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K1-INJECTIVITY FOR PROPERLY INFINITE C∗-ALGEBRAS

ÉTIENNE BLANCHARD

Dedicated to Alain Connes on the occasion of his 60th birthday.

1. Introduction

One of the main tools to classify C∗-algebras is the study of its projections and its
unitaries. It was proved by J. Cuntz in [Cun81] that if A is a purely infinite simple
C∗-algebra, then the kernel of the natural map for the unitary group U(A) to the K-
theory groupK1(A) is reduced to the connected component U0(A), i.e. A isK1-injective
(see §3). We study in this note a finitely generated C∗-algebra, the K1-injectivity of
which would imply the K1-injectivity of all unital properly infinite C∗-algebras.

Note that such a question was already considered in [Blac07], [BRR08].

The author would like to thank H. Lin, R. Nest, M. Rørdam and W. Winter for
helpful comments.

2. Preliminaries

Let us first review briefly the theory introduced by J. Cuntz ([Cun78]) of comparison
of positive elements in a C∗-algebra.

Definition 2.1. ([Cun78], [Rør92]) Given two positive elements a, b in a C∗-algebra
A, one says that:
– a is dominated by b (written a - b) if and only if there is a sequence {dk; k ∈ N}
in A such that ‖d∗kbdk − a‖ → 0 when k →∞,
– a is properly infinite if a 6= 0 and a⊕a - a⊕0 in the C∗-algebra M2(A) := M2(C)⊗A.

This leads to the following notions of infiniteness for C∗-algebras.

Definition 2.2. ([Cun78], [Cun81], [KR00]) A unital C∗-algebra A is said to be:
– properly infinite if its unit 1A is properly infinite in A,
– purely infinite if all the non zero positive elements in A are properly infinite in A.

Remark 2.3. E. Kirchberg and M. Rørdam have proved in [KR00, Theorem 4.16] that
a C∗-algebra A is purely infinite (in the above sense) if and only if there is no character
on the C∗-algebra A and any positive element a in A which lies in the closed two-sided
ideal generated by another positive element b in A satisfies a - b.
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The first examples of such C∗-algebras were given by J. Cuntz in [Cun81]: For any
integer n ≥ 2, the C∗-algebra Tn is the universal unital C∗-algebra generated by n
isometries s1, . . . , sn satisfying the relation

s1s
∗
1 + . . .+ sns

∗
n ≤ 1 (2.1)

Then, the closed two sided ideal in Tn generated by the minimal projection pn+1 :=
1 − s1s

∗
1 − . . . − sns

∗
n is isomorphic to the C∗-algebra K of compact operators on an

infinite dimension separable Hilbert space and one has an exact sequence

0→ K → Tn
π
−→On → 0 , (2.2)

where the quotient On is a purely infinite simple unital nuclear C∗-algebra ([Cun81]).

Remark 2.4. A unital C∗-algebra A is properly infinite if and only if there exists a
unital ∗-homomorphism T2 → A.

3. K1-injectivity of Tn

Given a unital C∗-algebra A with unitary group U(A), denote by U0(A) the connected
component of 1A in U(A). For each strictly positive integer k ≥ 1, the upper diagonal
embedding u ∈ U(Mk(A) ) 7→ (u ⊕ 1A) ∈ U(Mk+1(A) ) sends the connected com-
ponent U0(Mk(A) ) into U0(Mk+1(A) ), whence a canonical homomorphism ΘA from
U(A)

/

U0(A) to K1(A) := lim
k→∞

U(Mk(A) )
/

U0(Mk(A) ). As noticed by B. Blackadar in

[Blac07], this map is (1) neither injective, (2) nor surjective in general:

(1) If U2 denotes the compact unitary group of the matrix C∗-algebra M2(C), A :=
C(U2 × U2,M2(C) ) and u, v ∈ U(A) are the two unitaries u(x, y) = x and
v(x, y) = y, then z := uvu∗v∗ is not unitarily homotopic to 1A in U(A) but the
unitary z ⊕ 1A belongs to U0(M2(A)) ([AJT60]).

(2) If A = C(T3), then U(A)/U0(A) ∼= Z
3 but K1(A) ∼= Z

4.

Definition 3.1. The unital C∗-algebra A is said to be K1-injective if the map ΘA is
injective.

J. Cuntz proved in [Cun81] that ΘA is surjective as soon as the C∗-algebra A is
properly infinite and that it is also injective if the C∗-algebra A is simple and purely
infinite. Now, the K-theoretical six-term cyclic exact sequence associated to the exact
sequence (2.2) implies that K1(Tn) = 0 since K1(K) = K1(On) = 0. Thus, the map
ΘTn is zero.

Proposition 3.2. For all n ≥ 2, the C∗-algebra Tn is K1-injective, i.e. any unitary
u ∈ U(Tn) is unitarily homotopic to 1Tn in U(Tn) (written u ∼h 1Tn).

Proof. The C∗-algebras Tn have real rank zero by Proposition 2.3 of [Zha90]. And
Lin proved that any unital C∗-algebra of real rank zero is K1-injective ([Lin01, Corol-
lary 4.2.10]). �

Corollary 3.3. If α : T3 → T3 is a unital ∗-endomorphism, then its restriction to the
unital copy of T2 generated by the two isometries s1, s2 is unitarily homotopic to idT2
among all unital ∗-homomorphisms T2 → T3.
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Proof. The isometry
∑

k=1,2 α(sk)s
∗
k extends to a unitary u ∈ U(T3) such that α(sk) =

usk for k = 1, 2 ([BRR08, Lemma 2.4]). But Proposition 3.2 yields that U(T3) = U
0(T3),

whence a homotopy u ∼h 1 in U(T3), and so the desired result holds. �

Remark 3.4. The unital map ι : C→ T2 induces an isomorphism inK-theory. Indeed,
[1T2 ] = [s1s

∗
1] + [s2s

∗
2] + [p3] = 2 [1T2 ] + [p3] and so [1T2 ] = −[p3] is invertible in K0(T2).

4. K1-injectivity of properly infinite C∗-algebras

Denote by T2 ∗C T2 the universal unital free product with amalgamation over C (in
the sequel called full unital free product) of two copies of T2 amalgamated over C and
let 0, 1 be the two canonical unital inclusions of T2 in T2∗CT2. We show in this section
that the K1-injectivity of T2 ∗C T2 is equivalent to the K1-injectivity of all the unital
properly infinite C∗-algebras. The proof is similar to that of the universality of the full
unital free product O∞ ∗C O∞ (see Theorem 5.5 of [BRR08]).

Definition 4.1. ([Blan09], [BRR08, §2]) If X is a compact Hausdorff space, a unital
C(X)-algebra is a unital C∗-algebra A endowed with a unital ∗-homomorphism from
the C∗-algebra C(X) of continuous functions on X to the centre of A.

For any non-empty closed subset Y of X, we denote by πA
Y (or simply by πY if no

confusion is possible) the quotient map from A to the quotient AY of A by the (closed)
ideal C0(X \Y ) ·A . For any point x ∈ X, we also denote by Ax the quotient A{x} and
by πx the quotient map π{x}.

Proposition 4.2. The following assertions are equivalent.

(i) T2 ∗C T2 is K1-injective.
(ii) D :={f ∈ C([0, 1], T2∗CT2) ; f(0) ∈ 0(T2) and f(1)∈1(T2) } is properly infinite.
(iii) There exists a unital ∗-homomorphism θ : T2 → D.
(iv) There exists a projection q ∈ D with π0(q) = 0(s1s

∗
1) and π1(q) = 1(s1s

∗
1) .

(v) Any unital properly infinite C∗-algebra A is K1-injective.

Proof. (i)⇒(ii) We have a pull-back diagram

D

yy %%

D[0, 1
2
]

π 1

2 $$

D[ 1
2
,1]

π 1

2zz

T2 ∗C T2

and the two C∗-algebras D[0, 1
2
] and D[ 1

2
,1] are properly infinite (Remark 2.4). Hence,

the implication follows from [BRR08, Proposition 2.7].

(ii)⇒(iii) is Remark 2.4 applied to the C∗-algebra D.

(iii)⇒(iv) The two full, properly infinite projections 0(s1s
∗
1) and π0 ◦ θ(s1s

∗
1) are

unitarily equivalent in 0(T2) by [LLR00, Lemma 2.2.2] and [BRR08, Proposition 2.3].
3



Thus, they are homotopic among the projections in the C∗-algebra 0(T2) (written
0(s1s

∗
1) ∼h π0 ◦ θ(s1s

∗
1) ) by Proposition 3.2. Similarly, π1 ◦ θ(s1s

∗
1) ∼h 1(s1s

∗
1) in

1(T2). Further, π0 ◦θ(s1s
∗
1) ∼h π1 ◦θ(s1s

∗
1) in T2 ∗C T2 by hypothesis, whence the result

by composition.

(iv)⇒(v) By [BRR08, Proposition 5.1], it is equivalent to prove that if p and p′

are two properly infinite full projections in A, then there exist full properly infinite
projections p0, and p′0 in A such that p0 ≤ p, p′0 ≤ p′ and p0 ∼h p′0 .

Fix two such projections p and p′ in A. Then, there exist unital ∗-homomorphisms
σ : T2 → pAp, σ′ : T2 → p′Ap′ and isometries t, t′ ∈ A such that 1A = t∗pt = (t′)∗p′t′ .
Now, one thoroughly defines unital ∗-homomorphisms α0 : T2 → A and α1 : T2 → A
by

α0(sk) := σ(sk) · t and α1(sk) := σ′(sk) · t
′ for k = 1, 2 ,

whence a unital ∗-homomorphism α := α0 ∗ α1 : T2 ∗C T2 → A such that α ◦ 0 = α0

and α ◦ 1 = α1 .
The two full properly infinite projections p0 = α0(s1s

∗
1) and p′0 = α1(s1s

∗
1) satisfy

p0 ≤ p and p′0 ≤ p′ . Further, the projection (id ⊗ α)(q) gives a continuous path of
projections in A from p0 to p′0 . �

Remark 4.3. The C∗-algebra M2(D) is properly infinite by [BRR08, Proposition 2.7].

Lemma 4.4. K0(T2 ∗C T2) = Z and K1(T2 ∗C T2) = 0

Proof. The commutative diagram

C

ı0

��

ı1
// T2

1

��

T2
0

// T2 ∗C T2

yields by [Ger97, Theorem 2.2]

a six-term cyclic exact sequence

K0(C) = Z
(ı0⊕ı1)∗
−→ K0(T2 ⊕ T2) = Z⊕ Z

(0)∗−(1)∗
−→ K0(T2 ∗C T2)

↑ ↓
K1(T2 ∗C T2) ←− K1(T2 ⊕ T2) = 0⊕ 0 ←− K1(C) = 0

Now, Remark 3.4 implies that the map (ı0⊕ ı1)∗ is injective, whence the equalities. �

Remark 4.5. G. Skandalis noticed that the C∗-algebra T2 is KK-equivalent to C and
so T2 ∗C T2 is KK-equivalent to C ∗C C = C.

This Lemma entails that the K1-injectivity question for unital properly infinite C∗-
algebras boils down to knowing whether U(T2 ∗C T2) = U

0(T2 ∗C T2) . Note that Propo-
sition 3.2 already yields that U(T2) ∗T U(T2) ⊂ U

0(T2 ∗C T2) .

But the following holds.

Proposition 4.6. Set p3 = 1 − s1s
∗
1 − s2s

∗
2 in the Cuntz algebra T2 and let u be the

canonical unitary generating C∗(Z).
(i) The relations 0(sk) 7→ sk and 1(sk) 7→ u sk (k = 1, 2) uniquely define a unital
∗-homomorphism T2 ∗C T2 → T2 ∗C C∗(Z) which is injective but not K1-surjective.
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(ii) The two projections 0(p3) and 1(p3) satisfy 1(p3) 6∼ 0(p3) in T2 ∗C T2.
(iii) There is no v ∈ U(T2 ∗C T2) such that 1(s1s

∗
1 + s2s

∗
2) = v 0(s1s

∗
1 + s2s

∗
2) v

∗.
(iv) There is a unitary v ∈ U(T2 ∗C T2) such that 1(s1s

∗
1) = v 0(s1s

∗
1) v

∗.

Proof. (i) The unital C∗-subalgebra of O3 generated by the two isometries s1 and s2
is isomorphic to T2, whence a unital C∗-embedding T2 ∗C T2 ⊂ O3 ∗C O3 ([ADEL04]).
Let Φ be the ∗-homomorphism from O3 ∗C O3 to the free product O3 ∗C C∗(Z) =
C∗

(

s1, s2, s3, u
)

fixed by the relations

Φ(0(sk)) = sk and Φ(1(sk)) = u sk for k = 1, 2, 3

and let Ψ : O3 ∗C C∗(Z)→ O3 ∗C O3 be the only ∗-homomorphism such that

Ψ(u) =
3
∑

l=1

1(sl)0(sl)
∗ and Ψ(sk) = 0(sk) for k = 1, 2, 3.

For all k = 1, 2, 3, we have the equalities:

– Ψ ◦ Φ(0(sk)) = Ψ(sk) = 0(sk) ,
– Ψ ◦ Φ(1(sk)) = Ψ(usk) = 1(sk) ,
– Φ ◦Ψ(sk) = Φ(0(sk)) = sk .

Also, Ψ(u)∗Ψ(u) =
∑

l,l′ 0(sl′)1(sl′)
∗1(sl)0(sl)

∗ = 1O3∗CO3
= Ψ(u)Ψ(u)∗, i.e. Ψ(u) is

a unitary in O3 ∗C O3 which satisfies:

– Φ ◦Ψ(u) =
∑

l=1,2,3 Φ(1(sl))Φ(0(sl)
∗) = u .

Thus, Φ is an invertible unital ∗-homomorphism with inverse Ψ ([Blac07]), and the
restriction of Φ to the C∗-subalgebra T2∗CT2 takes values in T2∗CC

∗(Z) ⊂ O3∗CC
∗(Z).

Now, there is (see [Ger97]) a six-term cyclic exact sequence

K0(C) = Z →֒ K0

(

T2 ⊕ C∗(Z)
)

= Z⊕ Z → K0(T2 ∗C C∗(Z) )
↑ ↓

K1(T2 ∗C C∗(Z) ) ← K1

(

T2 ⊕ C∗(Z)
)

= 0⊕ Z ← K1(C) = 0

and so, K1(T2 ∗C C∗(Z) ) = Z, whereas K1(T2 ∗C T2) = 0 by Lemma 4.4.

(ii) Let π0 : T2 → L(H) be a unital ∗-representation on a separable Hilbert space
H such that π0(p3) is a rank one projection, let π1 : T2 → L(H) be a unital ∗-
representation such that π1(p3) is a rank two projection and consider the induced
unital ∗-representation π = π0 ∗ π1 of the unital free product T2 ∗C T2.

Then the two projections π[0(p3)] = π0(p3) and π[1(p3)] = π1(p3) have distinct
ranks and so cannot be equivalent in L(H). Hence, 0(p3) 6∼ 1(p3) in T2 ∗C T2.

(iii) This is just a rewriting of the previous assertion since s1s
∗
1 + s2s

∗
2 = 1 − p3.

Indeed, the partial isometry b = 1(s1)0(s1)
∗ + 1(s2)0(s2)

∗ defines a Murray-von
Neumann equivalence in T2 ∗C T2 between the projections 0(s1s

∗
1 + s2s

∗
2) = 1− 0(p3)

and 1(s1s
∗
1 + s2s

∗
2) = 1− 1(p3). Thus, they are unitarily equivalent in T2 ∗C T2 if and

only if 0(p3) ∼ 1(p3) in T2 ∗C T2 ([LLR00, Proposition 2.2.2]).
5



(iv) There exists a unitary v ∈ U(T2 ∗C T2) (which is necessarily K1-trivial by
Lemma 4.4) such that 1(s1s

∗
1) = v 0(s1s

∗
1) v

∗. Indeed, we have the inequalities

1 > s2s
∗
2 + p3 > s2s

∗
2 > s2s1(s2s

∗
2 + p3)s

∗
1s

∗
2 + s2s2(s2s

∗
2 + p3)s

∗
2s

∗
2 in T2 .

Thus, if we set w := 1(s1)0(s1)
∗, then 1 − w∗w = 0(s2s

∗
2 + p3) and 1 − ww∗ =

1(s2s
∗
2 + p3) are two properly infinite and full K0-equivalent projections in T2 ∗C T2.

Thus, there is a partial isometry a ∈ T2 ∗C T2 with a∗a = 1− w∗w and aa∗ = 1− ww∗

([Cun81]). The sum v = a+w has the required properties ([BRR08, Lemma 2.4]). �

Remarks 4.7. (i) The equivalence (iv)⇔(v) in Proposition 4.2 implies that all unital
properly infinite C∗-algebras are K1-injective if and only if the unitary v ∈ U(T2 ∗C T2)
constructed in Proposition 4.6.(iv) belongs to the connected component U0(T2 ∗C T2).

Note that v ⊕ 1 ∼h 1⊕ 1 in U(M2(T2 ∗C T2)) by [LLR00, Exercice 8.11].

(ii) Let σ ∈ U(T2) be the symmetry σ = s1s
∗
2+s2s

∗
1+p3 , let v ∈ U(T2∗CT2) be a unitary

such that 1(s1s
∗
1) = v0(s1s

∗
1)v

∗ (Proposition 4.6.(iv)) and set z := v∗1(σ)v0(σ) .

Then, q1 = 0(s1s
∗
1), q2 = 0(s2s

∗
2) and q3 = z0(s2s

∗
2)z

∗ are three properly infinite
full projections in T2 ∗C T2 which satisfy:

– q1q3 = 0(s1s
∗
1) v

∗ 1(s2s
∗
2) v = v∗ 1(s1s

∗
1)1(s2s

∗
2) v = 0 = q1q2 ,

– q2 ∼h q1 ∼h q3 in T2 ∗C T2 since σ ∈ U0(T2) and so z ∼h v∗v = 1 in U(T2 ∗C T2) ,
– q1 + q3 = v∗1(s1s

∗
1 + s2s

∗
2)v 6∼u 0(s1s

∗
1 + s2s

∗
2) = q1 + q2 in T2 ∗C T2 by Proposi-

tion 4.6.(iii).

Addendum

(iii) Let α = α0∗α1 be the unital ∗-endomorphism of the free product T2∗CT2 defined by
α0(sk) = 0(sk) and α1(sk) = v∗1(sk) for k = 1, 2. Then α0(s2s

∗
2+p3) = 1−α0(s1s

∗
1) =

1 − α1(s1s
∗
1) = α1(s2s

∗
2 + p3) and α0(s2s

∗
2) ∼h α0(s1s

∗
1) = α1(s1s

∗
1) ∼h α1(s2s

∗
2) among

the projections in α(T2 ∗C T2). But α0(p3) 6∼ α1(p3) in α(T2 ∗C T2) .
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