and medium 2 are separated at rest by the plane x = 0. When a pressure wave propagates, the interface
does not remain at x = 0, but moves back and forth on either side of the plane x = 0. In the Eulerian picture, locating the
interface at x = 0 appears as an order-zero approximation.

In other words, fully mastering the Lagrangian picture involves being able to deal with any curvilinear coordinates
system. This, of course, may be regarded as severely impairing the simplicity of the description. And it does.
Nevertheless, it can be argued that this unavoidable drawback offers an opportunity to introduce, in a confortable
3-D flat Euclidian space, some concepts and notations that reveal essential in other domains, as for instance the theory
of General Relativity (GR). We made the choice in the present paper to seize this opportunity to instil, as soflty as
possible, some notions about covariance, tensorial calculation, covariant derivation and so on.
With this general philosophy, the present paper is organized as follows. In section II, we focus on the one-dimension

problem. We illustrate our purpose with the calculation (in subsection IIA) of the exact solution of the sound
propagation in a fluid with a linear extrapressure-to-strain thermodynamic relation, which reveals a surprising absence
of frequency shift of the eigenmodes when the length of the fluid column is modified by the operator (in a way
precised in the text). We next show (in subsection II B) that the so-called acoustic radiation pressure is entirely due
to the nonlinearity of the extrapressure-to-strain relation, and we perform an exact (up to order 2) calculation of it,
emphasizing the link with the frequency shift then associated with a fluid column length modification. In section
III, we introduce a few geometrical concepts and quantities useful when handling curvilinear coordinate systems:
coordinates bases in subsection IIIA, general notions about tensors in subsection III B; the metric tensor is presented
in subsection III C and the metric coefficients used to pass from covariant to contravariant components and vice versa;
the covariant derivation of these components is outlined in subsection IIID and some basic elements of vector analysis
are displayed in subsection III E.
In section IV, we extend the considerations of section II to the general three-dimension problem: geometrical

displacement, dilatation, strain (subsection IVA). Then, we establish the 3-D motion equations, as well as their
equivalence with those obtained with the Eulerian picture (subsection IVB). Next, we consider the energy balance
in the Lagrangian picture: energy density and acoustic Poynting vector (subsection IVC). At last, we examine
the well-known problem of the pulsating sphere in the framework of the Lagangian picture and we discuss the
reflection/transmission coefficients at the interface in spherical geormetry (subsection IVD).

II. THE ONE-DIMENSION CASE

As announced in the introduction, we start the present study of the Lagrangian picture with the simplest situation
we may have to face: the one-dimension problem. Let us therefore consider a fluid occupying at rest a cylindrical
volume with axis Ox0 and section S (figure 2a), at equilibrium pressure P0 and mass density ρ0. Both ends, labelled
x0 = 0 and x0 = L, are made of pistons that are provisionally supposed to be fixed. As displayed in figure 2, the slice
of fluid comprised between faces labelled x0 and x0 + dx0 has mass ρ0Sdx0. At time t, its current thickness is

(
x0 + dx0 + u(x0 + dx0, t)

)
−
(
x0 + u(x0, t)

)
=

(
1 +

∂u

∂x0

)
dx0, (5a)

so that its current mass density is simply

ρ(x0, t) =
ρ0

1 +
∂u

∂x0

. (5b)

Besides, within the framework of the Lagrangian picture, the pressure forces undergone by this slice of fluid are
respectively SP0(x0, t) (left end) and − SP (x0+dx0, t) (right end). Consequently, applying Newton’s Second Law to
the later slice, we obtain

ρ0
∂L2u

∂t2
= −

∂P

∂x0
, (6)
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(r0, P0)(a)

x0 = 0 x0 x0 + dx0 x0 = L0

(b)

S

S

x0 = 0 x0 x0 + dx0 x0 + u(x0) x0 + dx0 + u(x0 + dx0) x0 = L0

FIG. 2: (a). The fluid at rest, with equilibrium mass density ρ0 and pressure P0. (b). The fluid at time t: both ends, labelled
x0 = 0 and x0 = L, are made of pistons that are provisionally supposed fixed.

where superscript L in the left-hand side recalls that the time-(second) derivative is understood at constant x0 (even
if the current position at time t of the face labelled “x0” is miles away from the point with abscissa x0 of the
reference frame). The above equation (6) deserves at least a twofold comment: (i) it is strictly exact (we made no

approximation); (ii) it is strictly linear in displacement u (or in velocity v = ∂Lu
∂t

). Establishing equation (6) is
half of the job. If we want now to get a propagation equation, we have to connect the pressure P (x0, t) with the
expansion factor ∂u

∂x0
(or equivalently the mass density ρ). This is a thermodynamic affair. Throughout the present

article, we shall assume, for the sake of simplicity, that any transformation undergone by the fluid is isentropic. In
the framework of the Lagrangian picture, this means that the entropy of any fluid slice [x0, x0 + dx0] is, at any time,
equal to its equilibrium value, so that in the course of the motion, the pressure P (x0, t) can be expressed as a function
of the sole16 mass density ρ(x0, t). It will appear in the following discussion that it is most convenient to expand the
extrapressure P (x0, t)− P0 in increasing powers of ∂u

∂x0
:

P (x0, t)− P0 = − κ1

(
∂u

∂x0

)
+

1

2
κ2

(
∂u

∂x0

)2

+ · · · , (7)

where κ1 > 0 due to the Second law of thermodynamics. Combining the mechanical equation (6) (in which the
superscript L for “Lagrange” is henceforth omitted) with the above thermodynamic relation (7), we get the sound
propagation equation

ρ0
∂2u

∂t2
= κ1

∂2u

∂x2
0

(
1−

κ2

κ1

∂u

∂x0
+ · · ·

)
. (8)

The above equation is nonlinear in displacement u, its nonlinearity originating exclusively in the κ2, κ3, etc. terms
in the thermodynamic expansion (7).

A. The linear approximation

In this subsection, we deliberately linearize the above equation (7), i.e. we assume that κ2 = κ3 = · · · = 0. The
propagation equation (8) becomes also linear, and reads

1

c2
∂2u

∂t2
=

∂2u

∂x2
0

, (9a)

with

c =

√
κ1

ρ0
. (9b)

Let us look for the propagation eigenmodes, i.e. the monochromatic solutions of (9a). They necessarily read, owing
for the boundary conditions we have choosen,

un(x0, t) = ℜ
{
An sin(knx0) e

−iωnt
}
, (10a)
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with

ωn = ckn, kn =
nπ

L0
(n = 1, 2, · · · ), (10b)

and An a (complex) amplitude. Note that, as far as the linearization of the thermodynamic relation (7) (i.e. κ2 =
κ3 = · · · = 0) is relevant, the above solution is exact, contrary to the solution generally proposed in the framework of

the Eulerian picture, which requires in addition the linearization of the Euler equation (i.e. neglecting the (~v ·
−−→
grad)~v

term in (1)17).

Let us now determine the overall acoutic energy associated with the wave, i.e. the variation (with respect to the rest
state) of the sum of all the [x0, x0+dx0] slices total energy. Since there is neither heat exchange between neighbouring
slices nor external force, we just have to determine the (mechanical) work done by the pressure force to drive each
fluid slice from its equilibrium state to its current state at time t. For the [x0, x0 + dx0] slice, the energy variation is
exactly

dE =

∫ t

0

dt

[
− SP (x0 + dx0, t)

∂u(x0 + dx0, t)

∂t
+ SP (x0, t)

∂u(x0, t)

∂t

]
= Sdx0

∫ t

0

dt

[
−

∂P

∂x0

∂u

∂t
− P

∂2u

∂x0∂t

]
. (11a)

Owing to (6) and to (the linarized version of) (7), the above equation becomes

dE = Sdx0

[
1

2
ρ0

(
∂u(x0, t)

∂t

)2

− P0
∂u(x0, t)

∂x0
+

1

2
κ1

(
∂u(x0, t)

∂x0

)2]
. (11b)

Integrating over the whole fluid, and accounting for (9b) and our boundary conditions, we finally get the overall
acoustic energy E, which is a constant of the movement:

E =
1

2
ρ0S

∫ L0

0

dx0

[(
∂u

∂t

)2

+ c2
(

∂u

∂x0

)2]
. (11c)

Now, since any solution u(x0, t) of the wave equation (9a) is but a linear combination of eigenmodes of the type (10a),
the above energy (11c) may also be written, all calculations carried out,

E =
1

4
ρ0SL0

∞∑

n=1

|An|
2ω2

n =

∞∑

n=1

Nn~ωn (11d)

where Nn is the so-called semi-classical quanta number in mode n. We would end this brief recall of the above results
with the following (thought) experiment. Suppose that, while a given eigenmode (say mode n) is established in the
cylindrical cavity delimited by the two pistons displayed in figure 2, we slowly move the piston at the end labelled
“x0 = L0” at, say, a constant velocity V . By “slowly”, we mean “adiabatically in the Ehrenfest sense”. We have
discussed at some length this issue in a foregoing paper6, and shown that, in the course of such a kind of adiabatic
parametric excitation of the system, the quanta number Nn is conserved. Let us recall that, in the framework of
the Lagrangian picture, the label “x0 = L0” of the fluid in contact with the moving piston remains unchanged,
although the total length of the fluid column is obviously L(t) = L0 + V t. In this respect, it is convenient to split the
displacement u(x0, t) in two parts and set

u(x0, t) =
x0

L0
V t+ w(x0, t). (12)

The first term in the right-hand side of the above equation (12) is the displacement of the slice labelled x0, associated
with a quasistatic expansion (or compression, according to the sign of V ) of the fluid; the second term is the extradis-
placement of the latter fluid slice due to the acoustic wave. Observe that the boundary conditions for w(x0, t) are
the same as for u(x0, t): w(x0 = 0, t) = w(x0 = L0, t) = 0. Now, let us rewrite the wave equation (9a) in terms of w
instead of u. We get, using (12),

1

c2
∂2w

∂t2
=

∂2w

∂x2
0

, (13)

i.e. exactly the same equation as for u. Solution (10a) is consequently unchanged: fascinating though it may be, the
motion of the piston has strictly no influence upon eigenmode n. In particular, no frequency shift18 occurs: the wave
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number kn = nπ
L0

as well as the angular frequency ωn = ckn do keep their initial values even if L(t) happens to become

twice (or half) its initial value L0. Moreover, glancing at equation (11d), one concludes that, since neither the quanta
number Nn (Ehrenfest adiabaticity) nor the angular frequency ωn (no frequency shift) are modified, the acoustic
energy is unchanged; to move the piston, the operator has of course to take account of the quasistatic variation of the
instantaneous equilibrium pressure Peq(t) of the fluid:

P (x0, t)− P0 = − κ1
∂u

∂x0
= − κ1

(
V t

L0
+

∂w

∂x0

)
 P (x0, t)− Peq(t) = − κ1

∂w

∂x0
(14a)

with

Peq(t) = P0 − κ1
V t

L0
, (14b)

but he has no extrawork to supply, associated with the acoustic wave itself. In this sense, there is no radiation pressure
corresponding to this acoustic wave. Before leaving this subsection, we should underline the following point: although
equation (13) is exact whatever the value of velocity V , the Ehrenfest adiabaticity is required during the initial
acceleration of the piston (from V = 0 to its cruising speed). Of course, the ideal fluid assumed in the calculations of
this subsection does not exist. Nervertheless, the propagation of longitudinal expansion/compression waves through
a mass-distributed spring (as those designed as decorative objects or toys for children for instance) is well described
by the above equations of this subsection IIA. In the next subsection, we consider a more realistic approximation of
the thermodynamic relation (7), better adapted to real fluids.

B. Taking nonlinearity into account

Let us now approximate (7) by

P (x0, t)− P0 = − κ1

(
∂u

∂x0

)
+

1

2
κ2

(
∂u

∂x0

)2

. (15)

Taking account of the above nonlinearity (κ2 6= 0) involves the following consequence. Suppose that we move the
right piston (labelled “x0 = L0”) by an amount δL, and that we consider the motion of the fluid with respect to this
new equilibrium position. Then we have, substituting δL for V t in (12),

u(x0, t) =
x0

L0
δL+ w(x0, t), (16a)

so that (15) becomes

P (x0, t)− Peq = − κ′

1

(
∂w

∂x0

)
+

1

2
κ2

(
∂w

∂x0

)2

, (16b)

with

Peq = P0 − κ1
δL

L0
+

1

2
κ2

(
δL

L0

)2

, (16c)

κ′

1 = κ1

(
1−

κ2

κ1

δL

L0

)
. (16d)

The above relations deserve the following comments: (i) the extrapressure-to-expansion factor thermodynamic relation
keeps the same form; (ii) the equilibrium pressure is modified, as was already observed in the linear case ((16c) is
but the generalization of (14b) with V t substituted by δL); (iii) the linear compressibility coefficient κ1 is changed
in κ′

1, due to the nonzero value of κ2: in this change of the compressibility originates a frequency shift when moving
piston L0, as well as an acoustic radiation pressure. We will show below that frequency shift and radiation pressure
are utterly entangled and, as it were, consubstantial.

How can we solve for u(x0, t) in the nonlinear propagation equation (8)? Unless an analytical solution can be
found, a good approach is the perturbative method, provided that the condition | ∂u

∂x0
| ≪ 1 is fulfilled. For the sake of

simplicity, let us start from an eigenmode of the linearized wave equation, say (see (10a))

u(1)(x0, t) = A sin(kx0) cos(ωt− ϕ), (17a)
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where we have deliberately ignored the eigenmode index n. Of course, u(1)(x0, t) is not a solution of the full (i.e.
nonlinearized) wave equation, but the solution having u(1) as linear approximation can be expanded in increasing
powers of amplitude A:

u(x0, t) = u(1)(x0, t) + u(2)(x0, t) + · · · . (17b)

Let us look for u(2)(x0, t). Using (8) and (9b), we have

1

c2
∂2u(2)

∂t2
−

∂2u(2)

∂x2
0

= −
κ2

κ1

∂2u(1)

∂x2
0

∂u(1)

∂x0
. (18a)

The above equation means that the order-1 solution u(1) acts like a source-term with respect to the order-2 displace-
ment u(2). Using (17a) we get this source-term:

−
κ2

κ1

∂2u(1)

∂x2
0

∂u(1)

∂x0
=

κ2

κ1

A2k3

2
sin(2k0x0)

1 + cos(2ωt− 2ϕ)

2
, (18b)

which implies that solution u(2) is the sum of two contributions: one static and one oscillating at the angular
frequency 2ω. Let us focus on the former contribution, which is, accounting for the boudary conditions (u(2)(x0 =
0, t) = u(2)(x0 = L0, t) = 0),

u(2)
s (x0) =

κ2

κ1

A2k

16
sin(2kx0) (19)

(index “s” for “static”).
Now, it is interesting to calculate the static extrapressure P [2] − P0 associated with the acoustic mode, up to the

second order in amplitude A. Using (15), we get

P [2](x0, t)− P0 = − κ1

(
∂u(1)

∂x0
+

∂u(2)

∂x0

)
+

1

2
κ2

(
∂u(1)

∂x0

)2

. (20)

As well known, the order-1 extrapressure term −κ1
∂u(1)

∂x0
oscillates at the angular frequency ω, and consequently

averages to zero with time. The order-2 extrapressure term is the sum of a static (Ps) and a 2ω-oscillating contribution.
Focusing, as above, on the former contribution, we find, all calculations carried out,

Ps − P0 =
1

8
κ2A

2k2. (21)

The above result (21) deserves a few comments. First, it should be noticed that the extrapressure Ps−P0 is homoge-
neous (Ps does not depend on x0), as expected for a static term. This static extrapressure is known as the Rayleigh
radiation pressure7,8. It is noteworthy too that Ps−P0 is proportional to coefficient κ2, and thus originates exclusively
in the nonlinearity of the thermodynamic relation (15): this is the reason why we could not find such an extrapressure
in the linear framework of our foregoing subsection IIA. In this respect, it is interesting to link the Rayleigh radiation
pressure and the (Lagrangian) acoustic energy density E that can be derived from (11d):

E =
E

SL0
=

1

4
ρ0A

2ω2 =
1

4
κ1A

2k2, (22a)

so that, according to (21),

Ps − P0 =
1

2

κ2

κ1
E . (22b)

As a last comment about result (21), we would show how radiation pressure and frequency shift are deeply entangled.
With this aim, let us consider again the thought experiment we discussed above in subsection IIA, i.e. let us move
slowly the piston at the end labelled “x0 = L0”. Performing on the displacement u the splitting displayed in (12), we
are led to modify equations (14a-b) according to (16b-c), i.e.

P (x0, t)− Peq(t) = − κ1

(
1−

κ2

κ1

V t

L0

)
∂w

∂x0
+

1

2
κ2

(
∂w

∂x0

)2

, (23a)
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with

Peq(t) = P0 − κ1
V t

L0
+

1

2

(
V t

L0

)2

. (23b)

As already mentioned, the important issue is that, due to the nonlinear term in the right-hand side of (15) (κ2 6= 0),
the linear term −κ1

∂w
∂x0

is changed in −κ′
1
∂w
∂x0

, due to the variation δL = V t of the length of the cavity:

κ′

1 = κ1

(
1−

κ2

κ1

V t

L0

)
, (24)

Consequently, the wave equation ruling w becomes

ρ0
∂2w

∂t2
= κ′

1

∂2w

∂x2
0

(
1−

κ2

κ1

∂w

∂x0

)
, (25)

i.e. the same equation as for u except that κ′
1 should be substituted for κ1 (compare for instance with (8)). Linearizing

the above equation (25), we find a wave equation with the modified (see (9b)) sound velocity c′ given by

c′2 =
κ′
1

ρ0
= c2

(
1−

κ2

κ1

V t

L0

)
. (26a)

The above modification of the sound velocity, associated with an unchanged19 wavevector kn = nπ
L0

, entails a change
in the angular frequency:

ω′2 = ω2

(
1−

κ2

κ1

V t

L0

)
. (26b)

Observe by the way that the amplitude A of mode n is changed too. Nevertheless, since the piston is moved
adiabatically (in the Ehrenfest sense), we have (see (11d) and the discussion thereafter)

A′2ω′ = A2ω. (26c)

As a consequence, the change in the acoustic energy of the wave is

dE =
1

4
ρ0SL0A

2ωδω, (27a)

or, using (26b), (9b) and (10b),

dE = −
1

8
κ2A

2k2SδL. (27b)

As shown by the above equation, dE is therefore the work the operator has to supply to vary the volume of the cavity
by an amount δV = SδL, the (acoustic) pressure reigning in the cavity being 1

8κ2A
2k2, i.e. precisely the extrapressure

found in (21).

We would end this outline of the Lagrangian picture in the one-dimension case with a further remark. In the present
section II, we have considered rigid boundary conditions, namely both pistons were fixed (or moved with a velocity
imposed by the operator as concerns piston L0). One may wonder how our results would be modified if, say, piston
L0 was not fixed, but imposed the external pressure P0. Then the boundary condition on the fluid slice labelled L0

would no longer be u(x0 = L0) = 0 (∀t), but rather P (x0 = L0) = P0. Of course equations (5a) through (10a) would
hold unchanged, whereas the wavevector quantification relation (10b) would become kn =

(
n + 1

2

)
π
L0

. As concerns

the energy balance, (11a) and (11b) would be unchanged while energy E should be substituted by the (conserved)
quantity E + P0Su(L0, t) in (11c) and (11d). The shift δL of the boundary at x0 = L0 would be obtained by setting
P0 = Peq(δL) +

1
8κ2A

2k2, as suggested by (21), with Peq(δL) given by (16c). Observe by the way that such a shift
of the overall length of the system would occur all the same if the acoustic vibration modes of the cavity, instead
of being coherently activated, were thermally excited: the well known Grüneisen thermal expansion9 would then be
recovered. To sum up, save for the above slight necessary adaptations, our conclusions about the acoustic radiation
pressure are unchanged: the latter does not depend on the boundary conditions we choose to implement our thought
experiment.

In the next section, we sketch some geometric elements useful in the more general three-dimension problem. These
notions, which involve curvilinear coordinates and tensorial notations, are not strictly speaking indispendable to grasp
the true substance of the 3D generalization we propose in section IV, but they make the reading of this section more
comfortable. We leave it to the reader either to work his way through the following section III, or to overfly it and
just catch its notations.
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q1M

q2

q3

e1
−→

e2
−→e3

−→

FIG. 3: The most general curvilinear coordinate system. The local basis {~e1, ~e2, ~e3} (~ei = ∂ ~M/∂qi) is a priori neither orthogonal
nor normalized.

III. MANAGING CURVILINEAR COORDINATES

A. Coordinate bases

Let us consider now the most general Euclidean 3D reference frame. As displayed in figure 3, this frame is regarded
as a set of geometrical points M. These points are labelled using a continuous set of curvilinear coordinates denoted
(q1, q2, q3). Note the upper position of the indices. The most familiar parametrization is the Cartesian one: q1 = x,
q2 = y, q3 = z. But we can also, for instance, use the spherical coordinate system: q1 = r, q2 = θ, q3 = ϕ; observe
that, in the latter case, all coordinates have not the same dimension: r is a length, whereas θ and ϕ are angles. Now,
let us fix two coordinates, say q2 and q3, and let q1 vary: point M describes a so-called coordinate line, labelled by the
couple (q2, q3). We can as well fix q1 and q2 and let q3 vary or fix q1 and q3 and let q2 vary: each point M is at the
intersection of three coordinate lines. In the Cartesian coordinate system, the coordinate lines are (infinite) straight
lines. In the spherical coordinate system, the (θ, ϕ) coordinate lines (r varying from 0 to infinity) are (semi-infinite)
straight lines, the (r, θ) coordinates lines (ϕ varying from 0 to 2π) are circles – “parallels” in the terrestrian geographic
description (constant latitude) – and the (r, ϕ) coordinate lines (θ varying from 0 to π) are semicircles – “meridians”
(constant longitude). At each point of the space, one can define the set of vectors (i = 1, 2, 3)

~ei =
∂
−→
M

∂qi
, (28)

where (as for any usual partial derivative), the derivation with respect to coordinate qi is understood with the other
two coordinates fixed. Note the lower position of index i in ~ei, which corresponds to the upper position of this
index in the (symbolic) denominator ∂qi. As a consequence of the above definition, each vector ~ei is tangent to its
corresponding coordinate line. In the Cartesian case, the ~ei (i.e. ~ex, ~ey, ~ez) are unit (dimensionless) vectors. This
is no longer true with other curvilinear coordinate systems. For instance, in the spherical coordinate system, vector

~e1 = ∂
−→
M
∂r

is a unit vector, but ~e2 = ∂
−→
M
∂θ

and ~e3 = ∂
−→
M

∂ϕ
are not (length units). Extending the usual mathematical

definitions of linear algebra, the set of (linearly independent) vectors {~e1, ~e2, ~e3} is commonly called a “coordinate
basis”. Observe that (except for the Cartesian case) the coordinate basis is local, in the sense that it varies from one
point of the space to another. Using definition (28), the infinitesimal (vectorial) element from point M(q1, q2, q3) to
point M′(q1 + dq1, q2 + dq2, q3 + dq3) is

d
−→
M =

3∑

i=1

~eidq
i. (29a)

The dqi are thus the component of vector d
−→
M on basis {~ei}. In order to lighten formulas, and falling into step

with a widely admitted (and applied) convention, we shall henceforth omit the
∑3

i=1 summation symbol whenever
a so-called “dumb” index is repeated in an expression, provided that it appears once in a lower position, once in an
upper position. Thus the above equation (29a) will be simply written

d
−→
M = ~eidq

i = ~ejdq
j = ~ekdq

k . . . , (29b)

the summation over i (or j, or k) being by convention understood.
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It is noteworthy that, if we decide to change our coordinate system, say from (q1, q2, q3) to (p1, p2, p3), then the

coordinate basis {~ei} will be changed in a new coordinate basis {~fj} according to

~fj =
∂
−→
M

∂pj
=

∂
−→
M

∂qi
∂qi

∂pj
= ~eiΛ

i
j , (30)

where Λ is the so-called passage matrix, i.e. the matrix allowing to pass from the ancient basis to the new one (Λi
j

is the component of the new basis vector ~fj along the ancient basis vector ~ei). Writing the infinitisimal element d
−→
M

again, we get, using (30),

d
−→
M = ~fjdp

j = ~eiΛ
i
jdp

j = ~eidq
i, (31)

which shows that the ancient components dqi are expressed as a function of the new ones dpj by means of Λ
(dqi = Λi

jdp
j). Expressing the dpj as a function of the dqi requires the inverse passage matrix Λ−1 (dpj = (Λ−1)jidq

i),
hence the adjective “contravariant” coined to qualify the (usual) components of a vector on a basis.

B. Tensors

Now, in order to be as complete as possible, we should do some further linear algebra, and introduce notions
about dual (E∗) and bidual (E∗∗) spaces of a given vector space E . In addition to the fact that this presentation
would provide a satisfactory mathematical frame, it would naturally lead to the notion of tensor. Unfortunately,
any attempt to implement properly this programme invariably results in doubling the length of the present section,
which should remain but a mathematical insert and should not overshadow our main goal, i.e. promoting the use
of the Lagrangian picture. We consequently ask the reader either to admit part of the hereafter recalled results or
to refer to some textbook10 about tensorial calculus in order to find the proofs he needs. Grosso modo the reader is
supposed to know that, being given any K-vector space E (K is the scalar corps; it will be ❘ in the present paper),

the set of all the linear mappings
←−
X (note the direction of the arrow) of E onto K, the so-called 1-forms, is itself

a K-vector space, called E ’s dual and generally denoted E∗. The 1-forms are often called “covectors”. The same
process can be iterated, and one defines E∗∗ as the set of all the linear mappings of E∗ onto K. One then easily shows
that there exists a canonical isomorphism between E and its bidual E∗∗ (“canonical” should here be understood in
the sense of “intrinsic”, i.e. utterly independent of any choice of basis). In other words, allowing for this biunivocal
correspondence, E and E∗∗ should be considered as identical. The vectors of E (and consequently E∗∗) are called
contravariant rank-1 tensors, prefix “contra” referring to the way their components transform under a basis change,
as explained above (see (31)). The covectors (i.e. the vectors of E∗) are called covariant rank-1 tensors, prefix “co”
originating also in the way their components transform under a basis change in E . It is then noteworthy that vectors
and covectors play symmetrical roles, so that the former can be regarded as linear mappings (1-forms) of E∗ onto K.
Furthermore, the above considerations can be extended to multilinear mappings of (E or E∗) × (E or E∗) × · · · onto
K, thus defining rank-n tensors. An important exemple of bilinear form is introduced in the next subsection.

C. The metric tensor

So far, we have not equipped E with a dot product. Let us do it now. Our vector space E becomes pre-Hilbertian.
Since it is the purpose of the present paper, let us focus on the case of the 3D-vector space E associated with
our everyday life geometric space ❘3, and equip E with the usual Euclidean dot product. We then introduce the

nondegenerate symmetrical bilinear form
←−←−g :

←−←−g (~u,~v) = ~u · ~v = ~v · ~u, (~u,~v) ∈ E × E . (32)

(According to the terminology introduced in the foregoing subsection III B,
←−←−g is, by definition, a covariant rank-2

tensor.) Now, let us choice a basis {~e1, ~e2, ~e3}, and build the three vectors (note the upper indices)

~e 1 =
~e2 ∧ ~e3
V

, ~e 2 =
~e3 ∧ ~e1
V

, ~e 3 =
~e1 ∧ ~e2
V

, (33a)

where

V = (~e1, ~e2, ~e3) (33b)
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is the mixed product of the basis vectors ~ei. Basis {~e 1, ~e 2, ~e 3} will henceforth be called the cobasis20 of basis
{~e1, ~e2, ~e3}. It is easy to check that

~e k · ~ei = δ
k
i , (34a)

(~e 1, ~e 2, ~e 3) =
1

V
, (34b)

V~e 2 ∧ ~e 3 = ~e1, V~e 3 ∧ ~e 1 = ~e2, V~e 1 ∧ ~e 2 = ~e3. (34c)

Note, by the way, that the above relations show that the co-cobasis of basis {~ei} (i.e. the cobasis of basis {~e k}) is
basis {~ei} itself. This is of course a consequence of the afore-mentioned canonical isomorphism between E and E∗∗.

Furthermore, it can be shown that under the basis change {~ei} {~fj} implemented by means of the passage matrix

Λ (see (30)), the cobasis {~e k} is changed into {~f ℓ} with passage matrix Λ−1. For this reason, for a given vector ~V , we
will call “contravariant”, and note with upper indices, its components on basis {~ei} and “covariant” its components
on basis {~e k}, noted with lower indices. This point deserves the following development. Let us set

←−←−g (~ei, ~ej) = ~ei · ~ej = gij . (35)

The metric coefficients gij are a precious tool to lower or to lift tensorial indices, as explained below. Let us begin
with the basis vectors themselves and expand the ~ei on the cobasis {~e k}:

~ei = cik~e
k. (36a)

Multiplying both hands by ~ej (dot product), we get

~ei · ~ej = cik~e
k · ~ej = cikδ

k
j = cij = gij , (36b)

so that (36a) reads in fine

~ei = gik~e
k. (36c)

The metric coefficients matrix (gik) therefore allows to expand the basis vectors on the cobasis. A contrario, expanding
the cobasis vectors on basis {~ei}:

~e k = dki~ei, (37a)

multiplying both hands by ~e ℓ and setting

~e k · ~e ℓ = gkℓ, (37b)

we get in fine

~e k = gki~ei, (37c)

which means that (gik) is the passage matrix from basis {~ei} to its cobasis {~e k}. Comparing (36c) and (37c), we
observe that matrix (gik) is the inverse of matrix (gik). The latter matrices act like “index lifts” with respect to the
basis and cobasis vectors. As a consequence, they act in like manner with tensorial indices. Let us indeed consider

any vector ~V , and let us expand it on basis {~ei}:

~V = V i~ei. (38a)

Using (36c), we get

~V = V igik~e
k = Vk~e

k. (38b)

In the above expansion, the V i are the contravariant components of ~V (upper index i), whereas Vk = gikV
i are its

covariant components (lower index k). Applying result (38a-b), we obtain

V i = ~V · ~e i, Vk = ~V · ~ek. (39)
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The above expressions can be easily extended to higher-rank tensors. In the same connection, the metric coefficients

allow various expressions for vectors products. Let us consider two vectors ~U and ~V . Their dot product can be written

~U · ~V = gijU
iV j = gijUiVj = U iVj = UiV

j , (40a)

and their wedge product

~U ∧ ~V = VεijkU
iV j~e k =

1

V
εijkUiVj~ek, (40b)

where V is the elementary volume introduced in (33b) and εijk(= εijk) is the Levi-Civita symbol (εijk = +1 if (i, j, k)
is in clockwise order, εijk = − 1 if (i, j, k) is in anticlockwise order, εijk = 0 if two indices are equal).

Before ending this quick overfly of the properties of the metric tensor, we would point out a useful relation between
the elementary volume V and the determinant det(gij) of matrix (gij). To derive it, let us consider three vectors ~u,
~v, ~w. Their mixed product can be written

(~u,~v, ~w) = V ×

∣∣∣∣∣∣

u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
×

1

V
, (41a)

hence

(~u,~v, ~w)2 =

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣

∣∣∣∣∣∣

u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

~u 2 ~u · ~v ~u · ~w
~v · ~u ~v 2 ~c · ~w
~w · ~u ~w · ~v ~w 2

∣∣∣∣∣∣
. (41b)

Applying (41b) in the particular case (~u = ~e1, ~v = ~e2, ~w = ~e3), we get

V2 = (~e1, ~e2, ~e3)
2 =

∣∣∣∣∣∣

g11 g12 g13
g21 g22 g23
g31 g32 g33

∣∣∣∣∣∣
= det(gij). (41c)

The fact that det(gij) should be positive is linked to the Euclidean nature of the metric. Another type of metric would
result in another sign for det(gij). For instance, in the 4D spacetime of GR the gµν metric is locally Minkowskian,
yielding a negative value for det(gµν).

D. Covariant derivation

Our brief overflight of the features of the curvilinear coordinates systems would be incomplete without a few words
about the covariant derivation. The broad lines of this issue can be summarized as follows.

When using non Cartesian coordinates systems, the space-derivation of “scalar” fields raises no particular difficulty.
On the other hand, when deriving “vector” or more generally “tensor” fields, one should take into acount not only
the space-dependence of the components, but also that of the basis vectors themselves. There exists an elegant trick
to do it. Let us define

∂i~ej =
∂2−→M

∂qi∂qj
= Γ k

ij~ek, (42)

where the (space-dependent) coefficients Γ k
ij = Γ k

ji are known as the Christoffel symbols. They can be derived from

the metric tensor. Considering a vector fileld ~A, we have consequently

∂i ~A = ∂i(~ejA
j) = ∂iA

j ~ej +Aj Γ k
ij~ek. (43a)

Permuting dumb indices k and j in the second term of the right-hand side of the above equation, we get

∂i ~A = (∂iA
j +AkΓ j

ik)~ej = ~ejDiA
j , (43b)

where

DiA
j = ∂iA

j +AkΓ j
ik (43c)
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is the so-called “covariant derivative” of Aj . Conservely, using (34a) and (42), we have

0 = ∂i(~e
j · ~ek) = (∂i~e

j) · ~ek + ~e j · Γ ℓ
ik~el = (∂i~e

j) · ~ek + Γ j
ik, (44a)

hence

∂i~e
j = −Γ j

ik~e
k. (44b)

Considering the same vector field ~A as above, but now expanded on the cobasis {~e j}, we have

∂i ~A = ∂i(Aj~e
j) = ∂iAj ~e

j −Aj Γ
j
ik~e

k. (45a)

Permuting again dumb indices k and j in the second term of the right-hand side of the above equation, we are left
with

∂i ~A = (∂iAj −AkΓ
k
ij)~e

j = (DiAj)~e
j , (45b)

where

DiAj = ∂iAj −AkΓ
k
ij . (45c)

As a conclusion, when using curvilinear coordinate bases, vector fields can be derived exactly as in Cartesian coordinate
systems, provided that ordinary derivatives should be substituted by covariant derivatives. Observe the latter bring a
Christoffel symbol with a plus sign when deriving contravariant components, and a minus sign when deriving covariant
components. The above formulas (43a-b-c) and (45a-b-c) can be extended to any higher-order tensorial fields.

E. Vector analysis

Among the mathematical tools commonly used in electrodynamics as well as in fluid dynamics, the gradient, the curl
and the divergence occupy an outstanding place. It is therefore important to be able to write them in any coordinate
system. In the Cartesian coordinate system, a handy mnemonics is provided by the so-called “nabla vector”

~∇ = ~ex∂x + ~ey∂y + ~ez∂z, (46)

thanks to which the above three operators can be symbolically written

−−→
gradV = ~∇V, ~curl ~A = ~∇∧ ~A, div ~A = ~∇ · ~A. (47)

Unfortunately, the above mnemonics fails to provide the correct expression for the gradient, the curl and the divergence
in other curvilinear coordinate systems. The aim of the present section is to propose another mnemonics, hardly more
sophisticated than (46)-(47), which works in every case.

1. The gradient

For a scalar field V ,
−−→
gradV is the vector such that dV =

−−→
gradV · d ~M , whatever the elementary displacement d ~M .

Since dV = ∂iV dqi, and owing to (28), we have ∂iV dqi =
−−→
gradV · ~eidq

i ∀dqi, hence

−−→
gradV · ~ei = ∂iV  

−−→
gradV = (∂iV )~e i, (48)

which means that the ∂iV are the covariant components of
−−→
gradV . Observe that, for any “scalar” field, DiV (covariant

derivative) can be substituted for ∂iV in the above equation (48).

2. The curl

The curl of a vector field ~A is the vector ~curl ~A such that the circulation of ~A along a loop should be equal to the flux

of ~curl ~A through any surface leaning upon this loop (Stokes’s theorem). Let us choose, for instance, an elementary
loop generated by vectors ~e1dq

1 and ~e2dq
2 (see figure 4). Our loop looks like a parallelogram the surface of which is

~e1dq
1 ∧ ~e2dq

2 = V~e 3dq1dq2. (49)
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q1

q2q3

FIG. 4: Elementary loop generated by vectors ~e1dq
1 and ~e2dq

2.

The circulation of ~A along the four legs of our loop is

( ~A · ~e2)q1+dq1dq
2 − ( ~A · ~e1)q2+dq2dq

1 − ( ~A · ~e2)q1dq
2 + ( ~A · ~e2)q2dq

1 = (∂1A2 − ∂2A1)dq
1dq2

= ~curl ~A · (V~e 3dq1dq2), (50a)

hence

( ~curl ~A) · ~e 3 = ( ~curl ~A) 3 =
1

V
(∂1A2 − ∂2A1), (50b)

and more generally

~curl ~A =
1

V
εijk∂iAj~ek. (50c)

We leave it to the reader to check, using (45c) and Γ k
ij = Γ k

ji, that DiAj can be substituted for ∂iAj in the above
equation (50c).

3. The divergence

The divergence of a vector field ~A is the scalar field div ~A such that the flux of ~A through a closed surface should be

equal to the integral of div ~A over the volume inside this surface (Ostrograsky’s theorem). Let us choose, for instance,
the integration domain generated by the triad ~e1dq

1, ~e2dq
2, ~e3dq

3. Our domain looks like a parallelepiped, the volume

of which is (~e1dq
1, ~e2dq

2, ~e3dq
3) = Vdq1dq2dq3. The flux of ~A through the two opposite faces labelled q1 and q1+dq1

is
[
~A · (~e2 ∧ ~e3)

]
q1+dq1

dq2dq3 −
[
~A · (~e2 ∧ ~e3)

]
q1
dq2dq3 = ∂1( ~A · V~e

1)dq1dq2dq3. (51a)

The total flux through the (whole) closed surface is therefore

∂i( ~A · V~e
i)dq1dq2dq3 = (∂i ~A) · V~e

idq1dq2dq3 = div ~A(Vdq1dq2dq3) (51b)

(we have used the property ∂i(V~e
i) = 0, easily checked from (28) and (33a)), hence

div ~A =
1

V
∂i(VA

i) = (∂i ~A) · ~e i. (51c)

Observe that, allowing for (43b), the above equation (51c) can also be written

div ~A = (~ejDiA
j) · ~e i = δ

i
jDiA

j = DiA
i. (51d)

It is noteworthy that, in order to calcultate
−−→
grad, ~curl and div, the mnemonics recalled in (47) still holds in curvilinear

coordinates systems, provided that the “nabla vector” recalled in (46) should simply be substituted by

~∇ = ~e iDi. (52)

Our quick presentation of the mathematical gear relevant to the use of curvilinear coordinates is now complete.
In the next section, we shall apply it to put the 3D fluid dynamics in equations in the framework of the Lagrange
picture.
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IV. EXTENSION TO THE THREE-DIMENSION CASE

The aim of the present section IV is to regard again the fluid considered in section II, but now in a 3D geometry.
In this respect, we label each fluid element by its position M0 at time t0, using curvilinear coordinates q1, q2, q3.

A. Displacement, expansion and deformation

Let {~e01, ~e02, ~e03} be the coordinate basis at point M0, i.e.

~e0i =
∂
−→
M0

∂qi
. (53a)

Setting

V0 = (~e01, ~e02, ~e03), (53b)

the volume of the elementary “cube” of fluid is

dτ0 = V0 dq1dq2dq3 (53c)

and its mass is ρ0dτ0.

1. Displacement

Let now the fluid move. As illustrated in figure 5, the elementary fluid element labelled (q1, q2, q3), which was

located at point M0 at time t0, will be found at time t at point M. Vector ~M0M is referred to as the displacement of
this fluid element, and we define the (Lagrangian) displacement field ~u(q1, q2, q3, t) (henceforth denoted ~u(qi, t)).
The coordinate basis {~e1, ~e2, ~e3} at point M is consequently

~ei =
∂
−→
M

∂qi
= ~e0i + ∂i~u. (54)

2. Expansion

Setting

V = (~e1, ~e2, ~e3) = JV0, (55a)

the volume of the elementary cube of the fluid is now

dτ = Vdq3 = J dτ0 (55b)

Coefficient J characterizes the fluid expansion (if J > 1) or contraction (if J < 1) between times t0 and t. Observe
that J = J(qi, t) is itself a (Lagrangian) scalar field. An incompressible flow corresponds to J = 1 ∀(qi, t). Using
the above equation (55a), one can derive an interesting relation between the expansion rate ∂J

∂t
and the velocity field

~v(qi, t) = ∂~u(qi,t)
∂t

. Calculating ∂V
∂t

, we find, remembering (33b),

∂V

∂t
=

(
∂~e1
∂t

,~e2, ~e3

)
+

(
~e1,

∂~e2
∂t

,~e3

)
+

(
~e1, ~e2,

∂~e1
∂t

)

=

(
∂1~v,~e2, ~e3

)
+

(
~e1, ∂2~v,~e3

)
+

(
~e1, ~e2, ∂3~v

)

= V
(
∂1~v · ~e

1 + ∂2~v · ~e
2 + ∂3~v · ~e

3
)

= V ∂i~v · ~e
i, (56a)
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i.e., allowing for result (51c),

∂V

∂t
= V div~v, or equivalently

∂J

∂t
= J div~v. (56b)

Therefore, an incompressible flow corresponds to div~v = 0, exactly like in the framework of the Eulerian picture. The
above result (56b) is particularly simple. Nevertheless, we would draw the reader’s attention onto the following trap
to be avoided. Integrating (56b) over time is straightforward and yields

J(qi, t) = J(qi, t0) exp

[ ∫ t

t0

dt′ div~v(qi, t′)

]
, (57a)

which is correct. Nevertheless, tempting though it may be, one should not permute the ∂/∂t and div operators in
the time-integral in the right-hand side of the above equation (57a), which would lead to the nice-but-false result
J = J0 exp (div ~u). Within the Lagrangian picture indeed

∂Ldiv ~u

∂t
6= div

(
∂L~u

∂t

)
, (57b)

contrary to the Eulerian picture where both operators do commute.

3. Deformation

The passage from the undeformed basis {~e01, ~e02, ~e03} to the deformed basis {~e1, ~e2, ~e3} characterizes by itself the
deformation undergone by the (fluid, under the circumstances) matter associated with the displacement field ~u. Let
us consider indeed point M0(q

1, q2, q3) and, in the vicinity of M0, another point M
′
0 with coordinates (q1 + dq1, q2 +

dq2, q3 + dq3). In the basis {~e0i} defined in (53a), the (infinitesimal) vector ~M0M′
0 is expanded as

~M0M′
0 = ~e0jdq

j . (58a)

After displacement, the matter element labelled (q1, q2, q3) has moved from point M0 to point M, whereas the matter
element labelled (q1 + dq1, q2 + dq2, q3 + dq3) has moved from M′

0 to M′. The situation is illustrated in figure 5.

According with the definition (54) of basis{~ei}, the infinitesimal vector ~MM′ is expanded as

~MM′ = ~ejdq
j , (58b)

where the dqj are the same as in (58a). As a consequence of the above expansions (58a) and (58b), the correspondence

between ~M0M′
0 and ~MM′ is linear:

~MM′ = f( ~M0M′
0 ), (59a)

with

~ei = f(~e0i) = ~e0i + ∂i~u = (δki +Diu
k
0)~e0k = fk

i ~e0k. (59b)

B. Motion equations

Let us now come back to equation (6) and see how it can be generalized in the three-dimension case. Considering
a fluid amount with (rest) volume

∫
V0d

3q and (rest) mass density ρ0, Newton’s Second Law reads

∫
d3q V0ρ0

∂2~u

∂t2
=

∫∫

Σ(t)

−P d~s, (60a)

where Σ(t) is the external surface of the fluid amount at time t (see figure 6), and P the actual pressure exerted onto
this fluid amount by its surroundings. Using Ostrogradsky’s theorem, the surface integral in the right-hand side of
the above equation is changed in a volume integral

∫∫

Σ(t)

−P d~s =

∫
d3q V(−

−−→
gradP ) (60b)
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e01

M0
M¢0

M M¢

Æ

e1
Æ

e2
Æ

e3
Æ

e02
Æ

e03
Æ

FIG. 5: Transformations associated with the displacement field ~u: f(~e0i) = ~ei and f( ~M0M′

0
) = ~MM′

P0

S(0)

S(t)

r0, V0

r, V

– P dsÆ

FIG. 6: An amount of fluid with rest mass density ρ0 and wrapped in its (external) surface Σ(0) under the (rest) pressure P0 is
displaced and deformed in the course of the motion. At time t, it undergoes the outside pressure P exerted onto its (external)
surface Σ(t).

(observe that the volume of the fluid element labelled d3q is Vd3q at time t, and no longer V0d
3q as was the case

at rest). Since the above equations (60a) and (60b) hold whatever the integration volume, we are left with the local
motion equation

ρ0
∂2~u

∂t2
= − J

−−→
gradP, (60c)

where the superscript “L” (for “Lagrange”) is understood in the left hand-side time-derivative.
The above motion equation obtained in the Lagrangian picture is interestingly compared to the Euler equation

recalled in (1). To begin with, let us observe that the fluid velocity ~v is nothing else than the (Lagrangian) time-
derivative of the displacement ~u. Restoring provisionally superscripts “L” and “E”, we have indeed

∂L~u

∂t
= ~v (61a)

and

∂L2~u

∂t2
=

∂L~v

∂t
=

∂E~v

∂t
+
(
~v ·
−−→
grad

)
~v. (61b)

Moreover, observing that the fluid mass density ρ is (as a consequence of (55a) for instance) equal to ρ0/J , we conclude
that equations (1) and (60c) are perfectly equivalent.
Interesting too is the comparison between the three-dimension motion equation (60c) and its one-dimension reduced

expression (6). A (too) quick glance may instil the uncomfortable – and misleading – feeling that the J factor has
disappeared from the right-hand side of (6). In fact, in the one-dimension problem considered in section II, if x0

denotes the usual abscissa, then the vector ~e01 = ∂1 ~M0 is unitary, but the vector ~e1 = ∂1 ~M is not unitary. We have
indeed, owing to (54),

~e1 = ∂1 ~M = ~e01 + ∂1(u~e01) = ~e01

(
1 +

∂u

∂x0

)
. (62)
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Consequently one should be careful not confusing co- and contravariant components. Now, the ∂P
∂x0

= ∂1P term in

the right-hand side of (6) is the covariant component of vector
−−→
gradP on the basis vector ~e1. In other words, we have

∂1P =
∂P

∂x0
= ~e1 ·

−−→
gradP = J ~e01 ·

−−→
gradP, (63)

so that, since ~u = u~e01, result (6) is recovered.

We would end the present section with a last remark. Owing to (33a), (48) and (55a), the motion equation (60c)
reads

ρ0
∂2~u

∂t2
= −

1

V0
∂iP

1

2
εijk~ej ∧ ~ek. (64a)

Using (59b), we get

ρ0
∂2~u

∂t2
= −

1

2V0
∂iP εijkf ℓ

j f
m
k ~e0ℓ ∧ ~e0m. (64b)

Projecting both hand-sides of the above equation on the basis vector ~e0n, and allowing for (53b), we are left with

ρ0
∂2u0n

∂t2
= −

1

2
∂iP εijkf ℓ

j f
m
k εℓmn = −T i

n∂iP, (64c)

(where T i
n = 1

2ε
ijkf ℓ

j f
m
k εℓmn) which can be regarded as the covariant form (i.e. true whichever of the coordinate

system {qi} is chosen) of the motion equation. Observe that the latter is clearly non linear. It can be linearized by
substituting f ℓ

j f
m
k by δ

ℓ
jδ

m
k , entailing then T i

n = δ
i
n, which leads to the simple form

ρ0
∂2u0n

∂t2
= −∂nP. (64d)

The above simple form is exact in the one-dimension case, as recalled above.

C. Energy balance in the Lagrangian picture

In the present subsection, we aim at revisiting the set of results (11a-d) and extending them in 3D geometry. Let
us consider the fluid amount displayed in figure 6, and let E be its total energy. For the sake of simplicity, we assume
here that there is no external field (gravity or other) acting on the fluid. Since the transformations of the latter fluid
are supposed to be isentropic, the time variations of E are only due to the work of the outer pressure forces exerted
upon surface Σ(t):

dE

dt
=

∫∫

Σ(t)

−P d~s ·
∂~u

∂t
, (65a)

entailing (through Ostrogradsky’s theorem)

dE

dt
+

∫
d3q V div ~G = 0, (65b)

where ~G = P
∂~u

∂t
is the so-called acoustic Poynting vector. Detailing the above energy conservation equation, we get

dE

dt
= −

∫
d3q V

[
−−→
gradP ·

∂~u

∂t
+ P div

∂~u

∂t

]
. (66a)

Owing to (60c) we have V
−−→
gradP = − ρ0V0

∂2~u
∂t2

, and owing to (56b) we have Vdiv ∂~u
∂t

= ∂V
∂t

, so that (66a) is equivalent
to

dE

dt
=

dEk

dt
+

∫
d3q

(
− P

∂V

∂t

)
, (66b)
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where Ek =

∫
d3q

1

2
ρ0V0

(
∂~u

∂t

)2
is the overall kinetic energy of the fluid and Pc =

∫
d3q

(
− P

∂V

∂t

)
is the overall

compression power of the pressure forces undergone by the fluid. As a matter of fact, due to the absence of any
thermal exchange, equation (66b) is but the expression of the First Principle of Thermodynamics. As was already the
case in 1D geometry, calculating the latter compression power is a thermodynamic affair which requires the P -versus-J
relation. We have indeed

Pc =

∫
d3q

(
− P

∂V

∂t

)
=

d

dt

∫
d3q V0

∫ J

1

−P (J ′)dJ ′. (67)

In the particular case of a linear acoustic response of the type

p = P − P0 = −κ1(J − 1), (68a)

we are left, all calculations carried out, with, setting κ1 = ρ0c
2,

E + P0(V − V0) =
1

2

∫
d3q ρ0V0

[(
∂~u

∂t

)2
+ c2(J − 1)2

]
, (68b)

where V and V0 are the overall volume of the fluid, respectively at current time t and at rest. Observe that, in the
framework of the small deformation approximation (68a), the expansion term J − 1 should be substituted by div ~u.
In the framework of the latter approximation, the above result (68b) thus generalizes (11c). Observe too that, in the
case where the fluid undergoes an outerpressure P0, the quantity E + P0(V − V0) is conserved in the course of time.

D. The puslating sphere

The well known problem of the acoustic wave generated by a pulsating sphere will illustrate the convenience of
the Lagrangian picture. Let us consider an infinite homogeneous elastic fluid. A pulsating sphere, with centre at the
origin of a spherical coordinate system and with current radius R(t) = R0+ξ(t), excitates spherical waves in the fluid.
For the sake of simplicity, let us restrict our study to the small deformation limit. Due to the spherical symmetry of
the motion, all relevant quantities (pressure, temperature) are independent of angles θ and ϕ; the displacement field
~u reads

~u(~r, t) = u(r, t)êr, (69a)

where êr = ∂
−→
M0

∂r
is the (normalized, under the circumstances) usual radial vector of the spherical coordinate system.

Observe that, in order to lighten notations, we have deliberately omitted indices “0” and “r” in the component u0r

of the displacement field ~u. Thus, using the linearized form (64d), we get the simple motion equation

ρ0
∂2u

∂t2
= −

∂P

∂r
. (69b)

Assuming a linear p-versus-(J−1) thermodynamic relation of the type (68a) and linearizing the expansion term J−1,
we obtain the extrapressure

p = −κ1div ~u = −
κ1

r2
∂(r2u)

∂r
. (70a)

From the above equation, the d’Alembert wave equation
(

1

c2
∂2

∂t2
−

∂2

∂r2

)(
rp(r, t)

)
= 0 (70b)

is obtained. The mathematical treatment of the above equations is well known from textbooks. The general solution
is conveniently written

p(r, t) =
1

r

[
f

(
t−

r −R0

c

)
+ g

(
t+

r −R0

c

)]
, (71)

where f and g are two functions the meaning of which is obvious. If no incoming spherical wave comes from infinity,
g should be taken equal to zero. Choosing the Lagrangian picture reveals its convenience in fine when one has to
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medium 2

medium 1

Ri

FIG. 7: Medium 1 and medium 2 are separated at rest by a spherical interface with radius Ri and centre at the origin. An
outgoing spherical pressure wave, generated in the r < Ri area, is reflected/transmitted at the interface.

determine function f knowing the motion ξ(t) of the pulsating sphere, as shown below. Using (71) to rewrite (69b),
we get

ρ0
∂2u

∂t2
=

1

r2
f

(
t−

r −R0

c

)
+

1

rc
f ′

(
t−

r −R0

c

)
. (72a)

Simply equalizing u(r, t) with ξ(t) for r = R0 we obtain

ρ0ξ̈ =
1

R2
0

f(t) +
1

R0c
f ′(t) =

1

R2
0

(
1 +

R0

c

∂

∂t

)
f(t). (72b)

The above equation can be symbolically solved for f :

f(t) = ρ0R
2
0

(
1 +

R0

c

∂

∂t

)(−1)

ξ̈(t)

= ρ0R
2
0

(
ξ̈(t)−

R0

c
ξ(3)(t) +

(
R0

c

)2
ξ(4)(t) + · · ·

)
. (72c)

As a consequence, using (71) and integrating (72a), the extrapressure p and the displacement u respectively read

p(r, t) = ρ0
R2

0

r

(
1 +

R0

c

∂

∂t

)(−1)

ξ̈

(
t−

r −R0

c

)

= ρ0
R2

0

r

(
ξ̈ −

R0

c
ξ(3)(t) +

(
R0

c

)2
ξ(4)(t) + · · ·

)(
t−

r −R0

c

)
, (73a)

u(r, t) =
R2

0

r2

(
1 +

R0

c

∂

∂t

)(−1)(
1 +

r

c

∂

∂t

)
ξ

(
t−

r −R0

c

)

=
R2

0

r2
ξ

(
t−

r −R0

c

)
+

R2
0

rc

(
1−

R0

r

)(
ξ̇ −

R0

c
ξ̈ +

(
R0

c

)2
ξ(3) + · · ·

)(
t−

r −R0

c

)
. (73b)

Last, calculating the flux of the acoustic Poynting vector through a sphere with arbitrarily large radius R, one gets
the acoustic power radiated by the pulsating sphere

Prad
R→∞
= 4πρ0

R4
0

c

[(
1 +

R0

c

∂

∂t

)(−1)

ξ̈

]2(
t−
R−R0

c

)
. (73c)

The above formalism offers the opportunity to determine in spherical geometry the reflection and transmission
coefficients of a pressure wave at the interface between two media 1 and 2, as illustrated in figure 7.

Let us consider an outgoing spherical pressure wave generated in medium 1. This wave reaches the interface and is
then split in a reflected wave and a transmitted wave. Neglecting further possible reflection at the origin, the pressure
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field is described (in the linear approximation) by

r < Ri : p(r, t) =
1

r

[
f1

(
t−

r −Ri

c1

)
+ g1

(
t+

r −Ri

c1

)]
(74a)

r > Ri : p(r, t) =
1

r
f2

(
t−

r −Ri

c2

)
, (74b)

where c1 (resp. c2) stands for the sound velocity in medium 1 (resp. medium 2). Equalizing the pressures at the
interface r = Ri we naturally get

f1(t) + g1(t) = f2(t). (75a)

Equalizing the accelerations of the fluid at the interface r = Ri, we also get (see (72a) for instance)

1

ρ01

[
1

Ri

(
f1(t) + g1(t)

)
+

1

c1

(
f ′

1(t)− g′1(t)
)]

=
1

ρ02

[
1

Ri

f2(t) +
1

c2
f ′

2(t)

]
, (75b)

where ρ01 (resp. ρ02) stands for the rest mass density of medium 1 (resp. medium 2). Introducing the acoustic
impedances

Z1 = ρ01c1 and Z2 = ρ02c2, (76)

and assuming a monochromatic regime with angular frequency ω, the above system (75a-b) is easily solved for rp = g1
f1

and tp = f2
f1

(rp and tp are the pressure reflection and transmission coefficients). In the case of a plane interface (i.e.

Ri →∞), we are then left with

rp =
Z2 − Z1

Z2 + Z1
and tp = 1 + rp. (77)

Observe that, in this plane-wave case, reflection and transmission are non dispersive. If the radius of curvature Ri of
the interface is finite, things are not that simple: the system (75a-b) yields the complex frequency-dependent reflection
and transmission coefficients

rp =

1−
Z1

Z2
+ i

c1
ωRi

(1−
ρ01
ρ02

)

1 +
Z1

Z2
− i

c1
ωRi

(1−
ρ01
ρ02

)
and tp = 1 + rp. (78)

It can be remarked that, if ρ01 = ρ02, the 1-D result (77) holds. Otherwise, reflection and transmission are dispersive.
The 1-D result is recovered provided that c1/ωRi ≪ 1, i.e. provided that the acoustic wavelength is small compared
to the radius of curvature of the interface, not surprisingly.

V. CONCLUSION

Scarcely taught in undergraduate level courses on fluid dynamics, the Lagrangian picture offers nevertheless a
wealth of appreciable advantages. First, since each element of matter is given once for all a (fixed) label, it is well
adapted to the discrete-to-continuous description passage and, in this sense, particularly intuitive. Second, when two
moving fluids – or a moving fluid and some other material device acting as a source – keep in contact, it provides a
very handy framework to write exact boundary conditions; it is the case for instance for the surface waves on the
sea or for the pulsating sphere. Third, the Lagrangian picture, as it deals with (by definition) closed systems, is well
designed to implement thermodynamics laws (in the present paper we focussed on isentropic transformations, but
other situations may be considered as well). Fourth, there are no spurious non linearities left, and the remaining
(true) non linearities can be addressed perturbatively, should the occasion arise.
Of course, the necessity of manipulating curvilinear coordinates and tensorial calculus may appear a bit daunting.

But is it a prohibitive drawback or rather an opportunity to familiarize softly, in our flat 3D Euclidean everyday life
space, with notions that, in the much more involved domain of GR11,12, turn out to be an absolute must?
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