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Abstract

We study the symplectic geometry of the Jaynes-Cummings-Gaudin model with n = 2m− 1
spins. We show that there are focus-focus singularities of maximal Williamson type (0, 0,m).
We construct the linearized normal flows in the vicinity of such a point and show that soliton
type solutions extend them globally on the critical torus. This allows us to compute the leading
term in the Taylor expansion of the symplectic invariants and the monodromy associated to this
singularity.
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1 Introduction

The theory of integrable systems started with the work of Liouville [1] where he defined the
general concept of integrable systems and their integration by “quadratures”. Let M be a
symplectic space of dimension 2n, the system is Liouville integrable if we can define n Hamilto-
nians Hi in involution such that “generically” dH1 ∧ dH2 ∧ · · · ∧ dHn has maximal rank r = n.
The remarkable Arnold-Liouville theorem states that the space M is then fibered by invariant
n-dimensional Lagrangian tori. This is a semi global result as it gives a global information on
the fiber, which is a torus, and it is sufficient to assert that the motion is quasi periodic almost
everywhere. This fibration however contains singular fibers i.e. fibers containing points where
the rank r is not maximal, which play a very important role for the global properties of the
system, see e.g. [11]. In this work, we will concentrate on special singularities where the rank
r = 0. They correspond to equilibrium points, which can be stable or unstable, and have also a
very rich physical content.

An equilibrium point x(0) is a simultaneous critical point for all the Hi, in other words, it
is a point at which the differential of the moment map µ vanishes. Expanding the Hi around
such a point, we get n Poisson commuting quadratic forms Qi.

We shall consider the case of a purely focus-focus equilibrium point of Williamson type
(me = mh = 0 and mff = m). In this case, the dimension of M is equal to 4m, and there exist
canonical coordinates (pi, qi) such that the quadratic forms Qi are linear combinations of the
quadratic normal forms

Kj = p2jq2j + p2j+1q2j+1, j = 1, ...,m

Lj = −p2jq2j+1 + p2j+1q2j , j = 1, ...,m
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By Eliasson theorem [8], this description extends to a local neighborhood of the point x0. There
exists a symplectic diffeomorphism Φ : U ⊂ R

2n −→ V ⊂ M mapping the neighborhood U
of the origin to the neighborhood V of x(0), and a local diffeomorphism ψ : Rn −→ R

n in a
neighborhood of the origin such that:

µ ◦ Φ = ψ ◦ µ(0)

where µ(0) is the quadratic moment map (p, q) → (K,L). An important consequence of this
theorem is that it allows to extend the flows associated to the quadratic generators Kj and Lj

from a neighborhood of x(0) (local level) to a family of fibers containing the level set of x(0)

(semi global level). These flows will be called normal flows and will play an important role in
this paper.

Using the complex variables

wj = p2j + ip2j+1, zj = q2j + iq2j+1, j = 1, ...,m (1)

we have
wj z̄j = Kj + iLj

hence, the level set S of the equilibrium point is the image, by the diffeomorphism Φ, of the prod-
uct of m two dimensional components, themselves the union of two complex planes intersecting
transversely

Cj : wj = 0 or zj = 0, j = 1, ...,m

It is a 2m-dimensional cone C
C =

m
∏

j=1

Cj

We see that in a neighborhood of the equilibrium point, the phase-space fibration induced
by the moment map is symplectically equivalent to the fibration of a direct product of m
independent integrable four dimensional dynamical systems with a focus-focus singularity. An
important question is to see whether such a simple description holds also at the semi-global
level.

In the Jaynes-Cummings-Gaudin model that we will consider in this paper, the level set of
the equilibrium point is a compact pinched torus of dimension 2m. A result of Tien Zung [2]
asserts that, at the topological level, this pinched torus is equivalent to a product of m two
dimensional pinched tori. But this is not true at the symplectic level, and it is the purpose
of this work to compute symplectic invariants defined in [3, 4] preventing this simple product
decomposition of the singular fiber.

To achieve this goal, we will combine two informations. The first one is a very simple de-
scription of the normal modes around the singularity, which provide a complete local description
of the system. The second one, of a semi global nature, is provided by the explicit solitonic solu-
tions of the equations of motion on the singular fibre. It turns out that the two objects, normal
modes and solitons, match perfectly : solitons are just global extensions of normal modes to
the full singular fiber. The 2m real parameters describing the initial conditions of the solitonic
solution may be seen as coordinates on the singular fiber which precisely realize its decompo-
sition into a product of m two dimensional singular tori, thereby extending to the whole fiber
the decomposition provided by the normal coordinates in the vicinity of the critical point.
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Tff =

K1

L1

X

X1 Xk

Figure 1: The singular torus seen as a product of two dimensional pinched tori whose coordinates
are the parameters Xk entering the solitonic solution of the equations of motion. A big motion
(K1) on one of the components of the torus induces a motion on the other components of the torus
as well.

The plan of the paper is as follows. In Section 2 we recall the definition of the Jaynes-
Cummings-Gaudin model and basic facts about its integrability. In Section 3 we study the
vicinity of an unstable point of Williamson type (me = mh = 0,mff = m). In particular we
give a simple description of normal coordinates around that point. In Section 4 we relate these
normal modes to solitonic solutions on the pinched torus, the level set of the unstable point. In
Section 5 we construct closed periodic trajectories on Liouville tori close to the critical one. This
requires to take into account both diagonal [4] and non diagonal [5] components of the motion
which signal the obstruction to Tien Zung decomposition at the symplectic level. The action
variables associated to these periodic motion provide the symplectic invariants in the sense of
San Vũ Ngoc. We use them to determine Duistermaat’s monodromy [9]. A number of technical
details are provided in the Appendices for the sake of completeness.

Acknowlegment. We wish to thank San Vũ Ngoc for very helpful discussions.
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2 The Jaynes-Cummings-Gaudin model

2.1 Basic definitions and integrability

This model describes a collection of n spins coupled to a single harmonic oscillator. It derives
from the Hamiltonian:

H =

n
∑

j=1

(2ǫj + ω)szj + ωb̄b+

n
∑

j=1

(

b̄s−j + bs+j
)

(2)

The ~sj are spin variables, and b, b̄ is a harmonic oscillator. The Poisson brackets read

{saj , sbj} = −ǫabcscj , {b, b̄} = i (3)

The ~sj brackets are degenerate. We fix the value of the Casimir functions

||~sj ||2 =

3
∑

a=1

saj s
a
j = s2

Phase space has dimension 2(n+1). In the Hamiltonian we have used s±j = s1j ± is2j which have

Poisson brackets {szj , s±j } = ±is±j , {s+j , s−j } = 2iszj . The equations of motion read

ḃ = −iωb− i

n
∑

j=1

s−j (4)

ṡzj = i(b̄s−j − bs+j ) (5)

˙s+j = i(2ǫj + ω)s+j − 2ib̄szj (6)

ṡ−j = −i(2ǫj + ω)s−j + 2ibszj (7)

Introducing the Lax matrices

L(λ) = 2λσz + 2(bσ+ + b̄σ−) +
n
∑

j=1

~sj · ~σ
λ− ǫj

(8)

M(λ) = −iλσz − i
ω

2
σz − i(bσ+ + b̄σ−) (9)

where σa are the Pauli matrices, σ± = 1
2 (σ

x ± iσy),

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

,

it is not difficult to check that the equations of motion are equivalent to the Lax equation

L̇(λ) = [M(λ), L(λ)] (10)

Letting

L(λ) =

(

A(λ) B(λ)
C(λ) −A(λ)

)

5



we have

A(λ) = 2λ+
n
∑

j=1

szj
λ− ǫj

(11)

B(λ) = 2b+
n
∑

j=1

s−j
λ− ǫj

(12)

C(λ) = 2b̄+
n
∑

j=1

s+j
λ− ǫj

(13)

The non vanishing Poisson brackets of these functions are simple :

{A(λ), B(µ)} =
i

λ− µ
(B(λ) −B(µ)) (14)

{A(λ), C(µ)} = − i

λ− µ
(C(λ) − C(µ)) (15)

{B(λ), C(µ)} =
2i

λ− µ
(A(λ) −A(µ)) (16)

It follows immediately that Tr (L2(λ)) = 2A2(λ) + 2B(λ)C(λ) Poisson commute for different
values of the spectral parameter:

{Tr (L2(λ1)),Tr (L
2(λ2))} = 0

Hence Λ(λ) ≡ 1
2Tr (L

2(λ)) generates Poisson commuting quantities. One has

Λ(λ) =
Q2n+2(λ)
∏

j(λ− ǫj)2
= 4λ2 + 4Hn+1 + 2

n
∑

j=1

Hj

λ− ǫj
+

n
∑

j=1

s2

(λ− ǫj)2
(17)

where the (n+ 1) commuting Hamiltonians Hj , j = 1, · · · , n+ 1 read

Hn+1 = bb̄+
∑

j

szj (18)

and
Hj = 2ǫjs

z
j + (bs+j + b̄s−j ) +

∑

k 6=j

sj · sk
ǫj − ǫk

, j = 1, · · · , n (19)

The physically interesting Hamiltonian eq.(2) is

H = ωHn+1 +
n
∑

j=1

Hj (20)
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2.2 Critical points

The critical points are equilibrium points for all the Hamiltonians Hj , j = 1, · · · , n+1. At such
points the derivatives with respect of all coordinates on phase space vanish. In particular, since

∂Hn+1

∂b̄
= b,

∂Hj

∂b̄
= s−j

we see that the critical points must be located at

b = b̄ = 0, s±j = 0, szj = ejs, ej = ±1 (21)

When we expand around a configuration eq.(21), all the quantities (b, b̄, s+j , s
−
j ) are first order,

but szj is second order because

szj = ej

√

s2 − s+j s
−
j = sej −

ej
2s
s+j s

−
j + · · · , ej = ±1

It is then simple to see that all first order terms in the expansions of the Hamiltonians Hj

vanish. Hence we have found 2n critical points.

3 The vicinity of an unstable fixed point

3.1 Normal Forms

In the following discussion, we are considering the system with an odd number of spins n = 2m−1
with m ≥ 1, and we are assuming that the equilibrium point defined by eq. (21) has the
Williamson type me = mh = 0 and mff = m, i.e. it consists locally of a direct product
of m elementary focus-focus singularities. It has been shown before that such points can be
obtained by choosing the Zeeman energies ǫj in a suitable region in parameter space [14, 13].
The quadratic normal form around an equilibrium point can be easily obtained from the Lax
representation [10, 14] and this is recalled in Section 6 below. The above assumption on the
Williamson type is equivalent to the statement that the classical Bethe equation (52) has no real
root (hence the choice n odd). Since the equation is real, it has m pairs of complex conjugated
roots Ej , Ēj , for 1 ≤ j ≤ m. To first order in small deviations around the equilibrium point,
the normal coordinates are B(Ej), B(Ēj), C(Ej), and C(Ēj) where the functions B(λ), C(λ)
are those defined in eqs.(12,13). The precise relation with the canonical coordinates eq.(1) is:

B(Ej) = −ia′(Ej)zj , B(Ēj) = wj (22)

C(Ej) = w̄j , C(Ēj) = ia′(Ēj)z̄j (23)

These expressions for zj and wj as functions of the dynamical variables of the Gaudin model
should be understood as giving the differential of the function Φ−1 at the equilibrium point.
An important consequence of Eliasson’s theorem is that the knowledge of this differential is
sufficient to identify the generators of the normal flows, as long as we are interested in their
restriction to the singular torus.
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The symplectic form in terms of normal coordinates reads:

ω(0) =
1

2

∑

j

dzj ∧ dw̄j + dz̄j ∧ dwj

As explained in the Introduction, the components of the moment map µ(0) are the quadratic
Hamiltonians:

Lj =
1

2i
(z̄jwj − zjw̄j), Kj =

1

2
(z̄jwj + zjw̄j)

The Hamilton equations of motion associated to ω(0) are:

żj = 2
∂H

∂w̄j
, ẇj = −2

∂H

∂z̄j
, ˙̄zj = 2

∂H

∂wj
, ˙̄wj = −2

∂H

∂zj

From them, we see that the flows associated to Kj , Lj are

Kj : (zj → eajzj , wj → e−ajwj), Lj : (zj → eiθjzj , wj → eiθjwj)

3.2 Generators of normal flows

We begin by expanding the function µ(0) ◦ Φ−1 to second order in small deviations from the
equilibrium point, recalling that B(Ej), B(Ēj), C(Ej), and C(Ēj) are first order in these
deviations. This gives:

Kj =
i

2

(

B(Ej)C(Ej)

a′(Ej)
− B(Ēj)C(Ēj)

a′(Ēj)

)

(24)

Lj = −1

2

(

B(Ej)C(Ej)

a′(Ej)
+
B(Ēj)C(Ēj)

a′(Ēj)

)

(25)

But Eliasson’s theorem implies that µ(0) ◦Φ−1 = ψ−1 ◦µ, so we should be able to express these
quantities in terms of the conserved Hamiltonians H1,...,Hn+1. In Section 6 below, we show
that:

B(Ej)C(Ej) = 4E2
j + 4Hn+1 +

n
∑

i=1

2Hi

Ej − ǫi
+

n
∑

k=1

s2

(Ej − ǫi)2
+ ... (26)

where the neglected terms are of order 3 and higher in small deviations from the equilibrium
point. This formula enables to construct the Taylor expansion of the function ψ−1 up to first
order. We get:

K
j

= i

(

2

a′(Ej)
− 2

a′(Ēj)

)

δHn+1 + i

n
∑

i=1

(

1

a′(Ej)(Ej − ǫi)
− 1

a′(Ēj)(Ēj − ǫi)

)

δHi + ...(27)

L
j

= −
(

2

a′(Ej)
+

2

a′(Ēj)

)

δHn+1 −
n
∑

i=1

(

1

a′(Ej)(Ej − ǫi)
+

1

a′(Ēj)(Ēj − ǫi)

)

δHi + ...(28)

Here δHi = Hi − Hi,eq, where Hi,eq denotes the value of Hi at the equilibrium point. The
neglected term are of order at least two in the δHi’s. When we consider fibers of the moment
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map closer and closer to the fiber containg the equilibrium point, the flows generated by the
linear terms in the δHi’s in equations (27) and (28) tend towards the normal flows defined in
the Introduction. In particular, they coincide with these normal flows on the fiber containing
the equilibrium point.

4 Normal flows on a singular torus

4.1 Normal flows and soliton solutions

From the previous discussion, the normal flows on the singular torus are given by the Hamilto-
nian flows associated to the generatorsKj and Lj defined in terms of the conserved Hamiltonians
in eqs. (27) and (28). On the singular torus, these flows take the form of solitonic trajectories.
For the reader’s convenience a complete derivation of the soliton formulae, which were con-
structed in [13], is given in Section 9 below. Here, we summarize the main features of these
solitonic solutions.

We recall that n = 2m− 1, and we assume that E0 = ∅ in the construction of Section 9. We
define column vectors (Ej)l = Ej

l and (XEj)l = XlE
j
l , l = 1 · · · 2m, and two polynomials

P−(λ) =
1

Dn+1
det

(

1 λ · · · λn− 0 0 · · · 0
1 E · · · En− X XE · · · XEn+

)

and

P+(λ) =
1

D0
det

(

0 0 · · · 0 1 λ · · · λn+

1 E · · · En− X XE · · · XEn+

)

where D0 and Dn+1 are the determinants:

D0 = det ( 1 E · · · En− X XE · · · XEn+−1 ) (29)

Dn+1 = det ( 1 E · · · En−−1 X XE · · · XEn+ ) (30)

The indices n± are defined as

n+ = degree(P+(λ)) =
1

2
(n− 1) = m− 1, n− = degree(P−(λ)) =

1

2
(n+ 1) = m

The Xl are given by:

Xl({t}) = Xl(0)e
√
−1

(

∑

i

sei
El−ǫi

ti−tn+1

)

, (31)

where ti are the times flows associated to the Hamiltonians Hi and ei = ±1 characterize the
critical point szi = sei. The constants Xl(0) are subjected to the reality conditions:

Xl({t})Xl̄({t}) = Xl(0)Xl̄(0) = −1

4
(32)

where Xl̄ is associated to El̄ ≡ El. The function C(λ) is given by :

C(λ) = (33)

2

det

(

1 λ · · · λn− 0 0 · · · 0
1 E · · · En− X XE · · · XEn+

)

det

(

0 0 · · · 0 1 λ · · · λn+

1 E · · · En− X XE · · · XEn+

)

∏

j(λ− ǫj) det ( 1 E · · · En−−1 X XE · · · XEn+ )
2
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Let us now specialize the evolution equation (31) to the normal flows defined through their
generators (27) and (28). Let us denote by al (resp. θl) the time variable of the normal flow
generated by Kl (resp. Ll). For an observable X(t1, · · · , tn+1), we have

X(al) = X

(

ti = i

(

1

a′(El)(El − ǫi)
− 1

a′(Ēl)(Ēl − ǫi)

)

al, tn+1 = i

(

2

a′(El)
− 2

a′(Ēl)

)

al

)

X(θl) = X

(

ti = −
(

1

a′(El)(El − ǫi)
+

1

a′(Ēl)(Ēl − ǫi)

)

θl, tn+1 = −
(

2

a′(El)
+

2

a′(Ēl)

)

θl

)

Let us apply this formula to Xk({t}) in eq.(31). We have to evaluate:

1

a′(El)

n
∑

i=1

sei
(Ek − ǫi)(El − ǫi)

Suppose first k 6= l. We have:

1

a′(El)

n
∑

i=1

sei
(Ek − ǫi)(El − ǫi)

=
1

a′(El)

n
∑

i=1

1

Ek − El

(

sei
El − ǫi

− sei
Ek − ǫi

)

=
1

a′(El)

n
∑

i=1

1

Ek − El
(−2El + 2Ek) =

2

a′(El)

where we have used the classical Bethe equation:

a(E) = 2E +
∑

i

sei
E − ǫi

= 0

If k = l, we have directly:

1

a′(El)

n
∑

i=1

sei
(El − ǫi)2

=
1

a′(El)
(2− a′(El))

Using these sums in eq.(31), we arrive at the very simple result:

Xk(al) = Xk(0)e
al(δkl−δkl̄), Xk(θl) = Xk(0)e

iθl(δkl+δkl̄) (34)

It is clear that the reality condition (32) is preserved by these flows. The meaning of this formula
is that the solitons can be viewed as a non-linear global extension of the normal modes on the
critical torus. The al trajectories give m non compact cycles, while the θl trajectories give
the remaining m compact cycles. In view of eq.(31) we see that the soliton solution depends
on 2m complex parameters Xl(0) submitted to the m complex conditions eq.(32). Hence there
remains m complex (or 2m real) parameters which may be viewed as coordinates on the singular
torus. These solitonic coordinates can be interpreted as generalizing at the semi global level
the decomposition of the singular fiber into a product of two dimensional singular tori that is
performed by normal coordinates in the vicinity of the critical point.
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4.2 Solitonic picture of the tangent cone

We would like now to precise the connection between these solitonic formulae and the linearized
flows in the vicinity of the equilibrium point. As discussed in the Introduction, the tangent cone
to the singular torus at the equilibrium point is the product of m two dimensional components
Ck. There is an important relation between the components Ck of the cone C and the flows
associated to the Hamiltonians Kj on the critical manifold. In normal coordinates the orbits of
generators Lj are closed circles, which become closed orbits when mapped by Φ on phase-space
M. The m other generators Kj induce flows which become unbounded when aj goes to ±∞
and the trajectories eventually leave the open neighborhood U in which the diffeomorphism Φ
is defined. Notice however that when aj → +∞, zj = 0 is a contracting manifold for the flow
Kj and wj = 0 is an expanding manifold. When aj → −∞ the situation is opposite. Hence a

pattern S of m signs aj → ±∞ identifies a unique contracting manifold Ccontracting
S .

Because there is only one critical point on the critical manifold, when we send all the aj to

±∞ we end up into a neighborhood of the critical point. The contracting manifold Ccontracting
S

is therefore the asymptotic manifold when all the aj ’s are sent to infinity with the associated
sign pattern.

From eq. (34), the large aj limit corresponds to:

|Xj | → ∞ and |Xj̄ | → 0 if aj → +∞

|Xj̄ | → ∞ and |Xj | → 0 if aj → −∞
To connect the soliton solutions with the definition of the tangent cone, we have to take this
limit in the soliton formulae. Let I the set of m indices (i1, i2, · · · im) ⊂ {1 · · ·m, 1̄ · · · m̄} such
that Xij → ∞, specifying a contracting component Ccontracting

S(I) of the tangent cone. If j ∈ I we

still denote by j̄ the label of the complex conjugate root Ej ≡ Ej̄ (so that ¯̄j = j). Then because

of the reality condition eq.(32), j̄ /∈ I and the indices j̄ belong to the complementary set I of I
in {1 · · ·m, 1̄ · · · m̄} (see Fig. 2).

1̄

E1̄

i1 = 1

E1

i2 = 2̄

E2̄

2

E2

i3 = 3̄

E3̄

3

E3

4̄

E4̄

i4 = 4

E4

i5 = 5̄

E5̄

5

E5

Figure 2: The red dots represent the subset I = {i1 = 1, i2 = 2̄, i3 = 3̄, i4 = 4, i5 = 5̄}. The green
dots represent the complementary (and conjugate) subset Ī = {ī1 = 1̄, ī2 = 2, ī3 = 3, ī4 = 4̄, ī5 = 5}.
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It is useful to relate this definition of the components Ccontracting
S(I) of the tangent cone with

the one based on the normal coordinates introduced in Section 3. As we have said, either j ∈ I
or j̄ ∈ I. If j ∈ I, zj → 0, so according to eqs. (22),(23), |C(Ej̄)| << |C(Ej)|. If j̄ ∈ I,
the converse holds and |C(Ej)| << |C(Ej̄)|. To check that this is indeed true, we need to
know the asymptotic expression for C(λ) when |Xj | → ∞ for any j ∈ I. Using eq. (33) and
the asymptotic expressions eqs. (95), (96), (97) given in Section 10 below, we see that on the
component CI of tangent cone, C(λ) behaves as:

C(λ) ≃ 2
∏

i(λ− ǫi)

∏

i∈I
(λ− Eī)

∑

j∈I







Ej̄ − Ej

Xj

∏

k∈I
k 6=j

Ek̄ − Ej

Ek − Ej
(λ− Ek)






(35)

This expression shows that C(λ) goes to zero when all the Xj’s go to infinity, for j ∈ I. This
shows that we are indeed describing a 2m-dimensional subspace (over R) of the tangent space
at the equilibrium point. Next, we see that, at this leading order, C(λ) vanishes at λ = Ej̄ . In
reality, C(Ej̄) is not exactly zero, because of the subleading terms included in the determinantD1

defined in Section 10. If the typical value of the Xj’s scales like X , the ratio of these subleading
terms over the dominant one scales like X−2. From this, we conclude that C(Ej̄)/C(Ej) → 0
when X → ∞, as expected. More precisely, if j ∈ I, to leading order in the scale X , we have
from eq. (35):

C(Ej , Xi∈I → ∞) ≃ − 2

Xj

∏

i(Ej − ǫi)

∏

k∈I
(Ej − Ek̄)

2, C(Ej̄) = O(X−3) (36)

In the limit aj → −∞, the dominant variables become the Xj̄ ’s. The leading behavior for

C(λ) is now given by eq. (35) where the set I is replaced by the complementary set I (in which
all indices are replaced by i → ī). The state of the system is now labelled by the coordinates
B(Ej) = C(Ej̄). Using the reality condition (32) and replacing Ej ’s by Ej̄ ’s in eq. (36) gives
for j ∈ I:

B(Ej , Xi∈I → 0) ≃ 8Xj
∏

i(Ej − ǫi)

∏

k∈I
(Ej − Ek̄)

2, B(Ej̄) = O(X3) (37)

where the scale X goes to zero.

5 Periodic flows, symplectic invariants and monodromy

5.1 Motivation

In an integrable system, the action integrals Sγ =
∫

γ α, where the symplectic form ω = dα
and γ denotes any closed cycle on regular Arnold–Liouville tori, are smooth functions of the
conserved quantities in any open set containing only regular values of the moment map. These
functions are also the generators of periodic flows on Arnold-Liouville tori. Inspired by previous
works [3, 4, 5], we wish to examine the construction of periodic flows in the vicinity of a singular
torus. We know already that m such flows are generated by the Lj ’s. As we have seen, on the
singular torus, the flow generated by Kj corresponds to a large motion, moving away from the

12



critical point x(0) along the corresponding expanding manifold in the remote past and returning
to x(0) along the contracting manifold in the far future. As suggested by Fig. 3, it is possible to
use these large solitonic trajectories to construct periodic orbits, at least for regular tori close
to the singular one.

w1

z1

(zout
1

, w
out
1

)

(zin
1

, w
in
1

)

wj

zj

(zout
j , w

out
j )

(zin
j , w

in
j )

Figure 3: The red curves represent the large motion of the α1K1 + β1L1 flow projected on the
z1, w1 manifold in the soliton case (outer curve) and on a nearby Liouville torus (inner curve). The
motion starts from a position (zin

1
, win

1
≃ 0) on the expanding manifold and returns to a position

(zout
1

≃ 0, wout
1

) on the contracting manifold. At the same time on the jth > 1 component, there is
an induced motion from (zinj , w

in
j ) to (zoutj , wout

j ). One can close the trajectory by adding an extra

motion α1K1 + β1L1 from (zout
1
, wout

1
) to (zin

1
, win

1
) and a motion αjKj + βjLj from (zoutj , wout

j ) to

(zinj , w
in
j ) (blue segments). These extra motions lie entirely in the domain of validity of the normal

form.

5.2 Periodic flows.

The Hamiltonian generating the periodic flow is a function of the Kl, Ll:

H = H(K1, L1, · · · ,Km, Lm)

This function however is not defined globally and this gives rise to the monodromy phenomenon.
The flow itself is a linear combinations of the flows generated by Kl, Ll

∂t =
∑

l

αl∂al
+ βl∂θl , αl = ∂H/∂Kl, βl = ∂H/∂Ll, (38)

The X ’s become functions of time

Xk = Xk(0)e
αkt+iβkt, Xk̄ = Xk̄(0)e

−αkt+iβkt (39)

We want to find conditions on αk, βk in order to get a closed trajectory.

13



To simplify notations, we will consider the large motion generated by α1K1 + β1L1. Fig. 3
shows that we first have to study the corresponding symplectic map for an initial condition
(zinj , w

in
j ) close to the expanding manifold associated to K1 i.e. such that win

1 is small. The
initial conditions and the time lapse 2T are chosen in such a way that the image (zoutj , wout

j )
is close to the contracting manifold, i.e. zout1 is small. In general, (zoutj , wout

j ) is different from

(zinj , w
in
j ) for j 6= 1, reflecting the impossibility to express our dynamical system in the vicinity

of the pinched torus as a product ofm independent integrable systems with 2 degrees of freedom,
each of them exhibiting an isolated focus-focus singularity. Although such factorization holds at
the topological level [2], it does not hold at the level of symplectic manifolds. The obstruction to
such a symplectic product decomposition is encoded in the non-diagonal symplectic invariants,
which we will now compute. For this purpose we will use the fact recalled in Section 7, that the
map (zinj , w

in
j ) → (zoutj , wout

j ) is strongly constrained by the condition that K1 and L1 commute
with all the generators of the moment map.

It is first necessary to identify the components Ccontracting
S(I) of the cone corresponding to the

in and out states for a large motion generated by α1K1 + β1L1. This flow sends the solitonic
coordinate X1 into eα1a1+iβ1θ1X1 and X1̄ into e−α1a1+iβ1θ1X1̄, and leaves unchanged all the
other coordinates Xk, Xk̄. Let us choose an initial condition on an expanding subspace for
this flow. This means that |X in

1̄ | >> |X in
1 |. In principle, the other coordinates can be chosen

arbitrarily, but it is convenient to assume also that |X in
k̄
| >> |X in

k | for k > 1, so that the initial
point is close to the critical point. Let us denote by I0 the set of indices {2 · · ·m}. The manifold
Cin is obtained by sending a1 to −∞ and the manifold Cout by sending a1 to +∞, the other
j ∈ Ī0 being spectators. Then Cin = Ccontracting

S({1̄}∪Ī0)
and Cout = Ccontracting

S({1}∪Ī0)
.

The symplectic invariants are smooth functions of the conserved quadratic Hamiltonians
Kj , Lj (1 ≤ j ≤ m) defined in the vicinity of the singular torus [3, 4, 5]. The knowledge
of solitonic trajectories allows us to compute them exactly on the singular torus, that is for
Kj = Lj = 0.

5.2.1 Diagonal case.

As apparent of Fig.[3], the trajectory is composed of two pieces. The first one is the large
solitonic motion generated by α1K1 + β1L1 during a time lapse 2T which yields a relation
between (zin1 , w

in
1 ) → (zout1 , wout

1 ) as explained in Section 7. This part of the trajectory is
complemented by a further action of the flow α1K1 + β1L1 during a time lapse τ relating
(zout1 , wout

1 ) → (zin1 , w
in
1 ) so as to get a closed trajectory. This last part of the analysis lies

entirely in the domain of validity of the normal forms. One should therefore have

zin1 = eα1τ+iβ1τzout1 , win
1 = e−α1τ+iβ1τwout

1 (40)

Using the leading order expressions for zout1 , wout
1 , eqs.(63,64) these two equations are equivalent

to
z̄in1 w

in
1 = K1 + iL1 = e−α1τ+iβ1τΦ0

1(T ) (41)

As shown in Section 7, one has, again to leading order

wout
1 =

Φ0
1(T )

K1 + iL1
win

1 =
Φ0

1(T )

z̄in1

14



The variables zin1 , w
in
1 are obtained from C(E1), C(E1̄) evaluated at t = −T and the variables

zout1 , wout
1 are obtained from C(E1), C(E1̄) evaluated at t = T . Explicitely we have:

{

C(E1)|−T = w̄in
1 ≃ 0

C(E1̄)|−T = ia′(Ē1)z̄
in
1

,

{

C(E1)|T = w̄out
1

C(E1̄)|T = ia′(Ē1)z̄
out
1 ≃ 0

so that:

Φ0
1 = wout

1 z̄in1 =
1

ia′(Ē1)
C(E1̄)|−T C(E1)|T

When t→ −T the set of X ’s tending to ∞ is I = I0 ∪ {1̄}, then:

C(E1̄)|X1̄→∞ ≃ −2
(E1̄ − E1)

2

∏n
i=1(E1̄ − ǫi)

∏

k∈I0
(E1̄ − Ek)

2

X1̄

, C(E1) ≃ 0,

Similarly, when t→ T the set of X ’s tending to ∞ is I = I0 ∪ {1}, then:

C(E1)|X1→∞ ≃ −2

∏

k∈I0
(E1 − Ek)

2

∏n
i=1(E1 − ǫi)

(E1 − E1̄)
2

X1
, C(E1̄) ≃ 0,

Hence, we get:

Φ0
1 =

4

ia′(E1̄)

(E1̄ − E1)
4
∏

k∈I0
(E1̄ − Ek̄)

2(E1̄ − Ek)
2

∏

i(E1̄ − ǫi)2
1

X1̄(−T )X1(T )

Next, we have

{

X1(T ) = X1(0)e
α1T+iβ1T

X1̄(−T ) = X1̄(0)e
α1T−iβ1T

=⇒ X1̄(−T )X1(T ) = −1

4
e2α1T−2iβ1T

so that eq.(41) becomes

c1 ≡ z̄1w1 = e−α1τ+iβ1τΦ0
1(T ) = ρ1e

iγ1 e−α1(2T+τ)+iβ1(2T+τ)

where we have set

ρ1e
iγ1 = − 16

ia′(E1̄)

(E1̄ − E1)
4
∏

k>1(E1̄ − Ek̄)
2(E1̄ − Ek)

2

∏

k(E1̄ − ǫk)2
(42)

The quantity 2T + τ is the total time it takes to run once along the closed trajectory, that is
the period of the motion. Normalizing it to 2π, the above equation determines α1 and β1:

α1 = − 1

2π
log

|c1|
ρ1

, β1 =
1

2π
(arg(c1)− γ1) (43)
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5.2.2 Non diagonal case.

Similarly, one can compensate the non-diagonal motion induced by the large α1K1 + β1L1 flow
by adding flows αjKj + βjLj. The evolution of zj is now the composition of this new flow and
the indirect evolution due to the α1K1 + β1L1 flow. Hence

zoutj = e(αj+iβj)(2T+τ)ρ
(1)
zj z

in
j , j 6= 1

Periodicity requires

e−2π(αj+iβj) = ρ
(1)
zj (44)

where we have set the period 2T + τ to 2π. This determines the remaining constants αj , βj in

eq.(38), once we have computed ρ
(1)
zj and ρ

(1)
wj (j 6= 1) as defined in Section 7.

The initial conditions were chosen such that when t = −T the system lies on a subspace of
the tangent cone whose natural coordinates are the B(Ej)

in’s given by eq. (37) with I = I0∪{1}.
In the long time limit t = T , i.e. when a1 = α1t is positive and large, we get |Xout

1̄ | << |Xout
1 |,

and the system lies on a different subspace of the tangent cone. The B(Ej)
out are again given

by eq. (37) with I = I0 ∪ {1̄}. From the discussion in Section 7, we expect that:

B(Ej)
out = ρ

(1)
zj B(Ej)

in, j 6= 1

By using eq.(37), this is indeed the case and we find :

ρ
(1)
zj =

(

Ej − E1

Ej − E1̄

)2

(45)

As explained in Section 7, we expect the general relation ρ
(1)
zj ρ̄

(1)
wj = 1 between ρ

(1)
zj and ρ

(1)
wj . As

a consistency check, we may evaluate ρ
(1)
wj directly. Using that wj = C(Ej), we have

C(Ej)
out = ρ̄

(1)
wjC(Ej)

in, j 6= 1

Now C(Ej)
in is obtained by eq.(36) with the index set I = I0 ∪ {1̄} and C(Ej)

out is obtained
from the same formula with an index set I = I0 ∪ {1}. So we have:

ρ̄
(1)
wj =

C(Ej)
out

C(Ej)in
=

(

Ej − E1̄

Ej − E1

)2

(46)

Clearly, the relation ρ
(1)
zj ρ̄

(1)
wj = 1 is satisfied. Finally the constants αj , βj are determined by:

e−2π(αj+iβj) =

(

Ej − E1

Ej − E1̄

)2

(47)

5.3 Action variables and symplectic invariants.

Let us define the 1-form on the base (i.e. the image of the moment map)

Ω(1) =
∑

j

Ω
(1)
j , Ω

(1)
j = αjdKj + βjdLj
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Remembering that
c1 = z̄in1 w

in
1 = z̄out1 wout

1 = K1 + iL1

we see that Ω(1) is singular when c1 → 0. Isolating the singular part, we may write

Ω(1) = − 1

4π
(log c1 dc1 + log c̄1 dc̄1) + Ω(1)reg

where

Ω(1)reg =
1

2π
log ρ1 dK1 −

1

2π
γ1 dL1 +

∑

j>1

αjdKj + βjdLj

The form Ωreg contains all the regularized symplectic invariants of San Vũ Ngoc [4], computed
here on the singular fiber. In the case of one spin, we find

ρ1e
iγ1 = −8

s
(2s− ǫ1)

3/2(ǫ1 + i
√

2s− ǫ21)

Setting s = 1 and ǫ1 = 0 yields

Ω(1)reg =
1

2π

(

5 log 2 dK1 +
π

2
dL1

)

and we recover the invariants computed in [6] (up to the normalization of the period to 2π).
To define the form Ω(1), we need to introduce a cut in the K1, L1 plane. In this cut plane,

the form Ω(1) is closed and remembering eq.(38) we have

Ω(1) = dH(1)

The Hamiltonian H(1) is the action associated to the closed trajectory we have constructed. It
is defined on the cut plane K1, L1.

We have computed the action H(1) to leading order. However following [5] we can give a
more global interpretation using the spectral curve. First the normal actions Kj , Lj are just the
integrals over the vanishing cycles Aj (encircling pairs of roots of the spectral polynomial which
coalesce into double roots on the critical fiber) as shown in Fig. 5.

Kj + iLj =
1

2iπ

∮

Aj

√

Λ(λ)dλ (48)

This can already be seen at the quadratic level

1

2iπ

∮

Aj

√
Λdλ =

1

2iπ

∮

Aj

√

a2(λ) +
∑

k

a(λ)

a′(Ek)(λ− Ek)
BkCk dλ

=
1

2iπ

∮

Aj



a(λ) +
1

2

∑

j

1

a′(Ek)(λ − Ek)
BkCk



 dλ =
1

2a′(Ej)
BjCj = Kj + iLj

Eq.(48) has a meaning beyond the quadratic approximation and can be viewed as the inverse
of the function ψ in Eliasson normal form [10, 5]. It is a non linear extension of eqs.(27, 28).
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Figure 4: The motion of the three separated variables for the soliton solution in the 3-spins model.
The flow is given by eq.(39) with αk, βk given by eqs.(43,47). The limiting flow is obtained by
setting Xj → Xj(

t
2T

) where T ≃ − 1

4π
log |c1| is large, and −2πT ≤ t ≤ 2πT .

Concerning the action H(1) we see that it has the unique property of being singular when
c1 = K1 + iL1 → 0 but it remains regular when cj = Kj + iLj → 0, j 6= 1. To get an indication
of its global definition, we may consider the example of the 3-spins model and the motion of
the separated variables of the soliton solution (see Appendix 9) corresponding to the limiting
motion generated by H(1) on the singular fiber. On Fig.[4] we show the motion of the separated
coordinates λk defined in eq.(69). Here λ1 is associated to the sign (+) in eq.(78), while λ2, λ3
are associated to the sign (−). Hence the corresponding points (µk, λk) belong to different sheets
in the representation of the spectral curve as a covering of the complex plane. On a fiber close
to the singular one, the action integral is

H(1) =
1

2iπ

∑

k

∮

µkdλk =
1

2iπ

∑

k

∮

√

Λ(λk)dλk

where the λk describe trajectories close to the critical ones. When k = 3 we integrate over a
trivial cycle and the contribution vanishes. The k = 1, 2 contributions combine to make a non
trivial cycle B1 as indicated on Fig.[5].

H(1) =
1

2iπ

∮

B1

√

Λ(λ)dλ (49)

We can eliminate theHi between eq.(48) and eq.(49) thereby obtaining the full Taylor expansion
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Figure 5: The spectral curve with the system of cuts and cycles corresponding to the limiting
motion of the separated variables λk.

of H(1) in terms of the Kj , Lj.
We believe that this can be generalized to the n spin model. We have 2m vanishing cycles

Aj and 2m cycles Bj . The action integrals on the cycles Aj give directly the cj = Kj + iLj

and the action integral on the Bj give the periodic Hamiltonian H(j) (see section 11) which
become singular when cj tends to zero but remain regular when ci, i 6= j tends to zero. The
important ingredient here is the identification of the Bj cycles through the motion of the divisor
of the proper soliton solution. A complete analysis of this motion has not yet been achieved,
however using the asymptotic expressions for determinants given in section 10, it is possible to
show that as the time t1 goes to −∞, we have one separated variable λ+1 located at E1̄, and
another one, λ−1 , at E1. When t1 goes to +∞, there is one separated variable λ+i located at
E1 and one λ+j at E1̄, The other remaining separated variables, m − 2 of type λ+ and m − 1

of type λ− are found to occupy the same sets of points in the complex plane in both limits
t1 → −∞ and t1 → ∞ due to the periodicity conditions eq.(47). The difficult task remains
to show that this possibly complicated motion of the separated variables can be continuously
deformed into one of the Bj cycles. If one succeeds in doing this, the periodic Hamiltonians
can then be obtained more globally by the construction of section 11. An alternative approach
would be to use Picard-Fuchs equations for the action variables as in [7].

5.4 Monodromy

The orbits of the periodic motions defined in the previous section provide a basis of cycles on
the Liouville tori close to the singular fiber. It is well known that when we follow these cycles
by continuity when we perform a non trivial closed contour in the image of regular values of the
moment map, the initial and final basis of cycles may be different and are related by an element
of GL(n,Z).

In order to compute the monodromy, we have first to determine the fundamental group π1
of the manifold of regular values of the moment map. The manifold of singular values of the
moment map is a stratified manifold by the rank of the moment map. At the equilibrium point
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the rank is zero, however the equilibrium point belongs to bigger strata where the rank is r ≤ 2m.
Eliasson’s theorem allows an easy description of this stratification in a local neigborhood U of
the equilibrium point. The moment map is given by

(x, p) ∈ U → (K1, L1,K2, L2, · · · ,Km, Lm)

The derivatives of each pair Kj , Lj generically span a two dimensional subspace of the tangent
space of the image of the moment map near the equilibrium point and these spaces are linearly
independent for two different pairs. For each pair the only way to span a space of dimension
smaller than 2 is when the two tangent vectors are identically zero. In this case the rank of
the momentum map drops to r = 2m − 2 and the equation of this stratum is Kj = Lj = 0.
The singular values of the momentum map in a neighborhood of the equilibrium point consists
therefore of m strata Oj of dimension 2m − 2 given by the equations Kj = Lj = 0, for i ∈
{1, · · ·m}. Of course each one of these strata is itself stratified by the intersection of p such
manifolds Oj1 ∩ Oj2 ∩ · · ·Ojp where the rank is r = 2m − 2p. The equilibrium point itself is
obtained when p = m.

Because the co-dimension of Oj is 2, we can draw non trivial circles S1 around it. Indeed Oj

intersects the plane Kj , Lj precisely at the origin and such an S1 can be taken to be Kj+ iLj →
eiαj (Kj + iLj). The fundamental group of the image of the momentum map minus the Oj ’s is
a product of m factors S1: π1 = S1 × S1 × · · ·S1.

We can now compute the monodromy. Locally we have Ω(1) = dH(1). Recall that

z̄1w1 = K1 + iL1 = ρ1e
iγ1

The regular values of the moment map are such that ρ1 6= 0. Monodromy is defined in the open
set of the regular values of the moment map. Let us take as a non trivial closed path a circle
around the origin in the K1, L1 plane: c1(α1) = eiα1ρ1, γ1 ≤ α1 ≤ γ1+2π. Integrating the form

Ω(1) over this circle one gets a non trivial contribution from Ω
(1)
1

∮

C

Ω(1) =

∮

C

Ω
(1)
1 = − i

4π

∮ 2π+γ1

γ1

[

c1(α1) log c1(α1)− c̄1(α1) log c̄1(α1)
]

dα1

=
1

2π
ρ1

∮ 2π+γ1

γ1

α1 cosα1dα1 = ρ1 sin γ1 = L1

This means that when we go around that circle, the Hamiltonian H(1) becomes H(1) + L1.
The new periodic trajectory contains an extra S1 factor generated by L1. This is exactly the
monodromy phenomenon. Note that when the image of the moment map winds once around the
stratum Oj , H(1) remains single-valued when j 6= 1, so for H(1) only paths which wind around
the stratum O1 give rise to a non-trivial monodromy.

Following up the transformation of the action integrals H(j) defined in the previous section
along such a non trivial path would also lead to an interpretation of the monodromy in the
framework of the Picard-Lefschetz theory as in [12].
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6 Appendix : Normal Forms.

Normal coordinates simultaneously diagonalize all the flows Hj in the quadratic approximation.

{Hj, aα} = Ej,αaα (50)

To construct them, we return to eqs.(14 – 16). They imply

{

1

2
Tr L2(λ), C(µ)

}

=
2i

λ− µ

(

A(λ)C(µ) −A(µ)C(λ)
)

When we expand around a configuration given by eq.(21), all the quantities (b, b̄, s+j , s
−
j ) are

first order, but szj is second order because szj = sej− ej
2ss

+
j s

−
j + · · · , ej = ±1. In this expansion,

the Hamiltonians are quadratic while C(µ) is first order. Therefore the Poisson bracket in the
left-hand side is linear. Now A(λ) is constant plus second order, so that in the right-hand side
we can replace A(λ) and A(µ) by their zeroth order expression :

A(λ) ≃ a(λ) = 2λ+

n
∑

j=1

sej
λ− ǫj

and we arrive at
{

1

2
Tr L2(λ), C(µ)

}

=
2i

λ− µ

(

a(λ)C(µ) − a(µ)C(λ)
)

(51)

Eq.(51) will be precisely of the form of eq.(50) if we can kill the unwanted term C(λ). This is
achieved by imposing the condition

a(µ) = 0, “Classical Bethe Equation” (52)

This is an equation of degree n + 1 for µ. For non degenerate singularities it has only simple
roots. Calling Ei its solutions, we construct in this way n+ 1 variables C(Ei). Clearly, they all
Poisson commute

{C(Ei), C(Ej)} = 0 (53)

Since phase space has dimension 2(n + 1) this is half what we need. To construct the
conjugate variables, we consider eq.(16). In our linear approximation it reads

{B(Ei), C(Ej)} =
2i

Ei − Ej
(a(Ei)− a(Ej))

If Ei and Ej are different solutions of eq.(52), then obviously

{B(Ei), C(Ej)} = 0, Ei 6= Ej (54)

If however Ej = Ei then
{B(Ei), C(Ei)} = 2ia′(Ei) (55)

Finally, we also have
{B(Ei), B(Ej)} = 0 (56)
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Up to normalisation, we have indeed constructed canonical coordinates.

It is simple to express the quadratic Hamiltonians in theses coordinates:

1

2
Tr L2(λ) = a2(λ) +

∑

j

a(λ)

a′(Ej)(λ− Ej)
B(Ej)C(Ej) (57)

This has the correct analytical properties in λ and together with the Poisson brackets eqs.(53,54,
55, 56) we reproduce eq.(51). Note that there is no pole at λ = Ej because a(Ej) = 0. Expanding
around λ = ∞ we get

Hn+1 = s
∑

k

ek +
∑

i

1

2a′(Ei)
B(Ei)C(Ei)

and computing the residue at λ = ǫj , we find

Hj = sej

[

2ǫj +
∑

k

sek
ǫj − ǫk

]

+
∑

i

1

2a′(Ei)

sej
ǫj − Ei

B(Ei)C(Ei)

We can invert these formulae: devide eq.(57) by λ− Ej and take the residue at λ = Ej . Since
a(Ej) = 0 we get

1

2
Tr L2(Ej) = B(Ej)C(Ej)

or explicitly

B(Ej)C(Ej) = 4E2
j + 4Hn+1 +

n
∑

i=1

2Hi

Ej − ǫi
+

n
∑

k=1

s2

(Ej − ǫi)2

We can now make contact with the Williamson classification theorem.

If Ej is real we have B(Ej) = C(Ej) and we set

C(Ej) =
√

|a′(Ej)|(pj + iηjqj), B(Ej) =
√

|a′(Ej)|(pj − iηjqj)

where ηj = −sign(a′(Ej)) and pj , qj are real canonical coordinates. Then eq.(55) is satisfied.
Moreover

B(Ej)C(Ej) = |a′(Ej)|(p2j + q2j )

i.e. we have an elliptic singularity.

If Ej is complex, there is another root Ej+1 = Ēj which is its complex conjugate. Then

B(Ej) = C(Ej+1). We introduce real canonical coordinates pj , qj , pj+1, qj+1 and set

B(Ej) = −ia′(Ej)(qj + iqj+1), B(Ej+1) = pj + ipj+1

C(Ej) = pj − ipj+1, C(Ej+1) = ia′(Ej+1)(qj − iqj+1)

then eqs.(53,54,55,56) are satisfied and

B(Ej)C(Ej) = −ia′(Ej)(Kj + iLj)

B(Ej+1)C(Ej+1) = ia′(Ej+1)(Kj − iLj)

i.e. we have a focus-focus singularity.
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7 Appendix: In-Out transformation.

We consider a flow generated by the Hamiltonian α1K1 + β1L1. Such linear combinations were
needed in Section 5, although here only the K1 part really matters. We assume α1 > 0. Let us
fix some δ > 0 with δ small enough that Eliasson map Φ is well defined in the ball of radius 2δ
around the origin. Consider the point U : (z1 = δ, w1 = 0) on the expanding manifold and the
trajectory of the flow starting at that point. Since the trajectory stays on the global unstable
manifold, which is equal to the global stable manifold, it will reappear after a time lapse 2T on
the contracting manifold at a point S : (z1 = 0, |w1| = δ). The flow evaluated at time 2T is

well defined in a neighborhood ΣU of the point U and defines a symplectic mapping F
(1)
T of ΣU ,

|win
1 | << |zin1 |, to a neighborhood ΣS of the point S in the contracting subspace |zout1 | << |wout

1 |:

ΣU : (zin1 , w
in
1 , z

in
2 , w

in
2 , · · · , zinm , win

m )
F

(1)
T−→ ΣS : (zout1 , wout

1 , zout2 , wout
2 , · · · , zoutm , wout

m )

We also assume that the other components zini , win
i , zouti , wout

i , i = 2, · · · ,m are small (this will
be satisfied in our case) so that the initial and final points lie in a small neighborhood of the
critical point. One can find the precise form of this mapping by writing that it commutes with
the flows generated by Kj, Lj , j = 1 · · ·m. Let us fix the level set by imposing:

z̄inj w
in
j = z̄outj wout

j = Kj + iLj (58)

Let us also assume that Kj + iLj 6= 0. We may then choose (win
1 , · · · , win

m ) as coordinates on
the intersection of ΣU with the level set and write:

wout
j = F

(1)
j (K1, L1, · · ·Km, Lm, w

in
1 , w̄

in
1 , · · · , win

m , w̄
in
m )

The condition that the transformation F (1) commutes with the flowsK1, L1, · · · ,Km, Lm means:

e−aj+iθjF
(1)
j (K1, L1, · · ·Km, Lm, w1, w̄1, · · · , wm, w̄m) =

F
(1)
j (K1, L1, · · ·Km, Lm, e

−a1+iθ1w1, e
−a1−iθ1w̄1, · · · , e−am+iθmwm, e

−am−iθmw̄m)

To solve this equation we choose the parameters ak, θk such that

e−ak+iθkwk = ηk, wk, ηk 6= 0, 1 ≤ k ≤ m

where ηk are constants. Then the equation becomes:

F
(1)
j (K1, L1, · · ·Km, Lm, w1, w̄1, · · · , wm, w̄m) = ρ

(1)
wj (K1, L1, · · ·Km, Lm)wj

where ρ
(1)
wj (K1, L1, · · ·Km, Lm) = η−1

j F
(1)
j (K1, L1, · · ·Km, Lm, η1, η̄1, · · · , ηm, η̄m). Hence, we

have shown that
wout

j = ρ
(1)
wj (K1, L1, · · ·Km, Lm)win

j (59)

where the super script (1) is to remind that this is a transformation under the α1K1 + β1L1

flow. In exactly the same way, we show

zoutj = ρ
(1)
zj (K1, L1, · · ·Km, Lm)zinj (60)
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The conditions eq.(58) then imply

ρ
(1)
wj (K1, L1, · · ·Km, Lm)ρ

(1)
zj (K1, L1, · · ·Km, Lm) = 1 (61)

When j 6= 1, the functions ρ
(1)
wj (K1, L1, · · ·Km, Lm) do not depend on the choice of the time

lapse 2T for the flow, nor on the choice of the parameters α1, β1. They are smooth in a
neighborhood of the critical torus. As shown before [4, 5] they are symplectic invariants attached
to the Liouville foliation in the vicinity of the singular torus. Let us now show that for j = 1,

ρ
(1)
w1(K1, L1, · · ·Km, Lm) is singular as K1 + iL1 → 0.
To see this, we first consider the critical torus, on which the dilating stratum is given by

w1 = 0 and the contracting stratum by z1 = 0. We start with an initial condition on the dilating
stratum (win

1,sol = 0, zin1,sol). We let the system evolve with respect to the flow . After a large

motion during the time lapse 2T , the point reappears on the contracting stratum (wout
1,sol, z

out
1,sol =

0). The same reasoning as before on the invariance under the flows Kj , Lj shows that:

wout
1,sol =

Φ0
1

z̄in1,sol
(62)

where Φ0
1 is a constant, which depends only on the combination α1T . Let us now consider a

torus close to the critical torus. The point (zin1,sol, w
in
1,sol = 0) is displaced to (zin1 , w

in
1 ) and

(zout1,sol = 0, wout
1,sol) is displaced to (zout1 , wout

1 ). The small parameters can be chosen to be win
j

(1 ≤ j ≤ m) and we can write:

zout1 =

(

zin1 w̄
in
1

Φ0
1

)

zin1 +O(w2) (63)

wout
1 =

Φ0
1

z̄in1
+O(1)win

1 +O(w2) =

(

Φ0
1

z̄in1 w
in
1

+O(1)

)

win
1 +O(w2) (64)

where we have imposed the condition z̄in1 w
in
1 = z̄out1 wout

1 = K1+iL1. Connecting these equations
with the definition (59) we see that:

ρ
(1)
w1 ≃ Φ0

1

K1 + iL1
+O(1)

in the vicinity of the singular torus. As explained in [4], a regularization procedure is needed in
order to define the diagonal symplectic invariant.

8 Appendix: Symplectic invariance.

In this Appendix we explain why the quantity Ωreg computed in Section 5.3 has an intrinsic
meaning and is invariant under symplectic transformations preserving the singular Liouville
foliation. We extend to higher dimensions the arguments developed in [4].

Recall that two singular foliations F and F ′ in the symplectic manifolds M,ω and M ′, ω′

are equivalent if there exists a symplectic diffeomorphism ϕ : F → F ′ sending leaves to leaves.
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Having two such foliations, by Eliasson theorem, we can define for each of them normal
coordinates (zj , wj) and (z′j , w

′
j), j = 1 · · ·m, valid in neighborhoods U and U ′ of the focus-focus

point. We can also define the moment maps µ(0) : (zj , wj) → (Kj , Lj) and µ(0)′ : (z′j , w
′
j) →

(K ′
j , L

′
j), j = 1 · · ·m where the Hamiltonians Ki, Li and K ′

i, L
′
i are as in Section 3. In the

neighborhoods U and U ′, the study of the symplectic diffeomorphism ϕ therefore reduces to the
study of the commutative diagram

R
4m Φ−→ R

4m

↓µ(0) ↓µ(0)′

R
2m Ψ−→ R

2m

(65)

where Φ is a symplectomorphism and Ψ is a diffeomorphism. We will show that the diffeomor-
phism Ψ is extremely constrained and such that Li = ζiL

′
i with ζi = ±1 and Ki = K ′

i, up
to a flat function (vanishing at the origin together with all its derivatives) so that the Taylor
expansion of Ωreg has an invariant meaning.

The first observation is that the rank of the moment map is preserved under Φ. Manifolds
where the rank of µ(0) is r are mapped to manifolds where the rank of µ(0)′ is r. Manifolds of rank
2 are the (complex) coordinate planes zi, wi, characterized by the equations ci ≡ Ki + iLi 6= 0
and cj = 0 for j 6= i. Therefore the map Ψ sends the coordinate axis (in complex notation)
ci 6= 0 to a coordinate axis c′i′ 6= 0. This defines a map σ : i′ = σ(i) of the set {1, 2 · · ·m} to
itself which is a permutation. We can assume that this permutation is the identity.

One can generalize this argument. Manifolds of rank 4 are the characterized by ci 6= 0, cj 6= 0
and all other ck = 0. Therefore the map Ψ sends the plane ci 6= 0, cj 6= 0 and all other ck = 0
to a similar plane c′r 6= 0, c′s 6= 0 and all other c′l = 0. But that plane must contain the axes
c′i 6= 0 and c′j 6= 0, hence it is the whole plane c′i 6= 0, c′j 6= 0 and all other c′k = 0. Repeating
the argument, manifolds of rank 2m − 2 are hyperplanes zi = 0, wi = 0 characterized by the
equations ci = Ki + iLi = 0 and cj 6= 0 for j 6= i and the map Ψ sends the hyperplane ci = 0
to the hyperplane c′i = 0.

The symplectomorphism Φ sends a periodic flow to a periodic flow of the same period. In
particular, the flow generated by Li is periodic. Let us denote by (K ′

i(K,L), L
′
i(K,L)) the

coordinates of the image by Ψ of the point of coordinates (Ki, Li). The Hamiltonian vector field
of L′

i is

XL′
i
=
∑

k

∂L′
i

∂Lk
XLk

+
∂L′

i

∂Kk
XKk

However, on the open sets U and U ′, the only periodic flows are those generated by the Lk and

L′
k. Hence

∂L′
i

∂Kk
= 0 and

∂L′
i

∂Lk
= Aik where Aik is an invertible matrix of GLm(Z). Therefore

L′
i =

∑

k

AikLk

On the other hand, we have just seen that if only ci is different from zero, then only c′i is different
from zero. This implies that the matrix A is diagonal, and since it is an element of GLm(Z), it
is of the form Aik = ζiδij , ζi = ±1. We have shown that

L′
i = ζiLi, ζi = ±1 (66)
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Next we want to analyse the functions

K ′
i = K ′

i(K1, L1 · · ·Km, Lm)

The remarks on the preservation of the rank of the moment map put constraints on the form
of the Taylor expansions of these functions. First, because the manifold ci = 0, cj 6= 0, j 6= i is
mapped to the manifold c′i = 0, c′j 6= 0, j 6= i, we can write

K ′
i = Ai(K1, L1 · · ·Km, Lm)Ki +Bi(K1, L1 · · ·Km, Lm)Li (67)

where the functions Ai, Bi are regular at 0. Moreover, since the axis ci 6= 0, cj = 0, j 6= i is
mapped on the axis c′i 6= 0, c′j = 0, j 6= i we have

Ai(K1, L1 · · ·Km, Lm) = αi +O(K,L), Bi(K1, L1 · · ·Km, Lm) = βi +O(K,L)

where αi, βi are constants such that αiβi 6= 0. We show below the much stronger results
αi +O(K,L) = 1 + flat and βi +O(K,L) = 0 + flat.

Let us assume for simplicity that i = 1. Let us consider, in the plane (z′1, w
′
1), the points

on the critical torus m′in
0 : (w′

1 = δ, z′1 = 0) and m′out
0 : (w′

1 = 0, z′1 = δ) (all other coordinates

vanish). The points min
0 = Φ−1(m′in

0 ) and mout
0 = Φ−1(m′out

0 ) are in the plane (z1, w1) on the
critical torus and we can assume min

0 : (w1 = a, z1 = 0), mout
0 : (w1 = 0, z1 = b) (all other

coordinate vanish).

Let us now consider a small neighborhood of m′in
0 and let us apply at each of its points

the flow generated by (K ′
1, L

′
1) during times (a′1, θ

′
1) chosen in such a way that the point

m′in : (z′1
in

= c̄′1/δ, w
′
1
in

= δ, z′j
in
, w′

j
in
) is sent to m′out : (z′1

out
= δ, w′

1
out

= c′1/δ, z
′
j
out

=

z′j
in
, w′

j
out

= w′
j
in
) i.e.

e−a′
1+iθ′

1 =
c′1
δ2

In particular, when |c′1| → 0, we find

a′1 → − log |c′1| ≃ − log |c1|

where the last relation comes from eqs.(66,67). This map sends m′in
0 to m′out

0 and extends

to a smooth map F ′ from a neighborhood of m′in
0 to a neighborhood of m′out

0 . The map
F = Φ−1 ◦F ′ ◦Φ sends a neighborhood of min

0 to a neighborhood of mout
0 and this map, being a

composition of C∞ maps, should be C∞. On the other hand, the map F is obtained by applying
the flow

m
∑

j=1

a′1
∂K ′

1

∂Kj
XKj

+ θ′1XL1 +

m
∑

j=1

a′1
∂K ′

1

∂Lj
XLj

On (z1, w1), this gives

zout1 = exp

[

a′1
∂K ′

1

∂K1
+ i

(

θ′1 + a′1
∂K ′

1

∂L1

)]

zin1

wout
1 = exp

[

−a′1
∂K ′

1

∂K1
+ i

(

θ′1 + a′1
∂K ′

1

∂L1

)]

win
1
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When |c1| → 0, we should have zin → c̄1
ā , z

out → b. Inserting into the first equation,we find

āb = exp

[

log c̄1 + a′1
∂K ′

1

∂K1
+ i

(

θ′1 + a′1
∂K ′

1

∂L1

)]

(for the other equation win → a wout → c1
b̄
, we obtain the same condition). Using the values of

a′1, θ
′
1, we get in the limit |c1| → 0

āb = exp

[

log |c1]
(

1− ∂K ′
1

∂K1
− i

∂K ′
1

∂L1

)]

Finiteness when |c1] → 0 requires α1 = 1, β1 = 0. One can push the argument and show that
smoothness of the map in the limit c1 → 0 gives

∂K ′
1

∂K1
= 1 + flat,

∂K ′
1

∂L1
= flat

the argument is the same as in [4].
On (zj , wj), j 6= 1, we get

zoutj = exp

[

a′1
∂K ′

1

∂Kj
+ i

(

a′1
∂K ′

1

∂Lj

)]

zinj

wout
j = exp

[

−a′1
∂K ′

1

∂Kj
+ i

(

a′1
∂K ′

1

∂Lj

)]

win
j

We require that (zoutj , wout
j ) be finite when c1 tends to zero with (zinj , w

in
j ) finite. This gives

∂K ′
1

∂Kj
= flat,

∂K ′
1

∂Lj
= flat

9 Appendix: Solitons.

In this appendix we recall the construction of solitons in the Jaynes-Cummings-Gaudinmodel [13].
We present it in some details because we need to generalize it to include all times ti and we
wish to present in a self contained way the formulae we use in our calculation of the symplectic
invariants.

The Lax form eq. (10) of the equation of motion implies that the so-called spectral curve Γ,
defined by det(L(λ)− µ) = 0 is a constant of motion. Specifically:

Γ : µ2 − A2(λ)−B(λ)C(λ) = 0, i.e. µ2 =
Q2n+2(λ)
∏

j(λ− ǫj)2
(68)

Defining y = µ
∏

j(λ − ǫj), the equation of the curve becomes y2 = Q2n+2(λ) which is an
hyperelliptic curve. Since the polynomial Q2n+2(λ) has degree 2n+2, the genus of the curve in
n.
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The separated variables are g = n points on the curve whose coordinates (λk, µk) can be
taken as coordinates on phase space. They are defined as follows. Let us write

C(λ) = 2b̄+
n
∑

j=1

s+j
λ− ǫj

≡ 2b̄

∏n
k=1(λ− λk)

∏n
j=1(λ− ǫj)

(69)

the separated coordinates are the collection (λk, µk = A(λk)). They have canonical Poisson
brackets

{λk, µk′} = −iδk,k′ (70)

Notice however that if b̄ = 0 theses variables are not well defined.
There are only 2n such coordinates which turn out to be invariant under the global U(1)

rotation generated by Hn+1:

b→ eiθ b, b̄→ e−iθ b̄, s−j → eiθs−j , s+j → e−iθs+j

So they describe the reduced model obtained by fixing the value of Hn+1 and taking into con-
sideration only the dynamical variables invariant under this U(1) action. The initial dynamical
model can be recovered by adding the phase of the oscillator coordinates b̄, b to the separated
variables.

We show now how to reconstruct spin coordinates from the separated variables (λk, µk) and
the oscillator coordinates (b̄, b). For C(λ) we have eq.(69). It is a rational fraction of λ which
has simple poles at λ = ǫj whose residue is s+j . For A(λ), we write:

A(λ) =
Pn+1(λ)

∏n
j=1(λ− ǫj)

The polynomial Pn+1(λ) − 2λ
∏n

j=1(λ − ǫj) is of degree n− 1, and we know its value at the n
points λj because:

Pn+1(λj) = µj

n
∏

k=1

(λj − ǫk) (71)

Therefore, we can write:

Pn+1(λ) = 2λ

n
∏

j=1

(λ− ǫj) +
∑

i

(µi − 2λi)

n
∏

k=1

(λi − ǫk)

∏

l 6=i(λ− λl)
∏

l 6=i(λi − λl)
(72)

Once A(λ) and C(λ) are known, B(λ) is determined by:

B(λ) =
Q2n+2(λ) − P 2

n+1(λ)

C(λ)
∏

k(λ− ǫk)2
=

1

2b̄

Q2n+2(λ) − P 2
n+1(λ)

∏

i(λ− λi)
∏

k(λ− ǫk)
(73)

The polynomial in the numerator is of degree 2n, and moreover it is divisible by
∏

i(λ − λi)
because P 2

n+1(λi) = Q2n+2(λi), so we can write

B(λ) = 2b

∏

i(λ− λ̄i)
∏

k(λ− ǫk)
(74)

28



In this construction, the variables λ̄i and the corresponding µ̄i are complicated functions of
the (λi, µi). The set of physical configurations (often refered to here as the real slice) is obtained
by writing that the set (λ̄i, µ̄i) is the complex conjugate of the set (λi, µi). This leads to a set
of complicated relations whose solution is not known in general, but that we will solve in the
soliton case.

The Hamiltonians Hj of the reduced model are obtained by writing that the points (λk, µk)
belong to the spectral curve. We get a linear system of equations

∑

j BkjHj = Vk where

Bkj =
1

λk − ǫj
, Vk =

1

2



µ2
k − λ2k − 4Hn+1 −

∑

j

s2

(λk − ǫj)2





Its solution is

Hi =
∑

k

(B−1)ikVk, (B−1)jp =

∏

l 6=p(ǫj − λl)
∏

i(λp − ǫi)
∏

i6=j(ǫj − ǫi)
∏

l 6=p(λp − λl)

Using the Poisson bracket eq.(70), the equation of motion of the variable λk with respect to Hi

is then (no summation over k):
∂tiλk = iµk(B−1)ik, (75)

We are interested in the system with prescribed real values of the conserved quantities,
H1,...,Hn+1, i.e. we take as coordinates the (λj , Hj) instead of the (λj , µj). This amounts to
fixing the Liouville torus we work with, or equivalently the spectral polynomial Q2n+2(λ). In
this setting, the µj are determined by the equations

n
∏

k=1

(λj − ǫk)µj = (±)j

√

Q2n+2(λj)

The equations of motion eq.(75) must be complemented by the equation of motion for the phase
of b.

We consider now the level set containing the critical point eq.(21). It corresponds to a
maximally degenerate spectral curve:

Q2n+2(λ) = 4

n+1
∏

l=1

(λ− El)
2 (76)

where the zeroes of Q2n+2(λ) are the roots of the classical Bethe equation:

2E +

n
∑

j=1

sej
E − ǫj

= 0 (77)
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The separated variables λi, µi now satisfy

µi = 2(±)i

∏

l(λi − El)
∏

j(λi − ǫj)
(78)

The choice of sign here plays a crucial role in the description of the various strata of the level
set.

We first examine the case where a λi is frozen at a root El. Let us assume that Q2n+2(λ) has
a real root at λ = E. This means that A2(λ) + B(λ)C(λ) vanishes when λ = E. But for real
λ, A(λ) is real and one has C(λ) = B(λ) so that A(λ), B(λ), C(λ) must all vanish at λ = E. In
particular, recalling eq.(69), this means that one of the separated variables, say λ1, is frozen at
the value E, provided b̄b 6= 0. This implies also that λ − E divides simultaneously A(λ), B(λ)
and C(λ), and therefore (λ − E)2 divides Q2n+2(λ). A real root of Q2n+2(λ) is necessarily a
double root and one λi must be frozen at E.

Nothing simple can be said in the case Q2n+2(λ) has a simple complex root. So, let us assume
that it has a double complex root E. Of course the complex conjugate Ē is also a double root.
Since Λ(λ) = A2(λ) +B(λ)C(λ) we have

Λ′(λ) = 2A(λ)A′(λ) +B′(λ)C(λ) +B(λ)C′(λ)

So, if Λ(λ) has a double zero E we have

0 = A2(E) +B(E)C(E)

0 = 2A(E)A′(E) +B′(E)C(E) +B(E)C′(E)

In contrast to the real case, we cannot infer from these equations that C(E) = 0. But if C(E) = 0
that is if one λi freezes at E, the first equation implies A(E) = 0 and the second equation implies
B(E)C′(E) = 0. Therefore if the zero of C(λ) at λ = E is simple, then necessarily B(E) = 0.
But B(E) is the complex conjugate of C(Ē) which must therefore vanish provided b̄b 6= 0. From
this we conclude that another separated variable λk freezes at Ē. In contrast to the real case,
freezing is not compulsory, but it is the possibility to freeze the λi by complex conjugated pairs
that leads to the description of the real slice and the stratification of the level set.

Coming back to eq.(78), we see from eqs.(71,76) that:

Pn+1(λi) = (±)i
√

Q2n+2(λi) = 2(±)i
∏

l

(λi − El), Pn+1(λ) = 2(λn+1 − σ1(ǫ)λ
n + · · ·)

If we take the + sign for all i, then obviously Pn+1(λ) = 2
∏

l(λ − El), and taking the residue
at λ = ǫj in Pn+1(λ)/

∏

i(λ− ǫi), we find szj = sej . This is the static solution corresponding to
the critical point.

To go beyond this trivial solution, we divide the λi into three sets λ+i ∈ E+ and λ−i ∈ E−

depending on the sign in this formula, and λ0i ∈ E0 is the set of λi frozen at some El.
We define the polynomials:

P(λ, t) =
∏

j

(λ− λj(t)) = P(+)(λ)P(0)(λ)P(−)(λ)
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The equations of motion eq.(75) read in the soliton case

∂tiλk =
√
−1µk(B−1)ik = 2

√
−1(±)k

∏

l′(λk − El′)
∏

l 6=k(ǫi − λl)
∏

j 6=i(ǫi − ǫj)
∏

l 6=k(λk − λl)

hence, for El /∈ E0,

∑

k

′
(±)k

1

λk − El
∂tiλk = −2

√
−1

∏

l(ǫi − λl)
∏

j 6=i(ǫi − ǫj)

∑

k

′
∏′

l′ 6=l(λk − El′ )

(λk − ǫi)
∏′

l 6=k(λk − λl)

where
∑

k
′ means that the frozen λk ∈ E0 are excluded. We can rewrite this equation as

∂ti log
P(+)(El)

P(−)(El)
= −2

√
−1

∏

l(ǫi − λl)
∏

j 6=i(ǫi − ǫj)

∑

k

′
Resλk

∏

l′ 6=l(z − El′)

(z − ǫi)
∏

l(z − λl)

= 2
√
−1

∏

l(ǫi − λl)
∏

j 6=i(ǫi − ǫj)
(Res∞ +Resǫi)

∏′
l′ 6=l(z − El′)

(z − ǫi)
∏′

l(z − λl)

= 2
√
−1

∏

l(ǫi − λl)
∏

j 6=i(ǫi − ǫj)

(

−1 +

∏′
l′ 6=l(ǫi − El′)
∏′

l(ǫi − λl)

)

so that

∂ti log
P(+)(El)

P(−)(El)
= −2

√
−1

∏

l(ǫi − λl)
∏

j 6=i(ǫi − ǫj)
+ 2

√
−1

ǫi − El

∏

l′(ǫi − El′ )
∏

j 6=i(ǫi − ǫj)

Remembering the identities:

2

∏

k(ǫj − Ek)
∏

k 6=j(ǫj − ǫk)
= sej,

∑

l

El = σ1(ǫ) (79)

we can rewrite

∂ti log
P(+)(El)

P(−)(El)
= −

√
−1

s+i
b̄

+
√
−1

sei
ǫi − El

But the equation of motion for b̄ is

∂ti b̄ = {Hi, b̄} =
√
−1s+i

so that finally

∂ti log
P(+)(El)

P(−)(El)
= −∂ti log b̄+

√
−1

sei
ǫi − El

, El /∈ E0

Integrating these equations we get

P(−)(El) = b̄({t})Xl({t})P(+)(El), Xl({t}) = Xl(0)e
√
−1

(

∑

i

sei
El−ǫi

ti−tn+1

)

, El /∈ E0 (80)

The tn+1 dependence of Xl is fixed by noticing that P(±)(El) are independent of tn+1, while
∂tn+1 b̄ =

√
−1 b̄.
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Denoting n±, n0 the number of elements in E(±), E0 respectively, we get a set of n− n0 + 1
linear equations for the n++n−+1 = n−n0+1 unknown coefficients of the polynomials P−(λ)
and b̄(t)P+(λ).

These real soliton solutions live on the pre-images of focus-focus singularities These are
composed of various strata, depending on the number of n0 of separated variables frozen by pairs
at the double roots (El, El̄ = E∗

l ) of the spectral polynomial. Separated variables are necessarily
frozen at the real double roots of the spectral polynomial. These strata are themselves products
of (n+ 1− n0)/2 two dimensional pinched tori.

We then consider the remaining complex roots of the spectral polynomial where no separated
variables are frozen. This is a self conjugate set. We write eq.(80) as a linear system for the

symmetric functions σ
(−)
i ({λ(−)

j }) and σ(+)
i ({λ(+)

j }) and b̄. We introduce the vector

V =

























(−1)n−σ
(−)
n− /b̄

...
−σ(−)

1 /b̄
1/b̄

(−1)1+n+σ
(+)
n+

...
σ
(+)
1

























then eq.(80) reads
(1, E, · · · , En− , X,XE, · · · , XEn+−1)V = XEn+

where we have defined the column vectors (Ej)l = Ej
l and (XEj)l = XlE

j
l where Xl is given

by eq.(80). The formulae used in the text are straightforward consequences Cramer’s solution
of this linear system.

In the vector X we should incorporate the reality conditions

Xl Xl̄ = −1

4
, El̄ ≡ El

which we derive below.

9.1 Reality conditions.

It remains to impose the condition that the set of zeros {λ̄k} of B(λ) in eq.(74) is the complex
conjugate of the set of zeros {λk} of C(λ). Going back to eq.(73), the first step is to build the
polynomial Pn+1(λ). Using the fact that Pn+1(λi) = 2(±)i

∏

l(λi − El) we may write :

Pn+1(λ) = 2
∏

l

(λ − El)− 4
∑

λ−
i

∏

El /∈E0

(λ−i − El)

∏

λ−
l
6=λ−

i
(λ− λ−l )

∏

λ−
l
6=λ−

i
(λ−i − λ−l )

P+(λ)P0(λ)

P+(λ
−
i )

To derive this formula, we used the fact that the polynomials Pn+1(λ) and 2
∏

l(λ−El) have the
same terms of degrees n + 1 and n; the last statement comes from the relation

∑

j ǫj =
∑

lEl
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which is a direct consequence of the classical Bethe equation. Alternatively, we can also write:

Pn+1(λ) = −2
∏

l

(λ− El) + 4
∑

λ+
i

∏

El /∈E0

(λ+i − El)

∏

λ+
l
6=λ+

i
(λ− λ+l )

∏

λ+
l
6=λ+

i
(λ+i − λ+l )

P−(λ)P0(λ)

P−(λ
+
i )

+4(λ+Σ′
1 − σ′

1(E))P+(λ)P−(λ)P0(λ)

Note that the last term in the right hand side is necessary to adjust the terms of degree n+ 1
and n in λ between the two sides of the equation. Again, we used the relation

∑

j ǫj =
∑

lEl.
These two expressions for Pn+1(λ) motivate the following definitions of polynomials S±(λ):

S+(λ) =
∑

λ−
i

∏

El /∈E0

(λ−i − El)

∏

λ−
l
6=λ−

i
(λ− λ−l )

P ′
−(λ

−
i )P+(λ

−
i )

S−(λ) =
∑

λ+
i

∏

El /∈E0

(λ+i − El)

∏

λ+
l
6=λ+

i
(λ − λ+l )

P ′
+(λ

+
i )P−(λ

+
i )

+ (λ+Σ′
1 − σ′

1(E))P+(λ)

so that we can write:

Pn+1(λ) = 2
∏

l

(λ − El)− 4S+(λ)P+(λ)P0(λ) (81)

Pn+1(λ) = −2
∏

l

(λ− El) + 4S−(λ)P−(λ)P0(λ) (82)

Note that S+(λ) has degree n− − 1 and S−(λ) has degree n+ + 1. Now, we have:

4
∏

l

(λ− El)
2 − P 2

n+1(λ) = 16 S−(λ)S+(λ)P0(λ)P(λ) = 4b̄bP(λ)P̄(λ)

where P(λ) =
∏

j(λ−λj) = P−(λ)P0(λ)P+(λ) and P̄(λ) =
∏

j(λ− λ̄j) is the complex conjugate

of P(λ), that is P̄(λ) = P(λ̄). Therefore:

b̄b P̄(λ) = 4 S−(λ)S+(λ)P0(λ) (83)

So the zeroes λ̄i of P̄(λ) split into the zeroes λ̄+i , λ̄
−
i and λ̄0i of S+(λ), S−(λ) and P0(λ)

respectively. A direct consequence of these definitions and of eqs. (81) and (82) is that:

Pn+1(λ̄
+
i ) = +2

∏

l

(λ̄+i − El) (84)

Pn+1(λ̄
−
i ) = −2

∏

l

(λ̄−i − El) (85)

By the definition of the λ̄0i ’s, we see that the set E0 is self conjugate and that P0(λ) = P̄0(λ).
The above definition of S−(λ) shows that the coefficient of its term of highest degree is equal to
one (this is not the case for S+(λ)). Because of this:

S−(λ) = P̄−(λ) (86)
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Combining this with eq. (83) we get also:

S+(λ) =
1

4
b̄b P̄+(λ) (87)

Comparing the terms of highest degrees in S+(λ) and P̄+(λ) gives:

b̄b = 4
∑

λ−
i

∏

El /∈E0(λ
−
i − El)

P ′
−(λ

−
i )P+(λ

−
i )

(88)

It is expressed only in terms of λ−i ’s. So, if n− = 0, we recover the fact already mentioned that
b̄b = 0 and the system remains at the critical point.

At this stage, we are ready to enforce the reality condition. As discussed above, the real
slice is obtained by imposing that the set {λ̄i} be the same as the set {λ∗i }, where in the rest of
this section we denote by z∗ the complex conjugate of z. Equivalently:

P̄(λ∗) = P(λ)∗

for any λ. From the discussion at the beginning of this section, we know that the frozen
variables λ0i appear in complex conjugate pairs so that P0(λ

∗) = P0(λ)
∗. We also know that

P0(λ) = P̄0(λ) so that P̄0(λ
∗) = P0(λ)

∗. The above reality condition becomes then:

P̄−(λ
∗)P̄+(λ

∗) = P−(λ)
∗P+(λ)

∗

It is clearly sufficient to impose simultaneously:

P̄−(λ
∗) = P−(λ)

∗, P̄+(λ
∗) = P+(λ)

∗ (89)

but we claim that this condition is also necessary. This comes from the fact already noted that
the sign of Pn+1(λ)/

∏

l(λ − El) is positive for λ = λ+i or λ = λ̄+i and negative for λ = λ−i or
λ = λ̄−i . So the roots λ̄+i have to be complex conjugates of λ+i and likewise, the roots λ̄−i have
to be complex conjugates of λ−i . An interesting and useful consequence of this is that we must
have deg P± = deg S± = deg P̄±, which requires n+ = n− − 1. Since n+ + n0 + n− = n we
find:

n+ =
1

2
(n− 1− n0), n− =

1

2
(n+ 1− n0)

Because the coefficients of highest degrees of P−(λ) and P+(λ) are set equal to one, the above
constraints (89) are equivalent to (assuming of course that P̄+(λ) and P̄−(λ) are mutually prime
and similarly for P+(λ) and P−(λ)).

P̄−(λ∗)

P̄+(λ∗)
=

(P−(λ)

P+(λ)

)∗

We also note that we should add the constraint b̄ = b∗. This plus the fact that these two
polynomials involve a total of n+ + n− unknown coefficients, shows that it is necessary and
sufficient to enforce the following conditions for the n+ 1 − n0 = n+ + n− + 1 roots El which
don’t belong to E0:

P̄−(E∗
l )

bP̄+(E∗
l )

=

( P−(El)

b̄P+(El)

)∗
(90)
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As we have seen, the general solution of the Hamiltonian evolution on the critical torus,
eq. (80) implies:

P−(El)

b̄P+(El)
= Xl (91)

To evaluate the left-hand side of the conditions (90), we set λ = El in eqs.(81, 82), which gives:

Pn+1(El) = −4S+(El)P+(El)P0(El), Pn+1(El) = 4S−(El)P−(El)P0(El), El /∈ E0

and therefore:
S+(El)P+(El) = −S−(El)P−(El) (92)

Since P+(El) 6= 0, and remembering eq.(80) this implies:

S−(El)

S+(El)
= − 1

b̄Xl

But using eqs. (86) and (87), we get:

P̄−(E∗
l )

bP̄+(E∗
l )

= − 1

4Xl̄

(93)

where we define the index l̄ to be such that El̄ = E∗
l . Given eqs. (91) and (93), the reality

conditions (90) and the condition b̄ = b∗ are satisfied if and only if:

X∗
l Xl̄ = −1

4
(94)

As expected, times disappears from these conditions so that they reduce to constraints on the
integration constants:

Xl(0)
∗ Xl̄(0) = −1

4

This characterizes a stratum of dimension n− n0 + 1 on the real slice.

10 Appendix : Asymptotic behavior of solitonic formulae

Let us assume that the m solitonic amplitudes Xj become large while keeping fixed ratios.
Because of the reality condition (94), the m remaining amplitudes Xj̄ go to zero with fixed
ratios. With no loss of generality, let us assume that j runs from 1 to m and j̄ from m+ 1 to
2m. The complete expression (33) for C(λ) involves three determinants D1, D2 and D defined
by:

D1 = det

(

1 λ · · · λm 0 0 · · · 0
1 E · · · En− X XE · · · XEm−1

)

D2 = det

(

0 0 · · · 0 1 λ · · · λm−1

1 E · · · Em X XE · · · XEm−1

)

D = det ( 1 E · · · Em−1 X XE · · · XEm−1 )
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In the limit where |Xj | → ∞ and Xj̄ → 0 for 1 ≤ j ≤ m, the dominant term in D1 is given by:

D1 ≃ det



























1 λ · · · λm 0 0 · · · 0
0 0 · · · 0 X1 X1E1 · · · X1E

m−1
1

. . . . . .

. . . . . .
0 0 · · · 0 Xm XmEm · · · XmE

m−1
m

1 E1̄ · · · Em
1̄ 0 0 · · · 0

. . . . . .

. . . . . .
1 Em̄ · · · Em

m̄ 0 0 · · · 0



























So, we get:

D1 ≃
∏

i<j

|Ej − Ei|2
m
∏

j=1

(λ− Ej̄) X1 · · ·Xm (95)

It is also important to note that the subleading terms of D1 vanish. We obtain such terms either
by removing one of the Xj ’s or by adding one of the Xj̄ ’s. In the first case, the m last columns
to the right have only m − 1 non-vanishing lines, so they are linearly dependent. Likewise, in
the second case, the first m + 1 columns on the left have only m non-vanishing lines. So the
first corrections to D1 originate from the terms where we simultaneously remove one Xj and
add one Xk̄.

The leading term in D2 has the form:

det



























0 0 · · · 0 1 λ · · · λm−1

0 0 · · · 0 X1 X1E1 · · · X1E
m−1
1

. . . . . .

. . . . . .
0 0 · · · 0 Xm XmEm · · · XmE

m−1
m

1 E1̄ · · · Em
1̄ 0 0 · · · 0

. . . . . .

. . . . . .
1 Em̄ · · · Em

m̄ 0 0 · · · 0



























which is equal to zero. One has therefore to consider subleading terms. They can be obtained
by removing one of the Xj ’s or by adding one of the Xj̄ ’s. In fact, only the first option leads to
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non-zero terms. Therefore, we may write:

D2 ≃
m
∑

j=1

det

















































0 0 · · · 0 1 λ · · · λm−1

0 0 · · · 0 X1 X1E1 · · · X1E
m−1
1

. . . . . .

. . . . . .
0 0 · · · 0 Xj−1 Xj−1Ej−1 · · · Xj−1E

m−1
j−1

1 Ej · · · Em
j 0 0 · · · 0

0 0 · · · 0 Xj+1 Xj+1Ej+1 · · · Xj+1E
m−1
j+1

. . . . . .

. . . . . .
0 0 · · · 0 Xm XmEm · · · XmE

m−1
m

1 E1̄ · · · Em
1̄ 0 0 · · · 0

. . . . . .

. . . . . .
1 Em̄ · · · Em

m̄ 0 0 · · · 0

















































Explicitely:

D2 ≃
∏

i<j

|Ej − Ei|2
m
∏

j=1

(λ − Ej)

m
∑

j=1





1

Xj

Ej̄ − Ej

λ− Ej

∏

k 6=j

Ek̄ − Ej

Ek − Ej



 X1 · · ·Xm (96)

The same reasoning as forD1 shows that the next corrections to this estimate of D2 are obtained
by removing one more of the Xj ’s and by adding simultaneously one of the Xk̄’s.

The determinant D has a non-vanishing leading order term:

D ≃ det























0 0 · · · 0 X1 X1E1 · · · X1E
m−1
1

. . . . . .

. . . . . .
0 0 · · · 0 Xm XmEm · · · XmE

m−1
m

1 E1̄ · · · Em
1̄ 0 0 · · · 0

. . . . . .

. . . . . .
1 Em̄ · · · Em

m̄ 0 0 · · · 0























so that:
D ≃ (−1)m

∏

i<j

|Ej − Ei|2 X1 · · ·Xm (97)

11 Appendix: Periodic flows.

There is a general procedure in the algebro-geometric setting to construct Hamiltonians gener-
ating periodic flows. From the equation of the spectral curve we have

δµ dλ =
∑

i

dλ

µ(λ− ǫi)
δHi =

∑

i

σi(λ)dλδHi
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where

σi(λ)dλ =
dλ

µ(λ− ǫi)
=

∏

k 6=i(λ− ǫk)
√

Q2n+2(λ)
dλ

form a basis of holomorphic differentials. Recalling the flows generated by Hi, eq.(75), we obtain
the important relation

σj(λk)
∑

k

∂tiλk = i
∑

k

µk(B−1)ik
Bkj

µk
= iδij

To find the Hamiltonian generating the periodic flows, we should need the description of the
periodic trajectory of the n coordinates λk of the divisor as n ovals on the spectral curve.
However only the homotopy class of the trajectory will be important in the following discussion.

Let us assume for the time being that it is homotopic to n independent non intersecting
ovals Bi. Let us define

H(i) =

∮

Bi

√

Λ(λ)dλ

To the Bi-cycles we associate a basis of normalized Abelian differentials ωi(λ)dλ. Of course we
can expand it on the σj(λ)dλ basis

ωi(λ)dλ =
∑

j

Nij σj(λ)dλ

Equipped with these Abelian differentials, we define the angles through the Abel transformation

θj =
∑

k

∫ λk

ωj(λ)dλ

Let us compute the equation of motion of these angles under the Hamiltonians H(i).

∂τiθj =
∑

k

ωj(λk)∂τiλk =
∑

k,l

ωj(λk)
∂H(i)

∂Hl
∂tlλk

=
∑

l,n

∂H(i)

∂Hl
Njn

∑

k

σn(λk) ∂tlλk

= i
∑

l,n

∂H(i)

∂Hl
Njnδln =

∮

Bi

Njl
∂

∂Hl

√
Λdλ

= i

∮

Bi

Njl σl(λ)dλ = i

∮

Bi

ωj(λ)dλ = 2iπδij

Hence
∂τiθj = 2iπδij

and the flows of the Hamiltonians H(i) are 2π-periodic. So the problem of finding the Hamil-
tonians generating the periodic flows reduces to the description of the homotopy class of the n
non intersecting ovals of the periodic trajectories.
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