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Abstract

In this paper, a simplified model of a brass instrument is introduced. It is composed of a valve
(including the mechanics of the lips), a jet (coupled with the valve dynamics), and a straight acoustic
pipe excited by the jet, radiating in the air, and with frequency independent losses. This model
couples an ordinary differential equation (valve) to a partial differential equation (acoustic pipe)
through a static nonlinear function (Bernoulli relation on the jet). In fact, the overall system can
be described by a “so-called” nonlinear neutral state space representation, the state of which being
the position and velocity of the valve aperture and the ingoing wave of pressure at the entrance
of the pipe. The measured output is the pressure at the open end of the pipe and the control is
the mouth pressure. In this paper, methods of control engineering are applied to recover the state
from the input and the measured output, assuming that propagation characteristics and player
expression parameters are constant: a nonlinear state observer is built. The robustness to wrong

initial conditions and to noise on the measured output are analyzed.
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I. INTRODUCTION

Many physical models of musical instruments are available in the literature |1, 2]. But
their control to obtain realistic musical restitution is usually a problem, especially for self-
sustained instruments. Inversion of the model therefore appears as a natural tool to cope
with this problem, i.e., recovering the control parameters from a target sound. This problem
has already been investigated in the past [3, 4] using control engineering techniques, but
significant improvements are still needed.

A problem to cope with consists in recovering both the vibro-acoustic state and the
musician’s control parameters from a unique observation, namely, the sound produced. The
difficulty is increased by the fact that self-sustained instruments are able to generate a large
variety of regimes and, possibly, complex regimes such as chaotic ones [5]. Nevertheless, what
can be noticed for these systems is the fact that two separate time-scales can be considered.
Vibrating variables = (such as acoustic pressure, reed or lips motion, etc) oscillate mainly
at high frequencies compared to the control variables associated with the player’s gestures
G (pressure in the mouth, lip stiffness, etc).

Then, assuming some usual quantities are measured on the system, such as the pressure
radiated at the end of the instrument, called the “output” y, the inversion could be performed

in two steps :

(P1) the first step consists in recovering the full oscillating internal state = of the instrument
from the knowledge of y, assuming the control G is locally constant . This is achieved

by building a so-called “state observer” in control systems theory [6, 7];

(P2) the second one consists in computing the accessible parameters G from this observed

state. This could be achieved using adaptive filtering techniques [8, 9].

This paper addresses the first problem (P1) of elaborating a state observer for a simplified
brass instrument model, assuming that the output y is the pressure at the end of the pipe.The
observer is elaborated from the nonlinear neutral state space representation associated to
the overall system, using Lyapunov techniques. Other approaches based on e.g. sliding
modes can be found in [10].

The structure of the paper is as follows : section II introduces a simplified physical

description of the instrument. Section III proposes a state-space representation of the in-



strument deduced from the model of section II. Section IV is dedicated to the elaboration of
the state observer. Section V presents some simulation results. Conclusion and perspectives

will be presented in section VI.

II. DESCRIPTION OF THE INSTRUMENT AND PHYSICAL EQUATIONS

Consider a simplified instrument, of the brass instrument type, composed of (see Fig.1),

e a valve, the aperture of which is modulated by a single solid characterized by its mass,

stiffness and damping,
e a jet which applies a force on the valve,
e an acoustic pipe the vibrations of which are set in motion by the jet.

Each component is modeled as detailed below.

Moreover, the absolute pressure is denoted by the capital letter P and the relative pressure
by p = P— Py, where P, is the atmospheric pressure. In the mouth, the (relative) pressure
is denoted p,, and the particle velocity v,,. They are respectively denoted p;.; and vj¢; in

the jet.

A. Valve

The lips of the musician are represented by a one degree of freedom lip model: a valve
composed of a trapezoid-parallelepipedic solid & with mass m, moving in the vertical direc-
tion, subjected to pressure forces Fjy;4. and Fp,, a damping a, and a spring with stiffness
k. The bottom of the mass is located by the variable £(¢) and an open valve corresponds
to £ > 0. The equilibrium position at rest is denoted by £(t) = &, which is supposed to be
positive.

The dynamics of the solid S are governed by
m§+a§+/€(f—§e) :Fside+Fbot' (1)
The vertical component of the force due to the pressure on the sides of S is

Fside - (Aside sin 8) (pm - p0)7 (2)
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where the area Ag;q. of the lateral sides of S and the angle 6 in Fig.1 are supposed to be
constant. The force Fj; applied on the bottom side of S depends on the sign of &:

o If the valve is open, [}, is due to the jet pressure pj.; so that

if € >0, Fyot = Abotpjeta (3)

e If the valve is closed, Fj.; is a contact force. An empirical model of a contact with a

second lip (rather than with a non-realistic rigid body) is given by [11]
if € <0, Fyot = — ki€ — arigé — krp(€ — &,). (4)

Coefficients k,,, k4, and kj respectively correspond to an additional mass, damping and
stiffness due to the contact of the two lips. Some empirical values of these corrections

are (Km, Ko, ki) = (1,4, 3) [12-14].

The equilibrium position &, is a constant parameter set by the musician such that (1) is
satisfied (§ = &) with p,, = pjet = po = 0 and (arbitrary) constants m, a, k. Moreover, the
mouth pressure p,, and parameters (m, a, k, K, Ka, Kk, Aside, Apor) are characteristic of the
musician.

Note that more refined models of the lips mechanics have been studied: a two-dimensional

lip vibration model used for the trumpet sound synthesis can be found in e.g. [15].

B. Aperture geometry and jet

If £ <0, the valve is closed and there is no jet. If £ > 0, there is a jet under the solid S.

The geometry of the aperture is supposed to be rectangular with an area

A(t) = C€(1), (5)

(¢ is the lip width) much smaller than that of the mouth section A,, so that A < A,,.
The jet is considered to be governed by the Bernoulli equation (quasi-steady jet and losses

ignored)
1

1
P+ =PV, = U5y + Dier- (6)
2 2



From the conservation of the airflow, the particle speed |v,| = |-jer| < [vje¢| is neglected

in (6). Finally, for relative pressures, this yields

1 .
Pm = Epvjz'et +pjeta lff > 07 (7)
Vjet = 0, lff S 0. (8)

Remark 1 From (7), pm > pjet so that the jet is oriented from the mouth towards the pipe,
that s,

Vjet Z 0.

More elaborate models which authorize negative v;e, have also been proposed [16]. This case

will not be considered in the present paper.

C. Acoustic pipe and boundary conditions

Consider the linear acoustic propagation of plane waves in a lossless straight pipe with
section S and length L. It is described by the conservative equations

D
O +

e 0
s o |?| = vz e [0, L), 9)
Uu 0

0
S U 0
P

where p(z,t) is the pressure at location z and at time ¢ in the pipe, u is the airflow and c is

the celerity of the wave. Using the change of functions

Paom|? (10)

P u
oz X 1 1 . -
where M = 3 , M~ = and Z. = pc/S is the characteristic

1 —ZC 1/Zc _]-/Zc
impedance, the conservative equations yield

O +cdpt =0, (11)
Op~ —cdp” =0, (12)

which govern decoupled progressive waves and solve into

Pz t) = py (¢ F 2/c). (13)
The boundary conditions are the following;:
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e at z = 0 (connection between the jet and the acoustic pipe), the airflow and pressure
are assumed to be continuous, following remarks of Hirschberg [17] (experimental

validations has been also obtained for the mouthpiece of a clarinet [18]):

pjet(t) =p(0,t) = py (t) + o (1), (14)

A(t) vjer = ujer(t) =u(0,t) = (— (15)

at z = L, consider the non homogeneous boundary condition given by p(z = L,t) =
Zpu(z = L,t) with a real passive impedance Z;, > 0. From (9) and (13), this expres-

sion translates into

po (t) = Apg(t—1), (16)
T =2LJc, (17)
A= (Zy—2)/(ZL+Z) € (1,1). (18)

Notice that this boundary condition is very simplified compared to realistic radiation
impedances. But it allows to catch basic versions of the main effects. For instance,
the usual correction of the pipe length due to the imaginary part of the radiation
impedance can be included in the length L (simplified case of a constant length cor-
rection). Moreover, the radiated energy which is lost by an open pipe involves a small
real positive impedance part. Here, 7, < Z, (so that A < 0) models a frequency-

independent version of such a phenomenon.

In the discussion which follows, the notation p*(t) will be used rather than

Py (t)-

IIT. STATE-SPACE REPRESENTATION

A. Definitions of neutral systems, state, input, output, and reduced parameters

A neutral system [19, 20] is a delay differential system with the general expression

i(t) = f(z@t),z(t —7),4(t—7),w(t))

y(t) = g(=(t),z(t —7),2(t — 7), w(t))



where the function f is responsible for the dynamics of the system and ¢ defines the measured
quantity. As detailed below, the model presented in section II can be represented by such
a system, where the state x = [z, 7o, 237, the input w = [wy, w,]T, and the output y are

defined by

2(t) = [£(t) = &, £(1),p" ()], (21)
w(t> = [pm(t)vpm<t)]T7 (22)
y(t) = (L+X)p(t—7/2). (23)

Note that y(t) = p(L,t) is the pressure measured at the output of the pipe and that the
time derivative p,, of the mouth pressure will be necessary when establishing the neutral
state-space representation (see section II1C).

In this paper, the instrument is considered to be at rest before ¢ = 0 so that x, w, and y
are zero for t < 0. Moreover, quantities ., m, a, k, Agige, Apot, 0, p, ¢, S, Ly by N, Ky Ka,
k. introduced in section Il are all supposed to be constant. It will appear that the neutral
system depends on the reduced constant parameters © = [a*, w®, 3T, 8%, \, i, 7] defined in

tablel. The equations of the neutral system for the brass instrument are derived below.

B. Mechanics of the lips

Combining equations (1) to (4) and (16) yields the following equations:

if€>0, &) +atE(t)+ (W) EW) -&) =

By (0 () + Ap™ (t=7)) + Brpm(t), (24)
if € <0, &(t)+a §(t)+ (w )W) —&) =

By (07 () + AT (t=7)) + B, D), (25)

where the coefficients are given in Tab.I. Hence, from (21), (23), it follows that, writing

o = sign(),
i1(t) = x2(t), (26)
To(t) = —(w7)2w1(t) — a”xy(t)
+65 (x3(t) + Azs(t—7)) + Brws (t). (27)



C. Jet and acoustics
1. Case (>0

Using (5) and (14-16), equations (7) rewrite as follows:

(Pt =t —1)
it =5 (g5

where the coefficients are given in Tab.I. Then, writing

pr(t) = ApT(t—7)

) pt() (- 7). (28)

= 2
it = 1+ T (29)
and isolating p*(¢) from the time derivative of (28) yields
. 2
D) =22 () (p+(t§($f )
pr(t)= )
+Apt(t — 7).
+ + 2
Then, using (28) to substitute for (%) in the above equation leads to
(- 2%() (pm<t>§(+t§t>xp+<w))
pr(t)= )
ATt — 7). (30)

Remark 2 For initial condition of (pm,pt,&) satisfying (28) at t = 0, the trajectory of
(30) also satisfies (28) for t > 0. Equation (30) is then weaker than (28) but will be useful

to derive the expected neutral state-space representation.

Remark 3 For closing lips, that is {(t) — 0T, the behavior of p* is such that, from (28),

pr(t) =W (t—7)+ é(t)\/% (pm(t) = 22p*(t = 7)) + O(€°(1))

ot

so that, in (29), excluding the case p,,(t) = 2\p™(t — 1),
2

() - §(t)
pt (t) —Ap* (t N T) o \/ (pm(t) —2\p* (t B T)>

2
I

+0(£4(1),

and, in (30),

Pt = Nt —7) + \/2u(p,n(t) = 2t (t = )E() + O(£(t)).

0+



2. Case (<0

Similarly, equation (8) and the time derivative of its left and right hand sides rewrite as

follows:
pr(t) = Ap*(t—1), (31)
pr(t) = Ap(t—1). (32)
3. General expression

Equations (30,32) are summarized by the following unique equation :

2ao(t) (w1 (t)—w3(t)—/\x3(t—¢))

] O-_|_1 UJQ(t)_2)\.T3(t—T)+ 71 (LH-Ee
T3 (t) = 9 1 z3(t)— Az (t-7)
+ p="—=
(e1(0+¢. )
Fd(t — 7). (33)

D. Final neutral state-space representation

Equations (21-23) and (26,27,33) define the model of the instrument as a nonlinear neutral
system, that is, a system described by (19-20). More precisely, functions f and g have the

simple formulations

f(x(t%x(t—r)@(t—r%w(t)) = F(x(t),xg(t—T)@g(t—T),w(t)) (34)
g(x(t)7x(t—r)@(t—r)w(t)) =Cu(t-71/2), (35)
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where C' is the observation matrix C' = [0,0,1 + A] and F' is given by, for all the formal
variables (X,Y,Z, W) e R* x R x R x R?,

(XY, Z, W) =10,1,0]X, (36)

B(X,Y,Z,W) = —(w7)*X; — a" Xy + 8] X3

ALY + B, W, (37)
Wy — 207 + 22 <”§;+§j”)
F3(X7Y7Z7W> = 1+N X;;—/\Y2
(X1+£e)
+AZ, if X, +£.>0, (38)
F(X,)Y,Z,W) = \Z, if X, +& <0, (39)

recalling that, in (37), o denotes symbol + if £ = X; + £, >0 and symbol — otherwise. Ex-
pressions (36-37,39) are linear with respect to X,Y,Z W while (38) is the nonlinearity

responsible for the self-oscillation of the musical instrument.

Remark 4 The difficulties due to the discontinuities in (37-39) when sign(§) changes, are
not examined here. Nevertheless, numerical results presented in section V show that the case
& < 0 1s sparse and that deriving the observer with no special treatment of these discontinu-

ities (section IV) yet produces a quite satisfying behaviour.

In order to obtain a non delayed version of the output, the following change of state is
introduced
a(t) = a(t —7/2),
so that (19) and (20) rewrite
B(t) = F(T(t), Ts(t — 7), 23t — 7),w(t — 7/2)), (40)
y(t) = Cr = @s(t). (41)
For sake of simplicity, we will keep in (40-41) the notation x(t¢) in place of z(t).
Remark 5 Following remark 2, the neutral system given by (36-41) describes the physical

model of our instrument if the initial conditions satisfy (28) or (31), namely, at t =0,

X5 —AY\? _
W, = S (222 X34\, if Xi+& >0,
1 2(X1+£e)+3+ X

X3 =AY, otherwise.

11



IV. STATE-OBSERVER

As mentioned in the introduction, the problem which is considered here is the construction
of an asymptotic state observer, assuming that the constant parameters © and the mouth
pressure p,, are known. The idea is to use an extended Kalman filter type observer [21]
elaborated from the nonlinear neutral system presented in section III. This observer will
depend on the output error but also on its delayed value.

The gain matrices of the observer will be chosen to stabilize the linear time-varying
neutral system governing the linearized equation of the estimation error vector. The proof
of stability relies on a suitable Lyapunov function. The links with the local stability of the

nonlinear error equation will be discussed.

A. Definition of the observer

The following state observer for system (40-41) is proposed :
a(t) = F(&(t),23(t — 1), 23(t—7),w(t — 7/2))
A (y(t) = 9(t) — Ao (y(t—7) = y(t—"7)), (42)

where A; and A, are 3 x 1 gain matrices.

B. Linearized error equation

Let e denote the estimation error vector:
e=ux— 1. (43)

The matrices A; and A, will be chosen such that the following linearized dynamical equation

of the estimation error is locally asymptotically stable :

é(t) = A(t) e(t) + B(t) es(t — 7) + H(t) és(t — 1), (44)
where
OF
AX)Y,Z W) = 8—X(X, Y, Z, W)+ A, C, (45)
B(X,Y,Z, W) = g—i(x, Y, Z, W) + Ay [Cls, (46)
H(X,Y,Z, W) = g—Z(X,Y,Z, w). (47)

12



and A(t) = A(&(t), &3(t — 1), &3(t—7),w(t)) and similarly for B(t) and H(t).
This property will be proved in Theorem 1, section IV D, the proof of which relies on the

following technical lemmas.

Remark 6 In the case of lips (versus to the case of reeds), 0 is positive (see Fig. 1). More-
over, for closed lips the energy in the pipe is dissipated by the real passive impedance modeling
the radiation (see (16)). Then, playing the musical instrument in a standard way (blowing
situation, p,, > 0) involves that the lips cannot be blocked in a closed configuration. More-
over, the empirical values (K, ko, ki) = (1,4, 3) used for the contact force (see (4)) help the
system leave a “closed lips” configuration faster than with no contact force. In practice, the

system mainly operates with open lips.

C. Technical lemmas
Lemma 1 The gain matriz Ay can be chosen such that B(t) in equation (44) is zero.

Proof : From (36-39) and denoting Ay = [Xa1, Aao, Aos]?, it can be easily shown that:

(T+X) Aoy
B(X,Y,Z, W)= | O7+({1+A)A
OF.
Sy (1F ) Az
where it is then clear that the \o;, ¢ = 1,--- , 3 can be chosen such that B is the null matrix.

This ends the proof. ¢

Remark 7 From lemma 1, the gain matriz Ay in the observer equation (42) will be time

dependent and a function of X = i(t), Y = is(t — 1), Z = a3(t—7), W = w(t — 7/2).

Lemma 2 The matriz H(t) = H(x(t), z3(t — 1), 23(t — 7),w(t — 7/2)) defined from (47) is
such that :
H(H) < A < L

Proof : First, if X3 — A\Y > 0, then | H(X,Y, Z, W) |< |\|. Indeed, from (36-39), it follows

13



that H(X,Y, Z, W) = [0,0, Hs(X,Y, Z,W)]" with

OFy(X,Y,Z,W)
0z
1 - G(X,Y,2)
p— 4
A1+G(X,Y,Z)’ (48)
where G(X,Y,Z) = (X1 + &)?/(u(X3 — AY)) if X; + & > 0 (see Remark 3) and
G(X,Y,Z) = 0 otherwise. Now, |1 — G(X,Y,2)|/|1 + G(X,Y,Z)| < 1 if and only if

G(X,Y,Z) > 0. This last condition is satisfied if X3 — AY > 0.

Hy(X,)Y,Z, W) =

Second, from equations (7,8) and following Remark 1, v;.(¢) > 0. Then, from equations
(15,16) and since A(t) > 0, it follows that p*(t) = A\pT(t — 7) + A(t) Zovjer(t) > ApT(t — 7).
This concludes the proof, taking X = z(t), Y = z3(t — 7). ©

Remark 8 Since |\| < 1, the inequality |]ﬁ1(t)\ < 1 will be also satisfied for a sufficiently

small estimation error.

Lemma 3 Let x > 0. The matriz gain Ay can be chosen such that K(t) in equation (44)
takes the following form :

0 1 0
A — —(W%)? —a®| 0
MSl I\\7J132 ‘—X

where 6 = sign(&e + &) and M(t) = M (2(t), #3(t — 7), @3(t —7),w(t — 7/2)) with M =

g—i(X, Y, Z,W). This choice of A1 ensures that e; and ey are decoupled from es’s dynamics.

Proof : From (36-39), and denoting A; = [A11, 12, Mi3]7,

00 Ay
A=M+MC=M+1+N)] 00 Ay
00 A3
~ 0 1 ) ) )
Denote ' = Mj.0 1.0 = ) | . The result is then obtained by choosing
_(w0)2 —af
0 0 0
1 ~
A= — - M = B¢
] 0 0
—X 1 —x — M3

14



and noticing that € = [e;, e5]” satisfies the following dynamical equation :
¢ =Fe (49)
where the constant matrix F' is Hurwitz. ¢

Remark 9 The matriz F' is constant (with respect to the time) for open lips (0 > 0). The

same holds for closed lips (see remark 6).

D. Main stability result

The main stability result is stated by the following theorem.

Theorem 1 There exist positive constants k > 0 and n > 0, such that for every solution of

equation (44), the following inequality holds :

(e%(t)—l—eQ + e3(t +ft )S

ke Mt (e%(O) + €3(0) + €3(0 +f )

Proof : From lemma 3, F' being Hurwitz, define the symmetric positive definite matrix P

(50)

solution of the matrix Lyapunov equation [7] :
F'P+ PF = Iy,

I55 denoting the 2 x 2 identity matrix.
Now, consider the following Lyapunov function candidate where C' > 0, K > 0 and v > 0

are suitable positive constants :
o2 t
V= CES + Ke' Pe + / es?(s)e =) ds. (51)
t—1

Let us recall the estimation error equation (44), that is,

~

é(t) = A(t)e(t) + B(t) es(t — 7) + H(t) és(t — 7)

where A is given in lemma 3, B is zero using lemma 1 and H = 0,0, Hg]t is defined as in
lemma 2.

If the constant C' is chosen to be equal to C' = 2y, where x > 0 is defined in lemma 3, the
time derivative of V' along the solutions of the dynamical equations of the above observation

error can be written as follows :
V=T +Ty+Ts (52)

15



where
T, = _X2€§ — é32<t —7)(e™ — ]:Ig(t))
—K(ef +€3)

t
—V/ é52(s)e ") ds, (53)
t—1

Iy = (M:ﬂ@l +M32€2)27 (54)
T3 = Qﬁg(Mglelég(t — T) —+ Mgg@gég(t — 7')), (55)

where Nfgl and Aj[gQ are defined in lemma 3.
Notice that for all € > 0 and for all e}, e; and e3(t — 7), the following inequalities hold

for some positive constants R; and Rj :

—_

T3 < ~(ef +e3) + Riees®(t — 1) (56)

€
and

Ty < Ry(ef +¢3). (57)

T

Moreover, from lemma 2, if the constant v in V is chosen sufficiently small, (e™*7 —

H2(t)) > e ™™ —A2>6 >0, for all t and 7 € [0,2L/c], so that :

V < —x%e2 —de(t — 1)
—(K — Ry)(€} + €3)
1
—l—z(e% +e3) + Riecs*(t — 1)
t
—u/ ¢52(s)e ") ds. (58)
t—r
Choose
S (59)
‘TR,
which leads to :
' o9 0.,
V < —x 63—563 (t—1)
2Ry, o

(K~ Ry = =) (e + )

¢
—V/ €52 (s)e =) ds. (60)
t—1

16



4R
Then, for K = Ry + Tl and for a suitable positive constant 1 > 0, the following inequality

holds:
V< -—nV (61)

which ends the proof. ¢

Notice that the weight e** in the integral term of the Lyapunov function is essential
to get a strict Lyapunov function. It is similar to the one introduced by Castelan and
Infante [22| for matrix difference differential equations and also by Coron [23] to stabilize
the Euler equation of incompressible fluids. More recently, it has also been used for lin-
ear symmetric hyperbolic systems [24| and for exponential stabilization of one-dimensional

nonlinear hyperbolic systems |25, 26].

V. SIMULATION RESULTS AND DISCUSSION

Observation results have been performed on outputs y, simulated using an Euler explicit
scheme on (40), that is, using the recursive equations z((n + 1)T) = z(nT) + Téz(nT)
with 0z(nT) = TF(x(nT), z3((n — 2N)T), 6z ((n — 2N)T), w(n — N)T)) where T is the
sampling period (7" and the length L are chosen such that N = 7/(2T) is integer). To be
more realistic, Gaussian noise signals have been added to y.

Since the observer (42) is local, the initial conditions of & must be chosen sufficiently
close to the actual initial condition z(0) = 0.

To test the robustness of this observer, several deviations on initial conditions and several
noise measurements have been considered.

It is important to notice that, due to lemma 3, the characteristic damping of & = [e1, €]
is a. Moreover, the time constant of the observer is governed by « and x. The arbitrary
damping coefficient x in A can be preferentially chosen greater than the fixed constant a.
In practice, it is natural to choose y =~ « (or slightly greater than «).

Figure 2 presents a quasi ideal situation with initial conditions close to the actual ones
and low noise. It can be seen that the proposed observer has a pretty good behavior. More
precisely, the observer & converges rapidly towards x and the measurement noise is weakened

quite well.
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In Fig. 3, initial conditions have been chosen quite far from the real ones: the error
(p™(0) — p*(0)) is about 20% of the mouth pressure p,,. The obtained results show that
the transient behavior is longer than in Fig. 2 as expected, but the observer succeeds in
retrieving the real value of the state.

Figure 4 shows that for larger measurement noises, the observer is still available
(Cnoise/Pm = 4% seems to be closed to the limit, here).

Figure 77 illustrates the robustness with respect to deviations on parameters «, p,, and
w. After 0.15s, the error on initial conditions seems to be rejected and, despite the noise
measurements and the deviation on parameters, the observer is locked on the original system
dynamics. In particular, we can notice that even the behaviour of the lip states (z1, ) is
still relevant.

Finally, Fig. 6 shows that increasing y improves the convergence: now the transient part
only lasts about 0.6s and the estimation error is smaller than in Fig. 5. More generally, we
have observed that: using xy < « gives bad results (the observer converges too slowly); using
the natural choice y ~ a (natural damping time scale of the original system) is satisfying;
using larger values improves the observer convergence (but of course, too high values will
also capture the noise).

Notice that since y = (1 + \)x3 is a “measured” quantity, in a simpler approach, it is not
necessary to estimate x3 and it could have been sufficient to elaborate observer based on x;
and x5 only. Nevertheless, since there are noise measurements, the total observer proposed
here proves to be more robust. Indeed, in Figs. 2, 3, 4, the noise on Z3 has been significantly

reduced compared to that on y.

V1. CONCLUSION

In this paper, a nonlinear observer of a simplified model of a brass instrument (a lip blown
cylinder with frequency independent losses) has been introduced. It has been proved using
Lyapunov function techniques on neutral systems that the observer gains can be tuned
to ensure the asymptotic stability of the linearized estimation error equation. Moreover,
although the proof ensures only local stabilization, simulation results exhibit good robustness
properties with respect to wrong initial conditions and significant noise on the measured

output.

18



Future works could consist in improving both the resonator and the exciter models.
For the resonator, models based on e.g. the Webster equation with realistic (frequency-
dependent) losses [27, 28] could be considered. For such a model, associated Lyapunov
functionals are available so that our approach could probably be adapted. For the exciter,
the problem of finding sufficiently simple energy-balanced models is under study: their
energy functional could constitute a Lyapunov functional candidate. Using the total energy
of the instrument could help to derive a globally asymptotic observer.

Another work will concern the second problem (P2) described in the introduction, that
is, computing the “player’s gestures” from the measured output and the proposed observer.
It could be processed by using adaptive filtering techniques and would thus complete the

global inversion problem.
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Table I: Reduced parameters (o denotes o = sign(§)).
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Figure 1: The dynamics of the musician’s lips are modeled by that of a solid mass subjected to
pressure forces, a damper and a spring. Variables p denote (relative) pressures and variables v

denote particle velocities.
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Figure 2: Simulation of the system (-) and of the observer (--) from the noisy output y (-). The
simulations are performed for the following parameters: a = 150s~!, x = 160s~!, L = 1, p,,, =
1.5e4Pa, w = 5355~ !, quasi-ideal initial conditions #(0) = [le — 3,1e — 1, %}T and low noise

Unoise/pm = 0.01.
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Figure 3: Simulation of the system (-) and of the observer (--) from the noisy output y (-). The

simulations are performed for the following parameters: a = 150s~!, x = 160s~!, L = 1, p,,, =

y(0)

, H—/\]T and low noise

1.5e4Pa, w = 535571, a large deviation on initial conditions Z(0) = [5e — 3,1

Unoise/pm = 0.01.
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simulations are performed for the following parameters: a = 150s~!, x = 160s~!, L = 1, p,,, =

1.5e4Pa, w = 53551, quasi-ideal initial conditions #(0) = [le — 3, 1le — 1, ?{i—oi]T and large noise
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Figure 5: Simulation of the system (-) and of the observer (--) from the noisy output y (-) and
with parameters deviations. For the original system, simulations are performed with the following
parameters: o = 150s™', x = 160s~ !, L = 1, p,, = 1.5e4Pa, w = 5355~ . The added noise
corresponds to opeise/Pm = 0.02. For the observer, simulations are performed with the following
wrong parameters: o’ = 1.1a, p%, = 1.1p;,, w = 1.1w° and quasi-ideal initial conditions #(0) =

0
[le —3,1e — 1, %7
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