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Abstract. The number of malicious software (malware) is growing out of con-

trol. Syntactic signature based detection cannot cope with such growth and man-

ual construction of malware signature databases needs to be replaced by com-

puter learning based approaches. Currently, a single modern signature capturing

the semantics of a malicious behavior can be used to replace an arbitrarily large

number of old-fashioned syntactical signatures. However teaching computers to

learn such behaviors is a challenge. Existing work relies on dynamic analysis

to extract malicious behaviors, but such technique does not guarantee the cover-

age of all behaviors. To sidestep this limitation we show how to learn malware

signatures using static reachability analysis. The idea is to model binary pro-

grams using pushdown systems (that can be used to model the stack operations

occurring during the binary code execution), use reachability analysis to extract

behaviors in the form of trees, and use subtrees that are common among the trees

extracted from a training set of malware files as signatures. To detect malware we

propose to use a tree automaton to compactly store malicious behavior trees and

check if any of the subtrees extracted from the file under analysis is malicious.

Experimental data shows that our approach can be used to learn signatures from

a training set of malware files and use them to detect a test set of malware that is

5 times the size of the training set.

1 Introduction

Malware (malicious software) is software developed to damage the system that executes

it, e.g.: virus, trojans, rootkits, etc. A malware variant performs the same damage as an-

other known malware, but its code, its syntactical representation, is different. Malware

can be grouped into families, sets of malware sharing a common trait. Security reports

acknowledge a steady increase in the number of new malware. For instance, in 2010 the

number of newly unique variants of malware was 286 million [13] and recent numbers

confirm the trend [21]. Such numbers challenge current malware detection technology

and because variants can be automatically generated the problem tends to get worse.

Research confirms the unsuitability of current malware detectors [14,24]. The problem

is the low-level of the techniques used.

The basic detection technique is signature matching, it consists in the inspection of

the binary code and search for patterns in the form of binary sequences [27]. Such pat-

terns, malware signatures in the jargon and syntactic signatures throughout this paper,
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are manually introduced in a database by experts. As it is possible to automatically gen-

erate an unbounded number of variants, such databases would have to grow arbitrarily,

not to mention it takes about two months to manually update them [14].

An alternative to signature detection is dynamic analysis, which runs malware in a

virtual machine. Therefore, it is possible to check the program behavior, for instance

to detect calls to system functions or changes in sensitive files, but as the execution

duration must be limited in time it is difficult to trigger the malicious behaviors, since

these may be hidden behind user interaction or require delays.

To overcome the problems of the previous techniques, a precise notion of malicious

behavior was introduced. Such is the outcome of the recent use of model-checking

techniques to perform virus detection [3,9,11,16,17,18,26,24,25,22]. Such techniques

allow to check the behavior (not the syntax) of the program without executing it. A

malicious behavior is a pattern written as a logical formula that specifies at a semantic

level how the syntactic instructions in the binary executable perform damage during

execution. As the malicious behavior is the same in all the variants of a malware, such

patterns can be used as modern (semantic) signatures which can be efficiently stored.

The prime example of a malicious behavior is self-replication [27]. A typical

l1 : push m

l2 : mov ebx 0

l3 : push ebx

l4 : call GetModuleFileName

l5 : push m

l6 : call CopyFile

Fig. 1. Malware assembly fragment.

instance of such behavior is a program that copies

its own binary representation into another file,

as exemplified in the assembly fragment of Fig.

1. The attacker program discovers and stores its

file path into a memory address m by calling the

GetModuleFileName function with 0 as first pa-

rameter and m as second parameter. Later such

file name is used to infect another file by calling

CopyFile with m as first parameter. Such malicious behaviors can naturally be defined

in terms of system functions calls and data flow relationships.

System functions are the mediators between programs and their environment (user

data, network access,. . . ), and as those functions can be given a fixed semantics, and

are defined in an Application Programming Interface (API), they can be used as a com-

mon denominator between programs, i.e. if the syntactical representation of programs

is different but both interact in the same way with the environment, the programs are

semantically equivalent from an observer perspective.

A data flow expresses that a value outputted at a certain time instant of program

execution by a function is used as an input by another function at a following instant.

For example when a parameter is outputted by a system call and is used as an input of

another. Such data flow relations allow us to characterize combined behaviors purported

by the related system calls. For instance, in the example of Fig. 1 it is the data flow

evidenced by the variable m, defined at the invocation of GetModuleFileName and used

at the invocation of CopyFile that establishes the self-replication behavior.

The malicious behaviors can be described naturally by trees expressing data flows

among system calls made at runtime. Due to code branches during execution it is pos-

sible to have several flows departing from the same system call, thus a tree structure is

particularly suitable to represent malicious behaviors. Plus, as such behaviors are de-

scribed independently of the functionality of the code that makes the calls, system call
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data flow based signatures are more robust against code obfuscations. Thus, a remaining

challenge is to learn such trees from malware binary executables.

Recent work [2,10,14] shows that we can teach computers to learn malicious behav-

ior specifications. Given a set of malware, the problem of extracting malicious behavior

signatures consists in the extraction of the behaviors included in the set and use statisti-

cal machinery to choose the ones that are more likely to appear. However the approaches

rely on dynamic analysis of executables which do not fully cover all behaviors. To over-

come these limitations, in this paper we show how to use static reachability analysis to

extract malicious behaviors, thus covering the whole behaviors of a program at once

and within a limited time.

Our approach. We address such challenge in the following way: given the set of known

malware binary executables, we extract its malicious behaviors in the form of edge la-

beled trees with two kinds of nodes. One kind represents the knowledge that a system

function is called, the other kind of nodes represents which values were passed as pa-

rameters in the call (because some data flows between functions are only malicious

when the calls were made with a specific parameter e.g. the 0 passed to GetModule-

FileName in the self-replication behavior). Tree labels describe either a relation among

system calls or the number of the parameter instantiated. For example, the malicious be-

havior displayed in Fig. 1 can be displayed in the tree shown in Fig. 2. The tree captures

the self-replication behavior.

GetModuleFileName

CopyFile0

1 2 1

Fig. 2. Self-replication behavior

The edge on the left means that the GetModule-

FileName function is called with 0 as first parameter

(thus it will output the path to the malware file that

called it) while the edge on the right captures the data

flow between the two system calls i.e. the second pa-

rameter of a call to GetModuleFileName is an output

and it is used as an input in the first parameter of a call to CopyFile. Thus, such tree de-

scribes the following behavior: GetModuleFileName is called with 0 as first parameter

and its second parameter will be used as input in the first parameter of a subsequent call

to CopyFile.

The first step in the tree extraction process is to model the malware binaries, which

involves modeling (recursive) procedure calling and return, and parameter passing that

are implemented using a stack. For this aim, we model each of the files using a push-

down system (PDS), an automaton that mimics the binary code execution as a state tran-

sition system. With this model one is able to rigorously define the behavior of the pro-

gram and use the decidable and efficient state reachability analysis of PDSs to calculate

all the states and the contents of the stack that can occur during execution. Therefore, if

malware performs a system call with certain parameters, the reachability analysis will

reveal it even if the call is obfuscated, e.g.: jump to function address. The same happens

if the call is made using indirect addressing because the analysis will reveal that during

execution the entry point of the system call is reached. Our approach also works against

bitwise manipulation of parameters, because we assume the system functions are not

changed by the attacker, thus when the executions reaches the entry point of the system

function, parameters must not be obfuscated, for instance in the example above even
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if the value of m is obfuscated, at the entry point of the call the value must be m to

purport the self-replication behavior.

From the reachability analysis of each PDS, we obtain a multi-automaton (MA),

a finite automaton encoding the possibly infinite reachable configurations (states and

stack contents)[8,12]. As the number of system functions is finite, we cut the finite

automaton to represent only the states corresponding to system function entry points

and stacks limited to the finite number of parameters passed to the function.

We analyze all data flows using the MAs to build trees, written as system call de-

pendency trees (SCDTs), representing such flows. The extracted trees correspond to a

superset of the data flows present in the malware because the PDS model is an overap-

proximation of the behaviors in the binary program. This means, that when a data flow

is found using our approach, there exists an execution path in the model evidencing

such data flow, but such execution path may not be possible in the binary program due

to approximation errors.

From the trees (SCDTs) extracted from the set of known malware binary executa-

bles we use a data-mining algorithm to compute the most frequent subtrees. We assume

such correspond to malicious behaviors and we will term them malicious system call

dependency trees (MalSCDTs). The usage of such data-mining algorithm allows to

compute behaviors, which we use as signatures that are general and implementation

details independent, therefore robust.

To store and recognize MalSCDTs we infer an automaton, termed HELTA, rec-

ognizing trees containing MalSCDTs as subtrees. This allows to efficiently store the

malware signatures and recognize behaviors if they are hidden inside another behavior.

The overview of the learning process from the malware files to the database of semantic

signatures is depicted in Figure 3.

malware model PDS reachability MA extract SCDTs
freq. subtrees MalSCDT infer HELTA

Fig. 3. Learning malicious behaviors

To evaluate the efficiency of the computed malicious behaviors, we show they can

be applied to efficiently detect malware. To perform malware detection on a binary

executable, we extract trees using the same procedure used in the learning process (de-

scribed above), but applied to a single file. We check whether the automaton storing

malicious behaviors accepts any subtree of the extracted trees (SCDTs). If that is the

case the executable contains a malicious behavior and is classified as malware. The

depiction of such process is shown in Figure 4.

binary model PDS reachability MA extract SCDTs subtrees yes/no? recognize HELTA

Fig. 4. Malware detection
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We implemented a tool that extracts the behaviors and selects the malicious candi-

dates using an algorithm for the frequent subgraph problem1. With such tool we were

able to infer some signatures not inferred using previous approaches [2,10,14] because

our signatures track calls to functions of the Win32 API instead of calls to the Native

API. It is a fact that it is always possible to use the previous approaches to find Native

API level signatures equivalent to the ones we infer, therefore we do not claim our tool

can express more behaviors, instead we claim that our approach is complementary to

such works. It allows to express behaviors at different API levels and to extract more

abstract/readable (Win32 API level) signatures.

We obtained promising results, and we were able to detect 983 malware files us-

ing the malicious trees inferred from 193 malware files, with a 0% false positive rate

(thus showing our approach learns malicious behaviors that do not appear in benign

programs). This number of detected malware is larger than the 16 files reported in [10]

and in line with the 912 files detected in [14]. Our false positive detection rate is better

(5% reported in [2]).

Outline. In Section 2 we show how to model binary executables as PDSs. Malware

signatures are defined as labeled trees in Section 3. We present an algorithm to infer

malware specifications in Section 4, and we show how to use tree automata to perform

malware detection in Section 5. Experimental data shows our approach can be used to

detect malware as detailed in Section 6. The related work is summarized in Section 7

and in Section 8 we present conclusions and future work.

2 Binary code modeling

Malware detection is performed directly in the executable encoding of the software

(binary code containing machine instructions and data). By modeling the operational

semantics of binary code, we are able to analyze it without relying on execution. This

section introduces the modeling framework and how we model executable files.

2.1 Pushdown systems

A pushdown system (PDS) is a triple P = (P, Γ,∆) where P is a finite set of control

points, Γ is a finite alphabet of stack symbols, and ∆ ⊆ (P × Γ ) × (P × Γ ∗) is

a finite set of transition rules. A configuration 〈p, ω〉 of P is an element of P × Γ ∗.

We write 〈p, γ〉 →֒ 〈q, ω〉 instead of ((p, γ), (q, ω)) ∈ ∆. The immediate successor

relation  P⊆ (P × Γ ∗) × (P × Γ ∗) is defined as follows: if 〈p, γ〉 →֒ 〈q, ω〉, then

〈p, γω′〉  P 〈q, ωω′〉 for every ω′ ∈ Γ ∗. The reachability relation ⇒ is defined as the

reflexive and transitive closure of the immediate successor relation.

Given a set of configurations C, post(C) is defined as the set of immediate suc-

cessors of the elements in C. The reflexive and transitive closure of post is denoted as

post∗(C) = {c′ ∈ P × Γ ∗ | ∃c ∈ C, c ⇒ c′} . Analogously pre(C) is defined as the

set of immediate predecessors of elements in C. Its reflexive and transitive closure is

denoted as pre∗(C) = {c ∈ P × Γ ∗ | ∃c′ ∈ C, c ⇒ c′}.

1 A tree is a special case of a graph
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Given a pushdown system P = (P, Γ,∆), a P-multi-automaton, P −MA or MA

when P is clear from context, is a tuple A = (Γ,Q, δ, P, F ), where Q is a finite set

of states, δ ⊆ Q × Γ × Q is a transition relation, P ⊆ Q is the set of initial states

corresponding to the control points of P , and F ⊆ Q is a set of final states.

The transition relation for MA is the smallest relation →⊆ Q× Γ ∗ ×Q satisfying:

– q
γ
−→ q′ if (q, γ, q′) ∈ δ

– q
ωγ
−−→ q′ if q

ω
−→ q′′ and q′′

γ
−→ q′

A accepts (recognizes) a configuration 〈p, w〉 if p
w
−→ q for some q ∈ F . The set of

configurations recognized by a MA A is called regular and is designated by Conf(A).
The post∗ and pre∗ of regular configurations can be efficiently computed:

Theorem 1. [8,12] For a pushdown system P = (P, Γ,∆) and MA A, there exist

MAs Apost∗ and Apre∗ recognizing post∗(Conf(A)) and pre∗(Conf(A)) respec-

tively. These can be constructed in polynomial time and space.

2.2 Modeling binary programs with PDSs

We use the approach detailed in [24, Section 2] to model each executable program P.

The approach relies on the assumption that there exists an oracle O computing a PDS

P = (P, Γ,∆) from the binary program, where P corresponds to the control points of

the program, Γ corresponds to the approximate set of values pushed to the stack, and

∆ models the different instructions of the program. The obtained PDS mimics the runs

of program P.

In addition to the approach of [24], let API be the set of all Application Program-

ming Interface function names available in the program. We assume the oracle O ap-

proximates the set PAPI ⊆ P of control points of a program that correspond to instruc-

tion addresses that at program runtime are translated (dynamically linked) by the oper-

ating system into system function entry points, the number of parameters of such func-

tions and the type of each parameter. We consider a simple type system: τ ::= in | out

(in for input parameter, and out for output) containing the atomic value out used to de-

note a parameter that is modified after function execution and in to denote the parameter

is not changed by the function.

We assume, O computes a function ̺λ : PAPI → API that identifies program

control points corresponding to system calls with an unique function name, a function

̺τ : PAPI × N → 2τ such that ̺τ (p, n) is the set2 of possible types of the n-th pa-

rameter of the system call that has p as entry point, and a function ̺ar : PAPI → N

defining the number of parameters for each system call in PAPI For example, if we

consider the program of Fig. 1, we obtain PAPI = {lg, lc} since these two points

correspond to system call entry points, ̺λ(lg) = GetModuleF ileName since lg cor-

responds to the entry point of the function GetModuleFileName. ̺ar(lg) = 3 since

GetModuleFileName has three parameters, and ̺τ (lg, 2) = {out} since the second pa-

rameter of the GetModuleFileName function is defined as an output, and analogously

̺τ (lg, 1) = ̺τ (lg, 3) = {in}, since these correspond to input parameters.

2 The API defines parameters that are both input and output.
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3 Malicious behavior specifications

As already mentioned, malicious behaviors, data flow relationships between system

function calls, will be expressed as trees where nodes represent system functions or

parameter values and edges specify the data flow or the number of the parameter to

which the value was passed. We will now formally introduce the notion of edge labeled

trees.

3.1 Edge labeled trees

An unranked alphabet is a finite set F of symbols. Given an unranked alphabet F , let

a set of colors C be an alphabet of unary symbols and disjoint from F , and X be a set

of variables disjoint from F . The set T (F , C,X ) of colored terms over the unranked

alphabet F , colors C and variables X it is the smallest set of terms such that:

– F ⊆ T (F , C,X ),
– X ⊆ T (F , C,X ), and

– f(c1(t1), . . . , cn(tn)) ∈ T (F , C,X ), for n ≥ 1, ci ∈ C, ti ∈ T (F , C,X ).

f

ba

c1 c2

Fig. 5. Example

If X = ∅ then T (F , C,X ) is written as T (F , C), and its el-

ements are designated as ground terms. Each element of the set

of terms can be represented by an edge labeled tree. For exam-

ple, let F = {f}, C = {c1, c2}, and X = ∅. The colored tree

f(c1(a), c2(b)) ∈ T (F , C) can be represented by the edge labeled

tree of Fig. 5.

Let Xn be a set of n variables. A term E ∈ T (F , C,Xn) is called an environment

and the expression E[t1, . . . , tn] for t1, . . . , tn ∈ T (F , C) denotes the term in T (F , C)
obtained from E by replacing the variable xi by ti for each 1 ≤ i ≤ n.

A subtree t′ of a tree t in T (L, C), written as t′ ⊳ t, is a term such that there exists

an environment E in T (L, C, {x}) where x appears only once and t = E[t′].
The tree f(c1(a), c2(b)) represents the same behavior as tree f(c2(b), c1(a)). Thus,

to efficiently compare edge labeled trees, and to avoid missing malicious behaviors due

to tree representation, we define a canonical representation of edge labeled trees. We

assume that F and C are totally ordered.

A term is in canonical form if it is a constant (leaf) or if it is a function (tree node)

where each argument is in canonical form and arguments are sorted without repetitions

by term order.

Let c ∈ C and t ∈ F(C, T ) such that F , C, and T are respectively ordered by

<F , <C , and <T , and t is in canonical form. We assume a subtree insertion operation

(insert_subtree) where insert_subtree(c(t), t′) adds c(t) as a child to the root of t′ in

the correct place to maintain a canonical representation of the tree, overwriting if the

subtree c(t) already exists.

3.2 System call dependency trees

We will represent malware behaviors as trees encoding data flow relationships between

system function calls. Tree nodes represent either system functions or parameter values.
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Edge colors label the characteristics of the data flow between functions, e.g. 2  1
labeling an edge from function f and f ′ means that at some point f is called with some

value v as second parameter, which is of type out, and afterwards f ′ is called with v as

first parameter, which in turn is of type in. Moreover, when an edge connects a node

labeled with function f and a child node with some value v, meaning the function was

called with parameter v, it will be labeled with the number of the parameter, thus to

represent a call was made with 0 as first parameter to function f , we add 1 as a label of

the edge from node f to node 0.

Definition 1. Formally, let F be the set of all system call function names (the union

of all possibly API function names returned by the oracle of Section 2) and values

passed as function parameters (a subset of the union of all Γ sets calculated by the

oracle). In addition, let C be a set of colors containing all the possible parameter

numbers and data flows, i.e.: C = {1, . . . ,maxf∈API(̺ar(f))} ∪ {x  y | x, y ∈
{1, . . . ,maxf∈API(̺ar(f))}} A System Call Dependency Tree, written as SCDT, is de-

fined as a ground term of the set T (F , C).

Example. Let F = {0,GetModuleFileName,CopyFile} and C = {1, 2  1}, the be-

havior of Fig. 2 can be described by t = GetModuleFileName
(

1(0), 2 1(CopyFile)
)

.

4 Mining malware specifications

In this section we show how to compute the SCDTs corresponding to malware behav-

iors that we will use as malware specifications. Given a finite set of programs P1, . . . ,Pq

known to be malicious in advance we compute PDSs P1, . . . ,Pq that model these mali-

cious programs. Then, for each PDS Pi we compute a set of trees TSi that contains the

data flows represented as SCDTs for the program Pi. From the computed set of trees

for each program, TS1, . . . ,TSq , we calculate the common subtrees, the ones that are

most probable to appear in malware, that we use as malware specifications.

To compute the sets of trees TSi we proceed as follows: For each program Pi mod-

eled as a PDS Pi we compute the finite automaton encoding the set of reachable con-

figurations from the initial state using the reachability analysis algorithm from [12].

As there may be an infinite number of configurations and we are only interested in the

configurations whose control points correspond to a system function entry point with

some finite number of elements in the stack (only the parameters of the function un-

der consideration are important), we build another automaton recognizing such finite

set of configurations. For each of such configurations, understood as possible data flow

origins, we repeat the process to calculate the reachable configurations, understood as

possible data flow destinations. Then, if a data flow between configurations is found,

i.e. the value passed as a parameter to an origin configuration has type out and the

same value passed as a parameter of type in to a destination configuration, we build a

SCDT with the origin function as root node and an edge to a node corresponding to the

destination function.

To calculate the common subtrees we use the algorithm [30] computing frequent

subgraph, to compute frequent subtrees.
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4.1 System call targeted reachability analysis

To compute the data flows for a malware pushdown system model P = (P, Γ,∆),
we first calculate the reachability of P using the algorithms presented in [12]. From

P we build the (MA) automaton A that recognizes the post∗(〈pi, ǫ〉), i.e. the set of

reachable configurations from the initial configuration 〈pi, ǫ〉, where pi is a designated

initial control point and ǫ denotes the empty stack.

MA Trimming. To compute data flows between system call related control points

po, pd ∈ PAPI with parameter numbers ̺ar(po) = m and ̺ar(pd) = n we need to

consider only the top m+1 and n+1 elements of the stack reached at control points po
and pd because, in assembly, parameters are passed to functions through the stack. Be-

fore invoking a function the parameters are pushed in reverse order into the stack, and

after the return address is pushed. Thus, if a function receives m parameters, then at its

entry point, for instance po, the top m + 1 elements of the stack correspond to the pa-

rameters plus the return address. Thus we only need to consider the top m+1 elements

of the stack reached at control point po. This is the reason why we can analyze the

possibly infinite number of configurations encoded in the reachability resulting finite

automaton, we only inspect a finite subset. To abbreviate the algorithm that computes

SCDT we define such subset of configurations in terms of a new automaton obtained

by cutting the MA resulting from the reachability analysis.

Definition 2. Given a MA A recognizing the reachable configurations of a PDS P =
(P, Γ,∆) we define the trim automaton A† as the automaton recognizing the configu-

rations in the set: {〈p, w〉 ∈ PAPI × Γ ∗ | |w| = ̺ar(p) + 1 ∧ ∃w′ ∈ Γ ∗s.t. 〈p, ww′〉
is accepted by A}

Intuitively, we cut the automaton and keep only configurations where control points

p correspond to system function entry points, and the stacks are bounded by the number

of parameters of the function plus one to take into account the return address. The trim

operation will be written as Ψ , thus A† = Ψ(A). It is trivial to prove that the Conf(A†)
is a finite language, in fact the number of configurations corresponding to valid system

call function entry point, and its finite number of parameters is at most:

O(|PAPI | · |Γ | ·maxp∈PAPI
(̺ar(p))).

4.2 Extracting SCDTs

Algorithms 1 and 2 detail our approach to extract behaviors. We assume a maximum

tree height h ∈ N is given as input. We write ω[n] to denote the n-th element of some

word ω ∈ Γ ∗.
Algorithm 1: ExtractSCDT

1 forall the Pi do

2 TSi ←− ∅;

3 A†
i
←− Ψ(post∗(〈pi, ǫ〉));

4 forall the 〈po, ωo〉 ∈ Conf(A†
i
) do

5 TSi ←− TSi∪{BuildSCDT(〈po, ωo〉,h)};

6 end

7 end

8 return TS;

The Algorithm 1 iterates over the

models P1, . . . ,Pq (line 1). For each

it initializes the set of resulting trees

to the empty set (line 2) and com-

putes the configurations correspond-

ing to system calls that are reachable

from the given initial configuration

〈pi, ǫ〉 (line 3). The initial configuration is built using the binary executable entry point
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and an empty stack. Then, for every configuration corresponding to a system call entry

point 〈po, ωo〉 recognized by the trim automaton (line 4) it calls BuildSCDT to build a

SCDT tree of height at most h with the function of entry point po as root (line 5).

The BuildSCDT procedure is displayed in Algorithm 2, it is used to recursively

build a tree. First, the tree to be returned is initialized to be the origin system call entry

point po (line 1). When the maximum desired tree height is not reached (line 2), we

calculate what are the system calls reached from 〈po, ωo〉 (line 3) and check for flows to

any system call related configuration 〈pd, ωd〉 (line 4). If a data flow is found between

two configurations (line 5), i.e. there are parameter numbers n and m such that the value

passed to system call at control point po is the same as the value passed in position m

of system call at a control point pd, and there is in fact a flow (line 6) i.e. the parameter

n of the function corresponding to the entry point po is of type out and the parameter

m of the function corresponding to the entry point pd is of type in, we add a new child

with label n  m to the recursively computed tree for the destination system call pd
(line 7).

Algorithm 2: BuildSCDT

1 tree = ̺λ(po);

2 if h > 0 then

3 A† ←− Ψ(post∗(〈po, ωo〉));

4 forall the 〈pd, ωd〉 ∈ Conf(A†) \ {〈po, ωo〉} do

5 forall the (n,m) s.t. 1 ≤ n ≤ ̺ar(po) ∧ 1 ≤ m ≤ ̺ar(pd) do

6 if wo[n] = wd[m] ∧ ̺τ (po, n) = out ∧ ̺τ (pd,m) = in then

7 tree←− insert_subtree (n  m(BuildSCDT(〈pd, ωd〉 , h− 1)), tree);

8 end

9 end

10 end

11 end

12 forall the n ∈ {1, .., ̺ar(po)} do

13 tree←− insert_subtree (n(wo[n]), tree);

14 end

15 return tree;

To add the edges representing the values passed as parameters in the call of po we

iterate over the possible number of parameters of the origin system call entry point (line

12) and add an edge with the number of parameter n and the value passed in the stack

ωo[n] (line 13). When the maximum desired tree height is reached, the algorithm returns

only a tree with po as root and the values passed as parameters in the call.

4.3 Computing malicious behavior trees

After extracting SCDTs for each of the inputed malware programs, one has to compute

which are the ones that correspond to malicious behaviors. The SCDTs that correspond

to malicious behaviors will be named malicious trees. To choose the malicious trees

we compute the most frequent subtrees in the set TS of trees extracted from the set of

malware used to train our detector. For that we need the notion of support set, the set of

trees containing some given subtree, and the notion of tree support that gives the ratio

of trees containing the subtree to the whole set of trees.

Given a finite set of trees TS ⊆ T (F , C) and a tree t ∈ TS, the support set of a tree

t is defined as Tt = {t′ | t ⊳ t′, t′ ∈ TS}. The tree support of a tree t in the set TS is



11

calculated as sup(t) = |Tt|
|TS| . For a fixed threshold k the set of frequent trees of T is the

set of trees with tree support greater than k.

Definition 3. For a set of system call dependency trees trees TS ⊆ T (F , C) and a

given threshold k, a malicious behavior tree is a tree t ∈ TS s.t. sup(t) ≥ k. The set of

malicious behavior trees will be called MalSCDT.

To compute frequent subtrees we specialize the frequent subgraph algorithm pre-

sented in [30] to the case of trees. The algorithm receives a set of trees and a support

value k ∈ [0, 1] and outputs all the subtrees with support at least k. The graph algo-

rithm works by defining a lexicographical order among the trees and mapping each to

a canonical representation using a code based on the depth-first search tree generated

by the traversal. Using such lexicographical order the subtree search space can be effi-

ciently explored avoiding duplicate computations.

5 Malware detection

We show in this section how the malicious behaviors trees that we computed using

our techniques can be used to efficiently detect malware. To decide whether a given

program P is malware or not, we apply again the technique described in Section 4 to

compute the SCDTs for the program P being analyzed. Then we check whether such

trees correspond to malicious behaviors, i.e. whether such trees contain subtrees that

correspond to malicious behaviors.

GetModuleFileName

ExitProcessCopyFile0

1

2 1

1 1

Fig. 6. Behaviors extracted from P

To efficiently perform this task, we use tree

automata. The advantage of using tree automata is

that we can build the minimal automaton that rec-

ognizes the set of malicious signatures, to obtain

a compact and efficient database. Plus, malware

detection, using membership in automata, can be

done efficiently. However, we need to adapt tree

automata to suite malware detection, that is, to define automata that can recognize edge

labeled trees. Furthermore, we cannot use standard tree automata because the trees that

can be generated from the program P to be analyzed may have arbitrary arities (since

we do not know a priori the behaviors of P). For example the behavior of the program

P can be described by the tree of Fig. 6 that contains the self-replication malicious be-

havior of Fig. 2. However, if we use a binary tree automaton H to recognize the tree of

Fig. 2, H will not recognize the tree of Fig. 6, because P contains the malicious behav-

iors and extra behaviors. To overcome this problem we will use unranked tree automata

(a.k.a. hedge automata), since the trees that can be obtained by analysing program P

might have arbitrary arity.

In this section, we show how to use hedge automata for malware detection. First,

we give the formal definition of hedge automata. Then, we show how we can infer a

hedge automaton to recognize malicious behaviors that may be contained in some tree.

And we conclude by explaining how to use it to detect malware.
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5.1 Tree automata for edge labeled trees

Definition 4. An hedge edge labeled tree automaton (HELTA) over T (F , C) is a tuple

H = (QH,F , C,A, ∆H) where QH is a finite set of states, A ⊆ QH is the set of final

states, and ∆H is a finite set of rewriting rules defined as f(R) → q for f ∈ F , q ∈ QH,

and R ⊆
[

C(QH)
]∗

is a regular word language over C(QH) i.e. the language encoding

all the possible children of the tree node f .

We define a move relation −→H between ground terms in T (F ∪QH, C) as follows:

Let t, t′ ∈ T (F ∪ QH, C), the move relation −→H is defined by: t −→H t′ iff there

exists an environment E ∈ T (F ∪ QH, C, {x}), a rule r = f(R) → q ∈ ∆H such

that t = E[f(c1(q1), . . . , cn(qn)))], and c1(q1) . . . cn(qn) ∈ R, and t′ = E[q]. We

write
∗
−→H to denote the reflexive and transitive closure of −→H. Given an HELTA H =

(QH,F , C,A, ∆H) and an edge labeled tree t, we say that t is accepted by a state q if

t
∗
−→H q, t is accepted by H if ∃q ∈ A s.t. t

∗
−→H q.

Intuitively, given an input term t, a run of H on t according to the move relation −→H

can be done in a bottom-up manner as follows: first, we assign nondeterministically a

state q to each leaf labeled with symbol f if there is in ∆H a rule of the form f(R) → q

such that ǫ ∈ R. Then, for each node labeled with a symbol f , and having the terms

c1(t1), . . . , c1(tn) as children, we must collect the states q1, . . . , qn assigned to all its

children, i.e., such that ci(ti)
∗
−→H qi , for 1 ≤ i ≤ n, and then associate a state q to the

node itself if there exists in ∆H a rule r = f(R) → q such that q1 . . . qn ∈ R. A term t

is accepted if H reaches the root of t in a final state.

5.2 Inferring tree automata from malicious behavior trees

In this section we show how to infer an HELTA recognizing trees containing the in-

ferred malicious behaviors. Thus, if t is a malicious behavior, and t′ is a behavior of

a program P that is under analysis, such that t′ contains the behavior described by t,

the automaton must recognize it. As an example assume t ∈ MalSCDT is a tree of

the form f(c1(a), c2(b))), s.t. a, b ∈ F and E ∈ T (F , C, {x}) is an environment, then

the automaton must recognize trees t′ of the form: E[f(c11(t
1
1), . . . , c

1
m1

(t1m1
), c1(a(e1)),

c21(t
2
1), . . . , c

2
m2

(t2m2
), c2(b(e2)), c

3
1(t

3
1), . . . , c

3
m3

(t3m3
))] meaning the tree is embedded in

other tree, i.e. t is a subtree of t′ and it may have extra behaviors c
j
i (t

j
i ) and also extra

subtrees e1, e2 ∈ T (F , C) as child of the leafs a and b.

Let t ∈ MalSCDT, we define the operation Ω : MalSCDT → T (F , C) that

transforms a malicious tree into the set of all system call dependency trees containing

the malicious behavior t. Ω is defined inductively as:

(1) Ω(a) = {a(t) | t ∈ T (F , C)}, if a ∈ F is a leaf,

(2) Ω(f(c1(t1), . . . , cn(tn))) = {f(c11(t
1
1), . . . , c

1
n1
(t1n1

), c1(Ω(t1)), c
2
1(t

2
1), . . . ,

c2n2
(t2n2

), . . . , cn1 (t
n
1 ), . . . , c

n
nn

(tnnn
), cn(Ω(tn)), c

n+1
1 (tn+1

1 ), . . . , cn+1
nn+1

(tn+1
nn+1

)) |

c
j
i ∈ C and t

j
i ∈ T (F , C)}, otherwise.

The first rule asserts that after the leaves of the malicious behavior t there may be

other behaviors, while the second asserts that in the nodes of the tree t′ there may be
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extra behaviors, for instance the edge to ExitProcess in Fig. 6. Then, if t is a malicious

behavior tree, we would like to compute an HELTA that recognizes all the trees t′ s.t.

∃t′′ ∈ Ω(t) and t′ = E[t′′] for an environment E ∈ T (F , C, {x}).
Let MalSCDT be a finite set of malicious trees, by definition each t ∈ MalSCDT

is a term of T (F , C). We infer an HELTA H = (QH,F , C,A, ∆H) recognizing trees

containing malicious behaviors. Where QH = {qt | t⊳ t′ and t′ ∈ MalSCDT} ∪ {qt |
t ∈ F} i.e. contains a state for each subtree of the trees to accept, plus a state for each

possible symbol of the alphabet that will be reached when a subtree with such symbol

as root is not recognized. The final states are defined as the states that correspond to

recognizing a malicious tree A = {qt | t ∈ MalSCDT}. And ∆H is defined by rules:

R1 For all f ∈ F , f([C(QH)]∗) → qf ∈ ∆H

R2 For all t = f(c1(t1), . . . , cn(tn)) such that t⊳ t′ and t′ ∈ MalSCDT, f(
[

C(QH)
]

∗

c1(qt1)
[

C(QH)
]

∗

. . .
[

C(QH)
]

∗

cn(qtn)
[

C(QH)
]

∗

) → qf(c1(t1),...,cn(tn)) ∈ ∆H

R3 For all final state qt ∈ A and all f ∈ F , f(
[

C(QH)
]∗

, qt,
[

C(QH)
]∗
) → qt ∈ ∆H

Intuitively, for f ∈ F , states qf recognize all the terms whose roots are f . This

is ensured by R1. In the rules [C(QH)]∗ allows to recognize terms t in (1) and c
j
i (t

j
i )

in (2). For a subtree ti of a malicious behavior t in every MalSCDT, qti recognizes

Ω(qti). This is ensured by rules R2, which guarantees that a malicious tree containing

extra behaviors is recognized. R3 guarantees that a tree containing a malicious behavior

as subtree is recognized, i.e. R3 ensures that if t is a malicious behavior and E ∈
T (F , C, {x}) is an environment, then qt recognizes E[t′] for every t′ in Ω(t).

In the following we assert that if a tree t′ contains a subtree t′′ that contains a

malicious behavior t, then the inferred automaton will recognize it (even if there are

extra behaviors). Proof should follow by induction.

Theorem 2. Given a term t ∈ MalSCDT, and t′ ∈ T (F , C). If there ∃t′′ ∈ Ω(t) and

an environment E ∈ T (F , C, {x}) and t′ = E[t′′], then t′
∗
−→H qt.

5.3 Malware detection

The detection phase works as follows. Given a program P to analyze we build a PDS

model P using the approach described in Section 2, then we extract the set of behaviors

TS contained in P using the approach in Section 4. Then we use the automaton H to

search if any of the trees in TS can be matched by the automaton. If that is the case the

program P is deemed malware.

Example. Suppose the tree in Fig. 6 was extracted and the tree in Fig. 2 is the only ma-

licious behavior in MalSCDT, which in turn is defined using C = {1, 2 1} and F =
{0,CopyFile,ExitProcess,GetModuleFileName}. We define an automaton H where the

set of states is QH = {q0, qExitProcess, qCopyFile, qGetModuleFileName(1(0),21(CopyFile))}, the

accepting set is A = {qGetModuleFileName(1(0),21(CopyFile))}, and ∆H contains rules pro-

cessing the leaves: 0([C(QH)]∗) −→H q0, ExitProcess([C(QH)]∗) −→H qExitProcess, and

CopyFile([C(QH)]∗) −→H qCopyFile. And a rule GetModuleFileName([C(QH)]∗, 1(q0),
[C(QH)]∗, 2 1(qCopyFile), [C(Q

H)]∗) −→H qGetModuleFileName(1(0),21(CopyFile)) process-

ing the whole malicious behavior of Fig. 2.
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6 Experiments

To evaluate our approach, we implemented a tool prototype that was tested on a dataset

of real malware and benign programs. The input dataset of malware contains 1176 mal-

ware instances (Virus, Backdoors, Trojans, Worms,. . . ) collected from virus reposito-

ries as VX Heavens and a disjoint dataset of 250 benign files collected from a Windows

XP fresh operating system installation. We arbitrarily split the malware dataset into

a training and test group. The train dataset was used to infer the malicious trees that

were used in the detection of the samples of the test group. We were able to detect 983

malware files using the malicious trees inferred from 193 malware files, and show that

benign programs are benign, thus a 0% false positive rate.

6.1 Inferring malicious behaviors

To infer malicious behaviors, we transformed each of the 193 malware binary files

into a PDS model using the approach described in Section 2. To implement the oracle

O, we use the PoMMaDe tool [25] that uses Jakstab [19] and IDA Pro [15]. Jakstab

performs static analysis of the binary program. However, it does not allow to extract API

functions information, so IDA Pro is used to obtain such information, thus obtaining

̺ar and ̺λ. The ̺τ function was obtained by querying the available information in the

MSDN website.

We apply Algorithm 1 to the PDS models to extract SCDTs for each of the malware

instances. The current results were obtained with an h value of 2. In practice, to avoid

the overapproximation of malicious trees, in the generation of SCDTs for the detection

phase we consider the condition in line 6 of Algorithm 2, wo[n] = wd[m] true only

when we know the value outputted by the oracle is precise.

Name #

Backdoor.Win32.Agent 26

Worm.Win32.AutoRun 13

Email-Worm.Win32.Bagle 19

Email-Worm.Win32.Batzback 4

Backdoor.Win32.Bifrose 46

Backdoor.Win32.Hupigon 5

Email-Worm.Win32.Kelino 7

Trojan-PSW.Win32.LdPinch 13

Email-Worm.Win32.Mydoom 26

Email-Worm.Win32.Nihilit 7

Backdoor.Win32.SdBot 14

Backdoor.Win32.Small 13

Total 193

Table 1. Training dataset

To compute the MalSCDT we encode the extracted

SCDT as graphs and try to calculate the most frequent

subgraphs. We use the gSpan [30] tool for that, it com-

putes frequent subgraph structures using a depth-first tree

search over a canonical labeling of graph edges relying

on the linear ordering property of the labeling to prune

the search space. The tool has been applied in various do-

mains as active chemical compound structure mining and

its performance is competitive among other tools [29]. The

tool supports only undirected graphs, therefore a mismatch

with the trees (that can be seen as rooted, acyclic direct graphs) used in this work. The

mismatch is overcome via a direction tag in the graph labels.

For the 193 files extracted SCDTs we have run the gSpan tool with support 0.6%.

This is a tunable value for which we chose the one that allows better detection results.

With this value we obtained 1026 subtrees (MalSCDTs), and best detection results.

From the inferred malicious trees output from gSpan, we build a tree automaton recog-

nizing such trees.

The training dataset contains 12 families of malware summarized in Table 1. In

average, our tool extracts 7 SCDTs in 30 seconds for each malware file. To store the

1026 discovered MalSCDTs the automaton file used 24Kb of memory.
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6.2 Detecting malware

Malware detection is reduced to generating SCDTs and checking whether they are rec-

ognized by the inferred automaton. Thus, to perform detection on an input binary file,

we model it as PDS using the approach described in Section 2 and extract SCDTs using

the approach detailed in Section 4.2. If any subtree of the extracted tree is recognized

by the automaton recognizing the malicious behaviors, we decide the binary sample

is malware. We implemented such procedure in our tool and were able to detect 983

malware samples from 330 different families.

In Table 2 we show the range of malware families and number of samples that our

tool detects as malware. In average, our tool extracts 64 SCDTs in 2.15 seconds for each

file (this value may be largely improved given that runtime efficiency was not a main

goal of the prototype design). The discrepancy in the number of trees generated (com-

pared to the training set) is justified by an implementation choice regarding the oracle

approximation of the set of values pushed to the stack. In the generation of SCDTs for

the detection phase we consider the condition in line 6 of Algorithm 2, wo[n] = wd[m]
true even if the values are approximated. Such cases were discarded in the generation

of SCDTs in the inference step where it holds only when the oracle outputs precise

values. The automaton tree recognition execution time is negligible (< 0.08 secs) in

all cases. To check the robustness of the detector, we applied it to a set of 250 benign

programs. Our tool was able to classify such programs as benign, obtaining a 0% false

positive rate. In 88% of the cases the tool extracts SCDTs and at least in 44% of the files

there is a call to a function involved in malicious behavior (e.g. GetModuleFileName,

ShellExecute,. . . ), but no tree was recognized as malicious. This value is in line with

the values detailed in [10,14] and better than the 5% reported in [2].

7 Related work

Malicious behaviors have been defined in different ways. The foundational approaches

via computable functions [1], based in Kleene’s recursion theorem [4,5,6], or the neat

definition using MALog [20] capture the essence of such behaviors, but are too abstract

to be used in practice or require the full specification of software functionality. Our

work is close to the approaches using model checking and temporal logic formulas

as malicious behavior specification [24,25]. In such works specifications have to be

designed by hand while we are able to learn them automatically. Some of the trees we

infer describe malicious behaviors encoded in such formulas.

Regarding semantic signature inference there are the works [10,14] where the ex-

traction of behaviors is based on dynamic analysis of executables. From the execution

traces collected, data flow dependencies among system calls are recovered by compar-

ing parameters and type information. The outcome are dependence graphs where the

nodes are labeled by system function names and the edges capture the dependencies

between the system calls. Another dynamic analysis based approach is the one of [2]

where trees, alike ours, express the same kind of data flows between nodes represent-

ing system calls. Both approaches are limited by the drawbacks of dynamic analysis.

For instance, time limitations, limited system call tracing or an overhead up to 90×
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Name #

Backdoor.Win32.AF 1

Backdoor.Win32.Afbot 1

Backdoor.Win32.Afcore 6

Backdoor.Win32.Agent 66

Backdoor.Win32.Agobot 47

Backdoor.Win32.Alcodor 1

Backdoor.Win32.Antilam 9

Backdoor.Win32.Apdoor 6

Backdoor.Win32.Assasin 3

Backdoor.Win32.Asylum 8

Backdoor.Win32.Avstral 2

Backdoor.Win32.BLA 2

Backdoor.Win32.BNLite 1

Backdoor.Win32.BO2K 6

Backdoor.Win32.Bancodor 1

Backdoor.Win32.Bandok 1

Backdoor.Win32.Banito 4

Backdoor.Win32.Beastdoor 6

Backdoor.Win32.Bifrose 5

Backdoor.Win32.BoomRaster 1

Backdoor.Win32.Breplibot 6

Backdoor.Win32.Bushtrommel 2

Backdoor.Win32.ByShell 1

Backdoor.Win32.Cabrotor 1

Backdoor.Win32.Cafeini 1

Backdoor.Win32.Cheng 1

Backdoor.Win32.Cigivip 1

Backdoor.Win32.Cmjspy 8

Backdoor.Win32.Cocoazul 2

Backdoor.Win32.Codbot 4

Backdoor.Win32.Coldfusion 3

Backdoor.Win32.CommInet 3

Backdoor.Win32.Coredoor 1

Backdoor.Win32.Crunch 1

Backdoor.Win32.DKangel 2

Backdoor.Win32.DRA 4

Backdoor.Win32.DSNX 3

Backdoor.Win32.DarkFtp 3

Backdoor.Win32.DarkMoon 1

Backdoor.Win32.Delf 31

Backdoor.Win32.Dindang 1

Backdoor.Win32.DragonIrc 1

Backdoor.Win32.Dumador 3

Backdoor.Win32.Expir 1

Backdoor.Win32.HacDef 2

Backdoor.Win32.Hackarmy 3

Backdoor.Win32.Hupigon 4

Backdoor.Win32.IRCBot 6

Backdoor.Win32.Ierk 1

Backdoor.Win32.Jacktron 1

Backdoor.Win32.Jeemp 1

Backdoor.Win32.Katherdoor 7

Backdoor.Win32.Katien 2

Backdoor.Win32.Ketch 4

Backdoor.Win32.Kidterror 1

Backdoor.Win32.Konik 1

Backdoor.Win32.Krepper 2

Backdoor.Win32.Labrus 1

Backdoor.Win32.LanFiltrator 2

Backdoor.Win32.LanaFTP 1

Backdoor.Win32.Laocoon 1

Backdoor.Win32.Latinus 5

Backdoor.Win32.Lemerul 1

Backdoor.Win32.Lesbot 1

Backdoor.Win32.Levelone 2

Backdoor.Win32.Liondoor 1

Backdoor.Win32.Lithium 3

Backdoor.Win32.Litmus 1

Backdoor.Win32.LittleBusters 1

Backdoor.Win32.LittleWitch 1

Backdoor.Win32.Livup 1

Backdoor.Win32.Lixy 1

Backdoor.Win32.Lurker 1

Backdoor.Win32.Lyusane 1

Backdoor.Win32.MSNMaker 1

Backdoor.Win32.MServ 1

Backdoor.Win32.MainServer 1

Backdoor.Win32.Matrix 3

Backdoor.Win32.Medbot 1

Backdoor.Win32.Mellpon 2

Backdoor.Win32.Metarage 1

Backdoor.Win32.Mhtserv 1

Backdoor.Win32.Micronet 1

Backdoor.Win32.MiniCommander 1

Name #

Backdoor.Win32.MoonPie 1

Backdoor.Win32.Mowalker 1

Backdoor.Win32.Mtexer 2

Backdoor.Win32.Mydons 1

Backdoor.Win32.Ncx 1

Backdoor.Win32.NerTe 3

Backdoor.Win32.NetControl 2

Backdoor.Win32.NetShadow 1

Backdoor.Win32.NetSpy 8

Backdoor.Win32.Netbus 2

Backdoor.Win32.Netdex 2

Backdoor.Win32.Netpocalipse 1

Backdoor.Win32.Neurotic 2

Backdoor.Win32.Nuclear 3

Backdoor.Win32.Nucledor 2

Backdoor.Win32.Nyrobot 1

Backdoor.Win32.Optix 9

Backdoor.Win32.PPCore 1

Backdoor.Win32.PPdoor 2

Backdoor.Win32.Pacak 1

Backdoor.Win32.Padodor 5

Backdoor.Win32.PcClient 12

Backdoor.Win32.PeepViewer 1

Backdoor.Win32.Peers 2

Backdoor.Win32.Penrox 1

Backdoor.Win32.Pepbot 1

Backdoor.Win32.Pingdoor 1

Backdoor.Win32.Pipes 1

Backdoor.Win32.Plunix 1

Backdoor.Win32.Pornu 1

Backdoor.Win32.Probot 1

Backdoor.Win32.Proxydor 2

Backdoor.Win32.Psychward 5

Backdoor.Win32.Ptakks 1

Backdoor.Win32.Puddy 1

Backdoor.Win32.R3C 1

Backdoor.Win32.RAT 2

Backdoor.Win32.RDR 1

Backdoor.Win32.Rbot 8

Backdoor.Win32.Redkod 4

Backdoor.Win32.Revenge 1

Backdoor.Win32.Rirc 1

Backdoor.Win32.Robobot 1

Backdoor.Win32.Ronater 1

Backdoor.Win32.Rootcip 1

Backdoor.Win32.Roron 1

Backdoor.Win32.RtKit 4

Backdoor.Win32.Ruledor 4

Backdoor.Win32.SPing 3

Backdoor.Win32.SatanCrew 1

Backdoor.Win32.Sbot 2

Backdoor.Win32.SdBot 63

Backdoor.Win32.Seed 3

Backdoor.Win32.Serman 1

Backdoor.Win32.ShBot 1

Backdoor.Win32.Shakdos 1

Backdoor.Win32.Shox 1

Backdoor.Win32.SilverFTP 1

Backdoor.Win32.Sinf 1

Backdoor.Win32.Sinit 4

Backdoor.Win32.SkyDance 1

Backdoor.Win32.Small 22

Backdoor.Win32.Sporkbot 1

Backdoor.Win32.SpyBoter 9

Backdoor.Win32.Stang 1

Backdoor.Win32.Stats 1

Backdoor.Win32.Stigmador 1

Backdoor.Win32.SubSeven 1

Backdoor.Win32.Sumatrix 1

Backdoor.Win32.Suslix 1

Backdoor.Win32.Symes 1

Backdoor.Win32.Sysinst 1

Backdoor.Win32.System33 1

Backdoor.Win32.Sytr 1

Backdoor.Win32.TDS 3

Backdoor.Win32.Takit 1

Backdoor.Win32.Tasmer 1

Backdoor.Win32.Telemot 1

Backdoor.Win32.TheThing 3

Backdoor.Win32.Thunk 1

Backdoor.Win32.Tonerok 3

Backdoor.Win32.URCS 2

Backdoor.Win32.Undernet 1

Backdoor.Win32.Unwind 1

Name #

Backdoor.Win32.UpRootKit 1

Backdoor.Win32.Ursus 1

Backdoor.Win32.Utilma 1

Backdoor.Win32.VB 2

Backdoor.Win32.VHM 1

Backdoor.Win32.Vatos 1

Backdoor.Win32.Verify 1

Backdoor.Win32.WMFA 1

Backdoor.Win32.WRT 1

Backdoor.Win32.WbeCheck 3

Backdoor.Win32.Webdor 6

Backdoor.Win32.Whisper 1

Backdoor.Win32.Wilba 1

Backdoor.Win32.Winker 5

Backdoor.Win32.WinterLove 7

Backdoor.Win32.Wisdoor 7

Backdoor.Win32.Wollf 4

Backdoor.Win32.XBot 1

Backdoor.Win32.XConsole 1

Backdoor.Win32.XLog 2

Backdoor.Win32.Xdoor 2

Backdoor.Win32.Y2KCount 1

Backdoor.Win32.Ythac 1

Backdoor.Win32.Zerg 1

Backdoor.Win32.Zombam 1

Backdoor.Win32.Zomby 1

Constructor.Win32.Delf 1

Constructor.Win32.ETVM 2

Constructor.Win32.EvilTool 1

Constructor.Win32.MS04-032 1

Constructor.Win32.MS05-009 1

Constructor.Win32.SPL 1

Constructor.Win32.SS 2

Constructor.Win32.VCL 1

DoS.Win32.Aspcode 1

DoS.Win32.Ataker 1

DoS.Win32.DStorm 1

DoS.Win32.Igemper 1

DoS.Win32.SQLStorm 1

Email-Worm.Win32.Anar 2

Email-Worm.Win32.Android 1

Email-Worm.Win32.Animan 1

Email-Worm.Win32.Anpir 1

Email-Worm.Win32.Ardurk 2

Email-Worm.Win32.Asid 1

Email-Worm.Win32.Assarm 1

Email-Worm.Win32.Atak 1

Email-Worm.Win32.Avron 2

Email-Worm.Win32.Bagle 3

Email-Worm.Win32.Bagz 5

Email-Worm.Win32.Banof 1

Email-Worm.Win32.Bater 1

Email-Worm.Win32.Batzback 3

Email-Worm.Win32.Blebla 1

Email-Worm.Win32.Bumdoc 2

Email-Worm.Win32.Charch 1

Email-Worm.Win32.Cholera 1

Email-Worm.Win32.Coronex 3

Email-Worm.Win32.Cult 1

Email-Worm.Win32.Delf 4

Email-Worm.Win32.Desos 1

Email-Worm.Win32.Donghe 3

Email-Worm.Win32.Drefir 1

Email-Worm.Win32.Duksten 2

Email-Worm.Win32.Dumaru 10

Email-Worm.Win32.Energy 1

Email-Worm.Win32.Entangle 1

Email-Worm.Win32.Epon 1

Email-Worm.Win32.Eyeveg 3

Email-Worm.Win32.Fix2001 1

Email-Worm.Win32.Frethem 2

Email-Worm.Win32.Frubee 1

Email-Worm.Win32.GOPworm 1

Email-Worm.Win32.Gift 2

Email-Worm.Win32.Gismor 1

Email-Worm.Win32.Gizer 2

Email-Worm.Win32.Gunsan 2

Email-Worm.Win32.Haltura 1

Email-Worm.Win32.Hanged 1

Email-Worm.Win32.Happy 1

Email-Worm.Win32.Ivalid 1

Email-Worm.Win32.Jeans 1

Email-Worm.Win32.Kadra 1

Email-Worm.Win32.Keco 3

Name #

Email-Worm.Win32.Kelino 6

Email-Worm.Win32.Kergez 1

Email-Worm.Win32.Kipis 2

Email-Worm.Win32.Kirbster 1

Email-Worm.Win32.Klez 9

Email-Worm.Win32.Lacrow 2

Email-Worm.Win32.Lara 1

Email-Worm.Win32.Lentin 10

Email-Worm.Win32.Locksky 2

Email-Worm.Win32.Lohack 3

Email-Worm.Win32.LovGate 3

Email-Worm.Win32.Mescan 1

Email-Worm.Win32.Mimail 1

Email-Worm.Win32.Miti 1

Email-Worm.Win32.Modnar 1

Email-Worm.Win32.Mydoom 8

Email-Worm.Win32.NWWF 1

Email-Worm.Win32.Navidad 1

Email-Worm.Win32.NetSky 2

Email-Worm.Win32.NetSup 1

Email-Worm.Win32.Netav 1

Email-Worm.Win32.Newapt 6

Email-Worm.Win32.Nihilit 1

Email-Worm.Win32.Nirky 1

Email-Worm.Win32.Paroc 1

Email-Worm.Win32.Parrot 1

Email-Worm.Win32.Pepex 2

Email-Worm.Win32.Pikis 2

Email-Worm.Win32.Plage 1

Email-Worm.Win32.Plexus 1

Email-Worm.Win32.Pnguin 1

Email-Worm.Win32.Poo 1

Email-Worm.Win32.Postman 1

Email-Worm.Win32.Qizy 1

Email-Worm.Win32.Rammer 1

Email-Worm.Win32.Rapita 1

Email-Worm.Win32.Rayman 1

Email-Worm.Win32.Repah 2

Email-Worm.Win32.Ronoper 20

Email-Worm.Win32.Roron 23

Email-Worm.Win32.Sabak 1

Email-Worm.Win32.Savage 2

Email-Worm.Win32.Scaline 1

Email-Worm.Win32.Scrambler 1

Email-Worm.Win32.Seliz 1

Email-Worm.Win32.Sharpei 1

Email-Worm.Win32.Silly 1

Email-Worm.Win32.Sircam 1

Email-Worm.Win32.Skudex 2

Email-Worm.Win32.Sonic 4

Email-Worm.Win32.Stator 1

Email-Worm.Win32.Stopin 3

Email-Worm.Win32.Sunder 1

Email-Worm.Win32.Svoy 2

Email-Worm.Win32.Swen 1

Email-Worm.Win32.Tanatos 3

Email-Worm.Win32.Taripox 2

Email-Worm.Win32.Totilix 1

Email-Worm.Win32.Trilissa 4

Email-Worm.Win32.Trood 2

Email-Worm.Win32.Unis 1

Email-Worm.Win32.Urbe 3

Email-Worm.Win32.Valha 1

Email-Worm.Win32.Volag 1

Email-Worm.Win32.Vorgon 2

Email-Worm.Win32.Warezov 1

Email-Worm.Win32.Winevar 1

Email-Worm.Win32.Wozer 1

Email-Worm.Win32.Xanax 2

Email-Worm.Win32.Yanz 1

Email-Worm.Win32.Yenik 1

Email-Worm.Win32.Zircon 4

Exploit.Win32.Agent 3

Exploit.Win32.AntiRAR 1

Exploit.Win32.CAN 1

Exploit.Win32.CVE-2006-1359 1

Exploit.Win32.CrobFTP 1

Exploit.Win32.DCom 3

Exploit.Win32.DameWare 1

Net-Worm.Win32.Muma 1

Trojan-PSW.Win32.LdPinch 16

Worm.Win32.AutoRun 34

Total 983

Table 2. Test dataset name family and number of samples (#) detected
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slower during execution [23]. Plus, from the dataset made publicly available in [2], we

notice the signatures involve only functions from the Native API library. Our approach

has the advantage of being API independent, thus the level of analysis may be tuned,

plus Win32 API function based signatures should be shorter as each high level function

should be translated into a set of calls to the Native API functions.

In [7] the authors propose to learn behaviors of binary files by extracting program

control-flow graphs using dynamic analysis. Such graphs contain assembly instructions

that correspond to control flow information e.g. jmp, but that introduces more possi-

bilities to circumvent such signatures by rewriting the code. From the graphs, trees are

computed and the union of all such trees is used to infer an automaton that is used in

detection. Our inference does not output all the trees, only the most frequent, improving

the learning process and generalizing from the training dataset.

An alternative to semantic signatures are works based on machine learning ap-

proaches as [28], which shows that by mining “n−grams” (a sequence of n bits), it

is possible to distinguish malware from benign program. In our approach, the distin-

guishing features (malicious behaviors) can be seen as traces of program execution,

thus having a meaning that can be more easily understood.

8 Conclusion

In this work, we have shown how to combine static reachability analysis techniques to

infer malware semantic signatures in the form of malicious trees, which describe the

data flows among system calls. Our experiments show that the approach can be used

to automatically infer specifications of malicious behaviors and detect several malware

samples from an a priori given smaller set of malware. We were able to detect 983

malware files using the malicious trees inferred from 193 malware files, and applied the

detector to 250 benign files obtaining a 0% false positive rate.

As future work we envisage the improvement of the binary modeling techniques,

for example enriching the function parameter type system to allow better approxima-

tions. The usage of more advanced mining techniques, e.g. structural leap mining used

in [14], can be used to improve the learning approach. In another direction, given the

relation between modal formulas and tree models a comparison between our approach

and the approach in [24] concerning expressiveness and complexity is envisaged. Fi-

nally, a complexity study with respect to the depth of the trees extraction (parameter h

in Algorithm 1) and size of the HELTA would be another alternative direction.

Summing up, the reachability analysis of PDS models of executables can play a

major role in the malware specification inference domain. The ability to precisely an-

alyze stack behavior enables the extraction of executables system call data flows and

overcomes typical obfuscated calls to such routines.
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