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Strong interaction with other particles or feedback from the medium on a Brownian particle entail memory

effects in the effective dynamics. That motivates the extension of the fluctuation-dissipation theorem to

nonequilibrium Langevin systems with memory. An important application is to the nonequilibrium modification

of the Sutherland-Einstein relation between diffusion and mobility in the case of strong memory. Nonequilibrium

corrections include the time correlation between the dynamical activity and the velocity of the particle, which in

turn leads to information about the correlations between the driving force and the particle’s displacement.

DOI: 10.1103/PhysRevE.87.022125 PACS number(s): 05.40.−a

I. INTRODUCTION

Path integrals are robust against small perturbations in the

dynamics and hence make expansions easier, such as for the

derivation of response relations. That has been systematically

applied before for the extension of the fluctuation-dissipation

theorem to nonequilibrium systems, at least in the Markov

case [1–4]. The purpose of this paper is to further extend

the nonequilibrium linear response theory to dynamics with

memory, which is physically often more appropriate, and

which has been so far considered only in a “weak” non-

Markovian case, where memory decreases exponentially fast

[5,6]. Also, here the very name fluctuation-dissipation relation

needs to be revised and perhaps altered, as the response obtains

correlations both with the excess entropy flux (which is respon-

sible for the standard relation with dissipation) and with the

time-symmetric part of the action, which has been called the

frenetic contribution as it ultimately relates to the dynamical

activity in the process [3]. For more practical purposes, it is the

latter frenetic contribution where the steady nonequilibrium

forcing appears and, hence, fluctuation-response relations can

yield information about that forcing. Applications such as to

the mobility of particles in living cells are in progress [7],

but in this paper we concentrate on the general framework,

numerical exploration, and some technical details.

An important ingredient in this work is the presence of

memory in the equations of motion of a colloidal particle.

The origin of memory is diverse but it is always related to

coupling with other particles and/or with the environment. In

the case of dense colloidal suspensions, the reduced dynamics

of a single particle certainly contains memory by integrating

out the other particles. The theoretical study of the relation

between its diffusion and its mobility is therefore advanced

by the analysis of generalized Langevin equations (GLE).

The latter also appear from other reduction and projection

schemes as generally treated via Zwanzig-Mori techniques

[8,9]. There, temporal scale separation or micro-macro transfer

are the important considerations, but also intrinsic properties

of the medium can contribute memory effects. For the latter,

we have in mind viscoelastic media which react back on active

particles from their previous history. These are of special

interest for mesoscopic processes in tissues or membranes

within living organisms which are known to respond more

easily to external loads.

Here, we do not concentrate on the specific interactions

or mechanism that have created the memory effects, but we

start from driven GLE for which we assume a structure that

is relevant for a large number of cases of suspensions under

the influence of external forces. See [10] for a more recent

microscopic-based derivation of GLE in the context of polymer

physics. The most important element in our modeling scheme

is the principle of local detailed balance. It derives from the

underlying microreversibility, which gives a strong connection

between entropy flux and time-reversal breaking [11]. As

we will see in the next section, application of local detailed

balance leads to the so-called Einstein relation, also called

second fluctuation-dissipation relation, between friction and

noise in the GLE [12], even when modeling nonequilibrium

situations. We do not, however, pay special attention to the

choice of driving, but we are interested here in general features

and structures of the response. For a specific application of

these general methods, we refer to the recent work [7] on

reconstructing the active forces from quantitative information

on the violation of the fluctuation-dissipation theorem. We

believe, however, that many more applications are waiting, in

fact in all these cases where one can measure deviations from

the standard Kubo theory [12,13].

The study of response in nonequilibrium suspensions is

of course not new (see, e.g., [14–17] for applications to

sheared media). In that respect, the present contribution starts

from GLE and investigates what are the general structures

that determine the linear response. In particular, the work

of [18,19] addresses very similar questions and uses Martin-

Siggia-Rose field theory to obtain a fluctuation-response

theory. We concentrate on Sutherland-Einstein relations and

we emphasize the structure in terms of entropic versus frenetic

contributions, making contact with the Markov formulation

in [1].

Close to this work are also the results relating energy

dissipation to the difference of the response and velocity

correlation functions [4,20] also for GLE. Here, we emphasize,

however, the modified Sutherland-Einstein relation connecting

diffusion and mobility.
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In the next section, the setup is considered for generalized

Langevin systems with Gaussian noise. They are driven away

from equilibrium by nonconservative forces. We derive the

linear response relations in Sec. III. These results are ready

to be applied in a relation between diffusion and mobility

for colloidal particles in nonequilibrium viscoelastic media.

Section III E contains the simulation results for exploring

the modified Sutherland-Einstein relation and adds visual

information on the behavior of the various terms in the

modified relation. The main result of the paper is the extension

of the work in [1] to include (even strong) memory effects and

to be explicit also about the relevance of the correlations with

dynamical activity and with the forcing.

II. THEORY

A. Setup

Consider the Langevin equation for the position xt and the

velocity vt of a (mass 1) particle in a medium at uniform

temperature:

dxt

dt
= vt ,

dvt

dt
= −

∫
ds γ (t − s)vs + Ft (xt ) +

√
2

β
ηt + ht . (1)

To lighten the notation, we shall consider that, unless otherwise

specified, integral bounds are understood to range from −∞
to ∞. We take the memory kernel γ (t) � 0 to be causal:

γ (t) = 0 for t < 0. The Markov case with friction coefficient

γ > 0 is recovered whenever γ (|t |) = 2γ δ(t) is proportional

to the Dirac delta function, which can be achieved for example

from γ (t) = γ α exp(−αt)�(t) in the α → ∞ limit, with �(t)

the Heaviside step function. The Ft is the forcing, possibly

time dependent and nonconservative. It can include effective

randomness beyond the Gaussian noise ηt as, e.g., in [7]. The

parameter β is the inverse temperature of the environment,

which we have taken in front of the noise ηt . The force ηt is a

stationary Gaussian noise process with zero mean. We wait to

describe its time correlations [see formula (8)]. The last term

ht = ft �(t) is a time-dependent (small) perturbation; we will

linearly expand around ft = 0. For simplicity, we use a one-

dimensional notation, also in what follows, but the extension

to other geometries or dimensions, sometimes essential for

nonequilibrium effects, is straightforward. We will not use a

Fokker-Planck description in what follows (but we use path

integrals); actually, the relation between generalized Langevin

and generalized Fokker-Planck equations in the presence of

position-dependent forces is not entirely clear (see [21,22] for

what we do know).

For path-space integration, we need some further notation.

Easiest is to take doubly infinite paths ω = (xs,vs,−∞ <

s < +∞). The price to pay is that some expressions (inte-

grals) become rather formal. We refer to [23] for a more

detailed reference. Feasible alternatives or complements to

path integration to derive fluctuation-response relations for

non-Markovian processes are known as Furutsu-Novikov

theorems (see, e.g., [20,24–26]).

Because the noise ηt is a stationary Gaussian process,

the path-space measure is completely determined by the

symmetric kernel Ŵ(t) for which
∫

ds Ŵ(t − s) 〈ηsηr〉 = δ(t − r). (2)

The weight of a path ω is then proportional to

Ph(ω) ∝ exp −β

4

∫
ds

∫
dr Ŵ(r − s)ηs ηr (3)

with

ηs = v̇s +
∫

du γ (s − u) vu − Fs(xs) − hs .

Compared with the unperturbed dynamics (ht ≡ 0) we have

Ph(ω) = P0(ω) e−Ah(ω) (4)

with action

Ah(ω) = −β

2

∫
ds

∫
dr Ŵ(r − s)hs v̇r

− β

2

∫
ds

∫
dr

∫
duŴ(r − s) γ (r − u) vu hs

+ β

2

∫
ds

∫
dr Ŵ(r − s) hs Fr (xr ) + O(h2) (5)

to first order in the perturbation ht . For stochastic integration

and path integrals in the non-Markovian case, see also [23] and

the more recent [27] with additional references. Equations (4)

and (5) define our dynamical ensemble for the path-space

distribution with respect to the unperturbed dynamics (1).

Finally, a word about initial and boundary conditions,

also important for the terminology. As should be clear

from the start, the dynamics (1) is not microscopic and its

content depends on chosen levels of description, including

spatiotemporal scales. In the discussion of diffusion, one

assumes no spatial confinement over the relevant time scales.

The behavior is then transient concerning the position degrees

of freedom, but beyond the inertial regime the velocities

relax and become Maxwellian. In that regime, overdamped

approximations can be valid, which can be formally obtained

in what follows by setting v̇ = 0. For the general question of

linear response, we also have in mind the case where the force

Ft = F + Kt contains a time-independent conservative force

F = −∇U from a normalizable and confining potential U .

Under such a confinement and for time-independent forcing

Kt = K , it is then assumed that there is a unique and smooth

stationary density ρ(x,v) to which all initial data converge.

We speak of an equilibrium dynamics when Kt = 0 (only

confining potential). The case of free diffusion Ft = 0 is,

however, not strictly equilibrium as it need not be stationary

even in the velocity degrees of freedom. For example, for

free diffusion the Sutherland-Einstein relation will only be

recovered when the initial data are also randomly chosen

from a Maxwellian. In the formalism following, the important

property of full equilibrium will be stationarity combined with

time-reversal invariance. In fact, to the dynamics (1) must still

be added a relation between the noise correlations and the

memory kernel so as to ensure, for example, that for Ft = 0

the velocities become Maxwellian. The next section takes this

to a more general discussion by formulating the condition of

local detailed balance.

022125-2
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B. Entropy flux and local detailed balance

The Einstein relation, also called the second fluctuation-

dissipation relation, connects the noise correlations to the

memory kernel in the friction. For an equilibrium dynam-

ics, say taking F = h ≡ 0 in (1), that relation [which will

follow as (10) below] is most simply derived from the

requirement that the stationary velocity distribution should be

Maxwellian at inverse temperature β. For our nonequilibrium

dynamics (nonconservative forcing F ), we have in general no

information about that stationary distribution. Nevertheless,

more fundamentally that Einstein relation arises in the weak

coupling limit for the dynamical degrees of freedom with

a large thermal bath as a consequence of the microscopic

reversibility of the bath degrees of freedom. For our dynamics

we do keep the bath in thermal equilibrium and our driven

particle does not react back on the bath. That is the basic reason

why we will be able to maintain the standard Einstein relation.

As the situation with memory is formally more complicated

and since we do not want to recall the details of a weak coupling

analysis, we can rely on the so-called condition of local

detailed balance (see also [4]). It amounts to assuming that, if

the system were subjected to a confining force, it would reach

equilibrium, and that the exchanges with the thermostat are the

same as when the exerted forces drive it out of equilibrium.

Formally, this means that the physical entropy flux can be

recovered from the time-antisymmetric part of the action. That

principle is indeed rooted in the reversibility of the underlying

microscopic dynamics as shown in [11]. To be more specific

about time reversal we introduce the time-reversal operator θ

according to which

θxt = x−t , θvt = −v−t ,

θht = h−t , θFt = F−t , (6)

where the last line also includes the time reversal of the

protocol (the time dependence in the nonmagnetic external

forces). When the ηt = (ηi
t ) would be multidimensional, we

should also assume that the noise is time-reversal invariant

in the sense that 〈ηi
tη

j

0〉 = 〈ηj
t η

i
0〉. Demanding that the system

obeys local detailed balance then means to require that the

time-antisymmetric part of the action for P0 [first appearing

in (4)] is given by the entropy flux in the original (unperturbed)

model; that is to say,

log
dP0

dP0θ
(ω) = −β

∫
ds v̇s vs + β

∫
ds Fs(xs) vs . (7)

The first term in the right-hand side is a temporal boundary

term accounting for the kinetic energy difference between the

initial and final states of the trajectory.

As is explicitly shown in Appendix A, local detailed

balance (7) is verified whenever

〈ηsηt 〉 = 1
2

[γ (t − s) + γ (s − t)] = 1
2
γ (|t − s|) (8)

between the noise covariance and the symmetric part of the

memory kernel. We repeat that (8) is as such independent of

F (nonequilibrium driving) or h (perturbation) as it expresses

the thermal equilibrium of the bath; it formally appears [as (7)]

from requiring that the source of time-reversal breaking equals

the (excess) entropy flux. The very same condition (8) then also

ensures that

Ah(θω) − Ah(ω) = β

∫
ds vs hs (9)

with the right-hand side equal to the path-dependent excess

entropy flux towards the environment at inverse temperature

β, or the dissipated power by the force ht (setting kB = 1).

The identity (9) is also explicitly discussed in Appendix A:

we can derive (8) from requiring that the time-antisymmetric

part of the action Ah is the excess entropy flux caused by the

force ht , thus equal to β
∫

ds vs hs . We will use the notation

Sex(ω) = Ah(θω) − Ah(ω) for (9) in what follows. It is worth

to note that mathematically (8) leads to simply rewriting (2) as
∫

ds Ŵ(t − s) γ (|s|) = 2 δ(t). (10)

C. The time-symmetric part, or the activity

The time-symmetric part of the action Ah is T ex(ω) =
Ah(θω) + Ah(ω) and is calculated to be

T
ex(ω) = β

∫
dr Hr [Fr (xr ) − v̇r ]

+ β

2

∫
du vu

∫
dr Hr [γ (u − r) − γ (r − u)] ,

(11)

where we have introduced the “smeared-out” perturbation

Hr =
∫

ds hs Ŵ(r − s).

This time-symmetric part T ex is a function on path space and

is also called the dynamical activity; it is related to the frenetic

contribution in linear response playing an important role when

away from equilibrium (see [2,3]). Note that the antisymmetric

part of the memory kernel vanishes in the Markov case. In this

limiting case, Hs = hs/γ and then

T
ex

Markov(ω) = β

γ

∫
ds hs [Fs(xs) − v̇s]

to linear order in ht , as before.

III. LINEAR RESPONSE RELATIONS

In what follows, we denote by 〈. . .〉h,〈. . .〉 the average over

the paths generated by (1) with or without the perturbation ht .

The only randomness over which we average is the stationary

noise ηt , but sometimes an additional average over initial

conditions will be mentioned. For a general observable local

in time we write O(xt ,vt ) = Ot .

A. General susceptibility

The linear response of observable O is obtained from

〈Ot 〉h − 〈Ot 〉 = −〈Ot Ah〉 (12)

or in terms of the generalized susceptibility χO defined by

χO(s,t) = δ

δhs

〈Ot 〉h
∣∣∣∣
h=0

.
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From inserting (5) into (12), we find

χO(s,t) = β

2

∫
dr

∫
duŴ(r − s) γ (r − u) 〈Ot vu〉

+ β

2

∫
dr Ŵ(r − s) (〈v̇rOt 〉 − 〈Fr (xr )Ot 〉) . (13)

There are different ways to write that same formula. We can

add and subtract to get the symmetric part of the memory

kernel:

χO(s,t) = β〈Ot vs〉− β

2

∫
dr

∫
duŴ(r − s) γ (u− r) 〈Ot vu〉

+ β

2

∫
dr Ŵ(r − s) (〈v̇rOt 〉 − 〈Fr (xr )Ot 〉) . (14)

Another possibility is to consider separately the time-

antisymmetric and the time-symmetric parts. In that case, we

follow the decomposition of the action Ah = (T ex − Sex)/2,

and from (12) the susceptibility reads as

χO(s,t) = 1
2
〈σsOt 〉 − 1

2
〈τsOt 〉 , (15)

where

σs = δ

δhs

S
ex

∣∣∣∣
h=0

= βvs

and

τs = δ

δhs

T
ex

∣∣∣∣
h=0

= β

∫
dr Ŵ(r − s)(Fr − v̇r )

+ β

2

∫
du

∫
dr vu Ŵ(r − s) [γ (u− r) − γ (r −u)] . (16)

The formulation (15) separates an entropic from a frenetic

contribution as suggested, e.g., in [3]. The formulas (13), (14),

and (15) are the first principal results of the paper; they give

a general understanding of the structure of nonequilibrium

response also in the presence of memory effects. Moreover,

there is the promise in each of the last terms in their right-hand

sides to learn about the nonequilibrium driving exactly by

the study of the response and especially from the frenetic

contribution.

The deviation from the Markov case is felt only in this

excess dynamical activity T ex and not in the excess entropy

flux Sex . That explains why only in nonequilibrium situations

the fluctuation-response relations change when going from

Markov to non-Markov; in equilibrium, only the entropy fluxes

enter in fluctuation-response relations. Of course, the transient

diffusive case is a nonequilibrium situation, and we should be

careful when possibly identifying Fr = 0 with the equilibrium

case.

B. Consequence of causality

Causality requires that observations before a certain time

are not influenced by perturbations after that time. As a

consequence, from (15),

〈σuOr〉 = 〈τuOr〉 (17)

for a time ordering u > r . But suppose now that the averages

satisfy time-reversal invariance so that

〈τsOt 〉 = sgnO 〈τ−sO−t 〉 , sgnO 〈σ−sO−t 〉 = − 〈σsOt 〉 ,

where sgnO is the parity of observable O under time reversal.

Then, under that time reversibility and as a result of the

causality relation (17) for u = −s > r = −t ,

〈σsOt 〉 − 〈τsOt 〉 = 〈σsOt 〉 − sgnO 〈τ−sO−t 〉
= 〈σsOt 〉 − sgnO 〈σ−sO−t 〉
= 〈σsOt 〉 + 〈σsOt 〉 = 2β 〈vsOt 〉, (18)

which, upon inserting in (15), yields the standard fluctuation-

dissipation relation

χO(s,t) = β 〈Ot vs〉 �(t − s). (19)

The next section comes back to this with yet another derivation.

Another consequence of causality is that the action (5)

verifies

〈Ot Ah〉 = 0

when hs = 0 for s � t . That immediately implies that for

all s > t ,
∫

dr

∫
duŴ(r − s) γ (r − u) 〈Ot vu〉

=
∫

dr Ŵ(r − s) (〈Fr (xr )Ot 〉 − 〈v̇rOt 〉) . (20)

There is a simpler identity that applies when the original

dynamics is time homogeneous, i.e., when Ft = F does not

explicitly depend on time t . Then, we can think of the

unperturbed averages 〈. . .〉 as a steady regime. In that case,

we take time t very negative in (20), multiply both sides with

〈ηsηw〉 for arbitrary w > t , integrate over all s, and use the

identity (2) to obtain

∫ +∞

t

du γ (w − u) 〈Ot vu〉 = 〈F (xw)Ot 〉 − 〈v̇wOt 〉 .

In the Markov case, this identity is, for w > t ,

γ
d

dw
〈Ot xw〉 = 〈F (xw) Ot 〉 − 〈v̇w Ot 〉 , (21)

which is readily recognized as 〈Ot ηw〉 = 0 for white noise

ηw,w > t .

C. Equilibrium dynamics

1. Confined case

The equilibrium limiting case can be achieved whenever

the force field F derives from a potential function. In that

case, time-reversal invariance applies, and one should recover

from (12) the standard fluctuation-dissipation theorem (19). To

check this more explicitly, we first consider the response of an

observable Ot ≡ O(xt ,vt ) which is even under time reversal

(i.e., θOt = O−t ). In this case,

〈Ot v−u〉 = − 〈O−t vu〉 ,

〈Fr (xr ) O−t 〉 = 〈F−r (x−r ) Ot 〉 , (22)

〈v̇r O−t 〉 = 〈v̇−r Ot 〉 .

In Appendix B, we show that the time antisymmetric part of

the response χ yields

χO(s,t) − χO(t,s) = β 〈Ot vs〉 . (23)
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By causality, this automatically implies the fluctuation-

dissipation relation (19).

Likewise, when the observable Ot is odd under time reversal

(i.e., θOt = −O−t ), the right-hand sides in Eq. (22) have

to be multiplied by −1, and thence one has to consider the

time-symmetric part χO(s,t) + χO(t,s) in order to indeed

recover (19).

2. Free diffusion

We next consider the case where Fr = 0 and there is no

confinement on the relevant time scales. In this case, the

velocity of the particle relaxes alright to a Maxwellian steady

state in the long time limit, but its position diffuses. (It could be

anomalous diffusion for slowly decaying kernels.) Therefore,

starting from a fixed position and Maxwellian velocity, the

velocity response χv satisfies

χv(s,t) = χv(0,t − s) = β 〈vsvt 〉 (24)

for s < t , but the position dynamics remains in the transient

regime. It is, however, possible to recover a formula similar

to (19) which involves the mean square displacement �x2(t) =
〈(xs+t − xs)

2〉 as we now explain.

We consider the case where the observable O is the position

x. The position response

χx(t) = δ

δh
〈xt 〉h

∣∣∣∣
h=0

=
∫ t

0

ds
δ

δhs

〈xt 〉h
∣∣∣∣
h=0

satisfies

d

dt
χx(t) =

∫ t

0

ds χv(s,t) = β

∫ t

0

ds 〈vsvt 〉 . (25)

On the other hand,

�x2(t) =
∫ s+t

s

du

∫ s+t

s

dr 〈vuvr〉 ,

d

dt
�x2(t) = 2

∫ s+t

s

du 〈vuvs+t 〉 .

As a result, we get the equilibriumlike result

χx(t) = β

2

d

dt
�x2(t), t > 0 (26)

which, for the Markov case, is an identity attributed to Virasoro

in [28]. The fact that this relation remains satisfied also in the

presence of strong memory is directly caused by F = 0 and

that only the entropic contribution matters.

D. Modified Sutherland-Einstein relation

We now show how to connect the mobility of the particle

(which is related to the velocity response to a constant force),

and the diffusion properties, related to the time behavior of the

mean squared displacement. Remember that the perturbing

field is a step function ht = h�(t), with constant field h. The

time-dependent mobility is then defined as

M(t) = 1

t

∂

∂h
〈(xt − x0)〉h

∣∣∣∣
h=0

(27)

or

M(t) = 1

t

∫ t

0

ds

∫ t

0

dr χv(s,r). (28)

The time-dependent diffusion coefficient is defined as

D̃(t) = 1

2t
�x2(t) = 1

2t

∫ t

0

dr

∫ t

0

ds 〈vsvr〉 . (29)

From the general linear response (15) we know that

〈vsvt 〉 = 2

β
χv(s,t) + 1

β
〈τsvt 〉 , (30)

which can be replaced in (28) and (29) to give a relation

between M , D̃, and τ :

M(t) = βD̃(t) − 1

2t

∫ t

0

dr

∫ t

0

ds 〈τsvr〉 .

We see how the violation of the Sutherland-Einstein relation

M = βD̃ is related to the time-averaged correlation between

displacement and dynamical activity

M(t) = βD̃(t) − 1

2t

∫ t

0

ds 〈τs(xt − x0)〉

= βD̃(t) − 1

2

〈
(xt − x0)

1

t

∫ t

0

ds τs

〉
. (31)

This formula has a general validity, independent of initial

conditions. The time-averaged dynamical activity due to the

perturbation has become here an important observable for

describing the deviation from the standard Sutherland-Einstein

relation. Since τs is time symmetric, the last correction term

will vanish when time-reversal symmetry gets established; that

happens in the case of free diffusion upon averaging over

the initial equilibrium distribution for velocities (as in the

previous section). In general, however, we can further detail the

expression by using the explicit form of τs from (16), yielding

three terms in the correction:

M(t) = βD̃(t) + C̃1(t) + C̃2(t) + C̃3(t). (32)

As we are, however, most interested in the nonequilibrium

situation with possible drift, it is useful to discard this effect

by considering a slightly different definition of the diffusion

coefficient, relabeled here as D:

D(t) = 1

2t
〈(xt − x0); (xt − x0)〉. (33)

The notation 〈A,B〉 refers to the connected (also called

truncated) correlation function 〈AB〉 − 〈A〉〈B〉. The analog

of the modified Sutherland-Einstein relation (32) is explicitly
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given by

M(t) = βD(t) + β

2t

∫ t

0

ds

∫
dr Ŵ(r − s) 〈(xt − x0); v̇r〉

︸ ︷︷ ︸
C1(t)

+ β

4t

∫ t

0

ds

[∫
dr

∫
duŴ(r − s){γ (r − u) − γ (u− r)} 〈(xt − x0); vu〉

]

︸ ︷︷ ︸
C2(t)

− β

2t

∫ t

0

∫
dr Ŵ(r − s) 〈Fr (xr ); (xt − x0)〉 ds

︸ ︷︷ ︸
C3(t)

.

(34)

This is the third key relation of this paper [after the

general (13)–(15) and the equilibriumlike (26)]. We have

postponed a detailed derivation of this result to Appendix C.

Notice that the functions C̃i of Eq. (32) are simply given by

the functions Ci with a standard correlation function instead

of a connected one. More concretely, if Ci = 〈A,B〉, then

C̃i = 〈AB〉. We shall further explore this relation numerically

in the next section. The terms C1 and C3 are also present

(although without convolution with Ŵ) in the Markov case and

account for nonequilibrium effects due, respectively, to the

inertia and to the nonequilibrium forcing. The term C1 vanishes

outside the inertial regime. The term C3 is most important

for the inverse problem of reconstructing the nonequilibrium

driving from violation of the Sutherland-Einstein relation. The

term C2 has no analog in the Markovian case, and is hence only

due to memory effects under nonequilibrium dynamics.

E. Examples

We present here simulation results for the dynamics (1) for

some three choices of the driving F . The method to generate

colored noise is outlined in Appendix D. For the evaluation of

the terms in (34), we note that Ŵ appears as a convolution and

the Fourier transform of Ŵ is computed from its definition (2).
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1.2
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D(t)
M(t)
C1(t)
C2(t)

D(t) + C1(t) + C2(t)

FIG. 1. (Color online) The time dependence of the mobility

M , the diffusion D, and the corrections C1 and C2 of (34) after

multiplying all with ln t . Here, we have long memory γ (t) = 1

1+t
and

free diffusion F = 0 at β = 1.

The purpose is to visualize the various terms in the modified

Sutherland-Einstein relation (34), similarly to the work in [1]

but with the extra ingredient of memory. Of course, there

is no strong need to verify or to confirm the mathematical

formula (34) as the linear expansion is sufficiently controlled,

but it is somewhat interesting to see the contributions of the

various terms in (34) and to see what influences them.

We start with the free diffusion (F = 0). The system is

diffusive if, for large times, D(t) reaches a limit (the diffusion

constant) D. On the other hand, when the memory gets long

time tails, with γ (t) decaying algebraically, the diffusion can

become anomalous [29]. We take two different examples,

γ (t) = 1/(1 + t) and γ (t) = 1/
√

1 + t . As results show, both

the diffusion and the mobility follow a corresponding temporal

behavior with for the first example D(t) ≃ 1/ ln t and for

the second example D(t) ≃ 1/
√

t (subdiffusive motion). The

plots in Figs. 1 and 2 show the subdiffusive behavior due

to the memory effect. More generally, for free diffusion

D ∝ [
∫ t

0
γ (s) ds]−1 for large t . Note that we treated free

diffusion with some fixed initial condition (without initial

velocity averaging) so that the standard Sutherland-Einstein

relation gets established only in the long time limit. Note that

the inertial regime is rather short lived, C1 rapidly being very

small, but the memory effect as present in C2 postpones the

-0.4

-0.2

0

0.2

0.4

0.6

0 500 1000 1500 2000 2500 3000

Time

D(t)
M(t)
C1(t)
C2(t)

D(t) + C1(t) + C2(t)

FIG. 2. (Color online) Same case of free diffusion as in Fig. 1 but

with a time rescaling of
√

t for memory kernel γ (t) = 1√
1+t

. Still,

F = 0, β = 1.
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FIG. 3. (Color online) Diffusion and mobility in the case of a

two-dimensional rotational forcing (35) for memory γ (t) = 1

1+t
and

amplitudes A = 10 and 20.

equality between βD(t) and M(t) to longer times. The sign of

C2 carries no special information.

For the other examples, we switched on some rotational

force F . Again, we checked in all cases that for exponentially

decaying memory kernels γ (t) the results of [1] are repro-

duced. We concentrate on power law decay and we consider

finite times. In Fig. 3, we consider a vector force on the plane

to induce vortices, similar to the rotational force in [1]. We

take 
F = A
g, with A the amplitude, where

gx(x,y) = a(r −
√

2)
(
y − 1

2

)
,

gy(x,y) = a(r −
√

2)
(

1
2

− x
)
,

a = (1 − 2δ2,x mod 3)(1 − 2δ1,y mod 2) (35)

for distance r =
√

(x − 1
2
)2 + (y − 1

2
)2. The somewhat in-

volved definitions assure that the particle does not undergo a

net drift; the forces are purely rotational and not translational

now. To make sure, mobility and diffusion are now matrices

but the off-diagonal elements are approximately zero. We

also find that the diffusion in the x direction is bigger than

in the y direction. Moreover, for bigger A, the diffusion

increases, while the mobility remains almost constant (and

even somewhat decreases).

Finally, we consider the result of driving in one dimension.

The nonequilibrium force is obtained from a periodic potential,

which is like confining the particle to a toroidal trap, and adding

a constant field. In the formulas, the nonequilibrium force is

F (x) = A + sin x, where A is a constant. Figures 4 and 5 show

the result again for the two long-memory kernels. As we have

found in the previous section, the relation between diffusion

and mobility gets modified. Our simulations confirm in all

cases that the diffusion depends on the external forcing more

strongly than does the mobility.

In the power law decaying memory for A = 1.5, the

increase of the diffusion is seen. C1 is still almost zero, C2

vanishes in the long time, and the diffusion and mobility are not

-0.2

0

0.2

0.4
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0.8

1
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0 500 1000 1500 2000 2500
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D(t)
M(t)
C1(t)
C2(t)
C3(t)

D(t) + C1(t) + C2(t) + C3(t)

FIG. 4. (Color online) Same setup as in Fig. 1 but for a forcing

F (x) = 1.5 + sin x (external field over periodic potential) at inverse

temperature β = 1. The rescaling of the mobility, the diffusion, and

the corrections in (34) is by multiplying all with ln t for memory

kernel γ (t) = 1

1+t
.

proportional any more; there is now also the essential term C3,

which is negative because of the positive correlation between

force and displacement. However, for stronger memory and

with A = 1.5 there is little difference with the case f = 0. To

make the contribution of C3 more prominent, we have taken

a larger driving force, such as F (x) = 8 + 8 sin x as in Fig. 6;

we see that C1 is still zero, C2 is getting smaller faster than

before, and C3 is more important now.

-0.4

-0.2

0

0.2

0.4

0.6

0 500 1000 1500 2000 2500 3000

Time

D(t)
M(t)
C1(t)
C2(t)
C3(t)

D(t) + C1(t) + C2(t) + C3(t)

FIG. 5. (Color online) Same setup as in Fig. 2 but for a forcing

F (x) = 1.5 + sin x (external field over periodic potential) at inverse

temperature β = 1. The rescaling of the mobility, the diffusion, and

the corrections in (34) is by multiplying all with
√

t for memory

kernel γ (t) = 1√
1+t

.
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-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000

Time

D(t)
M(t)
C1(t)
C2(t)
C3(t)

D(t) + C1(t) + C2(t) + C3(t)

FIG. 6. (Color online) The rescaling of the mobility, diffusion,

and the corrections by multiplying with
√

t for γ (t) = 1√
1+t

, and

F (x) = 8 + 8 sin x, β = 1.

IV. RELEVANCE AND CONCLUSION

The fluctuation-dissipation theorem has an extension to

nonequilibrium generalized Langevin systems which pre-

serves the splitting of the response in an entropic and a frenetic

contribution. That general statement is of course relevant in

today’s search for useful linear response formula away from

equilibrium. The presence of memory is especially relevant for

dense colloidal suspensions. We have here considered a driving

which can be time inhomogeneous or even random, but we

have also assumed the presence of Gaussian (correlated) noise

to start an expansion from path integrals for an underdamped

dynamics. The Gaussian correlations are in fact connected with

the memory kernel in the friction via the condition of local

detailed balance. An important application is to the extension

of the Sutherland-Einstein relation between diffusion and

mobility. Because of the nonequilibrium condition, the dif-

fusion constant is no longer alone in determining the transport

properties of colloidal particles. That was in particular seen

in detailed simulations for various nonequilibrium diffusions,

possibly anomalous, in particular for exploring the role of

the nonequilibrium forcing and the influence of memory. An

interesting conclusion is that the nonequilibrium corrections

to the Sutherland-Einstein relation are related to the time

correlations between the so-called dynamical activity and the

velocity of the particle, which in turn leads to information

about the correlations between the driving force and the

particle’s displacement [7]. Such an analysis provides a

more general framework for discussions on the violation of

the fluctuation-dissipation theorem and is an alternative for

the use of effective temperatures. We believe that both the

direct question (predicting the response) as the inverse question

(deriving information on the nonequilibirum forcing) can be

attacked within the given formalism.
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APPENDIX A: CALCULATION OF THE ENTROPY FLUXES

We start with deriving (7). From writing out the action log dP0

dP0θ
(ω) in the same way as for (5), we find that

log
dP0

dP0θ
(ω) = −β

2

∫
ds

∫
dr Ŵ(r − s) v̇r

∫
du [γ (r − u) + γ (u − r)] vu − β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du γ (s − u) vu

×
∫

dw γ (r − w) vw + β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du γ (u − s) vu

∫
dw γ (w − r) vw

+ β

2

∫
ds

∫
dr Ŵ(r − s) Fr (xr )

∫
du [γ (r − u) + γ (u − r)] vu, (A1)

which can be rewritten as

=− β

2

∫
ds

∫
dr Ŵ(r − s) v̇r

∫
du [γ (r − u) + γ (u − r)] vu − β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du γ (s − u) vu

∫
dw γ (r − w) vw

− β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du γ (u− s) vu

∫
dw γ (r − w) vw + β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du γ (u− s) vu

∫
dw γ (r −w) vw

+ β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du γ (u− s) vu

∫
dw γ (w − r) vw + β

2

∫
ds

∫
dr Ŵ(r − s) Fr (xr )

∫
du [γ (r − u) + γ (u− r)] vu

(A2)
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from which we arrive at

log
dP0

dP0θ
(ω) = −β

2

∫
ds

∫
dr Ŵ(r − s) v̇r

∫
du [γ (r − u) + γ (u − r)] vu − β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du

∫
dw [γ (s − u)

+ γ (u − s)]γ (r − w) vw vu + β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du

∫
dw [γ (r − w) + γ (w − r)]γ (u − s) vw vu

+ β

2

∫
ds

∫
dr Ŵ(r − s) Fr (xr )

∫
du [γ (r − u) + γ (u − r)] vu. (A3)

Since 〈ηsηt 〉 = 1
2

[γ (t − s) + γ (s − t)], as implied by local detailed balance (8), and by using the definition of the symmetric

kernel Ŵ(t), the second and the third terms of the right-hand side cancel each other and one finally recovers (7).

Likewise, when we add a time-dependent perturbation ht we have

log
dPh

dPhθ
(ω) = −β

2

∫
ds

∫
dr Ŵ(r − s) v̇r

∫
du [γ (r − u) + γ (u − r)] vu − β

4

∫
ds

∫
dr Ŵ(r − s)

∫
du

∫
dw [γ (s − u)

× γ (r − w) − γ (u − s)γ (w − r)]vu vw + β

2

∫
ds

∫
dr Ŵ(r − s) Fr (xr )

∫
du [γ (r − u) + γ (u − r)] vu

+ β

2

∫
ds

∫
dr Ŵ(r − s) hs

∫
dw[γ (w − r) + γ (r − w)] vw. (A4)

The excess entropy flux is then

S
ex(ω) = Ah(θω) − Ah(ω) = log

dPh

dPhθ
(ω) − log

dP0

dP0θ
(ω) = β

2

∫
ds

∫
dr Ŵ(r − s) hs

∫
dw[γ (w − r) + γ (r − w)] vw,

which indeed ensures (9) upon using (10).

APPENDIX B: RECOVERY OF THE EQUILIBRIUM FLUCTUATION-DISSIPATION THEOREM

We show how to get from (12) to (23) when (22) holds. We start by writing

χO(s,t) −χO(t,s) = β

2

∫
dr

∫
duŴ(r − s)γ (r − u) 〈Otvu〉 + β

2

∫
dr Ŵ(r − s) (〈v̇rOt 〉 − 〈FrOt 〉)

− β

2

∫
dr

∫
duŴ(r − t)γ (r − u) 〈Osvu〉 − β

2

∫
dr Ŵ(r − t) (〈v̇rOs〉 − 〈FrOs〉) . (B1)

In the last two integrals, we can perform the change of variable r ′ = t + s − r and u′ = t + s − u. By relabeling r ′ = r and

u′ = u, one gets

χO(s,t) − χO(t,s) = β

2

∫
dr

∫
duŴ(r − s)γ (r − u) 〈Otvu〉 − β

2

∫
dr

∫
duŴ(r − s)γ (u − r) 〈Osvt+s−u〉

+ β

2

∫
dr Ŵ(r − s) [〈v̇rOt 〉 − 〈FrOt 〉 − 〈v̇t+s−rOs〉 + 〈Ft+s−rOs〉] . (B2)

Finally, by using the time-translation invariance of correlation functions plus the time-reversal conditions (22), one will observe

that the square bracket terms in the last integral vanish and the first two integrals simplify thanks to (8) and yield to Eq. (23).

APPENDIX C: MODIFIED SUTHERLAND-EINSTEIN RELATION IN CONNECTED FORM

By inserting the dynamical activity in (31), we obtain

M(t) = β

2t
〈(xt − x0)2〉 + β

2t

∫ t

0

ds

∫
dr Ŵ(r − s) 〈(xt − x0) v̇r〉 + β

4t

∫ t

0

ds

∫
dr

∫
duŴ(r − s){γ (r − u)

− γ (u − r)} 〈(xt − x0) vu〉 − β

2t

∫ t

0

∫
dr Ŵ(r − s) 〈Fr (xr ) (xt − x0)〉 ds.
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We now rewrite this relation as follows:

M(t) = β

2t
〈(xt − x0)2〉 − β

2t
〈xt − x0〉 〈xt − x0〉 + β

2t
〈xt − x0〉 〈xt − x0〉 + β

2t

∫ t

0

ds

∫
dr Ŵ(r − s) 〈(xt − x0) v̇r〉

− β

2t

∫ t

0

ds

∫
dr Ŵ(r − s) 〈xt − x0〉 〈v̇r〉 + β

2t

∫ t

0

ds

∫
dr Ŵ(r − s) 〈xt − x0〉 〈v̇r〉

+ β

4t

∫ t

0

ds

∫
dr

∫
duŴ(r − s){γ (r − u) − γ (u − r)} 〈(xt − x0) vu〉 − β

4t

∫ t

0

ds

∫
dr

∫
duŴ(r − s){γ (r − u)

− γ (u − r)} 〈xt − x0〉 〈vu〉 + β

4t

∫ t

0

ds

∫
dr

∫
duŴ(r − s){γ (r − u) − γ (u − r)} 〈xt − x0〉 〈vu〉

− β

2t

∫ t

0

∫
dr Ŵ(r − s) 〈Fr (xr ) (xt − x0)〉 ds + β

2t

∫ t

0

∫
dr Ŵ(r − s) 〈Fr (xr )〉 〈xt − x0〉 ds

− β

2t

∫ t

0

∫
dr Ŵ(r − s) 〈Fr (xr )〉 〈xt − x0〉 ds. (C1)

Following the definition of the connected correlation function, we arrive at

M(t) = βD(t) +C1(t) +C2(t) +C3(t) + β

2t
〈xt − x0〉〈xt − x0〉 + β

2t

∫ t

0

ds

∫
dr Ŵ(r − s) 〈xt − x0〉 〈v̇r〉

+ β

4t

∫ t

0

ds

∫
dr

∫
duŴ(r − s){γ (r − u) − γ (u − r)} 〈xt − x0〉 〈vu〉 − β

2t

∫ t

0

∫
dr Ŵ(r − s) 〈Fr (xr )〉 〈xt − x0〉 ds.

(C2)

From the Langevin equation, we have

〈v̇r〉 = −
∫

du γ (r − u) 〈vu〉 + 〈Fr (xr )〉.

After substituting this in (C2), all the terms cancel out each other and only the first line will remain. The cancellation for the

forcing term is clear; and the other terms follow as

−β

2

∫ t

0

ds

∫
dr

∫
duŴ(r − s) γ (r − u) 〈vu〉

= −β

4

∫ t

0

ds

∫
dr

∫
duŴ(r − s) γ (r − u) 〈vu〉 − β

4

∫ t

0

ds

∫
dr

∫
duŴ(r − s) γ (r − u) 〈vu〉

−β

4

∫ t

0

ds

∫
dr

∫
duŴ(r − s) γ (u − r) 〈vu〉 + β

4

∫ t

0

ds

∫
dr

∫
duŴ(r − s) γ (u − r) 〈vu〉

= − β

4t

∫ t

0

ds

∫
dr

∫
duŴ(r − s){γ (r − u) + γ (u − r)} 〈vu〉 − β

4t

∫ t

0

ds

∫
dr

∫
duŴ(r − s){γ (r − u) − γ (u − r)} 〈vu〉

= −β

2
〈xt − x0〉 − β

4t

∫ t

0

ds

∫
dr

∫
duŴ(r − s){γ (r − u) − γ (u − r)} 〈vu〉. (C3)

APPENDIX D: SIMULATION OF COLORED

GAUSSIAN NOISE

We sketch the algorithm to numerically generate a station-

ary Gaussian colored noise ξt for a given time-correlation

function γ . The strategy is to transform to Fourier space as,

e.g., in [30,31], then to simulate it there as, e.g., in [32], and

then to transform the solution back to real space. We next

explain that scheme in more detail.

Suppose the noise satisfies

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = γ (|t − t ′|). (D1)

In discrete Fourier space, the noise can be constructed as

ξ̃ (ωμ) =
√

Nγ̃ (ωμ) αμ, μ = 0, . . . ,N − 1 (D2)

with N even, and ξ̃ (ωμ) and γ̃ (ωμ) being the Fourier

transforms of ξ (t) and γ (t), respectively; the ωμ is defined

as

ωμ = 2π
μ − N

2

N�
, ωN−μ = −ωμ, (D3)

where � is the sampling interval of time. Finally, αμ is a

Gaussian complex random number in Fourier space with zero
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mean and correlation [33]

〈αμαν〉 = δμ,N−ν, α∗
μ = αN−μ. (D4)

To generate a Gaussian complex random number with cor-

relation given in (D4), we write αμ = aμ + ibμ in terms

of its real and imaginary parts: αμ = aμ + ibμ if μ > N/2

and otherwise αμ = aN−μ − ibN−μ. Here, a and b are two

Gaussian real random numbers which are uncorrelated and

have zero mean and covariance

〈aμaν〉 = 1
2

(δμ,ν + δμ,N−ν), 〈bμbν〉 = 1
2

(δμ,ν − δμ,N−ν).

(D5)

It is then straightforward to do the inverse Fourier transform

ξ (tk) = 1

N

N−1∑

μ=0

ξ̃ (ωμ)eiωμtk

and to see that the correlations reproduce (D1).
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[20] J. M. Deutsch and O. Narayan, Phys. Rev. E 74, 026112 (2006).

[21] R. F. Fox, J. Math. Phys. 18, 2331 (1977).

[22] P. Hänggi, Z. Phys. B: Condens. Matter Quanta 31, 407

(1978).

[23] P. Hänggi, Z. Phys. B: Condens. Matter Quanta 75, 275 (1989).

[24] E. A. Novikov, Zh. Eksp. Teor. Fiz. 47, 1919 (1964)

[Sov. Phys.–JETP 20, 1290 (1965)].

[25] K. Furutsu, J. Res. Natl. Bur. Stand., Sect. D 67, 303 (1963).

[26] M. D. Donsker, in Analysis in Function Space, edited by

W. T. Martin and I. Segal (MIT Press, Cambridge, MA, 1964),

pp. 17–30.

[27] M. I. Dykman and I. B. Schwartz, Phys. Rev. E 86, 031145

(2012).

[28] L. F. Cugliandolo, J. Kurchan, and G. Parisi, J. Phys. I (France)

4, 1641 (1994).

[29] N. Pottier, Phys. A (Amsterdam) 390, 2863 (2011).
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