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Reduced Order Models at Work

Michel Bergmann, Thierry Colin, Angelo Iollo, Damiano Lombardi, Olivier Saut,

Haysam Telib

Abstract We review a few applications of reduced-order modeling in aeronautics

and medicine. The common idea is to determine an empirical approximation space

for a model described by partial differential equations. The empirical approximation

space is usually spanned by a small number of global modes. In case of periodic or

mainly diffusive phenomena it is shown that this approach can lead to accurate fast

simulations of complex problems. In other cases, models based on definition of

transport modes significantly improve the accuracy of the reduced model.

1 Introduction

Progress in numerical simulation of partial differential equations (PDEs) allows

accurate and reliable predictions of some complex phenomena in solid and fluid

mechanics, solid state physics, geophysics, etc., at the price of significant code de-

velopments, difficult computational set ups and large high-performance computing

infrastructures. Using reduced-order models (ROMs) one trades accuracy for speed
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and scalability, and counteracts the curse of dimension by significantly reducing the

computational complexity. Thus ROMs represent an ideal building block of systems

with real-time requirements, like interactive decision support systems that offer the

possibility to explore various alternatives. In complex cases, the real-time require-

ments would not be met by standard numerical methods.

The construction of ROMs for design, optimization, control and data-driven sys-

tems is a non-trivial task and various alternative ways can be followed often without

any guarantee that the ROM will effectively model the physical phenomenon in the

application. Focusing for example on flows or environmental phenomena, different

states can often be characterized by the presence or absence of qualitative flow fea-

tures, by the structure of feature patterns and by the strength of such features. Proper

orthogonal decomposition (POD) [9, 10] is a mean to extract such features from ex-

isting solution snapshots under the form of global modes. However, ROMs based on

such POD modes are numerically unstable in unsteady, advection dominated mod-

els. Stabilization can be obtained by various ad hoc techniques (see [5, 1, 13, 2]

for example), but a general framework to determine accurate and robust unsteady

ROMs is still lacking. Still, ROMs can be useful to model far-field conditions cou-

pled to a complete model, or to regularize the solution of an inverse problem. We

give in the following two examples in these directions.

Another central issue for ROMs is the quality of the approximation obtained

thanks to a reduced number of empirical modes. These modes are determined from

a set of snapshots that are relative to a particular configuration: geometry, physical

parameters, boundary conditions. When the configuration varies there is no guar-

antee that the reduced basis will adequately approximate the solution. On the other

hand, if the snapshot set from which the basis is obtained includes a large num-

ber of different configurations, by construction the reduced basis will enjoy better

approximation properties when the configuration varies. Given the computational

costs relative to a systematic exploration of the configuration space, optimal sam-

pling strategies must be introduced. In the following, we present one strategy based

on an estimation of the approximation error of the reduced base.

Nevertheless, there is a fundamental difficulty in approximating with global (for

example POD) modes the displacement of, say, a flow feature in time or across the

parameter space. Global modes are not optimal for advection. In particular, POD

modes reduce to Fourier modes for translation invariant signals. An alternative idea

is to define advection modes as the solution of an optimal transportation problem.

An application to interpolate the solution of a PDE system across the parameter

space based on the definition of advection modes is presented in the following.

2 Systematic sampling for ROM

We have considered an oscillating NACA0012 airfoil in a compressible flow as in

the CT1 test case from AGARD-R702 report. This case corresponds to a Mach 0.6

flow at infinity past an oscillating NACA0012 airfoil. In the following the compu-
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tations are inviscid; in the actual experiments the Reynolds number is 4.8× 106.

The parameter space is two dimensional: the oscillating frequency varies between

f 1 =30Hz and f 2 =70Hz (CT1 case: 50Hz) whereas the amplitude of the oscillation

varies between α1
0 =1.6deg and α2

0 =3.6deg (CT1: 2.5deg) with an average pitch of

αm=3.0deg. We have implemented an algorithm to sample the parameter space in

order to enrich the database of the POD basis functions. The objective of this pro-

cedure is to determine a set of POD modes that minimizes the approximation error

across the parameter space S = [α1
0 ,α

2
0 ]× [ f 1, f 2].

The main idea is to build a recursive Voronoi diagram and the corresponding

Delaunay triangulation based on the projection error of the POD representation. This

is an extension of what proposed in a one-dimensional setting in [8]. Let Pn be the

set of points P1, · · · ,Pn in the parameter space corresponding to actual high-fidelity

simulations and Tn the corresponding Delaunay triangulation. For given number

M of POD modes (the size of the basis) we build a set of POD basis functions φi,

i = 1, · · · ,M using the high-fidelity simulations corresponding to points P1, · · · ,Pn.

Then we determine the representation error E(Pk), k = 1, · · · ,n, corresponding to

the residual in the L2 norm of the projection of high fidelity solutions at Pk on φi,

i= 1, · · · ,M. Let us denote V (Ts) the set of vertexes of Ts ∈Tn. We select the triangle

Tmax ∈ Tn for which the product of its area and the sum of E(Pk), Pk ∈ V (Ts), is

maximum. The next point of the triangulation is the barycenter of Tmax.

As an example consider Fig.1. The parameter space S = [α1
0 ,α

2
0 ]× [ f 1, f 2] is

mapped to the unit square (α0 = [α1
0 ,α

2
0 ] 7→ A = [0,1] and f = [ f 1, f 2] 7→ F = [0,1])

and is partitioned in 8 triangles relative to 7 simulation points that were obtained by

iterating the method starting from points P1, P2, P3, P4. Both Delaunay triangulation

(red) and Voronoi tesselation (blue) are presented. The new high-fidelity simulation

point P8 is added at the barycenter of the triangle relative to points P2, P4, P5. For

this triangle the product of the area times the sum of the representation errors at the

vertexes is the highest.

The procedure implies the computation of n space correlations of high-fidelity

solutions for each new simulation point Pn+1. These operations are particularly ef-

ficient in the hybrid domain-decomposition ROM as the spatial extension of the

snapshots and of the POD modes is reduced to a region close to the airfoil. The

same procedure can be extended to higher-dimensional parameter spaces.

2.1 Results

We start with a POD basis, called BInitial , computed from snapshots taken at 4 points

P1, P2, P3 and P4 (see Fig. 2). 20 time snapshots are uniformly taken over one pe-

riod for each point Pi, 1 ≤ i ≤ 4. Starting from these points in parameter space, 4

additional points, denoted by P5, P6, P7 and P8 are determined using the method de-

scribed above (Voronoi tassellation). A suboptimal POD basis, called BSubopt is then

computed from these 8 points: P1 to P8. We ant to compare the suboptimal basis

performance to another basis composed with the same number of sampling points,
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(a)

(b)

Fig. 1: Example of one iteration of the Voronoi tessellation algorithm. The parameter

space subset S is represented. α0 is on the ordinates and f on the abscissa. (a) typical

iteration (iteration 3); (b) next point is added (P8) and the triangulation updated.
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Fig. 2: Sampling of the parameter space.

but chosen arbitrarily. We thus consider an uniform like basis, BUni f orm, computed

from P1 to P4 and P9 to P12. The points P9 to P12 are relative to already existing sim-

ulations. A summary of the high-fidelity simulation employed for each POD basis

is represented in table 1.

POD basis P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

BInitial uniform X X X X

BUni f orm uniform X X X X X X X X

BSubopt suboptimal X X X X X X X X

Table 1: POD basis summary.

The accuracy of the 3 POD basis is evaluated by computing the L2 projection

error of the whole snapshot set P1 to P12 onto each POD basis, see table 2. The

error PT denotes the average error evaluated over the whole set of points P1 to P12.

The basis BSubopt shows the best average errors of about 15% compared to BUni f orm.

Even for the extra uniform sampling points P9 to P12 that are not included in the

BSubopt database, the errors obtained with BSubopt are close to those obtained with

BUni f orm.
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E P1 P2 P3 P4 P9 P10 P11 P12 P5 P6 P7 P8 PT

BInitial 3.71 3.75 7.36 4.80 6.20 5.25 5.58 3.80 4.69 4.53 3.75 4.63 4.82

BUni f orm 3.85 4.07 6.70 5.29 4.91 4.20 4.87 4.18 4.38 4.29 3.89 4.45 4.60

BSubopt 3.24 3.23 5.42 5.41 5.11 4.62 4.99 4.20 3.74 3.37 3.01 3.06 4.08

Table 2: POD Basis L2 projection errors ×104. PT denotes the average error over

the 12 points Pi. BUni f orm and BSubopt are computed with 160 snapshots. BInitial is

computed with 80 snapshots.

3 ROM by domain decomposition

Let Ωa(t) denote the two-dimensional region enclosed by the airfoil at time t and

let Ω be such that Ωa(t) ⊂ Ω ⊂ R
2. The compressible Euler equations are defined

on the domain Ωc(t) := Ω\Ωa(t). Let us also define two rectangles Re and Ri

such that Ωa(t)⊂ Ri ⊂ Re ⊂ Ω . The inner rectangle Ri always includes the airfoil

during its oscillation about a point of the chord.

In Ωc(t), we solve the unsteady compressible Euler equations on a fixed cartesian

mesh to second order accuracy in space and time, as explained in [6]. We collect an

appropriate solution database of N flow snapshots.

Let U (k) be one solution snapshot in Ωc(tk), 1 ≤ k ≤ N, restricted to Re\Ri and

defined in terms of primitive flow variables. We compute a Galerkin base of the

form φi = ∑
N
k=1 bik(U

(k)−U), with 1 ≤ i ≤ M, U = 1/N ∑
N
k=1 U (k) and where the

coefficients bik are found as in [10]. This decomposition is performed individually

for each primitive variable, i.e. the flow velocity, the pressure and the speed of sound.

Consequently each expansion gives an optimal representation of the original dataset.

Let us define Û = U +∑
M
i=1 aiφi. The number of global global modes M is very

small compared to the size of the computational grid in Ωc(t).
The hybrid computational model is obtained by coupling the cartesian grid solver

in Re\Ωa(t) and the Galerkin representation defined in Re\Ri. To this end, we

follow the steps below:

1. integrate the governing equations in Re\Ωa(t) by the cartesian solver,

with given initial conditions U (n) in Re\Ωa(t) and boundary conditions on

∂Re;

2. project the restriction to Re\Ri of the updated solution U (n+1) on the sub-

space spanned by the POD modes φi and hence determine Û (n+1);

3. recover the boundary conditions to be imposed at the next time step on

∂Re as the trace of Û (n+1) on ∂Re;

4. goto (1) until convergence is attained.

This algorithm is fully detailed in [3] for several idealized internal flows. The

ratio between the computational cost to solve this hybrid scheme and the cost to

solve the flow on the full domain is of the order of the ratio between the area of

Re\Ωa(t) and that of Ωc(t).
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3.1 Oscillating airfoil in transonic flow

We consider a two-dimensional flow past an oscillating NACA0012 airfoil. The

airfoil oscillates about a point fixed at 25% of its chord according to a sinusoidal

law. The average angle of attack is 2.89, the amplitude of the angular excursion is

2.41 and the frequency of oscillation is of 50Hz. The Mach number at infinity is 0.6.

The computational domain is Ω = 30c×20c, where c is the chord, and the profile

is positioned so that the computational domain extends for 10c upwards and down-

wards, 10c upwind and 20c downwind. The computational grid is (4.8×103)2. The

simulation has been carried out starting from a uniform initial condition correspond-

ing to the unperturbed flow. Time integration is pursued until the hysteresis cycle is

periodic, i.e., after about two cycles of oscillation.

We present in Fig. 3 typical snapshots of the Mach field where the coalescence

of the characteristics forms a transient shock on the suction side of the airfoil. The

hysteresis cycle is shown in Fig. 4 where the computational results are contrasted

to the experimental ones. The computational results are in good agreement with

experimental data reported in AGARD R-702.

A collection of 65 snapshots of the flow primitive variables is taken over one

period of oscillation once the flow is completely established. The size of the rectan-

gle including the oscillating airfoil Ri is 1.15c×0.2c, that of Re is 2.5c×1.0c.The

ratio between the grid points of the full computational domain and those of the hy-

brid ROM is approximately 260. This ratio corresponds to the CPU time reduction

observed between the full computation and the hybrid ROM.

The eigenvalues of the snapshot correlation matrix are shown in Fig. 5. The first

four eigenvalues account for about 99% of the database energy for each of the quan-

tities considered. In Fig. 6 the first four POD modes for pressure and vertical ve-

locity are shown. The third and fourth mode, whose energetic contribution is of less

than 1% on average, show higher spatial frequencies.

In Fig. 7 we present the normal force coefficient of the actual hybrid simulation

for the CT1 test case at 50Hz and at 70Hz. The 50Hz case corresponds to the snap-

shots used to build the POD modes. Therefore, this test case is designed to check to

what extent the hybrid ROM is able to recover the original solution in the optimal

situation. In Fig. 7a we show the comparison between the hysteresis curves obtained

via the hybrid ROM and that relative to the full computation. The match is perfect.

This means that the non-local boundary condition on ∂Re (that corresponds to the

trace projection operator) is indeed a very good approximation of the transmission

conditions between ∂Re and ∂Ωc(t).
However, the most promising result is that for 70Hz shown in Fig. 7b. Here the

hybrid ROM solution, with a boundary operator derived for the 50Hz case, is con-

trasted to the full simulation at 70Hz. The hybrid ROM starts from an arbitrary

initial condition and after a short transient matches almost perfectly the full compu-

tation at 70Hz. This case represents a remarkable situation where the ROM leads to

a reliable prediction for a case which was not previously included in the database

used to build the POD modes.
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In Fig. 8 the time history of the coefficients of the pressure modes are depicted.

The coefficients pertinent to the Full Order Model are obtained by projecting the

snapshots on the POD basis. The coefficients of the hybrid model are those obtained

by the above method. An excellent match can be noticed for the first mode, both for

50Hz and 70Hz. For the higher modes still the comparision is very good but slight

differences in amplitudes are present. Consequently the presented method is capable

to determine the optimal coefficients also for cases which are not included in the

database. The error in the force coefficent hysterisis may be decreased by using a

more represntative database.

3.2 Discussion

The hybrid ROM implementation here described has limited impact on existing full

CFD codes: it is easy to implement since it reduces to a non-local boundary condi-

tion. The only addition operation to perform is a projection of the interior domain

iterative solution in the space spanned by the POD modes. The validation results

that we present show that this method is accurate also for flow conditions that were

not included in the database used to build the POD modes.

(a) 1
4

T (b) 2
4

T

(c) 3
4

T (d) 4
4

T

Fig. 3: Typical Mach number snapshots.
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Fig. 4: Normal force coefficient vs. angle. Full cartesian simulation and experimen-

tal results from AGARD R702.

4 ROM by optimal transport

Here we describe a non-linear interpolation of the snapshots so that the POD modes

may more accurately represent solutions for points in the parameter space that were

not included in the database from which they where derived. For a complete survey

of this field, see [11, 12]. For an efficient method to numerically solve this problem

without obstacles see [7] and references therein.

In order to fix ideas, we consider the case of an oscillating airfoil as in the CT1

test case, for given oscillation amplitude (αm = 2.5deg, α0 = 4.deg) but for several

oscillation frequencies. For given phase of the oscillation, i.e. for given pitch of the

airfoil our plan is to map the solution for f = 30Hz into that of f = 70Hz. Thanks to

this mapping we can determine a non-linear estimate for the solutions at given pitch

for 30Hz < f < 70Hz.
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Fig. 5: Eigenvalues of the snapshot correlation matrix for horizontal velocity u, ver-

tical velocity v, pressure p and speed of sound a.

4.1 Transport

In Fig.9 a conceptual description of transport is shown. Given a point ξ ∈ Ω0, where

Ω0 ⊂ R
d is a reference configuration, transport at time t is described by a mapping

X(ξ , t). The point x = X(ξ , t) belongs to the actual physical configuration Ω ⊂ R
d .

Let us consider a point x in the actual physical configuration. The inverse mapping,

denoted by Y (x, t) (called otherwise backward characteristics), identifies the point

in the reference configuration that has been transported by the direct map in x at

time t. The following relations hold:

x = X(ξ , t), ξ = Y (x, t),

Y = X−1, [∇ξ X ][∇xY ] = I,
(1)

where [∇ξ X ] is the jacobian of the transformation X(ξ , t) and [∇xY ] its inverse, i.e.,

the jacobian of the inverse mapping. Also, we have:

∂tY +v ·∇xY = 0, Y (x,0) = x

v(x, t) = ∂tX , X(ξ ,0) = ξ ,
(2)

where v is the velocity field.

Let us consider, as an example, the inviscid Burgers equation:
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(a) φ
p
1

(b) φ
p
2

(c) φ
p
3

(d) φ
p
4

(e) φ v
1

(f) φ v
2

(g) φ v
3

(h) φ v
4

Fig. 6: First four POD modes. Left column pressure, right column vertical velocity
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Fig. 7: CT1 case. Normal force coefficient vs. angle. Full computation vs. hybrid

ROM. POD modes are build from the 50Hz simulation only.
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Fig. 8: Coefficients of the first four pressure POD modes. Comparison between full

order and hybrid model for 50Hz (left) and 70Hz (right)
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Xξ

xY

Ω0 Ω

Fig. 9: Lagrangian description of transport: the reference configuration is Ω0, points

ξ ∈ Ω0 are transported by the direct mapping in X(ξ , t). Given the actual configura-

tion Ω , a point x ∈ Ω is sent back to its counterimage in the reference configuration

by backward characteristics, i.e., the inverse mapping Y (x, t).

∂tv+v ·∇xv = 0. (3)

This equation describes a pressure-less Euler flow. Since no force is acting on the

medium, each component of the velocity field is purely advected. In lagrangian

coordinates we have:

∂ 2
t X(ξ , t) = 0 =⇒ X(ξ , t) = ξ +v(ξ ,0)t. (4)

The solution consists of particles moving on straight lines (no acceleration).

In order to determine the mapping, we define a suitable optimal transport prob-

lem. Let us associate a scalar density function ρ(u) ≥ 0 to the solution u(x, t) , in

such a way that: ∫

Ω
ρ(x, t) dx = 1, ∀t ∈ R

+ (5)

so that the non-negative density is normalized to 1 for all times. The choice of the

density function is for the moment arbitrary. If u is a non-negative scalar and satisfies

this normalization, it may be directly used as a density function.

Let ρi, i = 1,2 be the snapshots of the density function. The optimal transporta-

tion problem relative to this density pair is defined as:

X∗(ρ1,ρ2) = Arg inf
X̃

{∫

Ω
ρ1(ξ )|X̃(ξ )−ξ |2 dξ

}
, subject to

ρ1(ξ ) = ρ2(X̃(ξ ))det(∇ξ X̃).

(6)

The optimal mapping X∗ minimizes the cost of the L2 transport (Monge) problem,

among all the changes of coordinates X̃(ξ ) locally keeping constant mass between

the densities 1 and 2. The solution to this problem exists and is unique and stipulates

that the lagrangian velocity is the gradient of a (almost everywhere) convex potential

ψ(ξ ).
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In particular the same problem can be rewritten in the Eulerian frame of refer-

ence. The optimal conditions for the minimum are the familiar conservation law

for the density and the previously introduced inviscid Burgers equation. The main

difficulty of the problem is that this system is equipped with initial and final condi-

tion for the density but no initial condition for velocity. We therefore introduce an

approximate Monge mapping as follows:

(ρ1 −ρ2) =
1

2
∇ · ((ρ1 +ρ2)∇ψ) (7)

so that ∇ψ = v(x,0) and the inviscid Burgers equation 3 can be used to propagate

in time the solution.

4.2 Results

In order to illustrate the method, we have considered the pressure distribution at

maximum pitch of the NACA0012 at Mach=0.6 corresponding to a set up similar

to the CT1 test case. The densities ρ1(x) and ρ2(x) correspond to the pressure dis-

tributions in the domain of definition of POD for 30Hz and 70Hz respectively, see

Fig.10. In this picture the actual solutions at 30Hz, 50Hz and 70Hz are shown in

terms of pressure isolines. It should be remarked that the solution at 50Hz is not

a linear interpolation of the solution at 30Hz and 70Hz, see Fig.11. The pressure

distribution at 50Hz, see Fig.12, is found thanks to the non-linear interpolation.

One-dimensional plots corresponding to a segment in a smooth region and in a re-

gion where the shock is present are shown. These results show that the non-linear

interpolation method presented here can be used to determine overall reasonable

estimates of intermediate snapshots of high-fidelity simulations not present in the

database.

5 System identification using ROM in tumor growth modeling

In this section ROMs are applied to system identification in tumor growth modeling.

A complete description of the method is presented in [4]. The macroscopic models

for tumor growth are represented by a set of PDEs accounting for the phenomeno-

logical aspects of the pathology. For the present case, the system reduces to a set of

non-linear parametric coupled PDEs that describes the evolution of a three-specie

saturated reacting flow in a porous, isotropic, non-uniform medium.

The tumoral tissue is composed by two different phases, denoted by P and Q.

The density P represents the number of dividing cells per unit volume, Q is that of

the necrotic cells. The healthy tissue is the phase denoted by S. Equations for P, Q

and S read:
∂P

∂ t
+∇ · (vP) = (2γ −1)P, (8)
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(a)

(b)

Fig. 10: (a) Iso-pressure lines of the solution at 30Hz (white), 50Hz (red), 70Hz

(green) in the region of definition of POD; the white isolines correspond to the

initial condition of the Monge problem. (b) Results of the Monge interpolation:

estimated pressure snapshot at 50Hz. Estimated solution in white, actual solution in

red. Green: actual solution at 70Hz.
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(a)

(b)

Fig. 11: Initial condition for the Monge problem (30Hz) and actual high-fidelity so-

lutions (50Hz and 70Hz). (a) curves on a segment parallel to the abscissa where the

pressure shows a shock wave; (b) solution on segment where the pressure is regular.

The intermediate solution (50Hz) is not a linear interpolation of the initial condition

(30Hz) and final condition (70Hz). “Monge” denotes here the initial condition of

the Monge problem corresponding to the high-fidelity model at 30Hz.
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(a)

(b)

Fig. 12: Results of the Monge interpolation at 50Hz. The continuity equation and

the inviscid Burgers equation are integrated starting from the initial conditions (see

Fig.11). The pictures show the high-fidelity model results compared to those of the

non-linear interpolation at 50Hz. (a) solution on a segment parallel to the abscissa

where the pressure shows a shock wave; (b) solution on segment where the pressure

is regular. These are typical results across the field.
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∂Q

∂ t
+∇ · (vQ) = (1− γ)P, (9)

∂S

∂ t
+∇ · (vS) = 0. (10)

where the velocity v models the tissue deformation and γ (called the hypoxia thresh-

old) is a scalar function of the nutrient concentration. If enough nutrients are avail-

able then γ = 1 and the tumor cells proliferate, otherwise they die. The healthy tissue

evolves through an homogeneous conservation equation.

Assuming that P+Q+ S = 1 in every point of the domain, a condition for the

divergence of the velocity field is derived. This condition, coupled with a Darcy law,

allows to describe the mechanics of the system:

∇ ·v = γP, (11)

v =−k(P,Q)∇Π . (12)

The scalar function Π plays the role of a pressure (or potential), and k is a perme-

ability field, satisfying:

k = k1 +(k2 − k1)(P+Q), (13)

where k1 represents the constant porosity of the healthy tissue and k2 is the porosity

of the tumor tissue.

The equation describing the nutrients has the following form:

−∇ · (D(P,Q)∇C) =−αPC−λC, (14)

where α is the oxygen consumption rate for the proliferating cells, λ is the oxygen

consumption coefficient of healthy tissue and D(P,Q) is the diffusivity. Boundary

conditions and sources are set up according to the nature of the organs considered

and will be detailed later on. The diffusivity may be written as:

D = Dmax −K(P+Q). (15)

The link between the nutrients concentration and the population dynamics is pro-

vided by:

γ =
1+ tanh(R(C−Chyp))

2
, (16)

where R is a coefficient and Chyp is called the hypoxia threshold. The resulting

hypoxia function thus satisfies 0 ≤ γ ≤ 1.

For this simple model the state variable set may be defined as X = {P,Q,C,Π}.

The observable is defined to be Y = P+Q, as result from discussions with medical

doctors about what is measured by CT scans in the case of lung metastases. One can

not distinguish on images the cell species composing the tumor, but only the tumor

mass. The control set consists in all the undetermined scalar parameters describing

tissue properties (such as k1,k2,Dmax, K), the tumor activities (nutrient consumptions
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α , λ , and Chyp), and the fields describing the initial non-observed conditions needed

to integrate the system (P(x,0)).

5.1 Regularized inverse problem

The observable evolution is governed by:

Ẏ +∇ · (Y v) = γ(C)P. (17)

the divergence of the velocity field obeys:

∇ ·v = γ(C)P−

∫
Ω γP dΩ∫

Ω (1−Y ) dΩ
(1−Y ), (18)

where the expression relative to Neumann boundary condition for the pressure field

was retained. In the case of Dirichlet boundary conditions the second term of the

right hand side of this equation vanishes. The curl of the Darcy law reads:

k(Y )∇∧v = ∇k(Y )∧v. (19)

and the equation for the oxygen concentration field is written:

∇ · (D(Y )∇C) = αPC+λC. (20)

The definition of the hypoxia function, γ , is unchanged.

The repeated index summation convention is used from now on. The non-

observable variables are expressed as combination of POD modes:

P = aP
i φ P

i i = 1, ...,NP;

C = aC
i φC

i i = 1, ...,NC;

γP = a
γP
i φ

γP
i i = 1, ...,NγP;

v = av
i φ v

i i = 1, ...,Nv,

(21)

where a
(·)
i = a

(·)
i (t) are scalar functions of time, φ

(·)
i = φ

(·)
i (x) are functions of spatial

coordinates.

The dimension of the empirical functional space, i.e., the number of POD modes

used to reconstruct the solution, is chosen such that if additional POD modes are

included, the reconstruction of a given field does not vary up to a certain error value

that, in this work, was fixed at 10−4 in L2 norm.

Substituting these expressions in the system Eqs. (17) and (20) we obtain:

Ẏ +a
(v)
i ∇ · (Y φ

(v)
i ) = a

(γP)
i φ

(γP)
i , (22)
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a
(v)
i ∇ ·φ

(v)
i = a

(γP)
i φ

(γP)
i −

∫
Ω a

(γP)
i φ

(γP)
i dΩ∫

Ω 1−Y dΩ
(1−Y ), (23)

a
(v)
i k(Y )∇∧φi

(v) = av
i ∇k(Y )∧φ

(v)
i , (24)

a
(C)
i ∇ · (D(Y )∇φ

(C)
i ) = αa

(P)
j a

(C)
i φ

(P)
j φ

(C)
i +λa

(C)
i φ

(C)
i , (25)

The hypoxia function γ , Eq. (16), is multiplied by P, in such a way that the product

γP is:

a
(γP)
i φ

(γP)
i = a

(P)
j φ

(P)
j

1+ tanh(R(a
(C)
i φ

(C)
i −Chyp))

2
. (26)

The system Eqs.(22-25) was finally solved by a least square approach under certain

constraints that are introduced below. At a given time (say t0), the snapshot Y (t0)
and a subsequent snapshot Y (t1) are used to perform the computation of the time

derivative. Let the residual of the l-th equation be Rl . We write F = ∑l R2
l and

(
a
(·)
i (t0),π j

)
= argmin(F) (27)

where a
(·)
i are the expansion coefficients for the variables P,C,v,γP and π j are the

parameters to be identified.

The first constraint is linked to the fact that Eq. (25) is an homogeneous equation

with respect to the coefficients a
(C)
i . If Chyp < 0 the trivial solution is a solution

for the whole system Eqs. (22) and (26). In order to prevent the identification of a

system with unphysical solutions we get one scalar constraint from the boundary.

In the case of Dirichlet boundary conditions C = C0 on ∂ΩC where ΩC is a blood

vessel domain, one scalar equation is obtained of the form:

∑
i

(
∑ j bi

j

λ
1/2
i

)
a
(C)
i (t) = 1, ∀t. (28)

The second constraint to be imposed results from the observation that, since in

the inverse problem the equation for the variable P is not solved, the latter does not

automatically satisfy: 0 ≤ P ≤ 1 and therefore this is a constraint (fundamental for

the population dynamics) to be imposed. To this end the residuals are penalized as

follows:

F̃ = F + c1(max{a
(P)
i φ

(P)
i }−1)+ c2(−min{a

(P)
i φ

(P)
i }) (29)

where c1,c2 are positive constants, set in such a way that penalization does not affect

the stability of the procedure (in the present work (c1,c2) ∈ [1.0,2.5]e−2).

In order to decrease the computational cost of the procedure a third constraint

is imposed to define a feasible set of solutions. The solution is sought so that the

admissible values of the POD coefficients belong to an interval Ik that is obtained

from Idb
k , the corresponding interval in the database, by a stretching factor 1+ δ

where δ is a suitable positive constant. In all the following simulations the value

δ = 0.1 was adopted.
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The hypothesis that two subsequent snapshots are close in time, or, in other

words, that the time between two snapshots is small if it is compared with the char-

acteristic evolution time of the phenomenon, is very optimistic. In order to relax this

hypothesis, instead of using first order finite differences, that is equivalent to per-

form a linear interpolation between the snapshots, a different kind of interpolation

is used. However, an higher order finite difference scheme, equivalent to a polyno-

mial interpolation, would require a large number of snapshots. As an alternative,

still assuming that only two images are available, an additional hypothesis about

the growth rate could be retained. Here, two cases are considered. In the case of

exponential growth we write:

Ẏ ≈ Aexp{ζ t}+Bexp{−ζ t}= f (ζ ), (30)

where A,B are chosen in such a way that the two available snapshots are interpo-

lated. One parameter, ζ , is free and enters the residual minimization process. The

first equation of the system (17-20) becomes:

f (ζ )+∇ · (a
(v)
i φi

(v)Y ) = a
(γP)
i φ

(γP)
i . (31)

In the case of a logistic-type growth we proceed in a similar way. We take

Y ≈ AG(ω,σ)+BG(−ω,−σ) (32)

where

G(ω,σ) =
ωeωt

ω −σeωt
. (33)

As before A and B are adjusted such that the snapshots are interpolated. In this case,

however, we are left with two free parameters (ω and σ ) that are found within the

residual minimization process. The inverse problem finally takes the form of a non-

linear algebraic optimization problem, that is solved using a Newton trust region

method.

5.2 Realistic case application: a comparison with a standard

sensitivity approach

In Fig.13 four scans covering an evolution over 45 months are presented of some

lung metastases of a primary tumor affecting the thyroid (Courtesy Institut Bergonié).

Even though this patient is affected by several metastases, only the study of the one

marked in Fig.13.a) will be presented. It is a quasi-steady metastasis, which grows

very slowly and thus need only to be monitored. The results obtained by means of a

sensitivity technique are presented, when only the first two scans were used in order

to identify the system. This means that the first two images were used as data set

to solve the inverse problem and find the set of control. Then, the direct simulation
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(a) (b)

(c) (d)

Fig. 13: Scans: a) November 2005, b) October 2007, c) July 2008, d) April 2009

were performed covering the entire evolution and the result has been compared to

the data of the subsequent exams.

The control set consists in the parameters and in the initial distribution for the

proliferating cell density. In this particular test the initial density distribution for

proliferating cells is taken:

P(x,0) = Aexp
{
−δΦ2

}
, (34)

where Φ is the level set for the tumor, A the amplitude and δ the steepness.

This system is solved at t = 0, taking the second image at t = 0.3. The time

derivative is approximated by a logistic inerpolation. In this particular case it is

equivalent to solve the reduced order model for the elliptic equations and to couple

them with the residual approximation for the observable. The system is cheap from

the computational stand point, its solution taking only few minutes on a standard
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laptop. The system was initialized with several initial conditions in order to check

the stability and the presence of local minima.

In Table 3 the errors are compared between the sensitivity approach (when two

images are taken into account) and the reduced order model. The ROM performs

quite well in terms of volume in the first part of the growth. For what concerns L2

norms and in the second part of the growth sensitivity has substantially better results.

The most relevant fact is that the two approaches show similar behavior in the very

beginning (ROM is solved at t = 0). It is interesting that the reduced order model

allows to get a correct solution on a time scale that is sufficiently large, i.e. on a scale

comparable with the interval between two subsequent medical exams. In Fig.14 the

Table 3: Data set and results for realistic case, fitted with the parameters identified

by ROM: 6 volumes measures are taken from 2D scans, resolution 1.25mm.

Month 0 21.0 24.5 36.0 40.5 45.0

Area 4.2e-3 6.5e-3 8.1e-3 9.7e-3 1.03e-3 1.10e-3

ESens(%) 0.0 1.8 2.47 2.02 1.94 1.36

EROM(%) 0.0 1.9 2.50 2.80 8.67 6.12

‖Y − Im‖Sens 0.0 0.22 0.24 0.35 0.31 0.24

‖Y − Im‖ROM 0.0 0.23 0.26 0.38 0.36 0.32

fitting curves are shown, confirming essentially what commented about the errors.

Let us remark that the two methods starts with exactly the same trend, so that the

Reduced Order Model approach results in an approximation of the Sensitivity one

in t = 0. The Error contours for the third image (i.e. the first prediction) are shown

for the two methods in Fig.15. On the left, the result of the sensitivity is shown, the

reduced order model is on the right. The differences between the two residuals are

minimal, showing the ability of the reduced approach to mimic sensitivity.

5.3 A fast rate tumor growth

In order to see if the method is robust enough to perform the identification in a very

aggressive case, an exponential fast growth is studied. In Fig.16 the evolution of

a metastatic nodule is shown; the evolution takes about six months, the scans are

taken at approximately constant rate. The problem is the following one: given the

first two scans, we try to recover the third one, after having performed the parameters

identification.

A database was build varying all the parameters in uniform intervals. The

database consists in 128 simulations. For each one, 20 time frames are taken. The

minimization takes about 20 minutes on one standard CPU. In Fig.17.a) the superpo-

sition of the simulation to the realistic geometry is shown, at the time corresponding
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Fig. 14: Area as function of time, for the Reduced Order Model (black line) and for

the Sensitivity approach (blue line).
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Fig. 15: Difference between the third scan and the solution when the identification

is performed by a) Sensitivity b) ROM

to the third scan. The result is satisfactory, the volume not being too far from the

measured one. The error is essentially a shape error. The model tends to regularize

the shape, so that the simulated tumor is closer to a spheroid with respect to the real

tumor. In order to prevent this error to arise two strategies are possible: the first one

consists in modifying the model such that its dynamics is less regularizing and the

second one consists in changing the control set.

In Fig.17.b) the volume curve is plotted with respect to days. There is a certain

error in volume at the time corresponding to the third scan, but, in terms of time, it

is about 15 days on a time interval of 6 months. For such a growth, featured by a
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(a) (b)

Fig. 16: Fast growing tumor: scan at a) june 2008 b) september 2008 c) december

2008
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Fig. 17: Results: a) Superposition of simulation and geometry b) Volume curve with

respect to days

high rate and a large final volume, not enough mechanics have been accounted for.

As a matter of fact, tumor expansion causes some compression in the tissues and the

constraints imposed by the thorax are not negligible.

6 Conclusions

We have presented a set of methods where ROMs have been used to solve problems

in applications. ROMs where not directly used for simulation, but instead as an aux-

iliary numerical expidient in conjunction with full model simulations or availbale

data observations. Future investigations will need to improve model accuracy and



Reduced Order Models at Work 27

robustness with respect to parameter variations, with the objective of accurate and

robust predictive ROMs.
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