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Abstract. The stability of centimeter scale air bubbles is studied in quiescent suspending liquid under
imposed oscillatory acceleration field. Experiments were performed in reduced and normal gravity envi-
ronments. A strong acceleration resulted in an instability leading to the breakups of the bubbles in both
gravity environments. The breakup onset was investigated and found to be characterized by a critical accel-
eration acr. The influence of the liquid viscosity and the gravitational environment was studied. Empirical
correlations for the onset are presented and discussed with the intention to reveal splitting mechanism.
The inertial mechanism often deemed to cause the breakup of drops subjected to a rapid gas stream is
shown to give explanations consistent with the experiments. A breakup criterion for both gravitational
environments is proposed through discussions from an energetic point of view.

PACS. 47.55.dd Bubble dynamics – 47.35.Pq Capillary waves – 47.20.Dr Surface-tension-driven instability

1 Introduction

Flows including dispersed phase are ubiquitous in the na-
ture and over the whole human activity. Blood circulation
transporting cells [1], atmosphere with falling raindrops
[2], gas-liquid mixture in bubble column reactors and flows
in rivers and sea with sand suspension [3] are only some
examples of such flows. Behaviors of dispersed phase in dif-
ferent flows have been extensively studied as it is a key for
understanding the global transfer of momentum, heat and
mass. The size distribution of that phase which decides the
dynamics and the associated surface area is fundamental
for modeling the transfer mechanism in the flow. The dis-
tribution can vary through breakups and/or coalescences
due to interactions with continuous phase. The stability
of the dispersed phases is thus of great importance.

Fluid systems subjected to periodic excitations have
been studied with interest in striking modification of their
behavior by the amplitude and frequency adjustments [4].
Faraday instability is one of the well-known subjects of
these studies [5,6]. Such systems are also investigated with
the intention of flow control, e.g., [7,8] and drop atomiza-
tion [9,10].
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de Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2.
e-mail: harunori@unice.fr
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Motion of bubbles in vertically oscillating liquid has
been a subject of study for performance improvement of
bubble column reactors in the process industries [11]. Bub-
ble volume change caused by bubble oscillatory vertical
displacement of typical frequency of the order of 100 Hz
can yield a net vertical force component which modifies
the bubble rise in the reactors [12]. The present work con-
cerns bubbles in liquid vertically vibrated at frequency of
the order of 10 Hz. Behavior of bubbles without volume
change in the acceleration field induced by the vibration is
studied with focus on vibration-induced bubble breakups.
This breaking method can be applied to many industrial
processes for controlling bubble sizes. In particular, appli-
cations are expected in factories in space, where bubble
size is no longer limited to the capillary length scale be-
cause of the absence of gravity.

Bubbles subjected to an oscillatory acceleration field
are set in translational motion in stagnant suspending liq-
uid by the buoyancy due to the acceleration field. They can
eventually break up into smaller bubbles when the field is
strong enough. The stability of large bubbles in such a con-
figuration was first experimentally studied by Zoueshtiagh
et al. [13]. The oscillatory acceleration field was induced
by oscillating a test cell vertically with a given amplitude
A and frequency f . The authors reported on behavior of
bubbles of volume Vb ranging from 1.1 cm3 to 8.1 cm3 in
various suspending liquids with different surface tensions
and viscosities. It was found that the imposed acceler-
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Table 1. Physical properties of the considered liquids.

Liquid
Density Viscosity Surface tension
(g/cm3) (cm2/s) (dyn/cm)

Water 1 0.01 72

Silicone oils

0.816 0.01 17.4
0.93 0.1 20.1
0.95 0.2 20.6
0.959 0.5 20.7
0.965 1 20.9

ation could have a control over bubble size distribution
through bubble breakups. For large A values, compared

to the volume equivalent diameter De = (6Vb/π)
1/3

, the
bubble size was shown to be limited by twice an effec-
tive capillary length, based on the imposed acceleration,
lc =

√

γ/ρAω2 (γ: surface tension, ρ: density of the sus-
pending liquid, ω: angular frequency).

The purpose of the present work is to better under-
stand the physical mechanisms behind the breakup in-
stability of large bubbles in such oscillatory flows. Ex-
periments have been performed to complete the results
presented in the preceding work [13,14]. Particularly, the
influence of a solid wall have been considered, by experi-
ments on ground in normal terrestrial gravity environment
(later designated by G) where bubbles were always in the
proximity of a container wall, as well as in a micrograv-
ity environment (designated by µG), where the bubbles
were apart from any walls. A universal criterion for both
gravity environments will be proposed.

2 Experimental set-ups and Control

Parameters

Experiments were prepared with the intention to deter-
mine the regimes for which a centimetric bubble subjected
to vertical vibrations becomes unstable and breaks up. For
this purpose, a test cell, which consisted of a polycarbon-
ate parallelepiped container of 6.0×8.0×6.0 cm3 filled by
a test liquid and an air bubble of a given volume, was
set in vertical oscillation. The liquid was either deionized
water or various silicone oils. The physical properties of
those fluids are listed in Table 1. The cell was prepared by
filling the container through a 0.2 cm diameter side hole.
The container was first fully filled with liquid and then
some of the liquid was removed by a graduated syringe
to create a bubble of a controlled volume. The hole was
then blocked with a screw having the same length as the
wall thickness to seal the cell. The tested bubble volume
Vb ranged between 2 cm3 and 7 cm3.

For exploring the excitation frequency-amplitude plane,
two distinct set-ups have been used. Each of these was re-
lated to a particular range of frequency and amplitude.
The first setup (ST1) produced large oscillation ampli-
tudes (0.75 ≤ A ≤ 12 cm) but delivered low oscillation
frequencies (0.1 Hz ≤ f ≤ 10 Hz), while the second setup

PC

Motor
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Platform 2

Linear unit

Bubble

Test cell

Counterweight

 High-speed

video camera

Mirror

45°

Fig. 1. Illustration of the first experimental set-up (ST1) for
low frequency experiments used in micro and normal gravity
environments.

(ST2) provided small amplitudes (A ≤ 1 cm) at much
larger frequencies (5 Hz ≤ f ≤ 100 Hz).

The setup ST1 is shown in fig. 1. It consisted of a linear
unit system connected to a SGMPH-04AA Fenwick servo-
motor. The system converted the rotating motion of the
drive pin into a linear movement of the guide platforms
1 and 2. The test cell was attached to the lower sliding
plate, i.e. platform 1, while on platform 2 a counterweight
of the cell was mounted. The platforms were moved to
the middle or apart simultaneously. This anti-phase move-
ment was aimed at reducing vibration transmission to the
frame structure of the setup. The motion of the drive was
computer controlled. The accuracy of the amplitudes and
frequencies were held to within ±0.1 cm and ±1/60 Hz,
respectively. The drive motion, hence the movement of
the unit, could provide sinusoidal motions at speeds up to
500 cm/s and accelerations up to ∼ 3500 cm/s2.

The setup ST2 consisted of a commercial electromag-
netic shaker providing vertical vibrations to the test cell. It
was driven by amplified electric signals of a function gener-
ator. An accelerometer attached to the cell measured the
provided accelerations. The acceleration values between
800 and 10000 cm/s2.

Experiments in G were performed in the laboratory
with either ST1 or ST2 . Bubbles of different volumes (2 ≤
Vb ≤ 7 cm3) in different test liquids were subjected to ac-
celeration of widely ranged frequency (0.1 ≤ f ≤ 100 Hz).
Experiments in µG were realized on aircraft in parabolic
flights. At each parabola, microgravity state lasted 22 s
and its quality was typically 10−2g (g = 981 cm/s2). Bub-
bles of 3 cm3 were accelerated in different test liquids by
ST1.

Bubble behavior was observed from above with a dig-
ital high-speed video camera at typically 150 images per
second with an exposure time of typically 1 ms. The op-
tical axis of the camera was set parallel to the translation
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t = 0 ms 225 ms 361 ms 482 ms 650 ms 851 ms
(a) Microgravity (silicone oil of 0.5 cm2/s, A = 4 cm and f = 1 Hz)

t = 0 ms 41 ms 97 ms 164 ms 200 ms 245 ms
(b) Normal gravity (silicone oil of 0.01 cm2/s, A = 2.0 cm and f = 2.8 Hz)

Fig. 2. Side views of bubble motion under oscillatory acceleration field.

direction of the cell so that the bubble motion could be ob-
served in a longitudinal view from the top. Side view of the
cells was allowed by a 45 degree inclined mirror attached
to the cell (see fig. 1). Thanks to the mirror, longitudi-
nal and transversal views of the cell were simultaneously
recorded on the same pictures.

3 Dimensionless numbers

Various time scales can be associated with bubble dynam-
ics in present experiments. Besides the time scale of the
oscillations tosci ∼ ω−1, the viscous time tν ∼ D2

e/ν and
the advection time tadv ∼ De/Aω characterise the flow
surrounding the bubble. Bubble’s free oscillation is char-

acterised by the capillary time tc ∼
(

ρD3
e/γ
)1/2

. These
four time scales yield the following three dimensionless
parameters: the dimensionless frequency Ω = tν/tosci, the
dimensionless amplitude KC = tadv/tosci that is identi-
cal to the Keulegan-Carpenter number and the Ohnesorge
number Oh = tc/tν . More explicitly, they are defined as:

Ω =
ωD2

e

2ν
, KC =

2A

De
and Oh =

√

ρν2

Deγ
(1)

In the present experiments, the dimensionless ampli-
tude KC was varied over a wide range from 0.018 to 14.
The Ohnesorge number Oh was also varied widely but al-
ways had values smaller than unity, ranging from 8.8×10−4

to 0.16. Regarding the frequency parameter Ω, its values
were much larger than the unity in both G and µG when
bubble breakups were observed (19 < Ω < 5×104 in G
and 12 < Ω < 2600 in µG ). These ranges of Oh and
Ω imply that viscous dissipation occurs slowly compared
to the oscillation and capillary time scales. Furthermore,

the bubble Reynolds number Reb = UbDe/ν can be esti-
mated by Reb ∼ KCΩ with the bubble velocity Ub ∼ Aω.
It is found that Reb is larger than 200 for the majority of
experiments.

4 Experimental Results

4.1 Bubble shape & motion

4.1.1 In micro gravity, µG

In µG, the cell’s oscillatory translation, −A cosωt, im-
posed an unsteady acceleration to the system. The result-
ing artificial buoyancy ρVbAω2 cosωt set the bubble into
motion. For small amplitude and frequency values, the
bubble was animated by an up-and-down motion with the
imposed oscillation frequency without breaking (see fig. 2
(a)). As A was increased, the amplitude of the bubble
translational motion, Ab, was also increased until a satu-
ration caused by the cell’s finite hight. During the transla-
tional motion, the bubble exhibited different shapes, from
an ellipsoid to a spherical cap. For the tested experimental
parameters, the observed bubble shapes are in agreement
with dynamical regimes reported for buoyancy-driven as-
cending bubbles in a stagnant liquid [15].

The amplitude Ab and phase θ of the bubble’s rela-
tive motion to the cell have been measured by processing
space-time diagrams representing translational motion of
the bubble. Figure 3 shows a typical example of such di-
agrams. As shown by the smaller image in the figure, a
narrow band of image passing through the bubble cen-
ter is extracted along the direction of bubble’s principle
motion. These bands of image at different instants are ar-
ranged chronologically to construct a space-time diagram
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time

bubble

cell

Fig. 3. Space-time diagram of bubble motion (the right larger
image) in transversal view in µG. The suspending liquid is
silicone oil of 0.5 cm2/s and the oscillation parameters are
A = 1.5 cm and f = 1.6 Hz. The left smaller image shows how
the diagram is constructed (see the text for details).

(the larger image in the figure). The oscillatory trajectory
at the middle of the diagram represents the bubble mo-
tion, while the sinusoidal waves at upper and lower ends
show cell’s motion. It is seen that the bubble motion is si-
nusoidal and has well-defined amplitude and phase. Mea-
sured values of Ab scaled by the amplitude of the cell’s
motion A and the phase θ are shown in fig. 4 (a) and (b),
respectively. The ratio Ab/A is seen to group around a
single curve while plotted as a function of the dimension-
less amplitude KC. For large KC values, it appears that
the experimental bubble amplitude Ab is independent of
the frequency Ω. Regarding the phase shown in fig. 4 (b),
the bubble motion always precedes the cell’s motion. This
arises from the liquid phase movement delayed by its iner-
tia. Hence, the bubble motion is in advanced phase. The
data also exhibit increasing tendencies with KC towards
θ = π/2. Most of the experimentally determined phase
values are beyond the maximum phase advance (∼ π/8)
that a bubble can attain at small Reynolds numbers (cf.
fig. 11.15 of Clift et al. [15]). This observation suggests
that bubble motions in present experiments are associated
with large Reynolds numbers.

As seen in figure 2 (a), bubbles undergo large deforma-
tion during their oscillatory translation. This deformation
will particularly act upon the bubble’s associated drag co-
efficient and the resulting motion. Therefore, the ampli-
tude Ab/A and the phase θ should depend on the Ohne-
sorge number Oh to reflect the capillary effects. In order
to investigate the influence of Oh, a least square fit of the
power law ΩqOhrKs

C
was applied to the experimental data

on Ab/A. It was found that q = −0.002, r = −0.150 and
s = −0.517. The small value of q implies independency
of the oscillation amplitude from Ω. The value of s nearly
equal to −0.5 suggests that the bubble velocity Ub(= Abω)

is scaled by
(

Aω2De

)1/2
, as spherical cap bubbles rising in

stagnant liquid [16]. Based on these observations, a power

law Ab/A ∼ Ohr′K−0.5
C

is proposed and the value of r′

is derived from a least square fit to the data. It is found
that:

Ab/A = 0.59 Oh−0.15 K−0.5
C

(2)

(a)
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Fig. 4. Amplitude and phase of bubble motion in µG.

1
0.1

1

Oh0.15K
C

0.5

0.3 0.4 0.5 2 3 4 5

2

3

0.2

0.3

0.4

0.5

0.2 cm2/s

0.5 cm2/s

1 cm2/s

A
b
 /

 A

A
b 

/A = 0.59 Oh
-0.15

K
C

-0.5

Micro gravity

Fig. 5. Correlation for the amplitude Ab of the bubble motion

It appears that the above relation correlates well all the
experimental data (see fig. 5). The bubble velocity Ub is
then calculated as Ub = Abω = 0.59 Oh−0.15K−0.5

C
Aω.

Use of the definition of KC (1) in this equation leads to
the following expression of Ub:

Ub =
0.416

Oh0.15

√

Aω2De (3)

This velocity is identical to the terminal velocity of a
spherical cap bubble determined by Davies and Taylor [16]
but with a corrective factor proportional to Oh−0.15.This
correction represents the influence of bubble deformation
during the oscillatory translational motion.



Harunori N. Yoshikawa et al.: Bubble splitting in oscillatory flows on ground and in reduced gravity 5

4.1.2 In normal gravity, G

In G environment, prior to the experiments the bubble
lies below the upper wall due to buoyancy. It has a disk-
like shape of a thickness twice the capillary length ℓc0 =

(γ/ρg)
1/2

because of its large volume compared to the
capillary length (De > ℓc0) [17]. With small acceleration
values of the cell, the bubble and the liquid are trans-
lated by the cell without any significant relative motion
between them. A large acceleration leads to a relative mo-
tion between the two phases. The bubble is periodically
squeezed on the top wall with the same frequency as the
cell’s motion without detaching from it (see fig. 2 (b)).
Further increase of the acceleration can lead to partial or
full detachment of the bubble from the wall and bubble
splitting into smaller parts (for more detailed description
cf. [13,18]).

In high frequency experiments carried out with set-up
ST2, for excitation amplitude A smaller than twice ℓc0,
two main differences have been observed in bubble dynam-
ics compared to low frequency experiments (ST1). First,
surface waves formed on the bubble lower surface above
a certain acceleration value were standing waves and non
axisymmetric, while in ST1 experiments they were prop-
agative and axisymmetric (cf. [13]). Second, for large ac-
celeration values, bubble breakups occurred by ejections
of smaller bubbles from the mother one rather than the
uniform splittings such as typically observed in the low fre-
quency experiments. These phenomenological differences
in low and high frequency experiments suggest that exper-
iments carried out with an excitation amplitude A . ℓc0
fall in different dynamical regime. Standing wave forma-
tion in high frequency experiments suggests that Fara-
day instability probably plays a role in bubble breakups
and ejections. The investigation of bubble breakup in such
regime is out of scope of the present paper and will not
be discussed further.

4.2 Bubble breakup thresholds

For large accelerations, bubbles are first pinched at one
or more location before breaking into smaller parts. For
breakups into more than two parts, splits can either occur
simultaneously or successively until all bubbles reached
sufficiently small sizes and the system reached a stable
state. Breakups following bubble pinching usually hap-
pened within 0.1 s.

4.2.1 Breakup thresholds in micro gravity

In µG, the breakups usually occurred apart from the cell
walls (see fig. 6). In longitudinal views, the bubble is clearly
seen to first deform into a peanut shape before being
pinched in the middle and break up. Due to the finite size
of the cell, walls could sometimes influence the breakup
mechanism. The initial deformation leading to the break-
ing could occasionally be initiated by an encounter event
of the bubble with the wall.

Fig. 6. Bubble at the moment of breakup at the middle of
the cell in µG (A = 4.2 cm and f = 1.3 Hz with silicone oil
of 0.5 cm2/s). In each picture, the upper and lower half is in
longitudinal and transversal view, respectively.

The critical frequency fcr of the breakup has been
determined by varying the frequency f for given ampli-
tude A values. This determination has been made with
precisions of typically ±0.05 Hz. Results are presented in
fig. 7 for µG experiments. A general tendency reveals that
the acceleration acr = A (2πfcr)

2
is approximately con-

stant at the thresholds for a given suspending liquid. This
finding is consistent with the preceding experiments [13]
for ground experiments. However, the critical acceleration
values found in µG are around four times smaller than
those in G.

Figure 7 shows that a bubble in water (γ = 72 dyn/cm)
breaks up at a critical acceleration acr = 280 cm/s2 in
average, while it breaks at only acr = 94 cm/s2 in the
silicone oil of 0.01 cm2/s (γ = 17.4 dyn/cm). This re-
veals the stabilizing effect of surface tension. Regarding
the influence of the suspending liquid viscosity ν, results
from different silicone oils with various viscosity values
show a stabilizing effect. The critical acceleration acr is,
for example, 394 cm/s2 in the oil of 1 cm2/s that is four
times larger than in the oil of 0.01 cm2/s. The data for
all the suspending liquids were used to find an empirical
law of the breakup threshold in terms of the dimension-
less parameters KC, Ω and Oh. As shown in fig. 8, it is
found that all the data of the experimentally determined
thresholds group around a single line extending over six
orders of magnitude along the abscissa and three orders
of magnitude along the ordinate. Data scatter and small
deviations observed in the figure come from the difficul-
ties encountered in evaluating the breakup threshold with
precision in parabolic flights where µG phase could only
last 22 second maximum. A least square fit to the data
yields:

KCOh1.7Ω1.93 = 29.3 (4)

It implies that the critical acceleration acr increases only
slightly with the frequency (acr ∝ Ω0.07) and has a depen-
dency on the liquid physical properties such that acr ∝
ρ−0.85ν0.23γ0.85.
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4.2.2 Breakup thresholds in normal gravity

In G, the breakups are completed on the top wall. They
begin with wave formation on the lower surface. The bub-
ble forms a complete or incomplete torous before its pinching-
off leads to splitting. More details of the breakups in G
are available in [13].

Critical frequency values in G experiments are shown
in fig. 7 for bubbles of 3 cm3. Stronger oscillations were
required to destabilize the bubble in G compared to µG
experiments. The relation acr = cst at the bubble breakup
thresholds reported by [13] is confirmed in both set-ups ex-
cept for the data with frequencies higher than 20 Hz (cor-
respondingly, A . 0.1 cm). The latter data will no longer
considered in the present work, because these correspond
to bubbles in a dynamical regime different from that in
low frequency experiments, as described in sect. 4.1.2. The
critical acceleration values are much larger than those in
µG (e.g., in the oil of 0.01 cm2/s, acr = 779 cm/s2 in G
while acr = 94 cm/s2 in µG) and these values are seen to
increase with the viscosity and with the surface tension,
as observed in the experiments in µG. A similar corre-
lation to that for µG experimental data was derived for
G data using dimensionless parameters KC, Ω and Oh.
Figure 8 reveals that G data also group around a single
line extending over several orders of magnitude along the
abscissa and the ordinate. A least square fit to the data
yields:

KCOh1.7Ω1.98 = 208 (5)

It appears, with quite surprise, that this power law is
similar to that obtained for µG experiments (4) in spite of
qualitatively different behavior of bubbles observed in G
from in µG. As described above, wall influence is appar-
ently important in bubble motion and breakup. The es-
sential difference in the power laws of the breakup onset,
however, concern only the constants appearing in equa-
tions (4) and (5), which is significantly larger in G due to
larger acr values for bubble breaking. This large difference
will be explained energeticaly in the discussion of sect. 5.3.

5 Discussion on the breakup mechanism

In the literature, a large variety of criteria for the breakups
of fluid particles (bubbles and drops) have been proposed
under different flow configurations (see review papers, e.g.,
[19]). The criteria can be classed into three types [20].
(i) For particles in motion with small Reynolds numbers,
viscous shear at the surface is responsable for the distor-
tion and breakup of bubbles. Therefore, the criteria are
expressed in terms of the capillary number, which reflects
the relative importance of viscous to capillary forces. (ii)
For particles in motion with large Reynolds numbers, in-
ertia of the surrounding fluid flow is responsible for bubble
deformation and breakups. The criteria write in terms of
the Weber number, We, that compares the flow inertia
with the capillary pressure. (iii) For particles subjected to
time periodic excitations of their natural frequency, reso-
nance has been proposed as breakup mechanism. Besides
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these three classes, the Rayleigh-Taylor instability at the
particle surface is often pointed out as destabilising mech-
anism for particles ascending or descending freely in stag-
nant suspending phase and for bubbles at the rebound
stage of cavitation collapse [21,22]. For understanding the
bubble breakups observed in present experiments, we ex-
amine the plausible mechanisms among them in this sec-
tion. The Rayleigh-Taylor, resonance and inertial mecha-
nisms are considered.

5.1 Mechanism due to the Rayleigh-Taylor instability

In the present experiments, bubble breakups have occurred
at a constant value of the acceleration field for a given
suspending liquid. This might suggest that breakups are
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provoked by Rayleigh-Taylor instability as the latter orig-
inates in the acceleration, a, of the interface between two
fluids of different densities. The breakup of fluid parti-
cles ascending or descending freely by the buoyancy in
stagnant fluid has been studied by models based on this
instability [21,23,24]. According to theoretical study of
Kitscha & Kocamustafaogullari [24], the breakup criterion
for bubbles in such a configuration writes:

ρaD2
e

γ
> 732.8

(

1 + 4

√

ρaD2
e

γ
Oh

)1.66

(6)

This model has been compared successfully with experi-
ments when a was equal to the gravitational acceleration
g. One can apply the model to the case of oscillatory ac-
celeration field in the limit of small frequency; in other
words, in the limit of large oscillation amplitude. In µG
experiments, the interface acceleration a is given by sub-
tracting the acceleration of the bubble motion in the cell’s
reference frame from the imposed acceleration field. This
yields a = −Aω2 cosωt − Abω

2 cos (ωt+ θ). The experi-
ments show that Ab is small compared to A for large KC

values (see fig. 4 (a)). The maximum value of a can then
be estimated by Aω2. Introducing this estimate into the
criterion (6) yields Aω2 > 732.8γ/ρD2

e for bubbles with
small Ohnesorge numbers (i.e. in liquid of small viscos-
ity). Although this result correlates a breakup at a con-
stant acceleration, a comparison with experiments shows
that acr is largely overestimated. For instance, the model
predicts for the silicone oil of 0.01 cm2/s a critical accel-
eration acr = 4870 cm/s2 which is, respectively, fifty and
seven times larger than the corresponding acr obtained
in experiments in µG and G. This result suggests that
the breakup regime is not governed by a Rayleigh-Taylor
instability.

5.2 Mechanism due to resonance

Free oscillation of a bubble has natural frequencies fℓ
(ℓ = 2, 3, · · ·) scaled by the inverse of the capillary time

scale t−1
c =

(

γ/ρD3
e

)1/2
. The explicit expression of fℓ for

a spherical bubble in inviscid liquid can be found in, e.g.,
[25]. Viscous correction to it was given by Prosperetti [26]
for suspending liquids of any viscosity. For a bubble of
volume 3 cm3 in silicone oils of viscosity ranging 0.01
to 1 cm2/s, the fundamental mode (ℓ = 2) has natu-
ral frequencies ranging from 3.02 Hz to 1.56 Hz which
are of the same order of magnitude as the imposed fre-
quency in the present experiments. Although in fig. 8 no
preferred frequency was observed which could suggest a
resonance breakup mechanism, an interaction of the im-
posed frequencies with bubbles eigen modes was found in
G experiments. Figure 9 plots the dimensionless critical
acceleration acr/G for silicone oil of viscosity 0.1 cm2/s
as a function of the frequency scaled by the natural fre-
quency f2 calculated by the viscous theory [26]. In this
figure, it is shown that acr has a minimum when f/f2
is equal to 1.5. This behavior of the critical acceleration
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Fig. 9. Dimensionless critical acceleration for the breakups of
a bubble of 3 cm3 in silicone oil of viscosity 0.1 cm2/s. The
bubbles of volumes Vb = 2, 3, 4, 5 and 7 cm3 have natural
frequencies f2 of 3.66, 2.99, 2.60, 2.32 and 1.97 Hz, respectively.

suggests that the resonance can influence the principle
breakup mechanism. This eventual influence of bubble’s
natural frequency could be explained by wall effects, since
no similar finding has been made in µG. In G, bubbles are
in contact with the upper container wall. Bubble deforma-
tions are required for any relative motion of the bubble to
the liquid, while it is not the case in µG. In turn, per-
turbation flows destabilizing the bubble are affected by
bubble deformations which become the most important
with excitations at natural frequency.

5.3 Inertial mechanism

According to the results on the bubble velocity amplitude
in µG (3), the bubble Reynolds number Reb is calculated
as Reb = UbDe/ν = 0.59 Oh−0.15

√
KCΩ2. At the breakup

onset, this gives typically large values as suggested ear-
lier, except for the oil of 1 cm2/s. Using the correlation
for the onset (4), one can find, e.g., Reb ∼ 2000 and 50
for the oil of 0.01 and 0.5 cm2/s, respectively. Hence, the
inertial breakup would be one of the most credible mecha-
nisms. Stability studies of drops subjected to air blasts and
buoyancy-driven (ascending or descending) drops show
the following criterion for inertial breakups in the limit
of small viscosity [27,28]:

We > 12 (7)

This criterion expressed in terms of the Weber number
We = ρU2

bDe/γ means that a pressure perturbation, ρU2

b ,
caused by flow inertia destabilizes drops against the sta-
bilizing capillary pressure, γ/De. This could be applied
to the present bubbles, when the time scale of oscillation,
tosci, remains large compared to the breakup time scale
(∼ 0.1 s) and when the influence of cell’s walls is absent
(i.e. in µG). By considering the maximum velocity Abω
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that a bubble can attain, the criterion (7) can be written
for the present experiments as:

We =
ρ (ωAb)

2
De

γ
= (KCOhΩ Ab/A)

2
> 12 (8)

where the third term just corresponds to Weber number
written as a function of dimensionless quantities KC, Ω,
Oh and Ab/A. The latter amplitude ratio Ab/A can be es-
timated from the measurements of bubble translation am-
plitude. Insertion of the derived empirical law (2), which
takes into account bubble deformations, leads to the fol-
lowing breakup criterion:

KCOh1.7Ω2 > 34 (9)

Comparison of this criterion with the least square fit to the
experimental data of eq. (4) shows very good agreement.
In fig. 8 the curve of eq. (9) is represented by a dashed
line and is seen to fit very well the data obtained in µG.

5.4 A common breakup criterion in term of Weber
number for both G and µG experiments

Although different empirical laws derived for experiments
inG and µG were found to be similar (see eqs. (4) and (5)),
they did not permit to define a universal breakup crite-
rion for both environments. In this section, following the
results from previous section, one such criterion will be
proposed.

In G experiments, the bubble lower surface was ob-
served to develop waves prior to its breakup, while its
upper surface typically remained in contact with the top
wall of the cell (cf. [13]). This suggests the destabiliza-
tion of the lower surface is necessary for bubble breakups.
Hence, flow inertia has to overcome not only the stabi-
lizing effects due to surface tension but also those due to
gravity. In other words, the inertial perturbation (ρU2

b )
has to be strong enough to break up bubbles against the
capillary pressure (γ/De) and the hydrostatic pressure due
to the gravity (ρgDe). Therefore, the criterion (7) should
be modified accordingly. At the threshold, the relation
ρU2

b ∼ γ/De + ρgDe is expected from an energetic point
of view. The universal criterion in a dimensionless form
will be written as:

We > 12 + C Bo (10)

where Bo = ρgD2
e/γ is the Bond number and the con-

stant 12 has been chosen to meet the criterion (7) in the
limit of µG. In order to evaluate We, one needs estimates
of bubble velocity Ub which are difficult to obtain in G
as ground experiments are associated with the large bub-
ble deformation near the top wall. Hence, we assume that
Ub = ωAb can be evaluated by the same law as that in
µG (eq. (2)). The latter hypothesis is based on the ob-
served similarity of the experimental breakup criteria (4)
and (5). Figure 10 plots We divided by 12 + CBo as a
function of Ω. The ajustable parameter C is set to be
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Fig. 10. Critical Weber number values in micro and normal
gravity environments.

1/2 to yield favourable agreements with the experiments.
It is seen that the breakup criterion (10) is well satisfied
by the experimental data of both environments. This sug-
gests again that observed bubble breakups are caused by
the inertial perturbation in suspending fluid. Note that,
as the Bond number is relatively large in G experiments
(44 ≤ Bo ≤ 240), the right-hand-side of equation (10) is
roughly approximated by Bo itself. This implies that the
breakup thresholds in G are characterized by the criti-
cal value of the Froude number Fr = We/Bo around the
unity.

6 Conclusions

Stability of bubbles subjected to oscillatory acceleration
field has been studied experimentally both in micro and
normal gravity environments. In the attempt to reveal
the physical mechanism behind the breakup, the breakup
threshold was determined and discussed in detail with ac-
companied observations on the bubble motion under the
excitation. Determined critical parameters were correlated
by similar power laws KCOh1.7Ωn = cst with the power
n around 1.9 in both environments. Confrontations with
different possible breakup mechanisms were performed.
The possible mechanisms due to the Rayleigh-Taylor in-
stability and the resonance with bubble eigen-modes were
shown to be inconsistent with the experiments. The iner-
tial breakup mechanism similar to that of drops in a uni-
form flow was found to give consistent explanation to ex-
perimentally determined breakup thresholds. From an en-
ergetic point of view, a universal criterion for experiments
in G and µG was proposed in terms of the Weber num-
ber We. Calculated We values on the breakup thresholds
with the help of the consideration on the bubble motion
affected by fluid viscosity and capillarity showed the va-
lidity of the criterion in the experiments as seen in fig. 10.
This suggests that inertial flow perturbation in suspending
fluid is responsable for the observed breakups.
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