
A Type System for Components

Ornela Dardha, Elena Giachino, Michael Lienhardt

To cite this version:

Ornela Dardha, Elena Giachino, Michael Lienhardt. A Type System for Components. Robert
M. Hierons and Mercedes G. Merayo and Mario Bravetti. SEFM - International Conference on
Software Engineering and Formal Methods - 2013, 2013, Madrid, Spain. Springer, 8137, pp.167-
181, 2013, Lecture Notes in Computer Science; Software Engineering and Formal Methods.
<10.1007/978-3-642-40561-7 12>. <hal-00909310>

HAL Id: hal-00909310

https://hal.inria.fr/hal-00909310

Submitted on 26 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00909310

A Type System for Components⋆

Ornela Dardha1 Elena Giachino1 Michaël Lienhardt2

1 INRIA Focus Team / University of Bologna, Italy
{dardha, giachino}@cs.unibo.it

2 University of Paris Diderot, France
lienhar@inria.fr

Abstract. In modern distributed systems, dynamic reconfiguration, i.e.,
changing at runtime the communication pattern of a program, is chal-
lenging. Generally, it is difficult to guarantee that such modifications will
not disrupt ongoing computations. In a previous paper, a solution to this
problem was proposed by extending the object-oriented language ABS
with a component model allowing the programmer to: i) perform up-
dates on objects by means of communication ports and their rebinding;
and ii) precisely specify when such updates can safely occur in an object
by means of critical sections. However, improper rebind operations could
still occur and lead to runtime errors. The present paper introduces a
type system for this component model that extends the ABS type system
with the notion of ports and a precise analysis that statically enforces
that no object will attempt illegal rebinding.

1 Introduction

In modern complex distributed scenarios, unplanned dynamic reconfiguration,
i.e., changing at runtime the communication pattern of a program, is challeng-
ing as it is difficult to ensure that such modifications will not disrupt ongoing
computations. In [14] the authors propose to solve the problem by integrating
notions coming from component models [2–4,8] within the actor-based Abstract
Behavioral Specification programming language (ABS) [13]. ABS is designed for
distributed object-oriented systems and integrates concurrency and synchroniza-
tion mechanisms to solve data races. Actors, called cogs or simply groups, are
dynamic collections of collaborating objects. Cogs offer consistency by guaran-
teeing that at most one method per cog is executing at any time. Within a cog,
objects collaborate using (synchronous) method calls and collaborative concur-
rency with the suspend and await operations which can suspend the execution
of the current method, and thus allow another one to execute. Between cogs,
collaboration is achieved by means of asynchronous method calls that return fu-
ture, i.e., a placeholder where the result of the call is put when its computation
finishes.

⋆ This research is partly funded by the EU project FP7-231620 HATS and by the
French National Research Agency (ANR), projects REVER ANR 11 INSE 007

On top of the ABS language, [14] adds the notions of ports, bindings and
safe state to deal with dynamic reconfiguration. Ports define variability points
in an object and can be rebound (i.e., modified) from outside the object (on the
contrary, fields, which represent the inner state of the object, can only be mod-
ified by the object itself). To ensure consistency of the rebind operation, [14]
enforces two constraints on its application: i) it is only possible to rebind an
object’s port when the object is in a safe state; and ii) it is only possible to
rebind an object’s port from any object within the same cog. Safe states are
modeled by annotating methods as critical, specifying that while one or more
critical methods are executing, the object is not in a safe state. The resulting
language offers a consistent setting for dynamic reconfigurations, which means
performing modifications on a program at runtime while still ensuring consis-
tency of its execution. Consistency is based on two constraints: both synchronous
method calls and rebinding operations must involve two objects in the same cog.
These constraints are enforced at runtime; therefore, programs may encounter
unexpected runtime errors during their execution.

In this paper, we define a type system for the component model that stati-
cally ensures the legality of both synchronous method calls and port rebindings,
guaranteeing that well-typed programs will always be consistent. Our approach
is based on a static tracking of group membership of the objects. The difficulty
in retrieving this kind of information is that cogs as well as objects are dynamic
entities. Since we want to trace group information statically, we need a way to
identify and track every group in the program. To this aim, we define a technique
that associates to each group creation a fresh group name. Then, we keep track of
which cog an object is allocated to, by associating to each object a group record.
The type system checks that objects indeed have the specified group record,
and uses this information to ensure that synchronous calls and rebindings are
always performed locally to a cog. The type system is proven to be sound with
respect to the operational semantics. We use this result to show that well-typed
programs do not violate consistency during execution.

Motivating example. In the following we present a running example that gives
a better understanding of the ABS language and the component extension, and
most importantly, motivates our type system. Consider the following typical
distributed scenario: suppose that we have several clients working together in a
specific workflow and using a central server for their communications. Updating
the server is a difficult task, as it requires to update its reference in all clients
at the same time in order to avoid communication failures.

First, in Fig. 1 we consider how this task is achieved in ABS. The programmer
declares two interfaces Server and Client and a class Controller. Basically, the
class Controller updates the server in all the clients ci by synchronously calling
their setter method. All the clients are updated at the same time: since they
are in the same cog as the controller they cannot execute until the execution of
method updateServer has terminated.

2

interface Server { ... }

interface Client { Unit setServer(Server s); ... }

class Controller {

Client c1, c2, ... cn;

Unit updateServer(Server s2) {

c1.setServer(s2);

c2.setServer(s2);

...

cn.setServer(s2);

}}

Fig. 1. Workflow in ABS.

However, this code does not ensure that the update is performed when the
clients are in a safe state. This can lead to inconsistencies because clients that
are using the server are not aware of the modification taking place. This problem
can be solved by using the notions of port and rebind [14] as shown in Fig. 2.
Here, the method updateServer first waits for all clients to be in a safe state
(await statement performed on the conjunction of all clients) and then updates
their reference one by one (rebind server s which is declared to be a port).

interface Server { ... }

interface Client { port Server s; ... }

class Controller {

Client c1, c2, ... cn;

...

Unit updateServer(Server s2) {

await ‖c1‖ ∧ ‖c2‖ ∧ . . . ∧ ‖cn‖;
rebind c1.s = s2;

rebind c2.s = s2;

...

rebind cn.s = s2;

}}

Fig. 2. Workflow using the Component Model.

However, runtime errors can still occur. For instance, if the clients and the
controller are not in the same cog, the update will fail. Consider the code
in Fig. 3. Method main instantiates classes Client and Controller –and pos-
sibly other classes, like Server, present in the program– by creating objects
c1,c2,...,cn,c. These objects are created in the same cog by the new command,

3

except for client c1, which is created and placed in a new cog by the new cog

command. Now, suppose that the code in Fig. 2 is executed. At runtime, the
program will check if the controller and the client belong to the same cog to
respect the consistency constraints on rebinding. In case of c1 this check will fail
by leading to a runtime error.

The present paper addresses this problem in order to avoid these runtime
errors and the overhead in dealing with them. We present a type system that
tracks cog membership of objects thus permitting to typecheck only programs
where rebinding is consistent. So, the code presented above would not typecheck,
as shown in § 3, thus discarding the program at compile time instead of leading
to a runtime error.

Unit main () { ...

Client c1 = new cog Client (s);

Client c2 = new Client (s);

...

Client cn = new Client (s);

Controller c = new Controller (c1, c2, ... cn);

}

Fig. 3. Client and Controller objects creation.

Roadmap. The rest of the paper is structured as follows: § 2 introduces the
calculus, types and terms; § 3 presents our type system and its properties; and
§ 4 concludes the paper and discusses future and related works.

2 The calculus

In this section we present the calculus underlying our approach, which is a com-
ponent extension of the ABS language3. We present formally only the syntax of
the calculus which is necessary for specifying the type system. We already gave
some intuitions about the operational semantics of the calculus in the introduc-
tion and through the example, whereas for the formal definition we refer to the
original paper [14] and the extended version of this paper [9].

The syntax of the calculus is given in Fig. 4 and corresponds to the original
one, except for types, which are here extended in order to store also group
information. This syntax is based on several categories of names: I and C range
over interface and class names; V ranges over type variables for polymorphism; G

3 For the sake of readability, the calculus we consider is a subset of [14]. The notion of
location has been dropped, since it is orthogonal to ports and rebinding. The validity
of our approach and of our type system still holds for the full calculus.

4

P ::= Dl { s } Program
Dl ::= D | F | I | C Declarations

T ::= V | D[〈T 〉] | (I, r) Type

r ::= ⊥ | G[f : T] | α | µα.r Record

D ::= data D[〈T 〉] = Co[(T)]|Co[(T)]; Data Type

F ::= def T fun[〈T 〉](T x) = e; Function

I ::= interface I [extends I] { port T x;S } Interface

C ::= class C [(T x)] [implements I] { Fl M } Class
Fl ::= [port] T x Field Declaration

S ::= [critical] (G, r) T m(T x) Method Header
M ::= S { s } Method Definition
s ::= skip | s;s | T x | x = z | await g Statement

| if e { s } else { s } | while e { s } | return e

| rebind e.p = z

z ::= e | new [cog] C (e) | e.m(e) | e!m(e) | get(e) Expression with Side Effects
e ::= v | x | fun(e) | case e {p ⇒ ep} Expression
v ::= null | Co[(v)] Value
p ::= | x | null | Co[(p)] Pattern
g ::= x | x? | ‖x‖ | g ∧ g Guard

Fig. 4. Core ABS Language and Component Extension.

ranges over cog names, which will be explained thoroughly in § 3; D, Co and fun

range respectively over data type, constructor and function names; m, f and p

range respectively over method, field and port names (in order to have a uniform
presentation, we will often use f for both fields and ports); and x ranges over
variables, with the addition of the special variable this indicating the current
object. For the sake of readability, we use the following notations: an overlined
element corresponds to any finite, possibly empty, sequence of such element; and
an element between square brackets is optional.

A program P consists of a sequence of declarations ended by a main block,
namely a statement s to be executed. Declarations include data type declarations
D, function declarations F , interface declarations I and class declarations C. A
type T can be: a type variable V; a data type D like Bool or futures Fut〈T 〉,
used to type data structures; or a pair consisting of an interface name I and
a record r to type objects. Note that the ABS type system only uses interface
names to type objects, but here we add records to track in which cog an ob-
ject is located. Records can be: ⊥, meaning that the structure of the object is
unknown; G[f : T], meaning that the object is in the cog G and its fields f are
typed with T ; or regular terms, using the standard combination of variables α

and the µ-binder. Data types D have at least one constructor, with name Co,
and possibly a list of type parameters T . Functions F are declared with a return
type T , a name fun, a list of parameters T x and a code e. Interfaces I de-
clare methods and ports that can be modified at runtime. Classes C implement
interfaces; they have a list of fields and ports Fl and implement all declared

5

methods. Method headers S are used to declare methods with their classic type
annotation, and i) the possible annotation critical that ensures that no rebind-
ing will be performed on that object during the execution of that method; and
ii) a method signature (G, r) which will be described and used in our type sys-
tem section. Method declarations M consist of a header and a body, the latter
being a sequential composition of local variables and commands. Statements s

are standard except for await g, which suspends the execution of the method
until the guard g is true, and rebind e.p = z, which rebinds the port p of the
object e to the value stored in z. Expressions z include: expressions without side
effects e; new C (e) and new cog C (e) that instantiate a class C and place the
object in the current cog and in a new cog, respectively; synchronous e.m(e) and
asynchronous e!m(e) method calls, the latter returning a future that will hold
the result of the method call when it will be computed; and get(e) which gives
the value stored in the future e, or actively waits for it if it is not computed
yet. Pure expressions e include values v, variables x, function call fun(e) and
pattern matching case e {p ⇒ ep} that tests e and execute ep if it matches p.
Patterns p are standard: matches everything, x matches everything and binds
it to x, null matches a null object and Co(p) matches a value Co(ep) where p

matches ep. Finally, a guard g can be: a variable x; x? which is true when the
future x is completed, false otherwise; ‖x‖ which is true when the object x is
in a safe state, i.e., it is not executing any critical method, false otherwise; and
the conjunction of two guards g ∧ g has the usual meaning.

3 Type System

The goal of our type system is to statically check whether synchronous method
calls and rebindings are performed locally to a cog. Since cogs and objects are
entities created at runtime, we cannot know statically their identity. We address
this issue by using a linear type system approach on names of cogs G, G′, G′′ . . .
that abstracts the runtime identity of cogs. This type system associates to every
cog creation a unique cog name, which makes it possible to check if two objects
are in the same cog or not. Precisely, we associate objects to their cogs using
records r, having the form G[f : T], where G denotes the cog in which the object is
located and [f : T] maps any object’s fields f to its type T . In order to correctly
track cog membership of each expression, we also need to keep information about
the cog of the object’s fields in a record. This is needed, for instance, when an
object stored in a field is accessed within the method body and then returned
by the method; in this case one needs a way to bind the cog of the accessed
field to the cog of the returned value. Let us now explain the method signature
(G, r) annotating a method header. The record r is used as the record of this

during the typing of the method, i.e., r is the binder for the cog of the object
this in the scope of the method body, as we will see in the typing rules in the
following. The set of cog names G is used to keep track of the fresh cogs that
the method creates. In particular, when we deal with recursive method calls, the
set G gathers the fresh cogs of every call, which is then returned to the main

6

S:Data

∀i Ti ≤ T
′

i

D〈T 〉 ≤ D〈T
′

〉

S:Bot

(L, r) ≤ (L,⊥)

S:Fields

∀i Ti ≤ T
′

i f 6∈ ports(L)

(L, G[f : T ; f : T]) ≤ (L, G[f : T ′])

S:Ports

∀i Ti ≤ T
′

i f ∈ ports(L)

(L, G[f : T]) ≤ (L, G[f : T ; f : T ′])

S:Type

L ≤ L
′ ∈ CT

(L, r) ≤ (L′

, r)

Fig. 5. Subtyping Relation4

execution. Moreover, when it is not necessary to keep track of cog information
about an object, because the object is not going to take part in any synchronous
method call or any rebind operation, it is possible to associate to this object the
unknown record ⊥. This special record does not keep any information about the
cog where the object or its fields are located, and it is to be considered different
from any other cog, thus to ensure the soundness of our type system. Finally,
note that data types also can contain records: for instance, a list of objects is
typed with List〈T 〉 where T is the type of the objects in the list and it includes
also the record of the objects.

A typing environment Γ is a partial function from names to typings, which
assigns types T to variables, a pair (C, r) to this, and arrow types T → T ′ to
function symbols like Co or fun.

3.1 Subtyping Relation

The subtyping relation ≤ on types is a preorder and is presented in Fig. 5.
Rule S:Data states that data types are covariant in their type parameters. Rule
S:Bot states that every record r is a subtype of the unknown record ⊥. Rules
S:Fields and S:Ports use structural subtyping on records. Fields, like methods,
are what the object provides, hence it is sound to forget about the existence of
a field in an object. This is why the rule S:Fields allows to remove fields from
records. Ports on the other hand, model the dependencies the objects have on
their environment, hence it is sound to consider that an object may have more
dependencies than it actually has during execution. This is why the rule S:Ports

allows to add ports to records. Notice that in the standard object-oriented setting
this rule would not be sound, since trying to access a non-existing attribute would
lead to a null pointer exception. Therefore, to support our vision of port behavior,
we add a Rebind-None reduction rule to the component calculus semantics which
simply permits the rebind to succeed without modifying anything if the port is
not available. Finally, rule S:Type adopts nominal subtyping between classes
and interfaces.

4 For readability, we let L be either a class name C or an interface name I.

7

tmatch(T, T) = id tmatch(r, r) = id tmatch(V, T) , [V 7→ T]

∀i. tmatch(Ti, T
′
i) = σi ∀i, j, σi|dom(σj)

= σj|dom(σi)

tmatch(D〈T 〉, D〈T ′〉) ,
⋃

i

σi

tmatch(r, r
′
) = σ

tmatch((I, r), (I, r
′
)) , σ

∀i. tmatch(Ti, T
′
i) = σi ∀i, j, σi|dom(σj)

= σj|dom(σi)
∀i, σ(G) ∈ {G, G′}

tmatch(G[f : T], G
′
[f : T ′]) , [G 7→ G

′
]
⋃

i

σi

pmatch(, T) , ∅ pmatch(x, T) , ∅; x : T pmatch(null, (I, r)) , ∅

Γ (Co) = T → T
′

tmatch(T
′
, T

′′
) = σ ∀i. pmatch(pi, σ(Ti)) = Γi

pmatch(Co(p), T
′′
) ,

⊎

i

Γi

C ≤ I ∈ CT dom(σ
′
) ∩ dom(σ) = ∅ fields(C) = (f : (I, r); f ′ : D(. . .))

(I, G[σ ⊎ σ
′
(f : (I, r))]) ∈ crec(G, C, σ)

equals(G, G
′
)

coloc(G[. . .], (C, G
′
[. . .]))

ports(C) ⊆ ports(I) and ∀p ∈ ports(C). ptype(p, C) ≤ ptype(p, I)
heads(I) ⊆ heads(C) and ∀m ∈ I. mtype(m, I) = mtype(m, C)

implements(C, I)

ports(I) ⊆ ports(I
′
) and ∀p ∈ ports(I). ptype(p, I) ≤ ptype(p, I

′
)

heads(I
′
) ⊆ heads(I) and ∀m ∈ I

′
. mtype(m, I) = mtype(m, I

′
)

extends(I, I’)

Fig. 6. Auxiliary functions and predicates.

3.2 Functions and Predicates

The type system makes use of several auxiliary functions and predicates pre-
sented in Fig. 6 5. Function tmatch returns a substitution σ of the formal pa-
rameters to the actual ones. It is defined both on types and on records. The
matching of a type T to itself, or of a record r to itself, returns the identity
substitution id; the matching of a type variable V to a type T returns a substi-
tution of V to T ; the matching of data type D parameterized on formal types
T and on actual types T ′ returns the union of substitutions that correspond to
the matching of each type Ti with T ′

i in such a way that substitutions coincide
when applied to the same formal types; the matching of records follows the same
idea as that of data types. Finally, tmatch applied on types (I, r), (I, r′) returns
the same substitution obtained by matching r with r

′. Function pmatch, per-
forms matchings on patterns and types by returning a typing environment Γ . In
particular, pmatch returns an empty set when the pattern is or null, or x : T
when applied on a variable x and a type T . Otherwise, if applied to a construc-
tor expression Co(p) and a type T ′′ it returns the union of typing environments
corresponding to patterns in p. Function crec asserts that (I, G[σ⊎σ′(f : (I, r))])
is a member of crec(G, C, σ) if class C implements interface I and σ′ and σ are
substitutions defined on disjoint sets of names. Function fields(C) returns the

5 For readability reasons, the lookup functions like ports, fields, ptype, mtype, heads

are written in italics, whether the auxiliary functions and predicates are not.

8

T:Var/Field

Γ (x) = T

Γ ⊢ x : T

T:Null
interface I [· · ·] { · · · } ∈ CT

Γ ⊢ null : (I, r)
T:Constructor
Γ (Co) = T → T

′
tmatch(T , T ′) = σ Γ ⊢ v : T ′

Γ ⊢ Co(v) : σ(T
′
)

T:Fun
Γ (fun) = T → T

′
tmatch(T , T ′) = σ Γ ⊢ v : T ′

Γ ⊢ fun(v) : σ(T
′
)

T:Case
Γ ⊢ e : (T, r) Γ ⊢ p ⇒ ep : (T, r) → (T

′
, r

′
)

Γ ⊢ case e {p ⇒ ep} : (T
′
, r

′
)

T:Branch
Γ ⊢ p : (T, r) Γ ; pmatch(p, (T, r)) ⊢ ep : (T

′
, r

′
)

Γ ⊢ p ⇒ ep : (T, r) → (T
′
, r

′
)

T:Sub
Γ ⊢ e : T T ≤ T

′

Γ ⊢ e : T
′

T:FGuard
Γ ⊢ x : Fut〈T 〉

Γ ⊢ x? : Bool

T:CGuard
Γ ⊢ x : (I, r)

Γ ⊢ ‖x‖ : Bool

T:LGuard
Γ ⊢ g1 : Bool Γ ⊢ g2 : Bool

Γ ⊢ g1 ∧ g2 : Bool

Fig. 7. Typing Pure Expressions and Guards.

typed fields and ports of a class C. Function port instead, returns only the typed
ports. Predicate coloc states the equality of two cog names. Predicates imple-
ments and extends check when a class implements an interface and an interface
extends another one properly. A class C implements an interface I if the ports
of C are at most the ones of I. This follows the intuition: since ports indicate
services then an object has at most the services declared in its interface. Then,
any port in C has a subtype of the respective port in I. Instead, for methods, C
may define at least the methods declared in I having the same signature. The
extends predicate states when an interface I properly extends another interface
I′ and it is defined similarly to the implements predicate.

3.3 Typing Rules

In this section we present the typing rules. Typing judgments use a typing envi-
ronment Γ and possibly a set G which indicates the set of new cogs created by
the term being typed. They have the following forms: Γ ⊢ g : Bool for guards,
Γ ⊢ e : T for pure expressions, Γ,G ⊢ z : T for expressions with side effects
and Γ,G ⊢ s for statements. Finally, typing judgments for method, class and
interface declarations are Γ ⊢ M , Γ ⊢ C and ∅ ⊢ I, respectively.

Pure Expressions. Typing rules for pure expressions are given in Fig. 7. Rule
T:Var/Field states that a variable is of type the one assumed in the typing
environment. Rule T:Null states that null is of type any interface I declared
in the CT and any record r. Rule T:Constructor states that constructor Co

applied to a list of values v is of type σ(T ′) where the constructor is of a functional
type T → T ′ and the values are of type T ′ obtained by the auxiliary function
tmatch. Rule T:Fun for function expressions is the same as the previous one
for constructor expressions. Rule T:Case states that if all branches are well-
typed and have the same type, then the case expression is also well-typed. Rule

9

T:Exp
Γ ⊢ e : T

Γ, ∅ ⊢ e : T

T:New
Γ (this) = (C

′
, G[. . .])

params(C) = T f Γ ⊢ e : T ′ tmatch(T , T ′) = σ T ∈ crec(G, C, σ)

Γ ⊢ new C(e) : T
T:Cog
params(C) = T f Γ ⊢ e : T ′ tmatch(T , T ′) = σ T ∈ crec(G, C, σ)

Γ, {G} ⊢ new cog C (e) : T
T:SCall
mtype(m, I) = (G, r)(T x) → T Γ ⊢ e : (I, σ(r)) Γ ⊢ e : σ(T) coloc(σ(r), Γ (this))

Γ ⊢ e.m(e) : σ(T)
T:ACall
mtype(m, I) = (G, r)(T x) → T Γ ⊢ e : (I, σ(r)) Γ ⊢ e : σ(T)

Γ ⊢ e!m(e) : Fut〈σ(T)〉

T:Get
Γ ⊢ e : Fut〈T 〉

Γ ⊢ get(e) : T

Fig. 8. Typing Expressions.

T:Branch states that a branch p ⇒ ep is well-typed if the pattern p is well-typed
and the expression ep is well-typed in the extension of Γ with typing assertions
for the pattern. Rule T:Sub is the standard subsumption rule.

Guards. Typing rules for guards are given in Fig. 7. Rule T:FGuard states that
if a variable x has type Fut〈T 〉, the guard x? has type Bool. Rule T:CGuard

states that ‖x‖ has type Bool if x is an object. Rule T:LGuard states that if
each gi has type Bool for i = 1, 2 then the conjunction g1 ∧ g2 has type Bool.

Expressions. The typing rules for expressions with side effects are given in
Fig. 8. These are different w.r.t. the previous ones as they keep track of the
new cogs created. Rule T:Exp is a weakening rule which asserts that a pure
expression e is well-typed in a typing context Γ and an empty set of cogs, if it is
well-typed in Γ . Rule T:New assigns type T to the object new C(e) if the actual
parameters have types compatible with the formal ones, by applying function
tmatch, the cogs of the object and this coincide and the type T is in the crec
predicate. Rule T:Cog is similar to the previous one, except for the creation of
a new cog G where the new object is placed. Rules T:SCall and T:ACall type
synchronous and asynchronous method invocations, respectively. Both rules use
mtype to obtain the method signature as well as the method’s typed parameters
and the return type, i.e., (G, r)(T x) → T . The group record r, the parameters
types and the return type of the method are the “formal” ones. In order to
obtain the “actual” ones, we use σ that maps formal cog names to actual cog
names. Consequently, the callee e has type (I, σ(r)) and the actual parameters
e have types σ(T). Finally, the invocations are typed in the substitution σ(T).
The rules differ in that the former also checks whether the group of this and the
group of the callee coincide, by using the auxiliary function coloc, and also the
types of the returned value are σ(T) and Fut〈σ(T)〉, respectively. Rule T:Get

states that get(e) is of type T , if expression e is of type Fut〈T 〉.

Statements. The typing rules for statements are presented in Fig. 9. Rule
T:Skip states that skip is always well-typed. Rule T:Decl states that T x is

10

T:Skip
Γ, ∅ ⊢ skip

T:Decl
Γ (x) = T

Γ, ∅ ⊢ T x

S:Semi
Γ,G1 ⊢ s1 Γ,G2 ⊢ s2

Γ,G1 ⊎ G2 ⊢ s1; s2

S:Assign
Γ (x) = T Γ,G ⊢ z : T

Γ,G ⊢ x = z

S:Await
Γ ⊢ g : Bool

Γ, ∅ ⊢ await g

S:Cond
Γ ⊢ e : Bool Γ,G1 ⊢ s1 Γ,G2 ⊢ s2

Γ,G1 ⊎ G2 ⊢ if e { s1 } else { s2 }

S:While
Γ ⊢ e : Bool Γ,G ⊢ s

Γ,G ⊢ while e { s }
S:Return
Γ ⊢ e : T Γ (destiny) = T

Γ, ∅ ⊢ return e

Rebind
Γ (this) = (C, G[. . .]) T p ∈ ports(I) Γ ⊢ e : (I, r) Γ,G ⊢ z : T coloc(r, Γ (this))

Γ,G ⊢ rebind e.p = z

Fig. 9. Typing Statements.

T:Method
Γ, x : T ,destiny : Fut〈T 〉, this : (C, r),G ⊢ s

Γ ⊢ [critical] (G, r) T m(T x){ s } in C

T:Class
∀I ∈ I. implements(C, I) Γ, x : T ⊢ M in C

Γ ⊢ class C (T x) implements I { Fl M }

T:Interface
∀I′ ∈ I. extends(I, I

′
)

⊢ interface I extends I { port T x;S }

Fig. 10. Typing Declarations.

well-typed if variable x is of type T in Γ . Rule T:Semi types the composition of
statements, if s1 and s2 are well-typed in the same typing environment and, like
in linear type systems, they use distinct cog names. Hence, their composition
uses the disjoint union ⊎ of the corresponding sets. Rule T:Assign asserts the
well-typedness of the assignment x = z if both x and z have the same type T .
Rule T:Await asserts that await g is well-typed whenever the guard g has type
Bool. Rules T:Cond and T:While are quite standard, except for the presence of
the linear set of cog names. Rule T:Return asserts that return e is well-typed
if expression e has the same type as the variable destiny. Finally, rule T:Rebind

types statement rebind e.p = z by checking that: i) p is a port of the right type,
and ii) z is in the same group as this.

Method, class and interface declarations. The typing rules are presented
in Fig. 10. Rule T:Method states that method m is well-typed in class C if the
method’s body s is well-typed in a typing environment augmented with the
method’s typed parameters; type information about destiny and the current
object this; and cog names as specified by the method signature. Rule T:Class

states that a class C is well-typed when it implements all the interfaces I and
all its methods are well-typed. Rule T:Interface states that an interface I is
well-typed if it extends all interfaces in I.

Remark. The typing rule for assignment requires the group of the variable
and the group of the expression being assigned to be the same. This restriction
applies to rule for rebinding, as well. To see why this is needed let us consider

11

Γ (this) = (Controller, G[. . .]) (Server, r) s ∈ ports(Client)
∀i = 2, ..., n Γ ⊢ ci : (Client, G[. . . , s : (Server, r)])

Γ, ∅ ⊢ s2 : (Server, r) coloc(G[. . . , s : (Server, r)], Γ (this))

∀i Γ, ∅ ⊢ rebind ci.s = s2

Fig. 11. Rebind derivation.

a sequence of two asynchronous method invocations x!m();x!n(), both called
on the same object and both modifying the same field. Say m does this.f = z1

and n does this.f = z2. Because of asynchronicity, there is no way to know the
order in which the updates will take place at runtime. A similar example may
be produced for the case of rebinding. Working statically, we can either force
the two expressions z1 and z2 to have the same group as f, or keep track of all
the different possibilities, thus the type system must assume for an expression
a set of possible objects it can reduce to. In this paper we adopt the former
solution, we let the exploration of the latter as a future work. We plan to relax
this restriction following a similar idea to the one proposed in [11].

Example Revisited. We now recall the example of the workflow given in Fig. 2
and Fig. 3. We show how the type system works on this example: by applying
the typing rule for rebind we have the derivation in Fig. 11 for any clients from
c2 to cn. For client c1, if we try to typecheck the rebinding, we would have the
following typing judgments in the premise of Rebind:

Γ (this) = (Controller, G[...]) Γ, ∅ ⊢ c1 : (Client, G′[. . . , s : (Server, r)])

But then, the predicate coloc(G′[. . . , s : (Server, r)], Γ (this)) is false, since
equals(G, G′) is false. Then one cannot apply the typing rule Rebind, by thus
not typechecking rebind c1.s = s2.

3.4 Properties of the type system

In this section we briefly overview the properties of the type system and we out-
line the runtime system devised in order to provide the proofs of those properties.
The full technical treatment with proofs can be found in [9]. Before stating the
properties that our type system enjoys, we first introduce the following notions:

Runtime typing environments ∆ are obtained by augmenting typing environ-
ments Γ with runtime information about objects and futures, namely o : (C, r)
and f : Fut〈T 〉 where o and f are object and future variables, respectively.

Runtime configurations N extend the language with constructs used during
execution, mainly with objects. An object ob(o, σ,Kidle, Q) has a name o; a
substitution σ mapping the object’s fields, ports and special variables like this,
destiny, to values; a running process Kidle, that is idle if the object is idle; and

12

a queue of suspended processes Q. A process K is { σ | s } where σ maps the
local variables to their values and s is a list of statements.

Reduction relation N → N ′ is defined over runtime configurations and follows
the definition of such relation in [13,14].

Runtime judgments are of the form ∆,G ⊢R N meaning that the configura-
tion N is well-typed in the typing context ∆ by using a set G of new cogs.

Our type system enjoys the classical properties of subject reduction and type
correction stated in the following.

Theorem 1 (Subject Reduction). If ∆,G ⊢R N and N → N ′ then ∃ ∆′, G′

such that ∆′ ⊇ ∆, G′ ⊆ G and ∆′,G′ ⊢R N ′.

Proof. The proof is done by induction over the operational semantics rules.

Theorem 2 (Correction). If ∆,G ⊢R N , then for all objects
ob(o, σ, { σk | s }, Q) ∈ N with either s = rebind x.fi = x′; s′ or s = x.m(x); s′,
there exists an object ob(o′, σ′,Kidle, Q

′) ∈ N such that σ ◦ σk(x) = o′ and
σ(cog) = σ′(cog). Where ◦ defines the composition of substitutions.

Proof. The proof is done by induction over the structure of N .

As a consequence of the previous results, rebinding and synchronous method
calls are always performed between objects of the same cog:

Corollary 1. Well-typed programs do not perform i) an illegal rebinding or ii)
a synchronous method call outside the cog.

4 Conclusions, Future and Related Works

This paper presents a type system for a component-based calculus [14], an ex-
tension of ABS [13] with ports and rebind operations. Ports denote the access
point to the functionalities provided by the environment and can be modified
by performing a rebind operation. There are two consistency issues involving
ports: i) ports cannot be modified while in use; this problem is solved in [14] by
combining the notions of ports and critical section; ii) it is forbidden to modify a
port of an object outside the cog; this problem is solved in the present paper by
designing a type system that guarantees the above requirement. The type system
tracks an object’s membership to a certain cog by adopting group records. Re-
bind statement is well-typed if there is compatibility of groups between objects
involved in the operation.

Regarding future work, we want to investigate several directions. First, as dis-
cussed in Section 3 our current approach imposes a restriction on assignments,
namely, it is possible to assign to a variable/field/port only an object belonging
to the same cog. We plan to relax this restriction following an idea similar to
the one proposed in [11], where instead of having just one group associated to
a variable, it is possible to have a set of groups. Second, we want to deal with
runtime misbehavior. For instance, deadlocks are intrinsically related to the se-
mantic model, which requires a component to be in a safe state when rebinded,

13

thus introducing synchronization points between the rebinder and the rebindee.
For this reason deadlocks may arise. How to detect and avoid this kind of mis-
behavior is left as future work, possibly following [10]. Moreover, in this paper
we showed how to use our technique for a very specific safety problem in the
context of a component-based language, but we believe the tracking of object/-
group identities/memberships is useful for other problems (deadlock detection,
race detection, resource consumption) and other settings (business processes and
web-services languages). We plan to investigate this direction further.

Related Works. Most component models [2–4, 8] have a notion of component
distinct from that of object. The resulting language is structured in two separate
layers, one using objects for the main execution of the program and the other us-
ing components for the dynamic reconfiguration. This separation makes it harder
for the reconfiguration requests to be integrated in the program’s workflow. The
component model used in the present paper has a unified description of objects
and components by exploiting the similarities between them. This bring several
benefits w.r.t. previous component models: i) the integration of components and
objects strongly simplifies the reconfiguration requests handling, ii) the sepa-
ration of concepts (component and object, port and field) makes it easier to
reason about them, for example, in static analysis, and iii) ports are useful in
the deployment phase of a system by facilitating, for example, the connection to
local communication. Various type systems have been designed for components.
The type system in [15] categorizes references to be either Near (i.e., in the same
cog), Far (i.e., in another cog) or Somewhere (i.e., we don’t know). The goal is to
automatically detect the distribution pattern of a system by using the inference
algorithm, and also control the usage of synchronous method calls. It is more
flexible than our type system since the assignment of values of different cogs is
allowed, but it is less precise than our analysis: consider two objects o1 and o2

in a cog c1, and another one o3 in c2; if o1 calls a method of o3 which returns
o2, the type system will not be able to detect that the reference is Near. In [1]
the authors present a tool to statically analyze concurrency in ABS. Typically,
it analyses the concurrency structure, namely the cogs, but also the synchro-
nization between method calls. The goal is to get tools that analyze concurrency
for actor-like concurrency model, instead of the traditional thread-based concur-
rency model. On the other hand, our type system has some similarities with the
type system in [5] which is designed for a process calculus with ambients [6],
the latter roughly corresponding to the notion of components in a distributed
scenario. The type system is based on the notion of group which tracks commu-
nication between ambients as well as their movement. However, groups in [5] are
a “flat” structure whether in our framework we use group records defined recur-
sively; in addition, the underlying language is a process calculus, whether ours
is a concurrent object-oriented one. As object-oriented languages are concerned,
another similar work to ours is the one on ownership types [7], where basically, a
type consists of a class name and a context representing object ownership: each
object owns a context and is owned by the context it resides in. The goal of the

14

type system is to provide alias control and invariance of aliasing properties, like
role separation, restricted visibility etc. [12].

15

