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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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INWARD POINTING TRAJECTORIES, NORMALITY OF THE MAXIMUM

PRINCIPLE AND THE NON OCCURRENCE OF THE LAVRENTIEFF

PHENOMENON IN OPTIMAL CONTROL UNDER STATE CONSTRAINTS

HÉLÈNE FRANKOWSKA AND DANIELA TONON

Abstract. It is well known that every strong local minimizer of the Bolza problem under
state constraints satisfies a constrained maximum principle. In the absence of constraints qual-
ifications the maximum principle may be abnormal, that is, not involving the cost functions.
Normality of the maximum principle can be investigated by studying reachable sets of an as-
sociated linear system under linearized state constraints. In this paper we provide sufficient
conditions for the existence of solutions to such system and apply them to guarantee the non
occurrence of the Lavrentieff phenomenon in optimal control under state constraints.

1. Introduction

Consider the control system

(1.1) x′(t) = f(t, x(t), u(t)), u(t) ∈ U(t) for a.e. t ∈ [0, 1],

under state and end points constraints

(1.2) x(t) ∈ K for all t ∈ [0, 1], (x(0), x(1)) ∈ K1,

where U(·) is a measurable set valued map from [0, 1] into nonempty closed subsets of a complete
separable metric space Z, f : [0, 1] × R

n × Z → R
n, f(·, x, ·) is L × B-measurable and f(t, ·, u)

is locally Lipschitz continuous, K and K1 are closed subsets of Rn and R
n × R

n respectively.
Let SK

[0,1] be the set of all absolutely continuous solutions of (1.1) satisfying the constraints

(1.2). A pair (x(·), u(·)), with x(·) absolutely continuous and u(·) measurable, is called a viable
(or, alternatively, feasible) trajectory/control pair if it satisfies (1.1) and (1.2).

The Bolza optimal control problem under state and end points constraints consists in the
following minimization problem

(1.3) inf

{

ϕ(x(0), x(1)) +

∫ 1

0
L(t, x(t), u(t))dt

∣

∣

∣
x(·) ∈ SK

[0,1]

}

,

where ϕ : Rn × R
n → R and L : [0, 1]× R

n ×Z → R are given cost functions.
For λ ∈ {0, 1} define Hλ : [0, 1] × R

n × R
n → R ∪ {+∞} and the Hamiltonian H : [0, 1] ×

R
n × R

n → R ∪ {+∞} associated to the above Bolza problem as follows

Hλ(t, x, p) := sup
u∈U(t)

{〈p, f(t, x, u)〉 − λL(t, x, u)}, H(t, x, p) := H1(t, x, p).

An optimal trajectory/control pair (x̄(·), ū(·)) of the above minimization problem satisfies, under
some regularity assumptions on the data, the Pontryagin’s maximum principle, which is a first
order necessary condition for optimality. Let us first recall it in the situation when f, L and
ϕ are smooth. It says that there exists a non trivial triple (λ, p(·), ψ(·)) where λ ∈ {0, 1},
p : [0, 1] → R

n is an absolutely continuous function and ψ : [0, 1] → R
n is a map which belongs

to the space of normalized functions with bounded variation on [0, 1], such that
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2 HÉLÈNE FRANKOWSKA AND DANIELA TONON

(i) ψ(0) = 0, ψ(t) =
∫

[0,t] ν(s)dµ(s), for all t ∈ (0, 1] for a positive finite Borel measure µ

on [0, 1] and a Borel measurable selection ν(s) ∈ NK(x̄(s)) ∩ B µ-almost everywhere. Here
NK(x̄(s)) is the Clarke normal cone to K at x̄(s) and B is the closed unit ball in R

n centered
at zero.

(ii) the function p(·) is a solution of the adjoint system

−p′(t) =
∂f

∂x
(t, x̄(t), ū(t))∗(p(t) + ψ(t))− λ

∂L

∂x
(t, x̄(t), ū(t)) for a.e. t ∈ [0, 1]

satisfying almost everywhere the maximum principle

〈p(t) + ψ(t), f(t, x̄(t), ū(t))〉 − λL(t, x̄(t), ū(t)) = Hλ(t, x̄(t), p(t) + ψ(t))

and the transversality condition

(p(0),−p(1)− ψ(1)) ∈ λ∇ϕ(x̄(0), x̄(1)) +NK1
((x̄(0), x̄(1))).

A triple (λ, p(·), ψ(·)) is called non-degenerate if λ+ supt∈(0,1] |p(t) + ψ(t)| 6= 0. Moreover, when
λ = 1 the above necessary conditions are called normal.

Let us underline that the transversality conditions were also derived with Clarke’s normal
cone replaced by smaller cones (see for instance [1], [24] and the references contained therein).

In the degenerate case the above necessary optimality condition provides no useful information
about optimal controls because the maximum principle is then satisfied by every u ∈ U(t).
Considerable literature was devoted to conditions eliminating the occurrence of this phenomenon.
In the abnormal case, the maximum principle does not depend on the cost functions L and ϕ and
expresses some relations between the control system and state constraints. The normal maximum
principle is a convenient tool to investigate the qualitative properties of optimal trajectories and,
in particular, their Lipschitz regularity. It is also useful for deriving higher order necessary and
sufficient optimality conditions. It is therefore of interest to study conditions that ensure non-
degeneracy and normality of the maximum principles.

When f, L, ϕ are not differentiable, then, in the transversality condition and the adjoint
system, the classical gradients and Jacobians are replaced by various generalized objects. Also
the adjoint system of the maximum principle may take different, in general not equivalent, forms,
as for instance the Hamiltonian one

−p′(t) ∈ ∂xHλ(t, x̄(t), p(t) + ψ(t)),

where ∂xHλ denotes the generalized gradient of Hλ with respect to x, or a similar inclusion
involving the Pontryagin Hamiltonian, or, alternatively, an Euler-Lagrange adjoint system, see
[24] for various forms of nonsmooth generalized maximum principles under state constraints.
Furthermore, it may happen that, to a given optimal trajectory/control pair, correspond several,
not comparable, maximum principles (cf. examples provided by Kaskosz and Lojasiewicz [18]).

In Proposition 2.6 below we show that, if in an abnormal maximum principle p(·) and ψ(·)
are so that |p′(t)| ≤ k(t)|p(t) + ψ(t)| almost everywhere for some k(·) ∈ L1 (this is typically
true under the assumption of local k(t)−Lipschitz continuity of f(t, ·, u)), then we can find an
integrable matrix valued mapping A(·) such that

−p′(t) = A(t)∗(p(t) + ψ(t)).

Thus, if p(·) satisfies a Hamiltonian or an Euler-Lagrange inclusion, then it also satisfies an
adjoint system in a more familiar form, where the matrix A(t) may be unrelated to derivatives
of f(t, ·, ū(t)) or H0(t, ·, p(t) + ψ(t)), but can still be used to express sufficient conditions for
normality. It could be interesting to study further properties of such matrices A(t), but this is
beyond the objectives of the present work.
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Sufficient conditions for normality can be investigated by exploiting “inward pointing trajec-
tories”, that is solutions to a related linear control system under state constraints. For instance,
for a fixed initial condition, this system has the following form







w′(t) ∈ A(t)w(t) + T (t) for a.e. t ∈ [0, 1]
w(t) ∈ Int (CK(x̄(t))) for t ∈ (0, 1]
w(0) = 0,

where CK(y) denotes the Clarke tangent cone to K at y ∈ K and T (t) is the closed convex cone
spanned by co (f(t, x̄(t), U(t)))− f(t, x̄(t), ū(t)).

Let us mention that in [11, Proposition 2.3] a related condition was stated as a generalization
of the Slater “interiority” hypothesis to deduce normality. However no sufficient conditions were
provided for its verification. This condition was further commented in [17] as the one difficult
to check, since it involves a time-varying linear system in the presence of pathwise controls and
state constraints. This question may be seen as a viability problem under time dependent state
constraints. However the openness of Int (CK(x̄(t))) and the lack of upper semicontinuity of the
set valued map x CK(x) prevent us from using results of viability theory.

Existence of solutions to the above constrained differential inclusion has also further appli-
cations. For instance in [5] it was essential to study metric regularity properties of constrained
control systems. In [7] it was used to prove the constrained maximum principle in a direct way.
In Section 5 we apply it to approximate x̄(·) by trajectories of (1.1), (1.2) that lie in the interior
of the state constraint.

In this paper we propose a new inward pointing condition that uses tangents to the sets
f(t, x, U(t)) at f(t, x, u) for u ∈ U(t) whenever x ∈ K lies near the boundary of K and f(t, x, u)
“points toward the boundary of K” implying existence of a solution to the above differential
inclusion and improving considerably the one of [14]. Even in the case when the boundary is
smooth, it may happen that our condition holds true, but not the one from [14]. The adjoint
system of the maximum principle does not play any role in the proofs of our results and for this
reason they apply to its various formulations mentioned above.

In the difference with the previous works, where outward normals to the set of constraint
were used to state inward pointing conditions, our new condition involves the reachable gradient
of the oriented distance function from K. The construction of a solution to the above viability
problem provided here, is an extension of the one from [14] to the case of a general closed state
constraint.

Normality of the maximum principle is important for investigating Lipschitz regularity of
optimal trajectories in order to avoid the so called Lavrientieff phenomenon. Indeed, in some
cases, the infimum in (1.3) is strictly smaller than the infimum of the same functional taken
over Lipschitz trajectories. Due to this phenomenon standard numerical methods cannot find
minimizers and return a wrong optimal value. Moreover, in some physical models, this phenom-
enon corresponds to the occurrence of a fracture in an elastic material, thus to a meaningful
physical event. The Existence of the inward pointing trajectories and normality of the maximum
principle allow us to extend results on Lipschitz continuity of optimal trajectories of Frankowska
and Marchini [15] and Cannarsa, Frankowska and Marchini [6] to general state constraints.

An optimal trajectory/control pair having a degenerate (resp. abnormal) maximum principle
is called a degenerate (resp. abnormal) minimizer. It is called strictly degenerate (resp. strictly
abnormal), if every maximum principle associated to it is degenerate (resp. abnormal). See [1]
for an illustrating example.

There are two natural questions that can be asked at this point. The first one is : under what
circumstances can we avoid the strict degeneracy (resp. strict abnormality) of the maximum
principle? The second question is : when a non-degenerate maximum principle is normal? In
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this work we address the second question for general, not necessarily Lipschitz, optimal trajec-
tories. We do not derive here non-degenerate/normal maximum principles, but only investigate
sufficient conditions for normality of maximum principles obtained elsewhere in a non-degenerate
form.

Let us provide next a quick overview of some of the existing results in the vast literature on
non-degenerate and normal maximum principles. We refer to Lopes and Fontes [19], [12] for
more comprehensive descriptions of the state of art in this topic and to Arutyunov and Aseev
[1, Section 6] for a detailed survey of the Russian literature on this subject.

In [11], Ferreira and Vinter studied a class of state constrained problems in which the initial
state belongs to the boundary of the state constraint. This is one of the cases in which the
classical maximum principle conveys no useful information, since a degenerate multiplier can be
associated to every trajectory/control pair of our control system. They proposed two possible
types of constraints qualifications in order to ensure the existence of non-degenerate multipliers
in addition to the degenerate ones. The first one requires that, when the optimal trajectory lies
on the boundary of the state constraint on a neighborhood of the initial time, then the classical
inward pointing condition holds true at x0 (i.e. the Slater type condition). The second type
requires that there exists a control that pushes the trajectory away from the boundary faster
than the optimal control, on a neighborhood of the initial time. The advantage of the second
type of constraints qualifications is that in general it is valid for problems with less regularity
of the data than the first type. Both conditions involve either optimal trajectory or optimal
control.

Subsequently, several refinements of the above results were made in Ferreira, Fontes and Vinter
[10]. In [20], Lopes, Fontes and de Pinho [20] restricted their attention to piecewise continuous
controls and used a trajectories independent inward pointing condition to get non-degeneracy
of the maximum principle. Finally, in [12], Fontes and Lopes provided a sufficient condition for
normality imposing an inward pointing condition at points x̄(s) for all s < τ := inf{t |µ([t, 1]) =
0} sufficiently close to τ . In order to avoid the use of constraints qualifications which depend
on the optimal control, Rampazzo and Vinter proposed in [22] a different type of constraints
qualifications, assuming existence of a continuous inward pointing feedback near the boundary
of state constraints, to prove a normal maximum principle. Finally, in [21], the same authors
investigated non-degeneracy under an inward pointing condition imposed on a neighborhood of
the boundary of the state constraint and in the absence of end points constraints for f merely
measurable with respect to time.

A different approach was pursued by Arutyunov and Aseev in [1] when U = U(t) is time
independent, f(·, ·, U) is Lipschitz with respect to t and x and such that f(t, x, U) are convex.
These authors have shown that the degeneracy phenomenon arises due to the incompleteness of
the standard variants of the maximum principles for problems with state constraints which they
supplemented by a jump condition on the Hamiltonian. Adding a new controllability condition
on the Hamiltonian at the initial and end points of the optimal trajectory, they proved a non-
degenerate maximum principle. There are no similar known results when f is merely measurable
with respect to the time.

We would like to underline here that there is a qualitative difference between constrained
control systems with dynamics depending on time in a Lipschitz and in a measurable way. For
instance the so called neighboring feasible trajectories estimates that are valid in the Lipschitz
case, do encounter counterexamples in the measurable case, see for instance [3].

The classical inward pointing condition was used in [7], [4], to prove normality in the case
Lipschitz continuous optimal trajectories. In order to deal with absolutely continuous minimizers
and to get sufficient conditions for the non occurrence of the Lavrentieff phenomenon, it became
necessary to substitute the inward pointing condition by a new one.
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It is worth to mention that some maximum principles under state constraints proved in [24]
hold true for absolutely continuous optimal trajectories and for this reason, to have a complete
picture, it is natural to pursue the investigation of normality to encompass also non-Lipschitz
optimal trajectories.

The paper is organized as follows. Section 2 is devoted to some definitions and preliminar-
ies. In Section 3 we discuss relations of normality of the maximum principle to controllability
properties of an associated linear system under state constraints. Inward pointing conditions
implying existence of “inward pointing trajectories” are stated in Section 4 with proofs post-
poned to Section 7. Sufficient conditions for normality are provided in Section 5. In Section 6
we apply our results to derive conditions that allow to avoid the Lavrientieff phenomenon.

2. Notations and Preliminaries

For a, b ∈ R, let a ∧ b := min{a, b}.
Given a set K ⊂ R

n we denote by K its closure, by ∂K its boundary, by Int(K) its interior,
by co (K) its convex hull and by co (K) its closed convex hull. Let | · | denote the Euclidean
norm in R

n. The distance function dK : Rn → R+ ∪{+∞} is defined by dK(x) := infy∈K |x− y|
for all x ∈ R

n with the convention infy∈∅ |x− y| = +∞.
For a metric space M and a family {Kτ}τ∈M of subsets of Rn, the upper and lower limits of

{Kτ}τ∈M when τ → τ̄ ∈ M are defined respectively by

Lim sup
τ→τ̄

Kτ := {x ∈ R
n| lim inf

τ→τ̄
dKτ (x) = 0}, Lim inf

τ→τ̄
Kτ := {x ∈ R

n| lim
τ→τ̄

dKτ (x) = 0}.

Let K be a closed subset of Rn and x ∈ K. The contingent cone, resp. Clarke’s tangent cone
to K at x are defined by

TK(x) := Lim sup
h→0+

K − x

h
, CK(x) := Lim inf

h→0+,K∋y→x

K − y

h

and the regular normal cone, resp. Clarke’s normal cone to K at x by

N0
K(x) := {p ∈ R

n| 〈p, v〉 ≤ 0 ∀v ∈ TK(x)}, NK(x) := {p ∈ R
n| 〈p, v〉 ≤ 0 ∀v ∈ CK(x)}.

For all x ∈ K, CK(x) is a closed convex cone. It is well known that x ∈ Int(K) if and
only if CK(x) = R

n and that v ∈ Int(CK(x)) if and only if there exists ε > 0 such that
y + [0, ε]B(v, ε) ⊂ K for all y ∈ K ∩B(x, ε). Set N1

K(x) := {n ∈ NK(x)| |n| = 1}.
When Q ⊂ R

n is convex, then for every x ∈ Q,

(2.1) TQ(x) = ∪α≥0 α(Q− x)

and v ∈ TQ(x) if and only if 〈n, v〉 ≤ 0 ∀n ∈ N0
Q(x).

Consider a locally Lipschitz function f : Rn → R and denote by ∇f(·) its gradient, which is
defined a.e. in R

n. The reachable gradient of f at x is defined by

∂∗f(x) := Lim sup
y→x

{∇f(y)}

and the Clarke generalized gradient of f(·) at x by

(2.2) ∂f(x) := co ∂∗f(x).

Let K ⊂ R
n be a closed nonempty set different from R

n. The oriented distance d(·) : Rn → R

from K is defined by

d(x) := dK(x)− dRn\K(x) ∀x ∈ R
n.

We set d(·) ≡ 0 if K = R
n.

The following proposition is well known.
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Proposition 2.1. Let K ⊂ R
n be a closed set and assume that Int(CK(x)) 6= ∅ for every

x ∈ ∂K. Then the set valued maps x N1
K(x) and x NK(x) ∩ B are upper semicontinuous

on K, while the map x CK(x) is lower semicontinuous on K.

Proposition 2.2 ([16]). Let K ⊂ R
n be a closed nonempty set different from R

n and assume
that Int(CK(x)) 6= ∅ for every x ∈ ∂K. Let z ∈ R

n be such that d(·) is differentiable at z. Then
there exists a unique projection y of z on ∂K and ∇d(z) ∈ N1

K(y).
In particular, for every x ∈ ∂K we have ∂∗d(x) ⊂ N1

K(x).

For a set valued map Q : X  Y the domain of Q(·) is Dom(Q) = {x ∈ X| Q(x) 6= ∅}.
By [W 1,1([0, 1])]n we denote the space of absolutely continuous functions from [0, 1] into R

n

and by L(A) the Lebesgue measure of a Lebesgue measurable set A ⊂ [0, 1].
The space [NBV ([0, 1])]n of normalized functions of bounded variation on [0, 1] with values

in R
n is defined as the space of functions with bounded total variation, vanishing at zero and

right continuous on (0, 1). For any ψ(·) in [NBV ([0, 1])]n we denote by ψ(t+) the right limit of
ψ(·) at time t ∈ [0, 1) and by ψ(t−) the left limit of ψ(·) at time t ∈ (0, 1]. The total variation
of ψ(·) on an interval I ⊂ [0, 1] is denoted by V ar(ψ(·), I). The Stiltjes integral of a function

w(·) ∈ [C([0, 1])]n with respect to ψ(·) ∈ [NBV ([0, 1])]n is denoted by
∫ 1
0 w(s)dψ(s).

Let M(n × n) be the space of n × n matrices and for every A ∈ M(n × n) let ai,j be its
elements for i, j = 1, ..., n. The mapping A : [0, 1] →M(n× n) is called integrable, if for all i, j,
the function ai,j : [0, 1] → R is integrable. Denote by A(t)∗ the transpose of A(t) for t ∈ [0, 1].

Definition 2.3. A viable trajectory/control pair (x̄(·), ū(·)) of (1.1)-(1.2) is called extremal for
a triple (λ, p(·), ψ(·)) if λ ∈ {0, 1}, ψ(·) ∈ [NBV ([0, 1])]n and p(·) ∈ [W 1,1([0, 1])]n are such that
(λ, p(·), ψ(·)) 6= 0 and for some integrable mappings A : [0, 1] → M(n× n), π : [0, 1] → R

n, and
some vectors π0, π1 ∈ R

n the following relations hold true:

(2.3) − p′(t) = A(t)∗(p(t) + ψ(t))− λπ(t) for a.e. t ∈ [0, 1],

(2.4) (p(0),−p(1)− ψ(1)) ∈ λ(π0, π1) +NK1
((x̄(0), x̄(1))),

(2.5) 〈p(t) + ψ(t), x̄′(t)〉 − λL(t, x̄(t), ū(t)) = Hλ(t, x̄(t), p(t) + ψ(t)) for a.e. t ∈ [0, 1],

(2.6) ψ(0) = 0, ψ(t) =

∫

[0,t]
ν(s)dµ(s) ∀t ∈ (0, 1]

for a positive finite Borel measure µ on [0, 1] and a Borel measurable selection ν(t) ∈ NK(x̄(t))∩
B for µ-a.e. t ∈ [0, 1].

A triple (λ, p(·), ψ(·)) is called normal if λ = 1 and non-degenerate if

(2.7) λ+ sup
t∈(0,1]

|p(t) + ψ(t)| 6= 0.

Recall that µ being a finite Borel measure on [0, 1], is regular.

Remark 2.4. i) Proposition 2.6 below implies that different forms of the adjoint inclusion in the
maximum principle may be written as in Definition 2.3.
ii) Since (2.3) and (2.5) hold a.e. in [0, 1], they are also satisfied if we replace ψ(·) by ψ̂(·)

defined in the following way: ψ̂(t) := ψ(t−) for all t ∈ (0, 1), ψ̂(0) := 0, ψ̂(1) := ψ(1). Notice

that ψ̂(·) has bounded total variation and ψ̂(t) = ψ(t) for a.e. t ∈ [0, 1], ψ̂(·) is left continuous
on (0, 1),

ψ̂(t) =

∫

[0,t)
ν(s)dµ(s) ∀t ∈ (0, 1), ψ̂(1) =

∫

[0,1]
ν(s)dµ(s).

Therefore, if a trajectory/control pair (x̄(·), ū(·)) is extremal for a triple (λ, p(·), ψ(·)), then

(λ, p(·), ψ̂(·)) satisfies (2.3)-(2.5).
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The following result is an immediate consequence of Proposition 2.1 and (2.6).

Proposition 2.5. Let K ⊂ R
n be a closed set and assume that Int(CK(x)) 6= ∅ for every

x ∈ ∂K. Then for any (x̄(·), ū(·)) which is extremal for a triple (λ, p(·), ψ(·)), it holds

(2.8) ψ(0+) ∈ NK(x̄(0)) and ψ(t)− ψ(t−) ∈ NK(x̄(t)) ∀t ∈ (0, 1].

Moreover, if λ = 0, then

(2.9) p(t) + ψ(t) ∈ Nco(f(t,x̄(t),U(t))(x̄
′(t))) for a.e. t ∈ (0, 1).

The proposition below may be used to associate to various forms of the adjoint system in the
maximum principle an integrable mapping A : [0, 1] →M(n× n), as in Definition 2.3.

Proposition 2.6. Let q(·) ∈ [L1([0, 1])]n, g(·) ∈ [L∞([0, 1])]n and k : [0, 1] → R+ be integrable
and satisfying

(2.10) |q(t)| ≤ k(t)|g(t)| for a.e. t ∈ (0, 1).

Then there exists an integrable A : [0, 1] →M(n× n) such that q(t) = A(t)∗g(t) a.e. in [0, 1].

Proof. Denote by a∗i,j(t) the elements of the matrix A(t)∗ to be defined. For t ∈ [0, 1] such that

q(t) = (0, . . . , 0) let
a∗i,j(t) := 0 for all i, j ∈ {1, . . . , n}.

For t ∈ [0, 1] such that q(t) 6= (0, . . . , 0) and (2.10) holds true, let

j0(t) = j0 := max{j ∈ {1, . . . , n}| |gj(t)| = max
i∈{1,...,n}

|gi(t)|}

and define for all i, j

a∗i,j(t) :=

{

0 j 6= j0
qi(t)
gj0 (t)

j = j0.

Define A(t) := (A(t)∗)∗. From the measurability of q(·) and gj0(·) it follows that every element
of A(·)∗ is measurable. Moreover for any i, j ∈ {1, . . . , n} we have

|a∗i,j(t)| ≤

∣

∣

∣

∣

qi(t)

gj0(t)

∣

∣

∣

∣

≤ n
|q(t)|

|g(t)|
≤ nk(t).

Hence a∗i,j(·) is integrable for any i, j ∈ {1, . . . , n} and A(·) is integrable.
�

In order to simplify the notation, for a fixed trajectory/control pair (x̄(·), ū(·)) and for all
t ∈ [0, 1] we set

T (t) :=

{

Tco(f(t,x̄(t),U(t)))(x̄
′(t)) if x̄′(t) ∈ f(t, x̄(t), U(t))

{0} otherwise.

We will often refer to the following linear differential inclusion

w′(t) ∈ A(t)w(t) + T (t) for a.e. t ∈ [0, 1],

for A(·) as in Definition 2.3.
A solution of such a differential inclusion is an absolutely continuous function w(·). Then

w′(t) = A(t)w(t) + v(t) for a.e. t ∈ [0, 1]

for an integrable selection v(t) ∈ T (t). Sometimes we will write this differential inclusion as a
linear control system

w′(t) = A(t)w(t) + v(t), v(t) ∈ T (t) for a.e. t ∈ [0, 1]

requiring implicitly that v(·) must be integrable.
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3. Normality and Viable Solutions of a Linear Control System

Our first result links the abnormal maximum principle to solutions of a linear system with
linearized state constraints.

Lemma 3.1. Let (x̄(·), ū(·)) be extremal for an abnormal triple (0, p(·), ψ(·)) and let A(·) be as
in Definition 2.3. Then for every solution w(·) of the viability problem

(3.1)







w′(t) = A(t)w(t) + v(t), v(t) ∈ T (t) for a.e. t ∈ [0, 1]
w(t) ∈ CK(x̄(t)) ∀t ∈ [0, 1]

(w(0), w(1)) ∈ CK1
((x̄(0), x̄(1))),

we have

(3.2)

∫ 1

0
〈p(s) + ψ(s), v(s)〉ds = 0,

(3.3)

∫ 1

0
w(s)dψ(s) = 0,

and

(3.4) − 〈p(1) + ψ(1), w(1)〉+ 〈p(0), w(0)〉 = 0.

The above lemma implies that, when investigating normality, it is enough to provide suffi-
cient conditions for one of the three terms to be strictly smaller than zero in order to reach a
contradiction with the fact that λ = 0.

Proof. Since λ = 0, the trajectory/control pair (x̄(·), ū(·)) and the triple (0, p(·), ψ(·)) satisfy the
following relations

(3.5) − p′(t) = A(t)∗(p(t) + ψ(t)) for a.e. t ∈ [0, 1],

(3.6) (p(0),−p(1)− ψ(1)) ∈ NK1
((x̄(0), x̄(1))),

(3.7) 〈p(t) + ψ(t), x̄′(t)〉 = max
u∈U(t)

〈p(t) + ψ(t), f(t, x̄(t), u)〉 for a.e. t ∈ [0, 1],

ψ(0) = 0, ψ(t) =

∫

[0,t]
ν(s)dµ(s) ∀t ∈ (0, 1], ν(t) ∈ NK(x̄(t)) ∩B for µ-a.e. t ∈ [0, 1].

Let w(·) be a solution of

(3.8) w′(t) = A(t)w(t) + v(t),

for an integrable selection v(t) ∈ T (t) for a.e. t ∈ [0, 1].
Adding the two equalities below

〈p(1), w(1)〉 − 〈p(0), w(0)〉 =

∫ 1

0
(p′w + pw′)(s)ds

〈ψ(1), w(1)〉 =

∫ 1

0
w(s)dψ(s) +

∫ 1

0
w′(s)ψ(s)ds

we obtain

(3.9) 〈p(1) + ψ(1), w(1)〉 − 〈p(0), w(0)〉 =

∫ 1

0
(p′w + pw′ + w′ψ)(s)ds+

∫ 1

0
w(s)dψ(s).

From (3.8) and (3.5) we deduce that
∫ 1
0 (p

′w+ pw′+w′ψ)(s)ds =
∫ 1
0 〈p(s)+ψ(s), v(s)〉ds. Hence

(3.9) yields

(3.10)

∫ 1

0
〈p(s) + ψ(s), v(s)〉ds+

∫ 1

0
w(s)dψ(s)− 〈p(1) + ψ(1), w(1)〉+ 〈p(0), w(0)〉 = 0.
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Applying (2.1) to Q = co (f(t, x̄(t), U(t))) for almost all t ∈ [0, 1] we have

T (t) = ∪α≥0 α(co(f(t, x̄(t), U(t))− x̄′(t))).

Since v(t) ∈ T (t) for a.e. t ∈ [0, 1], equality (3.7) implies the inequality ≤ in (3.2) instead of

equality. Moreover, since
∫ 1
0 w(t)dψ(t) =

∫

[0,1]〈w(t), ν(t)〉dµ(t), w(t) ∈ CK(x̄(t)) for all t ∈ (0, 1]

and ν(t) ∈ NK(x̄(t)) for µ-a.e. t in [0, 1], we deduce (3.3) again with the inequality ≤. Finally
relations (w(0), w(1)) ∈ CK1

((x̄(0), x̄(1))) and (3.6) imply (3.4) again with the inequality ≤.
Thus (3.10) is verified if and only if (3.2), (3.3) and (3.4) hold true.

�

Proposition 3.2. Let (x̄(·), ū(·)) be extremal for an abnormal triple (0, p(·), ψ(·)) and let A(·)
be as in Definition 2.3. If there exists a solution w(·) to the differential inclusion (3.1) satisfying

(3.11) w(t) ∈ Int(CK(x̄(t))) ∀t ∈ I,

where I is a subinterval of (0, 1] of the form (a, b) or (a, b], 0 ≤ a < b ≤ 1, then ψ(t) = ψ(a+)
for all t ∈ I.

Proof. Let w(·) be a solution of (3.1), (3.11). Then w(t) 6= 0 for all t ∈ I, such that x̄(t) ∈ ∂K.
By Lemma 3.1 we know that (3.3) holds true. Therefore µ({s ∈ I| ν(s) 6= 0}) = 0. Indeed
assuming that ν(s) 6= 0 on a set of strictly positive measure in I, we get

∫

I
〈w(s), ν(s)〉dµ(s) < 0

since w(t) ∈ Int(CK(x̄(t))) for all t ∈ I. This contradicts (3.3). Consequently, for all t ∈ I,
ψ(t) = ψ(a+) +

∫

(a,t] ν(s)dµ(s) = ψ(a+).

�

Remark 3.3. The above proposition implies the following sufficient condition for normality of
the maximum principle. Let (x̄(·), ū(·)) be extremal for a triple (λ, p(·), ψ(·)) and A(·) be as in
Definition 2.3. If

(3.12) λ+ V ar(ψ(·), (0, 1)) 6= 0,

and there exists a solution w(·) to (3.1) satisfying w(t) ∈ Int(CK(x̄(t))) for all t ∈ (0, 1), then
λ = 1.

In the proposition and lemma below we provide other sufficient conditions for normality.

Proposition 3.4. Let (x̄(·), ū(·)) be extremal for a triple (λ, p(·), ψ(·)) and let A(·) be as in
Definition 2.3. Then λ = 1 whenever there exists a solution w̄(·) of

(3.13)







w′(t) ∈ A(t)w(t) + T (t) a.e. in [0, 1]
w(t) ∈ Int(CK(x̄(t))) ∀t ∈ (0, 1]
w(0) ∈ CK(x̄(0))

satisfying one of the following relations:

i) Int(CK(x)) 6= ∅ for all x ∈ ∂K, w̄(0) ∈ Int(CK(x̄(0))) and for some ε > 0,

(w̄(0), w̄(1) + εB) ⊂ CK1
((x̄(0), x̄(1))).

ii) (λ, p(·), ψ(·)) is non-degenerate and for some ε > 0,

(3.14) (w̄(0), w̄(1) + εB) ⊂ CK1
((x̄(0), x̄(1))).

iii) Int(CK(x)) 6= ∅ for all x ∈ ∂K, (w̄(0), w̄(1)) ∈ CK1
((x̄(0), x̄(1))), (λ, p(·), ψ(·)) is non-

degenerate and q(·) ≡ 0 is the only solution of the adjoint system −q′(t) = A(t)∗q(t) a.e.
in [0, 1], satisfying

(q(0),−q(1)) ∈ NK1
((x̄(0), x̄(1))) +NK(x̄(0))× {0}.
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Proof. By contradiction suppose that λ = 0. Then from Lemma 3.1 and Proposition 3.2 we
know that (3.2) - (3.4) hold true and ψ(t) = ψ(0+) for all t ∈ (0, 1]. This implies that

0 =

∫ 1

0
w̄(s)dψ(s) = 〈ψ(0+), w̄(0)〉.

Call q(t) := p(t) + ψ(0+) for all t ∈ (0, 1]. Then −q′(t) = A(t)∗q(t) a.e. in (0, 1].

(i) Since w̄(0) ∈ Int(CK(x̄(0))), by (2.8) we have ψ(0+) = 0. Thus ψ(·) ≡ 0 on [0, 1]. Thanks
to (3.4), i) and (3.6) we get p(1) = 0. Moreover the absolutely continuous function p(·) satisfies
−p′(t) = A(t)∗p(t) a.e. in [0, 1]. Thus p(·) ≡ 0 on [0, 1] and (λ, p(·), ψ(·)) ≡ 0, leading to a
contradiction.

(ii) By (3.4), (3.6) and (3.14), q(1) = p(1)+ψ(1) = 0. Consequently q(·) ≡ 0. This contradicts
the non-degeneracy assumption.

(iii) (3.6) and (2.8) imply (p(0),−p(1)− ψ(0+)) ∈ NK1
((x̄(0), x̄(1))) and ψ(0+) ∈ NK(x̄(0)).

Hence

(q(0),−q(1)) = (p(0) + ψ(0+),−p(1)− ψ(0+)) ∈ NK1
((x̄(0), x̄(1))) +NK(x̄(0))× {0}.

Thus q(·) ≡ 0, in contradiction with the non-degeneracy hypothesis.
�

Lemma 3.5. Let (x̄(·), ū(·)) be extremal for a triple (λ, p(·), ψ(·)) and let A(·) be as in Definition
2.3. Suppose that

(3.15) ess inf
t∈(0,1)

inf
u∈U(t)

〈p(t) + ψ(0+), f(t, x̄(t), u)− f(t, x̄(t), ū(t))〉 < 0.

Then λ = 1 whenever there exists a solution w̄(·) of (3.13) and one of the following two conditions
holds true :

i) for some ε > 0, (w̄(0), w̄(1) + εB) ⊂ CK1
((x̄(0), x̄(1))),

ii) Int(CK(x)) 6= ∅ for all x ∈ ∂K and every solution w(·) to (3.13) with w(0) = w̄(0)
satisfies (w(0), w(1)) ∈ CK1

((x̄(0), x̄(1))).

Proof. By contradiction suppose λ = 0. Then as in the proof of the previous proposition
ψ(t) = ψ(0+) for all t ∈ (0, 1]. Moreover, call q(t) := p(t) + ψ(0+) for all t ∈ (0, 1]. Then
−q′(t) = A(t)∗q(t) a.e. in [0, 1].

(i) As in the proof of Proposition 3.4-ii) we have q(·) ≡ 0. This contradicts (3.15).

(ii) For t ∈ [0, 1] such that x̄′(t) = f(t, x̄(t), ū(t)), define

Ut := {u ∈ U(t)| 〈p(t) + ψ(0+), f(t, x̄(t), u)〉 = 〈p(t) + ψ(0+), x̄′(t)〉}.

Then the Lebesgue measure of the set

(3.16) J := {t ∈ [0, 1]| x̄′(t) = f(t, x̄(t), ū(t)), f(t, x̄(t), Ut) 6= f(t, x̄(t), U(t))},

is strictly positive, thanks to (3.15). Moreover for all t ∈ J , p(t) + ψ(0+) 6= 0.
From the definition of J and the measurable selection theorem there exists a measurable

selection u(t) ∈ U(t) defined on J such that

〈p(t) + ψ(0+), f(t, x̄(t), u(t))〉 < 〈p(t) + ψ(0+), x̄′(t)〉.

Hence for all t ∈ J , ζ(t) := f(t, x̄(t), u(t))−x̄′(t) satisfies ζ(t) ∈ T (t) and 〈p(t)+ψ(0+), ζ(t)〉 < 0.
We claim that there exist ε > 0 and δ ∈ (0, 12), such that

w̄(t) + εB ⊂ Int(CK(x̄(t))) for all t ∈ [δ, 1]
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and L([δ, 1] ∩ J ) > 0. Indeed, since 0 < L(J ) ≤
∑

k>2 L
(

[k−1, 1] ∩ J
)

, we can find δ ∈ (0, 12)
such that L([δ, 1] ∩ J ) > 0.

Consider now the set K := {t ∈ [δ, 1]| x̄(t) ∈ ∂K}. If this set is empty, then Int(CK(x̄(t))) =
R
n for all t ∈ [δ, 1] and the claim follows for every ε > 0. If K 6= ∅, then K is compact and for all

t ∈ K we have w̄(t) ∈ Int(CK(x̄(t))). By contradiction suppose there exists a sequence ti ∈ K,
i ≥ 1 such that w̄(ti) +

1
i
B is not contained in Int(CK(x̄(ti))) for all i ≥ 1. Then

(3.17) max
n∈N1

K
(x̄(ti))

〈n, w̄(ti)〉 ≥ −
1

i
,

for all i ≥ 1. Taking a subsequence and using the same notations, we can find t0 ∈ K such that
ti → t0 as i→ +∞. Therefore passing to the limit in (3.17), thanks to the upper semicontinuity
of x  N1

K(x), we have maxn∈N1
K
(x̄(t0))〈n, w̄(t0)〉 ≥ 0, in contradiction with t0 ∈ K. Hence,

there exist ε > 0 such that w̄(t) + εB ⊂ Int(CK(x̄(t))) for all t ∈ K. Moreover, since for all
t ∈ [δ, 1] \ K, we have Int(CK(x̄(t))) = R

n, then also for such t’s w̄(t) + εB ⊂ Int(CK(x̄(t))).

Consider a subset J̃ ⊂ [δ, 1] ∩ J of strictly positive measure such that ζ(·) is bounded on J̃
and set v(t) := w̄′(t)−A(t)w̄(t). For all α ∈ [0, 1] define

vα(t) :=

{

αv(t) + (1− α)ζ(t) t ∈ J̃
v(t) t ∈ [0, 1] \ J̃ .

Then vα(t) ∈ T (t) for a.e. t ∈ [0, 1], vα(·) converges to v(·) uniformly on [0, 1] when α → 1−
and for all t ∈ J̃ and α ∈ [0, 1), 〈p(t) + ψ(0+), vα(t)〉 < 0. Call wα(·) the solution of

{

w′
α(t) = A(t)wα(t) + vα(t) a.e. in [0, 1]

wα(0) = w̄(0).

By the Gronwall’s Lemma, wα(·) converges uniformly to w̄(·) on [0, 1] when α → 1−. Since
wα(·) ≡ w̄(·) on [0, δ], wα(t) ∈ Int(CK(x̄(t))) for all t ∈ (0, δ] and wα(0) ∈ CK(x̄(0)).

Let η > 0 be such that |wα(t)− w̄(t)| ≤ ε
2 for all t ∈ [δ, 1] and 1− η ≤ α < 1. Then wα(t) ∈

Int(CK(x̄(t))) for all t ∈ [δ, 1]. Moreover, by ii), for every α, (wα(0), wα(1)) ∈ CK1
((x̄(0), x̄(1)))

since wα(·) is a solution of (3.13) with wα(0) = w̄(0).
Lemma 3.1 and Proposition 3.2 applied to wα(·) imply (3.2) with v(·) replaced by vα(·) and

that ψ(·) ≡ ψ(0+) on (0, 1]. From (2.9), the definition of J̃ and vα(·)
∫ 1

0
〈p(s) + ψ(0+), vα(s)〉ds ≤

∫

J̃
〈p(s) + ψ(0+), vα(s)〉ds < 0,

in contradiction with (3.2).
�

Remark 3.6. From Remark 2.4 one can easily deduce the following result which is similar to ii)
of Proposition 3.4.

Let (x̄(·), ū(·)) be extremal for the triple (λ, p(·), ψ(·)) and let A(·) be as in Definition 2.3.
Let w(·) be a solution of (3.13), with w(t) ∈ Int(CK(x̄(t))) for all t ∈ [0, 1) (instead of (0, 1]).

Suppose that for some ε > 0, (w(0) + εB,w(1)) ⊂ CK1
(x̄(0), x̄(1)). Then we have λ = 1

whenever (λ, p(·), ψ(·)) is non-degenerate. Similarly, i) and iii) of Proposition 3.4 and Lemma
3.4 can be formulated in a symmetric way.

4. Existence of Inward Pointing Trajectories

Let (x̄(·), ū(·)) be a viable trajectory/control pair and A : [0, 1] →M(n× n) be an integrable
(n× n)-matrix valued map. Denote by G+ and G− the sets

G+ := {t ∈ [0, 1]| max
p∈∂∗d(x̄(t))

〈p, f(t, x̄(t), ū(t))〉 ≥ 0},
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G− := {t ∈ [0, 1]| min
p∈∂∗d(x̄(t))

〈p, f(t, x̄(t), ū(t))〉 ≤ 0}.

We say that (x̄(·), ū(·)) satisfies the inward pointing condition on I ⊂ [0, 1] if

(4.1)











∃M > 0, ρ > 0 and a set Γ ⊂ [0, 1] of zero Lebesgue measure

such that ∀t ∈ I with x̄(t) ∈ ∂K, ∃ δt > 0 satisfying

minv∈T (s)∩MB maxp∈∂∗d(x̄(t))〈p, v〉 ≤ −ρ, ∀ s ∈ (t− δt, t+ δt) ∩ (G+\Γ).

We say that (x̄(·), ū(·)) satisfies the outward pointing condition on I if

(4.2)











∃M > 0, ρ > 0 and a set Γ ⊂ [0, 1] of zero Lebesgue measure

such that ∀t ∈ I with x̄(t) ∈ ∂K, ∃ δt > 0 satisfying

maxv∈T (s)∩MB minp∈∂∗d(x̄(t))〈p, v〉 ≥ ρ, ∀ s ∈ (t− δt, t+ δt) ∩ (G−\Γ).

Define the set of the reachable points at time t̄ ∈ [0, 1] from w0 ∈ R
n (respectively w1 ∈ R

n)
by trajectories of the constrained differential inclusion

(4.3)

{

w′(t) ∈ A(t)w(t) + T (t) a.e.
w(t) ∈ Int(CK(x̄(t))) ∀ t

by
R0(t̄, w0) := {w(t̄)| w(·) is a solution of (4.3) on [0, t̄], w(0) = w0}

(resp.
R1(t̄, w1) := {w(t̄)| w(·) is a solution of (4.3) on [t̄, 1], w(1) = w1})

and set
R̃0(t̄) := {w(t̄)| w(·) is a solution of (4.3) on (0, t̄], w(0) = 0},

R̃1(t̄) := {w(t̄)| w(·) is a solution of (4.3) on [t̄, 1), w(1) = 0}.

We state next two theorems on existence of inward pointing trajectories whose proofs are
postponed to Section 7.

Theorem 4.1. Assume that Int(CK(x)) 6= ∅ for every x ∈ ∂K. Let (x̄(·), ū(·)) be a viable
trajectory/control pair for which (4.1) holds on [0, t̄] for some 0 < t̄ ≤ 1 (resp. (4.2) holds on
[t̄, 1] for some 0 ≤ t̄ < 1). Assume that

Int(CK(x̄(0))) ∩ CQ0
(x̄(0)) 6= ∅,

(resp. Int(CK(x̄(1))) ∩ CQ1
(x̄(1)) 6= ∅.)

Then, for any integrable (n × n)-matrix valued map A : [0, 1] → M(n × n) and any w0 ∈
Int(CK(x̄(0))) ∩ CQ0

(x̄(0)), we have R0(t̄, w0) 6= ∅
(resp. R1(t̄, w1) 6= ∅ for any w1 ∈ Int(CK(x̄(1))) ∩ CQ1

(x̄(1))).

Theorem 4.2. Assume that Int(CK(x)) 6= ∅ for every x ∈ ∂K. Let (x̄(·), ū(·)) be a viable
trajectory/control pair for which (4.1) holds on [0, t̄] for some 0 < t̄ ≤ 1 (resp. (4.2) holds on [t̄, 1]
for some 0 ≤ t̄ < 1). Then, for any integrable (n×n)-matrix valued map A : [0, 1] →M(n×n),

R̃0(t̄) 6= ∅ (resp. R̃1(t̄) 6= ∅).

Remark 4.3. Theorems 4.1 and 4.2 augmented by Remark 3.3, Proposition 3.4 and Lemma 3.5
can be used to deduce normality of the maximum principle.

Naturally, the inward pointing condition can be stated to be independent from (x̄, ū): For all
t ∈ [0, 1], x ∈ K denote by G+(t, x) and G−(t, x) the sets

G+(t, x) := {f(t, x, u)| u ∈ U(t), max
p∈∂∗d(x)

〈p, f(t, x, u)〉 ≥ 0},

G−(t, x) := {f(t, x, u)| u ∈ U(t), min
p∈∂∗d(x)

〈p, f(t, x, u)〉 ≤ 0}.
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Then the following inward pointing condition implies (4.1) :

(4.4)























∀R > 0, ∃MR > 0, ρR > 0 and a set ΓR ⊂ [0, 1] of zero Lebesgue measure

∀(t, x) ∈ [0, 1] × (∂K ∩RB), ∃ δ > 0 such that

∀ (s, y) ∈ ([0, 1]\ΓR)×K with |(s, y)− (t, x)| < δ, ∀ f(s, y, u) ∈ G+(s, y)

∃ v ∈ Tco(f(s,y,U(s)))(f(s, y, u)) ∩MRB satisfying maxp∈∂∗d(x)〈p, v〉 ≤ −ρR

and the following outward pointing condition implies (4.2) :

(4.5)























∀R > 0, ∃MR > 0, ρR > 0 and a set ΓR ⊂ [0, 1] of zero Lebesgue measure

∀(t, x) ∈ [0, 1]× (∂K ∩RB), ∃ δ > 0 such that

∀ (s, y) ∈ ([0, 1]\ΓR)×K with |(s, y)− (t, x)| < δ, ∀ f(s, y, u) ∈ G−(s, y)

∃ v ∈ Tco(f(s,y,U(s)))(f(s, y, u)) ∩MRB satisfying minp∈∂∗d(x)〈p, v〉 ≥ ρR.

Both conditions (4.4) and (4.5) imply that Int(CK(x)) 6= ∅ for every x ∈ ∂K.

Remark 4.4. i) Assume that K has a C1 boundary and the set valued map (t, x) f(t, x, U(t))
is continuous and has compact images. Then it is not difficult to verify that (4.4) is satisfied
with ΓR = ∅ if and only if the following relaxed classical inward pointing condition holds true:

∀x ∈ ∂K, ∃ vx ∈ co (f(t, x, U(t))) such that 〈nx, vx〉 < 0,

where nx denotes the unit outward normal to K at x ∈ ∂K.
ii) The following example shows that our condition is more general than the earlier ones even

when boundary of K is smooth. Let

U := U(t) = {−1, 1}, K =

{

(x1, x2) ∈ R
2 | x1 > 0, x2 ≤ 1−

1

x1

}

,

f(t, (x1, x2), u) = (1− x1, ux1) for x1 ≥ 1 and f(t, (x1, x2), u) = (0, ux1) whenever x1 < 1. Then
Tco(f(t,(x1,x2),U))(f(t, (x1, x2), 1)) = {0}×R− and it is not difficult to check that (4.4) holds true,
while the inward pointing condition proposed in [14] is not verified because limx1→0+ ux1 = 0.

5. Sufficient Conditions for Normality

In this section we restrict our attention to the case K1 := Q0×Q1, where Qi is a closed subset
of Rn, for i ∈ {0, 1}. Let (x̄(·), ū(·)) be a viable trajectory/control pair and A : [0, 1] →M(n×n)
be an integrable (n× n)-matrix valued map.

Definition 5.1. The linear system

(5.1) w′(t) = A(t)w(t) + v(t) v(t) ∈ T (t)

is said to be controllable at time t̄ ∈ [0, 1], if there exists δ > 0 such that for all t1, t2 ∈
[t̄− δ, t̄+ δ]∩ [0, 1] with t1 < t2 and for all w1, w2 ∈ R

n there exists a solution w(·) to the system
(5.1) defined on [t1, t2], which satisfies w(t1) = w1 and w(t2) = w2.

Theorem 5.2. Assume that Int(CK(x)) 6= ∅ for every x ∈ ∂K. Let (x̄(·), ū(·)) be extremal
for a triple (λ, p(·), ψ(·)) and A(·) be as in Definition 2.3. Assume there exists 0 < t̄ < 1 such
that x̄(t̄) ∈ Int(K), the system (5.1) is controllable at t̄, (4.1) is satisfied on [0, t̄] and (4.2) is
satisfied on [t̄, 1]. Then λ = 1 whenever

Int(CK(x̄(0))) ∩ CQ0
(x̄(0)) 6= ∅ and Int(CK(x̄(1))) ∩ Int(CQ1

(x̄(1))) 6= ∅.
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Proof. It is enough to find a solution to (3.13) that satisfies i) of Proposition 3.4.
Let w0 ∈ Int(CK(x̄(0)))∩CQ0

(x̄(0)) and w1 ∈ Int(CK(x̄(1)))∩ Int(CQ1
(x̄(1))). By Theorem

4.1 we can find a solution w0(·) of (4.3) on [0, t̄], with w0(0) = w0, and a solution w1(·) of (4.3)
on [t̄, 1], with w1(1) = w1. Moreover thanks to the controllability assumption we can find δ > 0
such that, for any t1, t2 ∈ [t̄− δ, t̄+ δ]∩ (0, 1), t1 < t2, there exists a solution w̄(·) of (5.1) defined
on [t1, t2], such that w̄(t1) = w0(t1) and w̄(t2) = w1(t2). Since x̄(t̄) ∈ Int(K), t1, t2 can be chosen
such that x̄([t1, t2]) ⊂ Int(K), hence, we have w̄(t) ∈ Int(CK(x̄(t))) for all t ∈ [t1, t2]. Define

w(t) :=







w0(t) for t ∈ [0, t1]
w̄(t) for t ∈ [t1, t2]
w1(t) for t ∈ [t2, 1],

then w(·) is as required.
�

Theorem 5.3. Assume that Int(CK(x)) 6= ∅ for every x ∈ ∂K. Let (x̄(·), ū(·)) be extremal for
a triple (λ, p(·), ψ(·)) that satisfies (3.12) and A(·) be as in Definition 2.3. Assume there exists
0 < t̄ < 1 such that x̄(t̄) ∈ Int(K), the system (5.1) is controllable at t̄, (4.1) is satisfied on [0, t̄]
and (4.2) is satisfied on [t̄, 1]. Then λ = 1.

Proof. Since (x̄(·), ū(·)) is extremal for a triple (λ, p(·), ψ(·)) that satisfies (3.12), Remark 3.3
implies that it is enough to find a solution to (3.1) satisfying w(t) ∈ Int(CK(x̄(t))) for t ∈ (0, 1).

By Theorem 4.2 we can find a solution w0(·) of (4.3) on (0, t̄], with w0(0) = 0 and a solution
w1(·) of (4.3) on [t̄, 1), with w1(1) = 0. The proof ends by applying exactly the same arguments
as in the proof of Theorem 5.2.

�

Results of Sections 3 and 4 immediately yield the following theorems.

Theorem 5.4. Assume that either i) or ii) below hold true:
i) K1 = Q0×R

n, where Q0 is a closed subset of Rn, (4.4) and Int(CK(z))∩CQ0
(z) 6= ∅, ∀ z ∈

∂K ∩ ∂Q0;
ii) K1 = R

n×Q1, where Q1 is a closed subset of Rn, (4.5) and Int(CK(z))∩CQ1
(z) 6= ∅, ∀ z ∈

∂K ∩ ∂Q1.
If (x̄(·), ū(·)) is extremal for a triple (λ, p(·), ψ(·)), then λ = 1.

If the set Q0 = {x0} for some x0 ∈ R
n, then CQ0

(x0) = {0}. Hence the condition 0 ∈
Int(CK(x0)) cannot be verified whenever x0 ∈ ∂K. A similar situation occurs when Q1 = {x1}
for some x1 ∈ R

n. We then have the following result.

Theorem 5.5. Assume that either i) or ii) below hold true:
i) K1 = {x0} × R

n for some x0 ∈ R
n and (4.4);

ii) K1 = R
n × {x1} for some x1 ∈ R

n and (4.5).
If (x̄(·), ū(·)) is extremal for a non-degenerate triple (λ, p(·), ψ(·)), then λ = 1.

In the presence of both endpoints constraints, i.e. K1 = Q0 ×Q1 where Qi is a proper closed
subset of K, for i ∈ {0, 1}, we are able to provide sufficient conditions for the normality of the
maximum principle only for trajectories ending in ∂K.

Theorem 5.6. Assume that K1 = Q0 ×Q1 where Qi is a closed subset of K, for i ∈ {0, 1} and
either i) or ii) below hold true:
i) (4.4), Int(CK(z))∩CQ0

(z) 6= ∅, ∀ z ∈ ∂K∩∂Q0 and CK(y) ⊂ CQ1
(y) for all y ∈ ∂K∩∂Q1;

ii) (4.5), Int(CK(z))∩CQ1
(z) 6= ∅, ∀ z ∈ ∂K∩∂Q1 and CK(y) ⊂ CQ0

(y) for all y ∈ ∂K∩∂Q0.
If (x̄(·), ū(·)) is extremal for a triple (λ, p(·), ψ(·)) and either x̄(1) ∈ ∂K if i) holds true or
x̄(0) ∈ ∂K if ii) holds true, then λ = 1.
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Theorem 5.7. Assume that either i) or ii) below hold true:
i) Q0 = {x0}, (4.4) and CK(y) ⊂ CQ1

(y) for every y ∈ ∂K ∩ ∂Q1;
ii) Q1 = {x1}, (4.5) and CK(y) ⊂ CQ0

(y) for every y ∈ ∂K ∩ ∂Q0.
If (x̄(·), ū(·)) is extremal for a non-degenerate triple (λ, p(·), ψ(·)) and x̄(1) ∈ ∂K if i) holds true
or x̄(0) ∈ ∂K if ii) holds true, then λ = 1.

6. Non Occurrence of the Lavrentieff Phenomenon

Results on normality and existence of the inward pointing trajectories of linear systems ob-
tained in the previous sections, can be applied to guarantee the absence of the Lavrientieff
phenomenon and to generalize some results from [15] and [6], on the Lipschitz regularity of
optimal trajectories for the Bolza problem.

In this section we consider the set K1 = Q0 × R
n, where Q0 is a compact subset of Rn.

Let us first address the case of the Bolza optimal control problem under the Tonelli’s type
growth condition that is for L having a superlinear growth with respect to f . When this happens
and the Hamiltonian H, defined as in the introduction, is locally bounded from below, then the
Lipschitz regularity of optimal trajectories, satisfying the normal maximum principle, can be
shown through a very simple argument, see the proof of the following proposition from [15].

Proposition 6.1 (Proposition 1 of [15]). Assume that

(G) there exists a function φ : R → R satisfying limr→+∞
φ(r)
r

= +∞ and L(t, x, u) ≥
φ(|f(t, x, u)|), for all (t, x, u) ∈ [0, 1]× R

n ×Z.

Let (x̄(·), ū(·)) be an extremal for which the maximum principle is normal. If the Hamiltonian
is locally bounded from below, then x̄(·) is Lipschitzian. Moreover, if Z is a separable Banach
space, then ū(·) is essentially bounded whenever

(6.1) lim
‖u‖Z→∞

inf
t∈[0,1]

|f(t, x̄(t), u)| = ∞.

Remark 6.2. Note that the Lipschitzianity of f, L and ϕ, required in subsection 3.1 of [15], is
not necessary in the proof of the above proposition.

Theorem 5.4 provides sufficient conditions for normality of the maximum principle. Thus,
as a consequence of the above proposition, once the hypotheses of this result are satisfied, we
obtain the following corollary.

Corollary 6.3. Assume (G), (4.4), that the Hamiltonian H is locally bounded from below and

Int(CK(x)) ∩ CQ0
(x) 6= ∅, ∀x ∈ ∂K ∩ ∂Q0.

Then, for every extremal (x̄(·), ū(·)), x̄(·) is Lipschitz continuous. Moreover, if Z is a separable
Banach space and (6.1) holds, then ū(·) is essentially bounded.

We present now a theorem, which says that, under suitable assumptions, the Lavrientieff
phenomenon cannot occur for the minimization problem (1.3) when Q1 = R

n. We need the
following assumptions.

Assumption (H1):

i) Z = R
m, f is continuous and L and ϕ are continuous, non-negative functions;

ii) for every R > 0, ∃CR > 0 such that, for any t ∈ [0, 1], x1, x2, y1, y2 ∈ RB ∩K and any
u ∈ U(t),
ii1) |ϕ(x1, y1)− ϕ(x2, y2)| ≤ CR(|x1 − x2|+ |y1 − y2|),
ii2) |L(t, x1, u)− L(t, x2, u)| ≤ CR|x1 − x2|[1 + L(t, x1, u) ∧ L(t, x2, u)],
ii3) |f(t, x1, u) − f(t, x2, u)| ≤ CR|x1 − x2|[1 + |f(t, x1, u)| ∧ |f(t, x2, u)| + L(t, x1, u) ∧

L(t, x2, u)];
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iii) for all t ∈ [0, 1] and x ∈ K, the set F (t, x) := {(L(t, x, u)+η, f(t, x, u))| u ∈ U(t), η ≥ 0}
is closed and convex;

iv) Int(CK(x)) ∩ CQ0
(x) 6= ∅, ∀x ∈ ∂K ∩ ∂Q0.

Remark 6.4. The functions L and ϕ are supposed to be nonnegative just to simplify notations in
the proofs. If instead, for some c ≥ 0, L and ϕ are bounded from the below by −c, then replacing
these functions by L+ c and ϕ+ c we get nonnegative mappings for which the associated Bolza
problem has the same optimal trajectories.

Theorem 6.5. Assume (G), (H1), (4.4), that U(·) is lower semicontinuous and the infimum
in the Bolza problem (1.3) is finite. Then it is attained and every optimal trajectory is Lipschitz
continuous. Furthermore every optimal trajectory/control pair (x̄, ū) is a normal extremal.

Moreover, if ∀R > 0
lim inf
||u||Z→∞

ess inf
t∈[0,1]

inf
x∈RB

|f(t, x, u)| = +∞,

then every optimal control ū(·) is essentially bounded.

Remark 6.6. A similar regularity result was obtained in [15] for less general state constraints. A
standard hypothesis, ensuring that the infimum in the Bolza problem (1.3) is finite, is hypothesis
(H2)ii) below.

From the provided proof it follows that every optimal trajectory/control pair verifies the
normal maximum principle of Theorem 9.3.1 of [24].

Proof. Thanks to hypothesis (G) and (H1) we can use Theorem 11.4.i of Cesari [8] to obtain the
existence of an optimal solution for the minimization problem, over trajectories which belong to
SK
[0,1].

Consider an optimal trajectory/control pair (x̄(·), ū(·)) for this problem. Then, from [24,
Theorem 9.3.1], using the oriented distance d(·) in the place of the state constraint function
h(·), we obtain that (x̄(·), ū(·)) satisfies a form of Pontryagin’s maximum principle that can be
easily reduced to the one of Definition 2.3. Note that, thanks to the continuity of f and L, the
lower semicontinuity of U(·) and the growth condition, the corresponding Hamiltonian is lower
semicontinuous, hence, locally bounded from below.

Normality of the extremal (x̄(·), ū(·)) follows from Theorem 5.4 (i) and Proposition 6.1 com-
pletes the proof. �

Since in many cases of interest the Lagrangian fails to verify the Tonelli’s growth condition,
it is useful to find results on Lipschitz regularity even when this condition is not satisfied. This
situation is studied in [6]. The general strategy is to consider a sequence of penalized problems
with super linear growth, to which the direct method of Tonelli can be applied. Then, through
an approximation result and a structural assumption on the Hamiltonian it is possible to pass to
the limit obtaining the existence of a trajectory/control pair (x∗(·), u∗(·)) of the original problem
such that x∗(·) is Lipschitz and L(·, x∗(·), u∗(·)) is essentially bounded.

To apply this strategy, taking advantage of our results on normality of the maximum princi-
ple, we impose again assumptions (H1), but we replace (4.4) by the following inward pointing
condition

(6.2)



































∀R > 0, ∃MR > 0, ρR > 0 and a set ΓR ⊂ [0, 1] of zero Lebesgue measure

∀(t, x) ∈ [0, 1] × (∂K ∩RB), ∃ δ > 0 such that

∀ (s, y) ∈ ([0, 1]\ΓR)×K with |(s, y)− (t, x)| < δ, ∀ f(s, y, u) ∈ G+(s, y),

∃ (ν, v) ∈ TF (s,y)((L(s, y, u), f(s, y, u)))

satisfying |ν|+ |v| ≤MR and maxp∈∂∗d(x)〈p, v〉 ≤ −ρR.
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Assumption (H2):

i) Assumption (H1) is verified with (H1)-ii3) replaced by (H1)-ii3)bis : for some α ≥ 2,

|f(t, x1, u)− f(t, x2, u)| ≤ CR|x1−x2|[1+ |f(t, x1, u)| ∧ |f(t, x2, u)|+(L(t, x1, u)∧L(t, x2, u))
1

α ];

ii) there exists a measurable selection ũ(t) ∈ U(t), ∀t ∈ [0, 1], and v(·) ∈ Lα([0, 1]) such
that for a.e. t ∈ [0, 1], |f(t, x, ũ(t))| ≤ v(t)(1 + |x|) and ∀R > 0, ∃mR(·) ∈ L1([0, 1])
satisfying

L(t, x, ũ(t)) ≤ mR(t), ∀x ∈ RB ∩K a.e. in [0, 1];

iii) for all (t, x) ∈ [0, 1]×R
n, L(t, x, ·) is locally Lipschitz and f(t, x, ·) is differentiable;

iv) f(t, ·, u) and L(t, ·, u) are differentiable for all u ∈ U(t) and t ∈ [0, 1].

For any t ∈ [0, 1], (x, u, p) ∈ R
n × U(t)× R

n, let

H(t, x, u, p) := 〈p, f(t, x, u)〉 − L(t, x, u),

P (t, x, u) := {p ∈ R
n|
∂f

∂u
(t, x, u)∗p ∈ ∂uL(t, x, u) +NU(t)(u)}.

Lemma 6.7. Assume (H2) i), iii), iv) and (6.2). Let ε > 0 and (x̄(·), ū(·)) be a viable trajec-
tory/control pair. Then there exists a trajectory/control pair (xε(·), uε(·)) satisfying

xε([0, 1]) ⊂ Int(K), ‖xε − x̄‖∞ ≤ ε and J(xε(·), uε(·)) < J(x̄(·), ū(·)) + ε.

Proof. Let us reduce our Bolza problem to the Mayer problem by considering the control system

(6.3)

{

z′(t) = L(t, x(t), u(t)) + η(t)
x′(t) = f(t, x(t), u(t))

(η(t), u(t)) ∈ R+ × U(t) for a.e. t ∈ [0, 1]

under the state and initial point constraints

(6.4) (z(t), x(t)) ∈ R×K for all t ∈ [0, 1], (z(0), x(0)) ∈ {0} ×Q0.

Let SR×K
[0,1] be the set of all absolutely continuous solutions to (6.3) satisfying (6.4). The associated

Mayer problem is

inf{ϕ(x(0), x(1)) + z(1)| (z(·), x(·)) ∈ SR×K
[0,1] }.

Define z̄(t) :=
∫ t

0 L(s, x̄(s), ū(s))ds. Then ((z̄(·), x̄(·)), (0, ū(·))) is a viable trajectory/control
pair of the Mayer problem and (z̄′(t), x̄′(t)) = (L(t, x̄(t), ū(t)), f(t, x̄(t), ū(t))) a.e.

Consider the linearized problem

(6.5)







(w̃′(t), w′(t)) ∈ (Lx(t, x̄(t), ū(t))w(t), fx(t, x̄(t), ū(t))w(t)) + TF (t,x̄(t))((z̄
′(t), x̄′(t)))

(w̃(t), w(t)) ∈ Int(CR×K((z̄(t), x̄(t)))) t ∈ [0, 1]
(w̃(0), w(0)) ∈ C{0}×Q0

((z̄(0), x̄(0))).

Note that the hypothesis (H1)-iv) is equivalent to

Int(CR×K((z, x))) ∩ C{0}×Q0
((z, x)) 6= ∅, ∀(z, x) ∈ (R× ∂K) ∩ ({0} × ∂Q0).

Moreover, thanks to the fact that the oriented distance from R ×K, which will be denoted by
dR×K(·), satisfies ∂∗dR×K(z, x) = {0}× ∂∗d(x) for all (z, x) ∈ R×R

n, hypothesis (6.2) is in fact
assumption (4.4) for the system (6.3). By (H1)-iii), F (t, x̄(t)) = co(F (t, x̄(t))) for all t ∈ [0, 1].
Thus we can apply Theorem 4.1 to get a solution (w̃, w)(·) of (6.5), such that

(w̃, w)(0) ∈ Int(CR×K((z̄, x̄)(0))) ∩ C{0}×Q0
((z̄, x̄)(0)) = {0} × (Int(CK(x̄(0))) ∩ CQ0

(x̄(0))).

Thanks to the hypotheses (H2) i), iii), iv), by the same arguments as those in the proofs of
Proposition 5.26 of [2] and Theorem 4.2 of [13], it can be shown that there exist (zh(·), xh(·)) ∈
SR×K
[0,1] , with

zh(0) = z̄(0), xh(0) = x̄(0) + hwh(0),
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for some wh(0) → w(0) when h → 0+ satisfying x̄(0) + hwh(0) ∈ Q0, such that (w̃h, wh)(·) :=
(zh,xh)(·)−(z̄,x̄)(·)

h
converges uniformly to (w̃, w)(·) as h → 0. Therefore (zh, xh)(·) converges

uniformly to (z̄, x̄)(·).
Fix t ∈ [0, 1], then from (w̃, w)(t) ∈ Int(CR×K((z̄, x̄)(t))) and the continuity of (z̄, x̄)(·) we

obtain that there exists εt > 0 such that for all s ∈ [t− εt, t+ εt] ∩ [0, 1],

(z̄(s), x̄(s)) + [0, εt]B((w̃, w)(t), εt) ⊂ R×K.

Moreover from the continuity of (w̃, w)(·), eventually making εt smaller, we obtain that for all
s ∈ [t− εt, t+ εt] ∩ [0, 1],

(z̄(s), x̄(s)) + [0, εt]B((w̃, w)(s), εt) ⊂ R×K.

Hence, we can cover [0, 1] by a finite number of intervals [ti − εi, ti + εi]∩ [0, 1], for i = 1, . . . ,m,
over which the above inclusion holds. Thus, taking ε = min{εi| i = 1, . . . ,m}, we can say that
for all t ∈ [0, 1], (z̄(t), x̄(t)) + [0, ε]B((w̃, w)(t), ε) ⊂ R×K. Thanks to the uniform convergence
of (w̃h, wh)(·) to (w̃, w)(·), it follows that, for all small h > 0,

xh(t) = x̄(t) + hwh(t) ∈ x̄(t) + [0, ε]B(w(t), ε) ⊂ Int(K) ∀ t ∈ [0, 1].

Let ηh(·) and a selection uh(t) ∈ U(t), ∀t ∈ [0, 1] be measurable controls corresponding to

(zh, xh)(·). Since zh(1) =
∫ 1
0 (L(s, xh(s), uh(s))+ηh(s))ds converges to z̄(1) =

∫ 1
0 L(s, x̄(s), ū(s))ds

we deduce that J(xh(·), uh(·)) < J(x̄(·), ū(·)) + ε for h > 0 sufficiently small.
�

For a trajectory/control pair (x(·), u(·)) define

J(x(·), u(·)) := ϕ(x(0), x(1)) +

∫ 1

0
L(s, x(s), u(s))ds.

From the above lemma, we can deduce, in the same way as in [6], the following corollary.

Corollary 6.8. Assume (H2) and (6.2). Then for α as in hypothesis (H1)-ii3)bis

inf
{

J(x(·), u(·))| x(·) ∈ SK
[0,1]

}

= inf
{

J(x(·), u(·))| x(·) ∈ SK
[0,1] ∩ [W 1,α([0, 1])]n

}

.

Theorem 6.9. Assume (H2) and (6.2). Suppose that there exists a trajectory/control pair
(x̄(·), ū(·)) satisfying x̄′(·) ∈ [Lα([0, 1])]n and

inf
{

J(x(·), u(·))| x(·) ∈ SK
[0,1]

}

< J(x̄(·), ū(·)) <∞.

Moreover, assume that there exists k > 0 such that:

1) for any trajectory/control pair (x(·), u(·)) such that J(x(·), u(·)) < J(x̄(·), ū(·)) we have

‖x‖∞ ≤ k and ess inf
t∈[0,1]

|f(t, x(t), u(t))| ≤ k;

2) for any t ∈ [0, 1]

sup
|x| ≤ k, |f(t, x, u)| ≤ k
x ∈ K, p ∈ P (t, x, u)

H(t, x, u, p) < lim inf
c→+∞

inf
|x| ≤ k, |f(t, x, u)| ≥ c
x ∈ K, p ∈ P (t, x, u)

H(t, x, u, p)

Then,

a) problem (1.3) has an optimal solution (x∗(·), u∗(·)) such that x∗(·) is Lipschitz and
L(·, x∗(·), u∗(·)) ∈ L∞([0, 1]);

b) (x∗(·), u∗(·)) is a normal extremal with a costate p(·) ∈ [W 1,∞([0, 1])]n.
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The proof of Theorem 6.9 can be done similarly to the one presented in [6], using Lemma
6.7 and Corollary 6.8. The main difference is that results of Section 5 must be used in order to
deduce normality. Moreover this proof implies that every optimal trajectory/control pair verifies
the normal maximum principle of Theorem 9.3.1 of [24].

7. Construction of Inward Pointing Trajectories

This section is devoted to the proofs of Theorems 4.1 and 4.2. We first recall some notions of
nonsmooth analysis. Let ∂−dK(x) be the subdifferential of dK(·) at x, given by

∂−dK(x) := {v ∈ R
n| lim inf

y→x

dK(y)− dK(x)− 〈v, y − x〉

|y − x|
≥ 0}.

For all x ∈ R
n, define

∂̂dK(x) := Lim sup
y→x

∂−dK(y).

Then ∂dK(x) = co(∂̂dK(x)) for all x ∈ R
n.

Denote by N lim
K (x) the limiting normal cone to K at x: N lim

K (x) := Lim supK∋y→xN
0
K(y).

Thanks to Example 8.53 in [23], we have ∂̂dK(x) = N lim
K (x) ∩ B for every x ∈ K. Hence

N lim
K (x) ∩B ⊂ ∂dK(x) for all x ∈ K. Moreover, by [9, Proposition 2.4 and Corollary 2.5],

∂dK(x) = co{0, lim
i→∞

∇dK(xi)| xi /∈ K ∀i ∈ N and lim
i→∞

xi = x}.

If Int(CK(x)) 6= ∅ for every x ∈ ∂K, then, thanks to Proposition 2.2, |∇d(x)| = 1 for every
x ∈ K at which d(·) is differentiable, hence, by convexity of ∂dK(x) ⊂ B,

N lim
K (x) ∩ Sn−1 ⊂ ∂dK(x) ∩ Sn−1 ⊂ ∂∗d(x) ⊂ N1

K(x).

Lemma 7.1. Assume that Int(CK(x)) 6= ∅ for every x ∈ ∂K. Let (x̄(·), ū(·)) be a viable
trajectory/control pair and 0 ≤ τ1 < τ2 ≤ 1 be such that x̄([τ1, τ2]) ⊂ ∂K. Then for every
s ∈ [τ1, τ2] such that x̄′(s) exists we have

max
p∈∂∗d(x̄(s))

〈p, x̄′(s)〉 ≥ 0

Proof. We first prove that for all t ∈ [τ1, τ2] such that x̄′(t) exists we have

max
p∈N lim

K
(x̄(t))∩Sn−1

〈p, x̄′(t)〉 ≥ 0.

Indeed let t ∈ [τ1, τ2] be such that x̄(·) is differentiable at t. Assume by contradiction that

max
p∈N lim

K
(x̄(t))∩Sn−1

〈p, x̄′(t)〉 < 0.

Then, by Theorem 6.36 from [23], we have x̄′(t) ∈ Int(CK(x̄(t))). Therefore there exists an ε > 0
such that x̄(t) + [0, ε]B(x̄′(t), ε) ⊂ K, implying that x̄(t) + hx̄′(t) + hεB ⊂ K for all h ∈ [0, ε].
Hence for h small enough x̄(t + h) + h ε

2B ⊂ K and x̄(t + h) ∈ Int(K), in contradiction with
x̄([τ1, τ2]) ⊂ ∂K.

Thus, for all t ∈ [τ1, τ2] such that x̄′(t) exists,

0 ≤ max
p∈N lim

K
(x̄(t))∩Sn−1

〈p, x̄′(t)〉 ≤ max
p∈∂dK(x̄(t))∩Sn−1

〈p, x̄′(t)〉 ≤ max
p∈∂∗d(x̄(t))

〈p, x̄′(t)〉.

�

Lemma 7.2. Assume Int(CK(x)) 6= ∅ for every x ∈ ∂K. Let (x̄(·), ū(·)) be a viable trajec-
tory/control pair and let 0 ≤ τ1 < τ2 ≤ 1 be such that d(x̄(τ1)) ≤ 0, d(x̄(τ2)) = 0. Then the
Lebesgue measure of the set

{s ∈ [τ1, τ2]| x̄
′(s) exists and max

p∈∂∗d(x̄(s))
〈p, x̄′(s)〉 ≥ 0}
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is strictly positive.

Proof. If x̄([τ1, τ2]) ⊂ ∂K then we can apply Lemma 7.1 to get our conclusion.
Let τ1 ≤ τ0 < τ3 ≤ τ2 be such that x̄(τ0) ∈ Int(K) and x̄(τ3) ∈ ∂K, x̄([τ0, τ3)) ⊂ Int(K).
Denote by d0(x)(v) the directional derivative of d(·) at x in the direction v defined by

d0(x)(v) := lim sup
y→x,h→0+

d(y + hv)− d(y)

h

for any x, v ∈ R
n. It is well known that d0(x)(·) is a convex continuous function.

Define the absolutely continuous function φ(·) by φ(t) := d(x̄(t)) for all t ∈ [τ0, τ3]. Then for
all t ∈ [τ0, τ3] such that x̄′(t) and φ′(t) do exist

φ′(t) = lim
h→0+

d(x̄(t+ h))− d(x̄(t))

h
= lim

h→0+

d(x̄(t) + hx̄′(t))− d(x̄(t))

h
≤ d0(x̄(t))(x̄′(t)).

Since ∂d(x̄(t)) = {p ∈ R
n| 〈p, v〉 ≤ d0(x̄(t))(v), ∀ v ∈ R

n},

0 < d(x̄(τ3))− d(x̄(τ0)) =

∫ τ3

τ0

φ′(t)dt ≤

∫ τ3

τ0

d0(x̄(t))(x̄′(t))dt =

∫ τ3

τ0

max
p∈∂d(x̄(t))

〈p, x̄′(t)〉dt.

Moreover (2.2) applied to d(·) implies

0 <

∫ τ3

τ0

max
p∈∂d(x̄(t))

〈p, x̄′(t)〉dt =

∫ τ3

τ0

max
p∈∂∗d(x̄(t))

〈p, x̄′(t)〉dt.

�

From now, till the end of this section, we assume that Int(CK(x)) 6= ∅ for every x ∈ ∂K.
Let (x̄(·), ū(·)) be extremal for a triple (λ, p(·), ψ(·)) and A(·) be as in Definition 2.3. Assume
hypotesis (4.1) holds for I = [0, 1] and let M , ρ, Γ be as in (4.1).

For any τ ∈ [0, 1] denote by Y (·, τ) the matrix valued solution of
{

X ′(t) = A(t)X(t) on [τ, 1]
X(τ) = I.

Then there exists ε̃ > 0 independent from τ such that for any 0 ≤ τ ≤ s < t ≤ 1, with t− s < ε̃,

‖Y (t, τ)Y −1(s, τ)− I‖ ≤
ρ

2M
.

Set L := max0≤τ≤t≤1 ‖Y (t, τ)‖ and define the sets

D := {s ∈ [0, 1]\Γ| x̄′(s) = f(s, x̄(s), ū(s)) and max
p∈∂∗d(x̄(s))

〈p, x̄′(s)〉 ≥ 0} ⊂ G+ \ Γ,

K := {t ∈ [0, 1]| x̄(t) ∈ ∂K}.

Without any loss of generality we may assume that (4.1) holds true with ρ replaced by 2ρ. Let
t ∈ K. Then, thanks to the upper semicontinuity of ∂∗d(·), for some ε > 0 (depending on t) and
for all s, τ ∈ [t− ε, t+ ε] such that s ∈ G+\Γ we have

min
ζ∈T (s)∩MB

max
p∈∂∗d(x̄(τ))

〈p, ζ〉 ≤ −ρ.

Hence, by the measurable selection theorem, we can find a measurable v(·), such that for s ∈
[t− ε, t+ ε] satisfying s ∈ G+\Γ, we have v(s) ∈ T (s) ∩MB and

max
p∈∂∗d(x̄(τ))

〈p, v(s)〉 ≤ −ρ.

Define v(s) := 0 for all s ∈ ([t− ε, t+ ε] \G+) ∪ Γ.
Then we can cover K by a finite number of open intervals (si − εi, si + εi), 0 ≤ si ≤ 1, εi > 0,

for i ∈ {0, . . . , l}, for some l ∈ N. Moreover, for every i ∈ {0, . . . , l} a measurable function vi(·),
as above, is well-defined on (si − εi, si + εi).
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Removing some elements of such a covering, it is not restrictive to assume that for every i we
have (si − εi, si + εi)\

⋃

j 6=i(sj − εj , sj + εj) 6= ∅. Reordering and keeping the same notations we
may assume that for every i = 1, ..., l we have si−1 + εi−1 < si + εi.

Then, for every i = 0, ..., l − 1, either si + εi ∈ (si+1 − εi+1, si+1 + εi+1) or

(si − εi, si + εi) ∩
⋃

j≥i+1

(sj − εj , sj + εj) = ∅.

Let vi(·) be the corresponding measurable functions.
Set [a0, b0] := [s0 − ε0, s0 + ε0]∩ [0, 1]. We define next for all i = 1, ..., l the intervals [ai, bi] in

the following way : if si−1+εi−1 ∈ (si−εi, si+εi), then set [ai, bi] := [si−1+εi−1, si+εi]∩ [0, 1],
otherwise set [ai, bi] := [si−εi, si+εi]∩ [0, 1]. If for some i, bi = 1, then let m ≤ i be the smallest
index such that bm = 1. Otherwise set m = l. Observe that the open intervals {(ai, bi)}

m
i=0 are

mutually disjoint.
For all i = 0, ...,m define v(t) = vi(t) for all t ∈ (ai, bi) and let v(t) := 0 for all t ∈

[0, 1] \ ∪m
i=0(ai, bi).

Set Ii := [ai, bi]. To simplify the notation, when we refer to a single interval Ii for i ∈
{0, . . . ,m}, we will rename ai = a and bi = b writing Ii = [a, b].

We need the following lemmas.

Lemma 7.3. For any Ii = [a, b], i ∈ {0, . . . ,m}, let t1 ∈ [a, b) be such that x̄(t1) ∈ ∂K and
wt1 ∈ Int(CK(x̄(t1))). Define t2 := min{b, t1+ε̃}. Then, there exists a solution to the differential
inclusion

(7.1)







w′(t) ∈ A(t)w(t) + T (t) a.e. in [t1, t2]
w(t) ∈ Int(CK(x̄(t))) for all t ∈ [t1, t2]
w(t1) = wt1 .

Proof. If x̄((t1, t2]) ⊂ Int(K) then it is enough to consider the solution w(·) to

{

w′(t) = A(t)w(t) t ∈ [t1, t2]
w(t1) = wt1 .

Indeed, since 0 ∈ T (t) for all t ∈ [t1, t2] and Int(CK(x̄(t))) = R
n for all t ∈ (t1, t2], w(·) is also a

solution to (7.1).
We next consider the case x̄((t1, t2])∩∂K 6= ∅. Let t1 < τ0 ≤ t2 be such that 〈p, Y (t, t1)wt1〉 ≤ 0

for all t ∈ [t1, τ0] and p ∈ ∂∗d(x̄(t)). Such τ0 exists because, ∂∗d(x̄(·)) is upper semicontinuous
and because, by Proposition 2.2, ∂∗d(x̄(t1)) ⊂ N1

K(x̄(t1)) implying that maxp∈∂∗d(x̄(t1))〈p, Iwt1〉 <
0.

CASE 1. x̄(τ) ∈ ∂K for some t1 < τ ≤ τ0.
By Lemma 7.2 the Lebesgue measure of the set A := [t1, τ ] ∩ D is strictly positive. Consider

now the solution w(·) to

{

w′(t) = A(t)w(t) +
4L|wt1

|
ρL(A) v(t) a.e. in [t1, t2]

w(t1) = wt1 .

Then

w(t) = Y (t, t1)wt1 +
4L|wt1 |

ρL(A)

∫ t

t1

Y (t, t1)Y
−1(s, t1)v(s)ds.

We claim that for any t ∈ [t1, τ ] we have w(t) ∈ Int(CK(x̄(t))). This follows immediately if
x̄(t) ∈ Int(K). Let t ∈ [t1, τ ] be such that x̄(t) ∈ ∂K. By Lemma 7.2, L([t1, t] ∩ A) > 0. Then,
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for any n ∈ N lim
K (x̄(t)) ∩ Sn−1 ⊂ ∂∗d(x̄(t)) we have

〈n,w(t)〉 = 〈n, Y (t, t1)wt1〉+
4L|wt1 |

ρL(A)

∫ t

t1

〈n, Y (t, t1)Y
−1(s, t1)v(s)〉ds

≤
4L|wt1 |

ρL(A)

∫ t

t1

〈n, v(s)〉ds+
4L|wt1 |

ρL(A)

∫ t

t1

‖Y (t, t1)Y
−1(s, t1)− I‖ |v(s)|ds

≤ −
4L|wt1 |

ρL(A)
ρL([t1, t] ∩ A) +

4L|wt1 |

ρL(A)

ρ

2M
ML([t1, t] ∩ A) < 0.

Thus, by Theorem 6.36 from [23], w(t) ∈ Int(CK(x̄(t))) for all t ∈ [t1, τ ].
On the other hand, for any t ∈ [τ, t2] such that x̄(t) ∈ ∂K we have L([t1, t] ∩ D) ≥ L(A) and

therefore and for any n ∈ N lim
K (x̄(t)) ∩ Sn−1,

〈n,w(t)〉 = 〈n, Y (t, t1)wt1〉+
4L|wt1 |

ρL(A)

∫ t

t1

〈n, Y (t, t1)Y
−1(s, t1)v(s)〉ds

≤ L|wt1 |+
4L|wt1 |

ρL(A)

∫ t

t1

〈n, v(s)〉ds+
4L|wt1 |

ρL(A)

∫ t

t1

‖Y (t, t1)Y
−1(s, t1)− I‖|v(s)|ds

≤ L|wt1 | −
4L|wt1 |

ρL(A)
ρL([t1, t] ∩ D) +

4L|wt1 |

ρL(A)

ρ

2M
ML([t1, t] ∩ D)

≤ L|wt1 | − 2L|wt1 |
L([t1, t] ∩ D)

L(A)
≤ −L|wt1 | < 0.

Thus w(t) ∈ Int(CK(x̄(t))) for all t ∈ [τ, t2].
CASE 2. x̄((t1, τ0]) ⊂ Int(K). Let τ := min{t ∈ [τ0, t2]| x̄(t) ∈ ∂K}.
Call A := [t1, τ ] ∩ D. As before, the Lebesgue measure of A is strictly positive. Define w(·)

in the same way as in the Case 1 for this A.
Then for all t ∈ (t1, τ) we have x̄(t) ∈ Int(K), thus w(t) ∈ Int(CK(x̄(t))). Moreover, for any

t ∈ [τ, t2] such that x̄(t) ∈ ∂K, we can use the inequality obtained in the second part of CASE
1 to show that for any n ∈ N lim

K (x̄(t)) ∩ Sn−1 it holds 〈n,w(t)〉 < 0. �

Lemma 7.4. For any Ii = [a, b], i ∈ {0, . . . ,m}, let t1 ∈ [a, b) be such that x̄(t1) ∈ Int(K),
x̄([t1, b]) ∩ ∂K 6= ∅ and 0 6= wt1 ∈ R

n. Define t2 := min{t ∈ [t1, b]| x̄(t) ∈ ∂K}. Then there
exists a solution to the differential inclusion (7.1). In particular w(t2) 6= 0.

Proof. Let t1 < τ < t2 be such that t2−τ < ε̃. Note that for all t ∈ [t1, t2) we have x̄(t) ⊂ Int(K).
Consider the solution w(·) to

{

w′(t) = A(t)w(t) t ∈ [t1, τ ]
w(t1) = wt1 .

Call wτ := w(τ) 6= 0. As before, the Lebesgue measure of A := [τ, t2] ∩ D is strictly positive.
Let w(·) be the solution to

{

w′(t) = A(t)w(t) + 4L|wτ |
ρL(A) v(t) a.e. in [τ, t2]

w(τ) = wτ .
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We have to show that w(t2) ∈ Int(CK(x̄(t2))). For any n ∈ N lim
K (x̄(t2)) ∩ S

n−1, we have

〈n,w(t2)〉 = 〈n, Y (t2, τ)wτ 〉+
4L|wτ |

ρL(A)

∫ t2

τ

〈n, Y (t2, τ)Y
−1(s, τ)v(s)〉ds

≤ L|wτ |+
4L|wτ |

ρL(A)

∫ t2

τ

〈n, v(s)〉ds+
4L|wτ |

ρL(A)

∫ t2

τ

‖Y (t2, τ)Y
−1(s, τ)− I‖|v(s)|ds

≤ L|wτ | −
4L|wτ |

ρL(A)
ρL(A) +

4L|wτ |

ρL(A)

ρ

2M
ML(A)

≤ L|wτ | − 2L|wτ | = −L|wτ | < 0.

�

Lemma 7.5. For any Ii = [a, b], i ∈ {0, . . . ,m}, let t1 ∈ [a, b) be such that x̄((t1, b]) ∩ ∂K 6= ∅.
Then there exist t1 < θ ≤ b with x̄(θ) ∈ ∂K and a solution to







w′(t) ∈ A(t)w(t) + T (t) a.e. in [t1, θ]
w(t) ∈ Int(CK(x̄(t))) for all t ∈ (t1, θ]
w(t1) = 0.

In particular w(θ) 6= 0.

Proof. Let t2 := min{s ∈ [t1, b]| x̄(s) ∈ ∂K}.
CASE 1. If t2 > t1 then x̄([t1, t2)) ⊂ Int(K). Fix a t1 < τ < t2 such that t2 − τ ≤ ε̃.
Then w(·) ≡ 0 is the solution to w′(t) = A(t)w(t), w(t1) = 0 and w(t) ∈ Int(CK(x̄(t))) = R

n

for all t ∈ [t1, τ ]. By Lemma 7.2, the Lebesgue measure of A := [τ, t2] ∩ D is strictly positive.
Consider now the solution w(·) to

{

w′(t) = A(t)w(t) + v(t), a.e. in [τ, t2]
w(τ) = 0.

For any t ∈ [τ, t2) we have x̄(t) ∈ Int(K). Hence w(t) ∈ Int(CK(x̄(t))), while for any
n ∈ N lim

K (x̄(t2)) ∩ S
n−1 we have

〈n,w(t2)〉 =

∫ t2

τ

〈n, Y (t2, τ)Y
−1(s, τ)v(s)〉ds

≤

∫ t2

τ

〈n, v(s)〉ds+

∫ t2

τ

‖Y (t, τ)Y −1(s, τ)− I‖ |v(s)|ds

≤ − ρL(A) +
ρ

2M
ML(A) < 0.

Thus w(t) ∈ Int(CK(x̄(t))) for all t ∈ [τ, t2] and w(t2) 6= 0. Therefore it is enough to set θ := t2.
CASE 2.1 If t2 = t1 and for some ε > 0, x̄((t1, t1 + ε]) ⊂ Int(K), then the previous argument

can be applied to θ := min{t ∈ [t1 + ε, b]| x̄(t) ∈ ∂K} instead of t2 and w(t) ∈ Int(CK(x̄(t))) for
all t ∈ (t1, θ].

CASE 2.2 If t2 = t1 and for every ε > 0, x̄((t1, t1+ε])∩∂K 6= ∅, then let t1 < θ < min{1, t1+ε̃}
be such that x̄(θ) ∈ ∂K. We can apply Lemma 7.2 to deduce that the Lebesgue measure of
A := [t1, θ] ∩ D is strictly positive. Consider the system

{

w′(t) = A(t)w(t) + v(t) a.e. in [t1, θ]
w(t1) = 0.

Then

w(t) =

∫ t

t1

Y (t, 0)Y −1(s, 0)v(s)ds.



24 HÉLÈNE FRANKOWSKA AND DANIELA TONON

For any t ∈ (t1, θ) such that x̄(t) ∈ Int(K) we have w(t) ∈ Int(CK(x̄(t))), while for any
t ∈ (t1, θ] such that x̄(t) ∈ ∂K, L([t1, t] ∩ A) > 0 and for any n ∈ N lim

K (x̄(t)) ∩ Sn−1

〈n,w(t)〉 =

∫ t

t1

〈n, Y (t, t1)Y
−1(s, t1)v(s)〉ds

≤

∫ t

t1

〈n, v(s)〉ds+

∫ t

t1

‖Y (t, t1)Y
−1(s, t1)− I‖ |v(s)|ds

≤ − ρL([t1, t] ∩ A) +
ρ

2M
ML([t1, t] ∩ A) < 0.

Thus w(t) ∈ Int(CK(x̄(t))) for all t ∈ (t1, θ].
�

Lemma 7.6. For any Ii = [a, b], i ∈ {0, . . . ,m}, let wa ∈ Int(CK(x̄(a))). Then, there exists a
solution to (4.3) on [a, b], with w(a) = wa.

Proof. Fix wa ∈ Int(CK(x̄(a))). We will construct the solution to (4.3) on [a, b], with w(a) = wa,
subdividing [a, b] on small intervals of time and using Lemmas 7.3, 7.4 and 7.5.

CLAIM 1 For all t1 ∈ [a, b) such that x̄([t1, b])∩∂K 6= ∅ and wt1 ∈ Int(CK(x̄(t1))) there exists
t1 < δ(t1) ≤ b such that the differential inclusion (7.1) has a solution for t2 = δ(t1) and either
δ(t1) = b or x̄(δ(t1)) ∈ ∂K, δ(t1)− t1 ≥ ε̃.

Indeed, if x̄(t1) ∈ ∂K apply Lemma 7.3 and let w(·), t2 be as in its claim. If t2 = b, then set
δ(t1) = b. Consider next the case t2 = t1 + ε̃. If x̄(t2) ∈ ∂K, then set δ(t1) = t2.

If x̄(t2) ∈ Int(K) and x̄((t2, b]) ∩ ∂K = ∅, then extend w(·) on [t2, b] by the solution to
w′(t) = A(t)w(t) starting at w(t2) at time t2 and set δ(t1) = b.

If x̄(t2) ∈ Int(K) and x̄((t2, b]) ∩ ∂K 6= ∅, then by Lemma 7.4 or Lemma 7.5 there exist
δ(t1) > t2 such that x̄(δ(t1)) ∈ ∂K and a solution w(·) to the differential inclusion (7.1) on
[t2, δ(t1)] taking value w(t2) at time t2. Clearly δ(t1)− t1 > ε̃.

It remains to consider the case x̄(t1) ∈ Int(K). Then by Lemma 7.4 or Lemma 7.5 there
exist b ≥ t2 > t1 such that x̄(t2) ∈ ∂K and w(·) solving the differential inclusion (7.1) on
[t1, t2]. If x̄((t2, b]) ∩ ∂K = ∅, then set δ(t1) = b and extend w(·) on [t2, b] by the solution
to w′(t) = A(t)w(t) starting at w(t2) at time t2. If x̄((t2, b]) ∩ ∂K 6= ∅, then by the previous
arguments there exists δ(t1) > t2 such that either δ(t1) = b or δ(t1)− t2 ≥ ε̃, x̄(δ(t1)) ∈ ∂K and
a solution w(·) to differential inclusion (7.1) on [t2, δ(t1)] taking value w(t2) at time t2.

We construct a finite sequence a = τ0 < τ1 < · · · < τs = b such that τi+1 − τi ≥ ε̃ for all
i ≤ s− 2, x̄(τi) ∈ ∂K for 1 ≤ i ≤ s− 1 and w(·) as in the claim of our lemma using an induction
argument. Set t1 = a = τ0. CLAIM 1 implies the existence of a < τ1 ≤ b and a solution w(·) to
(7.1) on [a, τ1] such that w(a) = wa and either τ1 = b or τ1 − τ0 ≥ ε̃ and x̄(τ1) ∈ ∂K. Assume
that the solution w(·) is already defined on [τ0, τi] for some τ0 < τ1 < ... < τi < b satisfying
τj − τj−1 ≥ ε̃ for j ∈ {1, ..., i} and x̄(τi) ∈ ∂K. If x̄((τi, b]) ∩ ∂K = ∅, then consider the solution
to w′(t) = A(t)w(t) on [τi, b] taking value w(τi) at time τi. Otherwise, using again CLAIM 1 we
can find τi+1 > τi such that either τi+1 = b or τi+1− τi ≥ ε̃ and extend the solution w(·) to (7.1)
on the time interval [τi, τi+1]. Since τi+1 − τi ≥ ε̃ for all i satisfying τi+1 6= b, our construction
ends in a final number of steps. �

Proof of Theorem 4.1. Let w0 ∈ Int(CK(x̄(0))) ∩ CQ0
(x̄(0)). We provide the proof when t̄ = 1.

The proof when t̄ < 1 is similar.
We will construct the solution to (4.3) on [0, 1], with w(0) = w0, using the finite covering

{Ii}i∈{0,...,m}.
If a0 = 0, then thanks to Lemma 7.6 we can construct a solution w(·) to (4.3) on [0, b0], with

w(0) = w0.
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If a0 > 0, then, since v(t) = 0 for t ∈ [0, a0) and x̄(t) ∈ Int(K) for all t ∈ [0, a0], it is enough
to consider the solution w(·) of w′(t) = A(t)w(t), w(0) = w0 on [0, a0]. Call w(a0) := wa0 . Then
using Lemma 7.6 we can extend the solution to (4.3) on [a0, b0], imposing w(a0) = wa0 .

For every i ∈ 1, . . . ,m let w(·) be the constructed solution to (4.3) on [0, bi−1], with w(0) = w0.
Call w(bi−1) := wbi−1

.
If ai = bi−1, then thanks to Lemma 7.6 we can extend the solution w(·) to (4.3) on [ai, bi],

with w(ai) = wbi−1
.

If ai > bi−1, then using that v(t) = 0 on (bi−1, ai) and x̄(t) ∈ Int(K) for all t ∈ [bi−1, ai], we
extend w(·) on the time interval [bi−1, ai], by taking the solution of w′(t) = A(t)w(t), w(bi−1) =
wbi−1

on [bi−1, ai]. Call wai := w(ai). Then using Lemma 7.6 we can further extend the solution
to (4.3) on [ai, bi], imposing w(ai) = wai .

Thus, in a finite number of steps, we obtain a solution w(·) to (4.3) on [0, bm], with w(0) = w0.
Call w(bm) := wbm .

If bm = 1, the proof ends. If bm < 1, then, using that v(t) = 0 on (bm, 1] and x̄(t) ∈ Int(K)
for all t ∈ [bm, 1], we extend the solution w(·) to (4.3) on [bm, 1] in the same way as before.

(Assume next that (4.2) holds true. We restrict our attention to the case t̄ = 0. The proof

in the case t̄ > 0 is similar. Define x̃ : [0, 1] → K by x̃(t) := x̄(1 − t), Ũ : [0, 1] → Z by

Ũ(t) := U(1− t), ũ : [0, 1] → Z by ũ(t) := ū(1− t).
If (4.2) holds for (x̄(·), ū(·)), then (4.1) holds for (x̃(·), ũ(·)) and f replaced by −f . The

previous proof can be used to construct a solution w̃(·) of (4.3) on [0,1] with A replaced by −A,
f by −f and w̃(0) = w1. Hence w(·), defined as w(t) := w̃(1 − t) for all t ∈ [0, 1], belongs to
R1(0, w1).)

�

Proof of Theorem 4.2. We consider only t̄ = 1. By Theorem 4.1 it is enough to investigate the
case x̄(0) ∈ ∂K.

If x̄((0, b0]) ∩ ∂K = ∅, then consider a solution to w′(t) = A(t)w(t), w(0) = 0 and set θ = b0.
Otherwise applying Lemma 7.5 we can find θ ∈ (0, b0] such that x̄(θ) ∈ ∂K and w(·) as in
Lemma 7.5. Using a time shift, we apply Theorem 4.1 on the time interval [θ, 1] instead of [0, 1]
for Q0 = R

n.
�

Acknowledgement. This work was co-funded by the European Union under the 7th Frame-
work Programme “FP7-PEOPLE-2010-ITN”, grant agreement number 264735-SADCO. The
authors are grateful to Maria do Rosario de Pinho for the historical overview of results on
non-degenerate and normal maximum principles.

References

[1] A. V. Arutyunov and S. M. Aseev. Investigation of the degeneracy phenomenon of the maximum principle
for optimal control problems with state constraints. SIAM J. Control Optim., 35(3):930–952, 1997.

[2] J.-P. Aubin and H. Frankowska. Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc.,
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