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HAL Id: tel-00925941

https://tel.archives-ouvertes.fr/tel-00925941

Submitted on 8 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

So far, the distributed computing community has either assumed that all the processes of

a distributed system have distinct identifiers or, more rarely, that the processes are anony-

mous and have no identifiers. These are two extremes of the same general model: namely,

n processes use l different identifiers, where 1 ≤ l ≤ n. We call this model homonymous

model. To determine the power of homonymous model as well as the importance of iden-

tifiers in distributed computing, this thesis studies the consensus problem, one of the most

famous distributed computing problem.

We give necessary and sufficient conditions on the number of identifiers for solving con-

sensus in a distributed system with t faulty processes in the synchronous case. We show

that in crash, send omission and general omission failures model, the uniform consensus

is solvable even if processes are anonymous. Thus, identifiers are not useful in that case.

However identifiers become important in Byzantine failures model: 3t + 1 identifiers is

necessary and sufficient for Byzantine agreement.

Surprisingly the number of identifiers must be greater than n+3t
2 in presence of three facets

of uncertainty: partial synchrony, Byzantine failures and homonyms. This demonstrates

two differences from the classical model (which has l = n): there are situations where

relaxing synchrony to partial synchrony renders agreement impossible, and, in the partially

synchronous case, increasing the number of correct processes can actually make it harder

to reach agreement.
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We show two ways to notably reduce the number of identifiers for Byzantine agreement.

Firstly, removing the ability for a Byzantine process to send multiple messages to the same

recipient in a round, t+1 identifiers are sufficient, even in the partially synchronous model.

The second way is to increase the knowledge of the system for each process assuming each

process knows how many processes share the same identifier.

Finally, we consider the Byzantine agreement in a natural extension of homonymous model,

assuming that Byzantine processes can forge identifiers of correct processes.
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Résumé

Un système distribué est constitué d’entités (ordinateurs, processus, capteurs...) qui com-

muniquent entre elles par exemple en envoyant et recevant des messages. Dans la plupart

des protocoles développés dans de tels systèmes, les différentes entités ont un nom unique

qui permet de les identifier sans ambiguité. Ainsi le récepteur d’un message sait qui en

est l’émetteur et l’émetteur sait vers qui le message a été envoyé. Cette hypothèse suivant

laquelle il est toujours possible d’associer un nom unique à chacune des entités considérées

est une hypothèse très forte qui est souvent difficile à réaliser réalisable et parfois non

souhaitable.

Tout d’abord, dans de nombreux cas, avoir des identifiants uniques pour chaque entité est

une hypothèse discutable. Par exemple, les identifiants peuvent provenir soit d’un nom

physique comme une adresse MAC, soit d’un nom logique comme une adresse IP. Dans les

deux cas il peut y avoir des adresses dupliquées de manière volontaire ou non. Prenons le

cas des adresses MAC, elles devraient être en théorie infalsifiables, car inscrites sur la carte

d’interface réseau et accessibles en lecture seule. Tout constructeur de carte d’interface

réseau achète à un organisme centralisateur IEEE, un “numéro constructeur” de 22 bits

qui est le début de l’adresse MAC. Chaque constructeur peut ensuite utiliser les 3 octets

restés libres, et donner ainsi une adresse MAC unique à chaque carte. Mais en pratique

ce n’est pas toujours le cas.

D’abord pour des raisons économiques, un constructeur peu scrupuleux peut donner pour
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des cartes produites à grande échelle la même adresses MAC. Par ailleurs, les systèmes

d’exploitation peuvent permettre, via le pilote de la carte, de modifier volontairement ces

adresses.

Lorsqu’il n’y a pas d’intention malveillante et que toutes entités sont sur le contrôle d’une

administration réseau, il est assez facile de maintenir l’unicité des identifiants. En cas de

duplication, une fois la source de l’adresse non unique identifié, l’administrateur modifie

l’adresse via le pilote de la carte. Par contre ce n’est pas du tout la même chose quand il

y a des intentions malveillantes ou que les entités sont sur un réseau à large échelle. Une

attaque très simple consiste à dupliquer une adresse MAC existante sur le réseau sur la

machine hostile. Ainsi, un switch standard verra la même adresse sur deux de ses ports

et diffusera les paquets sur les deux ports.

La situation est la même lorsque l’adresse est une adresse logique. Les adresses IP étant

des adresses logiques sans authentification, il n’est pas difficile de les dupliquer et une at-

taque classique (masquerading attack, spoofing...) consiste justement à utiliser de fausses

adresses IP. Dans des systèmes pair-à pair comme Chord [65] ou Pastry [62], les adresses

logiques sont obtenues par une fonction de hachage (par exemple SHA-1). Bien que la

probabilité soit très faible (on peut sans doute la considérer comme négligeable) il est

possible qu’il y ait des collisions, plusieurs entités obtenant alors la même adresse. Mais

surtout ces fonctions sont aussi potentiellement cassables [67], un utilisateur malveillant

peut connaitre pour une adresse, les différentes entrées à donner à la fonction pour obtenir

en sortie cette adresse. Et donc un utilisateur malveillant voulant usurper une adresse

donnée pourra l’obtenir de la fonction d’adressage sans être suspecté. Dans le cas des

réseaux pair-à-pair, une attaque classique est la “sybille attaque” pour laquelle une entité

malveillante va créer de nombreux identifiants pour par exemple subvertir un système

de réputation. Il s’agit encore ici d’un cas où une entité (malveillante) obtient plusieurs

identifiants (logiques). Il est clair que des systèmes cryptographiques peuvent permettre
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d’assurer l’authentification des entités sut le réseau et de cette façon assurer un système

avec des identifiants uniques certifiés. Cependant, le coût en ressources et en infrastruc-

ture (gestion des certificats, autorité de certifications et de validation) est généralement

trop élevé pour être utilisé dans de nombreux cas.

Au-delà de la difficulté d’assurer un système avec des identifiants uniques pour chaque

entité, ce n’est pas toujours souhaitable. Une question de plus en plus importante avec le

développement du numérique est de maintenir le respect vie privée (privacy). La façon la

plus naturelle d’assurer ce respect de la vie privée est d’assurer une forme d’anonymat et

pour des raisons de confidentialité on peut vouloir de ne pas devoir révéler son identifiant.

C’est le cas par exemple pour un vote, où il n’est pas souhaitable que le vote individuel

soit connu et associé à l’identité de chaque participant. C’est aussi bien sûr aussi le cas si

l’on veut préserver des données personnelles. Dans toutes ces situations on sera amené à

assurer une sorte d’anonymat, au moins partiel.

Pour assurer cet anonymat partiel ou partant du constat que d’avoir des identifiants

uniques est souvent impossible à assurer, on pourrait essayer de se passer totalement

d’identifiants. Le système est alors anonyme et il est impossible de distinguer une entité

d’une autre entité. Ce genre de système pourrait être tout à fait satisfaisant pour un

système client serveur, où les clients veulent connaitre l’identifiant du serveur mais pas

l’inverse. On notera cependant que ce système n’est pas réellement anonyme puisque les

clients doivent a priori être capables d’identifier de façon unique les serveurs. Mais surtout

malheureusement, très peu de problèmes peuvent trouver une solution dans un système

totalement anonyme.

Prenons comme exemple le problème classique de l’élection de leader. Si on dispose d’un

leader dans un système distribué celui ci peut servir de coordinateur entre les différentes

entités. Lorsque l’on dispose d’identifiants uniques et en l’absence de défaillances ce prob-

lème est facile à résoudre: il suffit par exemple de choisir l’entité ayant l’identifiant le
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plus petit. Par exemple, si les entités sont organisées suivant un anneau où chaque entité

peut communiquer avec son prédécesseur et son successeur sur l’anneau en échangeant

des messages, chaque entité peut connaitre les identifiants des autres entités. Le leader

est alors celui qui a l’identifiant minimale. Mais sans des identifiants uniques dans un

système anonyme il devient impossible d’élire un leader sur ce même anneau [3]. Plus

généralement dans un système anonyme très peu de choses peuvent être calculées. Il est,

par exemple, impossible de compter le nombre d’entités dans le système distribué. On

trouvera dans [5, 42] de nombreux autres exemples de problèmes impossibles à résoudre

dans des systèmes anonymes. Bien sûr, en présence de défaillances des entités, Il y aura

encore moins de problèmes pouvant être résolus.

En présence de défaillances, les problèmes d’accord sont fondamentaux. De façon assez

naturelle la plupart de problèmes de tolérance aux défaillances peuvent se ramener à la

possibilité de réaliser un accord entre des entités. Ainsi le problème du consensus a été

très largement étudié depuis plus de trente ans. Ce problème est en effet à la base des

techniques de réplication active qui permettent d’assurer un service en présence de dé-

faillances : toutes les entités répliquées ont le même comportement et toutes traitent les

requêtes des clients dans le même ordre en maintenant ainsi la même succesion d’états

internes, elles donneront ainsi les même réponses aux clients. De cette façon, un client,

en interprétant (par exemple par un vote) les réponses aux requêtes provenant des entités

répliquées obtiendra une réponse à ses requêtes. Et même si certaines entités sont défail-

lantes, celles qui sont correctes assureront de façon cohérente le service requis auprès des

clients. D’un point de vue plus formel, il s’agit de la “state machine approach” définie par

Lamport [46].

Il est bien connu que, même avec des indentifiants uniques, ce problème est impossible à

résoudre lorsque le système est asynchrone c’est -à-dire si l’on ne connait pas de bornes sur

les relais d’acheminement des messages [34]. Par contre, dans un système synchrone avec
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des indentifiants uniques on peut facilement résoudre se problème. Mais pour résoudre le

problème du consensus dans un système synchrone les indentifiants uniques jouent un rôle

fondamental. En particulier, il a été prouvé dans [55] que dans les systèmes anonymes le

consensus est impossible, même avec un seul processus malveillant et même dans le cas

synchrone.

Comme on le voit avec un système anonyme la plupart des problèmes ne peuvent pas être

résolus, aussi nous proposons dans cette thèse d’étudier un modèle intermédiaire. Dans ce

modèle les processus ont bien des identifiants mais ils ne sont pas nécessairement uniques:

plusieurs processus peuvent avoir la même identifiant. Si l est le nombre d’indentifiant et

n est le nombre de processus; le modèle où tous les processus ont des identifiants distincts

( l = n) et le modèle où tous les processus sont anonymes (l = 1) sont les deux extrêmes

du modèle que nous proposons ici. Ce modèle que nous appelons modèle avec homonymes

permet donc à la fois de prendre en considération les modèles classiques où chaque entité

a un identifiant unique et le modèle où les entités sont totalement anonymes. Il nous

permettra de déterminer quel est le nombre d’identifiants nécessaires, c’est-à-dire aussi le

niveau d’homonymie, permettant de résoudre certains problèmes.

Nous pensons que ce modèle avec homonymes avec permet de mieux prendre compte la

situation réelle des systèmes distribués et, les processus étant partiellement identifiés, de

résoudre, suivant le niveau d’homonymie, des problèmes qui ne pourraient l’être dans

un système totalement anonyme. Le fait d’identifier plusieurs processus avec le même

identifiant peut aussi permettre de préserver la confidentialité. Pour reprendre l’exemple

du vote, si plusieurs processus ont la même identité, les autres processus savent que l’un

d’entre eux a fait un vote particulier mais ils ne savent pas lequel. D’une manière générale,

en considérant que les entités ayant le même identifiant font partie d’un même groupe, on

ne pourra distinguer entre les membres d’un même groupe, ce qui maintient une certaine

confidentialité à l’intérieur d’un groupe.
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Cette thèse porte donc sur l’étude de ce modèle avec homonymes. Comme l’anonymat

peut être lié à des défaillances (volontaires ou non) il est naturel d’étudier ce modèle en

présence de défaillances des processus. Par ailleurs, comme rappelé ci-dessus, dans le cadre

de la tolérance aux défaillances, les problèmes d’accord jouent un rôle fondamental, nous

concentrerons essentiellement sur ceux-ci.

De façon plus générale, l’étude du modèle avec homonymes nous donnera une meilleure

compréhension de l’importance des identités dans les systèmes distribués.

Rappelons tout d’abord les résultats connus sur le consensus dans le modèle où les iden-

tifiants sont uniques

Consensus et travaux reliés Dans le problème du consensus, chaque processus propose

une valeur initiale et une spécification classique du consensus est:

• (Terminaison) de façon ultime, tous les processus corrects 1 décident.

• (Accord) Si deux processus corrects décident ils décident la même valeur.

• (Validité) Toute valeur décidée est une des valeurs proposées.

Il existe plusieurs versions du consensus suivant le type de pannes que l’on considère et au

cours de cette thèse on précisera la spécification du consensus. Ainsi lorsque les pannes

sont des pannes byzantines (un processus byzantin peut dévier arbitrairement de son code),

la propriété de Validité devient: si tous les processus corrects proposent la même valeur

alors cette valeur est celle décidée (par tout processus).

Dans les modèles de pannes bénignes: pannes par arrêt (crash), pannes par omission de

réception et/ou omission d’émission on considérera une version plus forte du consensus

dans laquelle les processus incorrects s’ils décident, doivent décider de la même valeur que

les processus correct. Ce consensus est nommé uniforme.
1Un processus correct est celui qui n’a pas de défaillances
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Le problème du consensus a été d’abord étudié dans le modèle des pannes byzantines [47,

52]. Dans les systèmes synchrones, en considérant un modèle de rondes 2 il est possible de

trouver des algorithmes efficaces pour résoudre le consensus en présence de pannes crash et

de pannes par omission d’émission ou de réception, par contre le problème du consensus

dans le modèle des pannes byzantines est plus difficile. Dans [47], il est prouvé que si

n est le nombre de processus et t est le nombre maximal de processus byzantins, alors

le consensus est possible si et seulement si n > 3t. L’algorithme prouvant la condition

suffisante est en t + 1 rondes ce qui est optimal comme le montre [33]. Cependant, la

taille des communications échangées dans cet algorithme est exponentielles en t. Des

algorithmes polynômiaux en la taille des communications du consensus ont été présentés

dans [29, 26, 63, 66].

Ces algorithmes sont basés sur des diffusions authentifiées [63], qui garantissent que tous

les processus corrects reçoivent exactement les mêmes messages à “peu près” dans la même

ronde. Les algorithmes de consensus en présence de pannes byzantines dans cette thèse

sont inspirés de cette approche et adaptent au contexte des homonymes ces diffusions

authentifiées.

Dans le système partiellement synchrone où, à partir d’un certain moment qui n’est pas

connu, les calculs se font en rondes synchronisées, des algorithmes de consensus ont été

proposés dans plusieurs modèles des pannes [31].

Dans systèmes synchrones, en présence de pannes crash et de pannes par ommisision

d’émission, contrairement au consensus qui est résolu même quel que soit le nombre de

pannes, Neiger et Toueg [53] ont montré que le consensus uniforme ne peut être résolu si

la moitié ou plus de la moitié de processus tombent en pannes par omission d’émission ou

de réception. Plusieurs algorithmes de consensus uniforme sont proposés dans [57, 56, 60].
2Dans un modèle de rondes, à chaque rondes tous les processus corrects envoient un message, reçoivent

les message des autres processus corrects et changent d’états.
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Dans les systèmes anonymes, à notre connaissance, le consensus uniforme pour des défail-

lances par omissions d’émission ou de réception n’a pas été étudié. Pour le modèle des

pannes byzantines, dans [55] il est observé que le consensus byzantin est impossible même

avec un seul processus byzantin. Une solution dans un cas de partiel anonymat où les

processus n’ont pas d’identifiant, mais chaque processus a un canal identifié distinct de

communication avec les autres processus est proposée dans ce même article.

Contribution Dans le cas synchrone, nous donnons les conditions nécessaires et suff-

isantes pour résoudre le consensus pour tous les modèles des pannes, à partir des pannes

crash, des pannes par omission d’émission, des pannes par omission d’émission ou de ré-

ception, jusqu’aux pannes byzantines. Notre résultat montre que dans les modèle avec

pannes bénignes (pannes crash, des pannes par omission d’émission, et des pannes par

omission d’émission ou de réception) des identifiants uniques ne sont pas nécessaires pour

résoudre le consensus même uniforme si les processus sont capables de compter des mes-

sages identiques reçus dans une ronde, mais des identifiants uniques deviennent nécessaires

avec des pannes byzantines. Plus précisément, si l est le nombre d’identifiants utilisées, n

est le nombre de processus, et t est le nombre maximal de processus en pannes, alors le

consensus byzantin est possible si et seulement si l > 3t. Il est intéressant de comparer les

résultats : dans le cas des homonymes c’est le nombre d’identifiants qui compte et non le

nombre de processus et la borne de moins d’un tiers de processus byzantins devient une

borne de moins d’un tiers de processus byzantins par rapport au nombre d’identifiants

Dans une certaine mesure ce résultat indique que l’existence d’homonymes n’empêche pas

le consensus et montre que les modèles avec homonymes sont tout à fait envisageables

dans le cas du synchrone.

Par contre dans des modèles partiellement synchrones, le consensus byzantin est possible si

et seulement si l > n+3t
2 . Cette borne indique que dans le modèle partiellement synchrone,
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le consensus devient réellement plus difficile en présence d’homonymes: essentiellement,

il faut que presque tous les processus aient des identifiants uniques. Cette borne montre

aussi que contrairement à l’intuition, augmenter le nombre de processus corrects peut

rendre le consensus impossible à résoudre.

Dans le chapitre 5, nous montrons que l’on peut améliorer la borne précédente si on enlève

la capacité aux processus byzantins d’envoyer plusieurs messages dans une ronde. Nous

montrons que t+ 1 identifiants sont suffisants pour résoudre le consensus byzantin au lieu

de n+3t
2 identifiants. Comme pour les résultats précédents, il est intéressant de comparer

ce résultat avec ceux concernant le modèles où chaque processus a une identité unique.

On constate d’une part que dans ce modèle où la puissance des processus byzantins en

tant qu’adversaires est strictement plus faible et d’autre part on retrouve la borne de t+ 1

que l’on a dans les modèles avec authentication mais ici concernant non le nombre de

processus corrects, mais le nombre d’identifiants.

Dans le chapitre 6, on suppose que la répartition des homonymes par identifiant est connue.

On donne une condition nécessaire et suffisante pour que le consensus byzantin soit réalis-

able en se basant sur une mesure, que l’on appellera coefficient d’accord d’un identifiant.

Ce coefficient d’accord est l’estimation du nombre de processus corrects dans l’ensemble

des processus ayant le même identifiant.

Dans tous ces travaux on a supposé que les processus byzantins ne pouvaient prendre

qu’un seul identifiant et ne pouvaient pas prendre les identifiant de plusieurs processus. Il

est assez naturel d’envisager que les processus byzantins peuvent aussi usurper l’identité

d’autres processus. Ils peuvent alors perturber l’algorithme en jouant le rôle de plusieurs

processus d’identifiants différents. Dans le chapitre 7 on a étudie dans ce cadre si le

consensus reste possible dans un système synchrone. Lorsque k identifiants peuvent être

usurpés par les t processus byzantins, on prouve que le consensus byzantin peut être résolu

si et seulement si l > 2t+ k. Mais en rajoutant un mécanisme d’authentification on peut
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tolérer plus de processus byzantins: le consensus peut être résolu si et seulement si l > t+k.

On constate a nouveau que l’existence d’homonymes n’empêche pas le consensus.

Dans l’annexe, comme extension de la thèse, on considère le problème de l’élection d’un

leader sur un anneau dans notre modèle avec homonymes (mais sans défaillances). Ce

travail est inspiré du résultat classique qui montre que l’élection d’un leader dans un

anneau anonyme est impossible et qui donne des conditions permettant cette élection [3].

On montre que si l’élection d’un leader dans un anneau avec des homonymes est possible

si et seulement si le nombre d’identifiants est supérieur au plus grand diviseur propre du

nombre de processus n. En particulier, si n est un nombre premier alors deux identifiants

sont suffisantes pour l’élection d’un leader.

Tous ces travaux montrent que pour résoudre de nombreux problèmes classiques de l’algorithmique

répartie, il n’est pas nécessaire que tous les processus aient des identifiants distincts. On

donne des bornes sur le nombre d’identités pour résoudre certains problèmes comme le

consensus et l’élection d’un leader. Ces bornes sont dans de nombreux cas raisonnables:

par exemple dans un système synchrone ces bornes permettent d’avoir beaucoup de proces-

sus partageant le même identifiant à condition que le nombre d’identifiants soit égal à au

moins trois fois le nombre de processus byzantins. On peut donc envisager sans pénalités

importantes de tels systèmes qui tout en permettant de résoudre des problèmes comme le

consensus autorisent un partage d’identifiants qui garantissant, par l’indistingabilité entre

processus ayant le même identifiant, la confidentialité.

Le modèle des homonymes, généralisation du modèle classique où tous les processus ont

des identifiants distincts et du modèle où aucun processus n’a pas d’identité, peut être un

modèle très pertinent pour remplacer les modèles classiques dans le futur.
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Chapter 1

Introduction

1.1 Introduction

So far, the distributed computing community has considered two kinds of distributed

systems, namely systems with unique identifiers where all processes have distinct identi-

fiers and more rarely, anonymous systems where processes are anonymous and have no

identifier [6, 10].

Systems with unique identifiers These systems can facilitate communication between

processes. A process can send a message to a particular process and the receiver process

can identify the sender of the message. However, in pratique, assuming that all processes

have unique identifiers might be too strong because it may be difficult to keep the identifiers

of all processes distinct when the number of processes in a network increases, or a network

may accidentally assign the same identifier to different processes. For example, very

simple systems giving MAC addresses as identifier are not reliable, because MAC addresses

may be voluntary or not duplicated and do not always ensure the unicity of identifiers.

Moreover, this kind of system is subject to Sybil attacks where the malicious processes

may create multiple fake identifiers in particular for peer-to-peer and sensor networks

1



[30, 54]. The peer-to-peer systems aim to provide service to any user who wants to use

the service (instead of, for example, only to a predetermined group of 15 users). Sybil

attacks have already been observed in the real world [48] in the Maze peer-to-peer system.

Researchers have also demonstrated [64] that it is surprisingly easy to launch sybil attacks

in the widely used eMule system. In sensor networks, a large subset applications requires

security. Security in sensor networks is complicated by the broadcast nature of the wireless

communication. In the Sybil attack, a malicious node behaves as if it were a larger number

of nodes, for example by impersonating other nodes or simply by claiming false identifiers.

Thus, defending against sybil attacks is quite challenging for the systems with unique

identifiers.

Anonymous Systems This kind of system is considered less frequently. One of the first

works that addressed anonymous systems is from D. Angluin [3], where the connection

between anonymous computations and the topological theory of graph coverings as shown.

Based on this theory, functions and relations that are computable in anonymous networks

were completely characterized in follow up papers, e.g., [11, 69].

As an example of anonymous system, web servers [61], some peer-to-peer file-sharing

systems assume the peers are anonymous [14]. These systems are motivated from the

privacy needs of users. More and more internet users will make the choice that the

benefits of being connected to millions of strangers do not outweigh the amount of personal

information revealed to those strangers. For example, in certain client-server services, the

clients wish know the identifier of the server, but not vice versa. Evidently, anonymity is

not the unique technique to guarantee privacy. For example, encrypting communication

to and from web servers can hide the content of the transaction from an Internet service

provider. It’s a way to preserving privacy. However the provider can still learn the

IP addresses of the client (identifier). With additional effort, this information can be
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combined with other data to invade the privacy of clients even further. Moreover, there are

some kinds of private information that can only be protected with anonymity technologies.

For example, your web browsing habits might reveal a lot of information about you, even if

the contents of your connection with each web site are fully protected by some encryption

scheme.

Despite these advantages, unfortunately, no many problems in the anonymous systems are

solvable.

The leader election problem is a simple example of a problem that is unsolvable in an

anonymous system (see [3]). Leader election is the problem of electing a unique leader in

a distributed network. It is required that all processes execute the same local algorithm.

Leader election is a fundamental problem and has numerous applications in distributed

computing. For example, it is an important tool for breaking symmetry in a distributed

system.

In counting problem, nodes must determine the size of the network n and in naming

they must end up with unique identifiers. The paper [51] showed that without a leader,

counting is impossible to solve and that naming is impossible to solve even with a leader

and even if nodes know n.

Some other unsolvable problems are also considered in [5, 42]. None of these considered

process failures. Consensus is one of the most famous distributed computing problem

in the presence of failures. This problem will be considered in detail in Section 1.2. In

reliable message passing communication system, the consensus problem has no solution

in (anonymous or not) asynchronous systems in the presence of failures, even only one

process can be crash faulty [34]. Similarly, this problem is unsolvable in reliable shared

memory communication systems [49].

In particular, it was proven in [55] that in fully anonymous systems Byzantine agreement

is impossible even with only one malicious process and even in synchronous systems.

3



The other problems in anonymous systems with crash failures have been also considered

in [7, 12, 15, 39].

Intuitively, the impossibility results is because symmetry is difficult to be broken in pres-

ence of anonymity. Randomization is a well known technique to break symmetry. For

example, the randomized algorithm for the leader election is considered in [1], the ran-

domized algorithm for consensus in anonymous shared memory systems in the presence of

crash failures is considered in [15]. However, randomization problem is beyond the scope

of this thesis.

Homonymous model In general, the model where processes have distinct identifiers

and the model where processes are anonymous are two extremes of the model that we

propose here: namely, n processes use l different authenticated identifiers, where 1 ≤ l ≤ n.

We call this model homonymous model. In the case where l = 1, all processes have the

same identifier and they are therefore anonymous. In the case where n = l, processes have

distinct identifiers. If 1 < l < n, several processes may be assigned the same identifiers. We

hope that with several identifiers, homonymous model can circumvent the disadvantages

of the two kinds of classical systems.

Consider a scenario of homonymous model where 3 organizations LIAFA, EPFL and PPS

constitute a distributed system. Users of an association might hide their own identifier and

use only their name of association as identifier participating in a distributed protocol. One

way to implement this would be to use the group signatures [19]: for example, LIAFA has

its own secret key that all employees of LIAFA know, but nobody outside LIAFA knows.

Firstly, because users use only their name of association as identifier participating in

a distributed protocol, others will know only that some user within the association is

participating but will not know exactly which one. Thus, the model can still preserve

some level of anonymity. Secondly, assume that a new person come to LIAFA. He can
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participate in the distributed protocol using the LIAFA’id while the system need not

create a new id. Thirdly, the model is useful if security is breached, for example, when

a malicious person or the adversary obtains the LIAFA’s private key and then transmit

error messages using LIAFA’s id.

Figure 1.1: An example of homonymous model.

Moreover, homonymous model may be more useful if more problems of anonymous model

become solvable. This is quite realizable because using several identifiers can be a way to

break the symmetry.

Finally, from a theoretical point of view, studying homonymous model gives us a better

understanding of the importance of identifiers in distributed computing.
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1.2 Consensus Problem and Related Works

1.2.1 Consensus Problem

The problem of reaching consensus in a distributed system in the presence of failures

is a fundamental problem and one of the most famous distributed computing problem.

We consider a system of n processes and at most t faulty processes. The processes may

be fail by halting prematurely (crash failure), by omitting to send messages when they

should (send omission failures), by omitting to send or receive messages when they should

(general omission failures), or by exhibiting arbitrary behaviors (Byzantine failures). A

process that is not faulty is correct.

This coordination problem is defined as follows: each process proposes a value, and each

correct process has to decide a value (termination), such that no two correct processes

decide different values (agreement) and if the decided value is a proposed value (validity).

To coordination, the processes can communicate by sending messages to one another (the

message passing system) or by accessing shared objets (the shared memory system). The

communication may be synchronous, asynchronous or partially synchronous [8, 31].

At first, the conditions may seem very easy to satisfy. Consider a naive algorithm as

follows:

1. All processes select some process as leader (in classical model where all processes

have distinct identifiers, leader selection is easy by choosing the smallest identifier.)

2. This leader sent its proposed value to all processes.

3. All processes decide on the value received from the leader.

If the leader is a correct process then all processes decide on the same value proposed

by the leader. Hence, the consensus become be trivial. But if the leader is not correct

process and it sends different messages to different processes then clearly, this algorithm
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fails. We can think of the fact the processes should choose a correct process as the leader

but unfortunately, no process has idea who faulty processes are and who correct processes

are. The hardness of consensus depends on the form of asynchronism, types of failures

and many other facets of uncertainly such as anonymity, dynamicity, scalability, mobility,

etc. [43].

Uniform consensus: In this thesis, we also consider a stronger version of the consensus

problem, the uniform consensus problem. In the consensus problem, the agreement con-

dition, namely “no two non faulty processes decide differently”, may allow two processes

(a non faulty process and a faulty process) to disagree. Clearly, such disagreements are

undesirable in many applications since they may lead the system to inconsistent states.

Formally, the uniform agreement condition specifies that no two processes (whether faulty

or not) decide differently.

We note that the term consensus is frequently used in the context of benign failures

(crash, send omission and general omission failures) while for Byzantine failures, the term

Byzantine agreement (BA) is often preferred. In this thesis, henceforth we use the term

consensus for benign failures, the term Byzantine agreement for Byzantine failures.

Applications of consensus include whether to commit a transaction to a database, leader

election, state machine replication, and atomic broadcasts.

1.2.2 Related Works

The consensus has been first studied in Byzantine failure model [47, 52] in systems with

unique identifiers. Afterwards, numerous results have been stated for consensus in benign

failures [34, 17, 25, 31]. The results are summarized in Table 1.1.

In the synchronous system, while the efficient algorithms for reach the consensus in benign

failures model are simple, the Byzantine agreement is more difficult. An algorithm for

reaching BA in t+ 1 rounds for n > 3t was presented in [47]. Shortly after, it was shown
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Crash, send omission, general omission Byzantine
Synchronous n ≥ t n > 3t
Partially synchronous n > 2t n > 3t
Asynchronous Impossible Impossible

Table 1.1: Necessary and sufficient conditions on the number of processes for solving the
consensus in a system of n processes and tolerating t faulty processes.

that no deterministic algorithm can solve the problem in less than t + 1 rounds [33].

However, the original BA algorithm requires computation and communication that are

exponential in t, thus leaving the design of more efficient algorithms as an open problem.

One of the first polynomial BA algorithms was presented in [28] that required 2t + 3

rounds. The BA algorithms presented in [29, 26, 63, 66] are of direct relevance to this

thesis. These algorithms are based on a consistent broadcast primitive [63], which ensures

that all the correct processes receive exactly the same messages at almost the same time.

A consistent broadcast primitive allows to design simple polynomial algorithms for the

consensus problem and some other coordination problems. The consensus algorithms

presented in this thesis for Byzantine failure model are inspired by this approach.

Uniform consensus: Uniform consensus is trivially not solvable in systems with Byzan-

tine failures because Byzantine processes have not limitation on their behaviors and then

on their decisions. In the general omission failures model and synchronous systems, in

contrast to consensus that is solvable no matter how many processes are faulty, Neiger

and Toueg [53] showed that uniform consensus cannot be solved if half or more processes

may fail. Several algorithms for uniform consensus are also proposed in [57, 56, 60]. In

the crash failure model, it is not difficult to solve both consensus and uniform consensus

in presence of any number of faulty processes. Interestingly, the paper [37] showed that

in most partially synchronous systems, any algorithm that solves consensus also solves

uniform consensus. However, there is a difference considering the early decision [27] in the

consensus and the uniform consensus algorithms. The early decision examines the num-
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Crash send omission General Omission Byzantine
Synchronous n ≥ t n ≥ t n > 2t Impossible
Partially synchronous n > 2t n > 2t n > 2t Impossible
Asynchronous Impossible Impossible Impossible Impossible

Table 1.2: Necessary and sufficient conditions on the number of processes for solving
the uniform consensus for benign failures model and Byzantine agreement for Byzantine
failures model in a system of n processes and tolerating t faulty processes.

ber of rounds needed for consensus in relation to the actual number of faulty processes

in an execution of algorithm rather than to t, the maximal number of faulty processes.

The paper [18] showed that compared with the best consensus algorithm, any uniform

consensus algorithm takes at least one additional round to take a decision. Thus, uniform

consensus algorithm is harder than consensus whatever the failure model is. The results

are summarized in Table 1.2.

Consensus and uniform consensus in the anonymous system: the previous works

focus on the crash failure model. In [21, 13], fault-tolerant consensus in asynchronous

model is solved under the assumption of failure detectors (that is a well known approach to

provide each process with information on failures [17]). In [23], fault-tolerant consensus is

solved in unknown and anonymous networks and in several partially synchronous systems.

To the best of our knowledge, uniform consensus in send omission and general omission

failures model were not studied so far.

When the failure model is Byzantine, the paper [55] showed that Byzantine agreement is

impossible even with only one Byzantine process. In the model with a restricted kind of

anonymity where processes have no identifiers, but each process has a separate channel to

every other process and a process can detect through which channel an incoming message

is delivered, Byzantine agreement can be solved when n > 3t.

In this thesis, with the goal to determine the power of the homonymous model, we focus

on the consensus problem.
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Crash send omission General Omission Byzantine
Synchronous n ≥ t ? ? Impossible
Partially synchronous n > 2t ? ? Impossible
Asynchronous Impossible Impossible Impossible Impossible

Table 1.3: Necessary and sufficient conditions on the number of processes for solving
the uniform consensus for benign failures model and Byzantine agreement for Byzantine
failures model in an anonymous system of n processes and tolerating t faulty processes.
The results that were not studied are denoted by ?.

Crash, send omission General omission Byzantine
Innumerate processes l ≥ 1 l > 2t l > 3t
Numerate processes l ≥ 1 l ≥ 1 l > 3t

Table 1.4: Necessary and sufficient conditions on the number of identifiers for solving
the uniform consensus for benign failures model and Byzantine agreement for Byzantine
failures model in a system of n processes using l identifiers and tolerating t faulty processes.

1.3 Contributions

In the synchronous case, we give the complete picture on necessary and sufficient conditions

on the number of identifiers for solving consensus in a system of n processes using l

identifiers and tolerating t faulty processes. The results are summarized in Table 1.4. In

our results, we consider both cases: (1) when processes are numerate, i.e. they can count

the number of copies of identical messages that they received in a round and (2) when

processes are innumerate (they have not this ability). In systems with unique identifiers,

since senders can append their identifier to all messages, a receiver process can easily count

copies of messages. This is not possible in homonymous model, so the distinction between

numerate and innumerate processes is important.

For the case of benign failures, Table 1.4 shows that if only crash failures or send omis-

sion failures, uniform consensus is solvable even if processes are innumerate and have no

identifiers while for general omission failures, the ability of counting or the identifier is

10



required. More precisely, if processes are numerate then uniform consensus is solvable

without using identifier of processes (we need only the condition of number of processes as

in systems with unique identifiers, n > 2t). If processes are innumerate, 2t+ 1 identifiers

are necessary to reach the uniform consensus. For the case of Byzantine failures, we show

that the Byzantine agreement is solvable if and only if l > 3t whether processes are nu-

merate or not. Thus, identifiers are not useful for crash and send omission failures or when

processes are numerate however for general omission or for Byzantine failures identifiers

become important.

We also consider the partially synchronous case for the Byzantine agreement. We show

that the lower bound l > n+3t
2 is necessary and sufficient condition to reach to the agree-

ment for Byzantine failures. This bound has several surprises: first, the number of required

identifiers l depends on n as well as t. Second, more correct processes may make the prob-

lem harder. For example, if t = 1 and l = 4, agreement is solvable for 4 processes but not

for 5. Finally, since n+3t
2 is strictly greater than 3t, partially synchronous model is strictly

weaker than synchronous model in homonymous model.

In Chapter 5, we remove the ability for a Byzantine process of sending multiple messages to

the same recipient. A Byzantine process has no this ability is called restricted Byzantine

process. Consequently, we can notably reduce the lower bound of the number of identifier

necessary to reach agreement in partially synchronous systems from n+3t
2 to t (see the

Table 1.5). These results come from the fact that in a system with unique identifiers, the

Byzantine process has no advantage of sending multiple messages to a single recipient in a

round: algorithms could simply discard such messages, however, in homonymous systems,

that advantage is clear.

For the results above, we assume that no knowledge of the system except n, l, t is available

for each process and each identifier must be assigned to at least one process. However,

in chapter 6, we increase the knowledge of the system for each process assuming each
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Synchronous Partially synchronous
Innumerate processes ` > 3t ` > n+3t

2
Numerate processes l > 3t l > n+3t

2
restricted Byzantine processes l > t l > t

Table 1.5: Necessary and sufficient conditions for solving Byzantine agreement in a system
of n processes using l identifiers and tolerating t Byzantine failures. In all cases, n must
be greater than 3t.

process knows the distribution of identifiers, i.e, each process knows how many processes

share the same identifier. Considering the synchronous case, we show that this way may

reduce the bound necessary to reach to consensus. For example, assuming that a system

has n = kl processes, l identifiers, t Byzantine processes such that for each identifier

there are k processes that share it, then the necessary and sufficient condition to reach

the consensus is l > t(1 + 1/k) instead of l > 3t. More precisely, for each distribution

of the identifiers we give a necessary and sufficient condition that enable us to solve the

Byzantine agreement, using a new notation, namely the agreement coefficient of a group.

The agreement coefficient denotes the estimation of the number of correct processes of a

group. This problem is considered in detail in Chapter 7. Finally, we show that there

exists a distribution of identifiers enabling to solve the Byzantine agreement if and only if

n > 3t and l > (n−r)t
n−t−min(t,r) where r = n mod l. Note that t < (n−r)t

n−t−min(t,r) < 2t.

In Chapter 7, we present a natural extension of homonymous model in which some iden-

tifiers are forgeable and a Byzantine process may freely use any such identifiers. Here we

assume that at most t processes may be Byzantine and at most k (t ≤ k ≤ l) of these

identifiers are forgeable. Intuitively, we may consider the behavior of a group of processes

with forgeable identifier as one of the group of processes with Byzantine processes. Then

assuming that k forgeable identifiers, we get directly a solution for the Byzantine agree-

ment if l > 3k using the result in Table 2 for the synchronous model. But surprisingly,

we give a better bound. We prove that l > 2t+ k is necessary and sufficient condition for
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the BA. Moreover we extend this result to systems with authentication by signatures in

which at least l − k signatures are unforgeable and we prove that Byzantine Agreement

is possible if and only if l > t + k. Interesting, the solvability of Byzantine agreement

depends only on the number of identifiers and the number of forgeable identifiers. Hence

adding correct processes does not help to solve Byzantine agreement.

Finally, in the appendix, as an extension of the thesis, we consider the leader election

problem in a ring in our model with homonyms (without failures). This work is inspired by

the classical result that shows that the leader election in an anonymous ring is impossible

[3]. We show that the leader election in a ring with homonyms is possible if and only if the

number of identifiers is greater than the largest proper divisor of number of processes. In

particular, if the number of processes is a prime number then two identifiers are sufficient

for the leader election.

Most contribution in this thesis originally appeared in the following papers:

• “ Byzantine agreement with homonyms”. Joint work with Carole Delporte-Gallet,

Hugues Fauconnier, Rachid Guerraoui, Anne-Marie Kermarrec and Eric Ruppert.

Accepted in Distributed Computing journal.

• “ Byzantine agreement with homonyms in synchronous systems. Joint work with

Carole Delporte-Gallet, Hugues Fauconnier. Accepted in Theoretical Computer Sci-

ence journal.

• “ Uniform Consensus with Homonyms and Omission Failures”. Joint work with

Carole Delporte-Gallet, Hugues Fauconnier. Published in ICDCN 2013.

• “ Byzantine agreement with homonyms in synchronous systems”. Joint work with

Carole Delporte-Gallet, Hugues Fauconnier. Published in ICDCN, vomume 7129 of

LNCS, pages 76-90, 2012.
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• “ Homonyms with forgeable identifiers”. Joint work with Carole Delporte-Gallet,

Hugues Fauconnier. Published in SIRROCCO, vomume 7355 of LNCS, pages 171-

182, 2012.

• “ Byzantine agreement with homonyms”. Joint work with Carole Delporte-Gallet,

Hugues Fauconnier, Rachid Guerraoui, Anne-Marie Kermarrec and Eric Ruppert.

Published in PODC, pages 21-30. ACM, 2011.
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Chapter 2

Model and Definitions

2.1 Homonymous Model

2.1.1 Definition

We consider a distributed message-passing system of n processes. Each process gets an

identifier from a set of identifiers L = {1, 2, . . . , l}. We assume that n ≥ l and that

each identifier is assigned to at least one process. In the case where n > l, one or more

identifiers will be shared by several processes. In the case where l = 1, all processes have

the same identifier, and they are therefore anonymous. We call such model homonymous

model. The processes with the same identifier are said to be homonyms.

2.1.2 Communication in the homonymous model

We consider the homonymous model in the distributed message-passing communication

in the synchronous and partially synchronous cases. We assume that the message-passing

primitive is reliable, i.e. it does not create, duplicate, or alter messages.
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Synchrony case The most of our results are done in the synchronous model. Compu-

tation proceeds in rounds. In each round, each process can send messages to all other

processes and then receive all messages that were sent to it during that round.

Partially synchrony cases In chapter 5 and 6, we also consider homonymous model

under assumptions of partially synchronous model of Dwork, Lynch and Stockmeyer [31]:

computation proceeds in rounds, as in the synchronous model. However, in each execu-

tion, a finite number of messages might not be delivered to all of their intended recipients.

There is no bound on the number of messages that can be dropped. As argued in [31],

this basic partially synchronous model is equivalent to other models with partially syn-

chronous communication. More specifically, the model in which message delivery times are

eventually bounded by a known constant and the model in which message delivery times

are always bounded by an unknown constant can both simulate the basic partially syn-

chronous model. Conversely, each of these models can be simulated by the basic partially

synchronous model. Interestingly, this simulation does not use identifiers of processes and

does depends on types of faults. Thus, our characterization of the values of n, l and the

number of faulty processes t for consensus problem can be solved applies to the other

models with partially synchronous communication too.

In homonymous model, a process knows the identifier of the sender of each message it

receives. Given a message m, we denote by m.val its value (or content) and by m.id

the identifier of the sender. Since processes with the same identifier are supposed to be

indistinguishable in our model, the process cannot send different messages to two processes

with the same identifier during a single round. Moreover, given any message some process

p has received, it cannot determine if this message comes from the same sender process or

from different sender processes with the same identifier of p .
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Without loss of generality, we assume that processes are provided a broadcast: a process

can send the same messages to all processes (including itself). If a process wishes to

send different messages to processes with different identifiers, it can include the intended

recipients’ identifiers in the message itself.

Innumerate and numerate processes In systems with unique identifiers, the senders

can append their identifier to all messages, making it trivial for the receiver to count

copies of messages. This is not possible in the systems with homonyms. In our model,

we distinguish the cases where processes are innumerate from the case where they are

numerate. We say that a process is innumerate if the messages it receives in a round form

a set of messages: the process cannot count the number of copies of identical messages it

receives in the round. We say that a process is numerate if the messages it receives in a

round form a multiset of messages: the process can count the number of copies of identical

messages it receives in the round.

2.1.3 Failures Assumptions

A process is faulty during an execution if its behavior deviates from that prescribed by

its algorithm, otherwise it is correct. Differently from correct processes that cannot send

different messages to two processes with the same identifier during a single round, faulty

processes are not constrained in this way: they can communicate to each process.

We consider here the following failure models:

• Crash failure: A faulty process stops its execution prematurely. After it has crashed,

a process does nothing.

• Send Omission failure: A faulty process crashes or omits sending messages it was

supposed to send to other processes.
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• General Omission failure: A faulty process crashes or omits sending and/or receiving

messages it was supposed to send to/from other processes.

• Byzantine failure: A faulty process may deviate arbitrarily from its code. It may

send messages different from its algorithm specification or fails to send the messages

it is supposed. Moreover, in contrast to correct processes that can not direct different

messages to two processes with the same identifier during a single round, Byzantine

processes can send messages to each process. However, we assume that Byzantine

process cannot forge identifiers.

• Restricted Byzantine failure: A Byzantine process is restricted to sending at most

one message to each recipient in each round.

In pratique, a send (receive) omission failure actually models a failure of the output (input)

buffer of a process. A buffer overflow is a typical example of such a failure. An intuitive

explanation of the fact that it is more difficult to cope with receive omission failures than

with send omission failures is the following: A process that commits only send omission

failure continues to receive the messages sent by the correct process. Differently, a process

that commits receive omission failures does not: it has an " autism " behavior [60]. For

Byzantine processes, they are intended to model arbitrarily bad failures in the system

which might, for example, corrupt messages going to individual processes.

2.1.4 Failure Pattern

In homonymous model, a failure pattern attaches to a distribution of identifiers.

Consider a mapping Id from the set of processes into the set L. A mapping Id defines a

partition of integer n into l parts n1, . . . , nl such that for each identifier j, nj is the number

of processes with identifier j. This partition of n into l parts will be called a distribution

of l identifiers :
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Definition 2.1.1. Given a set of l identifiers, a distribution D(n, l) is a partition of n

into l parts denoted D(n, l) = 〈n1, . . . , nl〉 with n1 ≥ n2 ≥ . . . ≥ nl > 0 and n = Σi=l
i=1ni.

All properties that we consider depend only on distributions of identifiers and we do not

distinguish between mappings Id having the same associated partition.

The failure pattern is defined as follows:

Definition 2.1.2. Let D(n, l) = 〈n1, . . . , nl〉 be a distribution, a failure pattern F (D(n, l))

for at most t faulty processes is a l-tuple (t1, . . . , tl) such that for every i ∈ {1, . . . , l}

0 ≤ ti ≤ ni and Σi=l
i=1ti ≤ t.

Let G(i) be the set of processes with identifier i. We name such a set a group. We consider

the case of Byzantine processes. If ti = 0 then all processes with identifier i are correct and

in this case the group G(i) is said correct, if all processes of G(i) are Byzantine, namely if

ti = ni, the group G(i) is said fully Byzantine, and in all other cases G(i) is said partially

Byzantine.

The set of all possible failure patterns for distribution D(n, l) and at most t Byzantine

processes is called a failure environment, denoted Ft(D(n, l)): the only condition is here

that the number of Byzantine processes is at most t.

Definition 2.1.3. The adversary for distribution D(n, l) and at most t Byzantine pro-

cesses, Ft(D(n, l)), is the set of all failure patterns (t1, . . . , tl) such that Σi=l
i=1ti ≤ t.

2.1.5 Homonymous model with forgeable identifiers

We consider an extension of homonymous model in which some identifiers are forgeable.

We assume that Byzantine processes have the power to forge some identifiers. An adver-

sary is the set of all failure patterns (t1, . . . , tl) such that Σi=l
i=1ti ≤ t and a subset of L

denoted F where Byzantine processes can forge some identifier of F . In the following k

designs an upper bound of the number of identifiers that can be forged: |F| = k.
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In this extended model, if ti = 0 and i 6∈ F then group G(i) is said correct, if all processes

of G(i) are Byzantine, namely if ti = ni, the group G(i) is said fully Byzantine, and in all

other cases G(i) is said partially Byzantine.

Communication: Let idf be an identifier in F , a Byzantine process with identifier id may

send a message m to a process p with identifier id′ with the forged identifier idf . In this

case, the process p receives the message m with m.id = idf . As a Byzantine process

acts as an adversary it may divulge any information, then we assume here that if q is a

Byzantine process then Id(q) is also in F . Consequently, if a process p receives a message

m with m.id = id, p knows that this message has been either sent by a correct process

with identifier id or sent by a Byzantine process which has forged the identifier id.

We name (n, l, k, t)-homonymous model such a model. In the following a correct group

designs a group of processes with some identifier that contains only correct processes and

whose its identifier is not forgeable.

2.2 Consensus Problem

In the case of send omission and general omission failures, the uniform consensus problem

is defined in [56] by the following three properties:

1. Termination: Every correct process eventually decides.

2. Validity: If a process decides v, then v was proposed by some process.

3. Uniform Agreement: No two (correct or not) processes decide different values.

In the case of Byzantine processes, we consider the classical Byzantine agreement problem

[34, 58], defined by the following three properties.

1. Termination: Eventually, each correct process decides some value.
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2. Validity: If all correct processes propose the same value v, then no value different

from v can be decided by any correct process.

3. Agreement: No two correct processes decide different values.

An algorithm solves the consensus in a system of n processes with l identifiers tolerating t

failures if these three properties are satisfied in every execution in which at most t processes

fail, regardless of the way the n processes are assigned the l identifiers. (Recall that each

identifier must be assigned to at least one process.)
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Chapter 3

Uniform Consensus in omission

failure model

3.1 Introduction

In this chapter, we consider the uniform consensus problem restricted to benign process

failures of a system of n processes, l identifiers and at most t faulty processes.

We show that, concerning crash failures or send-omission failures, uniform consensus is

solvable even if processes are anonymous and innumerate. Our algorithm is based on

underlying principles in [59, 63]. Moreover the solution we propose is in t+ 1 rounds and

is then optimal [2, 32]. Concerning general-omission failures, we show that in the case

where processes are numerate, uniform consensus is solvable if and only if n > 2t, that

is with the same bound as for processes having different identifiers. In the case where

processes are innumerate, 2t+ 1 identifiers are necessary. To prove that, we use a scenario

argument. Moreover, our algorithm is early-stopping. It allows correct processes to decide

and stop by round min{f + 2, t+ 1} and allows the faulty processes to decide and stop by

round min{f + 3, t+ 1}, where f is number of processes that are actually faulty during a
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given execution (f ≤ t).

3.2 Consensus with send-omission failures

In this section we prove that uniform consensus is solvable with send-omission failures for

all t < n even if processes are innumerate.

Crash-tolerant uniform consensus protocols in models in which processes have distinct

identifiers described in [8, 50, 44] are based on a “flood set” strategy. Each process p

maintains a local variable that contains its current estimate of the decision value. Initially,

the local variable is set to the input proposed by p. Then, during each round, each non-

crashed process first broadcasts its current estimate, and then updates it to the smallest

value among the estimates it has received. After t + 1 rounds, as there is at least one

round without any new crash, all processes will have the same estimate. These algorithms

do not use identifiers for processes and solve directly the uniform consensus problem when

all processes are anonymous (l = 1) in presence of any number of crashes.

With omission failures, faulty processes may commit omissions in any round, In [53, 59, 63],

each process keeps track (explicitly or implicitly) of the set of processes it considers to be

correct. A process does not accept messages from processes outside of this set. In [38], the

current estimate of each process is updated to the current estimate of the leader selected

in each round. All solutions use the fact that each process identifies the sender.

We present here a protocol that solves uniform consensus despite up to t < n processes that

commit send-omission failures even if all processes are fully anonymous. The underlying

principles of this algorithm are inspired by [59, 63]. Roughly speaking, the algorithm

ensures that if some process changes its estimate in round r, then another process has

changed its estimate in the previous round. After the first round, when a process changes

its estimate to some value, this value may only come from a faulty process and if some
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process changes its estimate in round k, then at least k − 1 processes are faulty.

The protocol for a process p is described in Figure 6.2. Each process p maintains local

variables new and old: old is the estimate of the previous round and new the current

estimate of the round. Initially, new is set to v, the initial value of p while old is set to 0.

Note that after the first round, new is different from old if and only if the process has

changed its estimate. Moreover a process changes its estimate only for a smaller value,

then if new < old then that means that the process has changed its estimate. During each

round r, each process first broadcasts its current value of variables new and old and then

updates them as follows: the variable old is set to the value of variable new of round r−1.

Variable new may change only if the process receives some pairs (v, o) with v < o. From

the previous remark, a process changes its variable new in round r only if it sees that a

process has changed its value of variable new in the previous round. If new is modified, it

is updated by the minimum value of the previous value of new and all values v received

from processes having changed their estimate in the previous round.

Finally, at round t + 1, each process decides on the maximum current estimate value of

variable new it has seen in the round t+ 1.

For the proof, we use the following notation:

We say that a process “changes its estimate to some value v0 in round r ”, if at the end

of this round, new = v0 ∧ v0 < old. We say that a process “keeps its estimate ”, if at the

end of this round, new = old.

Let p0 be the process having the minimum input value vmin. Let newp(r) be the value

of variable new of the process alive p at the end of the round r, oldp(r) be the value of

variable old of the alive process p at the end of the round r, V [r] be the set of values of

variable new of all alive processes at the end of the round r: V [r] = {newp(r)|p is process

alive in round r }, and vmax be the largest value of set V [t]. Henceforth, in all proofs and

algorithms, if we talk about some process p in round r then that means that process p is
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Code for process p
Variable:
1 input = {v}; /* v is the value proposed value */
2 new = input;
3 old = input;
Main code:
4 ROUND 1
5 send new to all processes
6 old = new
7 new = Min{v|p has received v in this round}

8 ROUND r from 2 to t
9 send (new, old) to all processes
10 old = new
11 let Gp[r] = {v| p has received (v, o) in this round and v < o}
12 if Gp[r] 6= ∅ and Min{v|v ∈ Gp[r]} < new then new = Min{v|v ∈ Gp[r]}

13 ROUND t+ 1
14 send new to all processes
15 decide Max{v|p has received v in this round}

Figure 3.1: Anonymous Consensus Protocol with at most t send omission processes

alive in that round.

We begin with two simple facts:

Fact 3.2.1. For every process p and every round 1 ≤ r < t, oldp(r + 1) = newp(r) .

Fact 3.2.2. For every process p and every round 1 ≤ r ≤ t, newp(r) ≤ oldp(r) .

Lemma 3.2.1. For every round 1 ≤ r < t, V [r + 1] ⊆ V [r].

Proof. Consider the variable newp(r + 1) where p is some process. There are only two

cases:

• p changes its estimate in round r+1 to some value v0 at Line 12. Then newp(r+1) =

v0 where v0 is the value of variable new of some process q that sent the pair (v0, old)

to p.

• p keeps its estimate in this round. Hence, newp(r + 1) = oldp(r + 1) = newp(r).
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Thus, for every round 1 ≤ r < t : V [r + 1] ⊆ V [r] .

We directly get:

Lemma 3.2.2. For every process p and every round 1 ≤ r ≤ t, p0 is correct then

newp(r) = vmin .

Lemma 3.2.3. If a correct process p has input value v0 or changes its estimate to some

value v0 in round 1 ≤ r < t then for every process q, newq(t) ≤ v0.

Proof. If some correct process p has input v0 then at the end of round 1, the variable new

of all processes is less than or equal to v0 (Line 7). By Lemma 8.3.1, we have V [t] ⊆ V [1].

Thus, for every process q, newq(t) ≤ v0 .

If p changes its estimate new to v0 in round 1 ≤ r < t. Then v0 = newp(r) < oldp(r). In

round r + 1 ≤ t, the correct process p sends the pair (v0, oldp(r)) to all processes. At the

end of the round r+ 1, all processes receive (v0, oldp(r)). We consider some process q. Set

Gq[r + 1] contains at least one element and,

• IfMin{v|v ∈ Gq[r+1]} < oldq(r+1) then q sets new toMin{v|v ∈ Gq[r+1]} ≤ v0.

• If Min{v|v ∈ Gq[r + 1]} ≥ oldq(r + 1) then q keeps its estimate and we have

v0 ≥Min{v|v ∈ Gq[r + 1]} ≥ oldq(r + 1) ≥ newq(r + 1).

Hence, for any process q, newq(r + 1) ≤ v0. By Lemma 8.3.1, we have V [t] ⊆ V [r + 1].

Thus, for every process q, we get newq(t) ≤ v0 .

Lemma 3.2.4. If t > 1 and r ≥ 2, and if some process p changes its estimate to v0 in

round r then, there is a set of processes {q1, · · · , qr−1} such that for all i, 1 ≤ i ≤ r − 1,

qi changes its estimate to v0 in the round i and newqi
(r − 1) ≤ v0.

Proof. Since p changes its estimate to v0 in round r, we must have newp(r) = Min{v|v ∈

Gp[r]} and there is at least one process qr−1 that sent (new, old) to p, with new = v0 and
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new < old. Hence, at the end of round r − 1, the process qr−1 must have newqr(r − 1) <

oldqr(r − 1). That means that qr−1 has changed its estimate in round r − 1.

By induction, we have a sequence of processes (q1, · · · , qr−1) such that qi changes its

estimate in round i, 1 ≤ i ≤ r − 1.

Furthermore, if a process changes its estimate to v0 in some round r0 then after this

round, the value of its variable new is less than or equal to v0 and no process can change

its estimate to v0 twice. Thus, all the processes qi are distinct and newqi
(r − 1) ≤ v0 for

all i such that 1 ≤ i ≤ r − 1, proving the Lemma.

Lemma 3.2.5. We have either (a) for every correct process q, newq(t) = vmax, or (b)

V [t] = {vmin, vmax}, news(t) = vmin for every faulty process s and some correct process

changes its estimate to vmin in round t.

Proof. If t = 1, consider two cases:

• p0 is correct and then by Lemma 8.3.4, newq(t) = vmin for all processes q.

• p0 is faulty, thus either all correct processes have same the value new, or V [t] =

{vmin, vmax} and some correct process changes its estimate and its value new must

be vmin, proving the Lemma.

If t > 1, consider the set of values of variable new of correct processes at the end of round

t. Since n > t, this set is not empty.

Consider any correct process p such that newp(t) is v0. Thus we have either v0 = vmax or

v0 < vmax. If v0 < vmax then let us consider following two cases:

• v0 is the input value of p or p changes its estimate to v0 in a round 1 ≤ r < t then

by Lemma 8.3.2, newq(t) ≤ v0 for every process q. By definition of vmax, we must

have vmax = v0, contradicting the hypothesis that v0 < vmax.
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• p changes its estimate to v0 in round t. By Lemma 8.3.3, we have a set of processes

{q1, · · · , qt−1} such that qi changes the value of its variable new to v0 in the round i,

1 ≤ i ≤ t−1. Moreover, no process among them is correct because if some process qi

is correct then the value of variable new at the end of the round t of every process is

less than or equal to v0, hence vmax ≤ v0, contradicting the hypothesis that v0 < vmax.

On the other hand, p0 must be faulty because if p0 is correct then by Lemma 3.3.2,

newp(1) = vmin and p can not change its estimate in round t, contradicting the

hypothesis. Therefore, we get a set of t faulty processes {q1, ..., qt−1} ∪ {p0}.

Since a process changes its estimate only to a smaller value and all processes qi change

their estimate to v0 in some round r ≥ 1, v0 cannot be the input value of one of these

processes. On the other hand, by Lemma 8.3.2, if v0 is the input value of a correct

process then newq(t) ≤ v0 for every process q. By definition of vmax, we must have

vmax = v0, contradicting the hypothesis that v0 < vmax. Then, v0 may only be the

input value of faulty process p0. That means that newp(t) = v0 = vmin. Moreover,

after having changed the estimate to v0 = vmin, all processes qi do not change their

estimate again because vmin is the minimum value. We get news(t) = vmin for every

faulty process s ∈ {q1, ..., qt−1} ∪ {p0}.

Thus, for every correct process p, we get always either

(a) newp(t) = vmax

or

(b) newp(t) = vmin and newp(t) < vmax. Moreover, p changes its estimate to vmin in round

t and for every faulty process s, news(t) = vmin.

Therefore, we have either

(a) for every correct process q, newq(t) = vmax ,

or

(b) V [t] = {vmin, vmax} and some correct process changes its estimate to vmin in round t.
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Moreover, for every faulty process s, news(t) = vmin.

Proposition 3.2.1. Uniform agreement: No two processes decide different values.

Proof. By Lemma 3.2.5, either

• If for every correct process q, newq(t) = vmax then, every process p receives message

vmax in round t+ 1 and decides vmax at Line 15.

• or V [t] = {vmin, vmax} and for every faulty process s, news(t) = vmin. Hence, vmax

comes from some correct process. At the beginning of round t+1, this process sends

vmax to all and every process receives the value vmax and decides vmax.

Proposition 3.2.2. Uniform Validity: If a process decides v, then v is proposed by

some process.

Proof. Since n > t, there is at least one correct process p. p sends its variable new to all

processes in round 1. From Line 15, if a process decides then the decision value belongs

to the set V [t]. By Lemma 8.3.1, V [t] ⊆ V [1]. Moreover, V [1] is a subset of the inputs

proposed by processes. Therefore, if a process p decides v, then v is the input value of

some process.

Proposition 3.2.3. Termination: Every correct process eventually decides.

Proof. By the algorithm of Figure 3.1, all processes that do not crash decide at Line

15.

From the previous propositions we deduce:

Theorem 3.2.1. Uniform consensus is solvable within t + 1 rounds with send-omission

failures of any number of processes even if all processes are anonymous.
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3.3 Consensus with general-omission failures

In this section we give an algorithm solving uniform consensus with general-omission

failures if processes are numerate (even if they are anonymous). In a second subsection

we prove there is no solution for uniform consensus with general-omission failures when

processes are anonymous and innumerate. More precisely we prove that at least l > 2t

identifiers are needed to solve uniform consensus. Recall that uniform consensus is solvable

with processes having unique identifiers for general-omission failures only if there is a

majority of correct processes, then we always assume in this section that n > 2t.

3.3.1 Numerate processes

We assume in this subsection that processes are anonymous and numerate.

Differently from the consensus problem that allows a faulty process to decide differently

from the correct processes, the uniform consensus problem requires that the deciding pro-

cesses, correct or not, decide the same value. Algorithms in general-omission failures model

solving uniform consensus when processes have distinct identifiers appear for example in

[57, 56, 60]. These protocols are based on a flood set strategy with the elimination of

the processes suspected to be faulty. They also use the fact that the processes are “self-

trusting ”, in the sense that a process first suspects the other processes before wondering if

it is itself faulty. However, in our case, a process cannot suspect another process because

the processes are fully anonymous.

We present an early stopping algorithm in Figure 3.2 that solves the consensus in general

omission model. It based on the same principles as Figure 3.1. Here, round t+1 has to be

adapted to general-omission failures for which it is not ensured that all correct processes

have the same estimate in round t+ 1.

We now present the steps of the proof that the protocol of Figure 3.2 satisfies the specifica-
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Code for process p
Variable:
1 input = {v}; /* v is the proposed value */
2 new = input;
3 old = 0;
Main code:
4 ROUND 1
5 send new to all processes
6 old = new
7 new = Min{v| v in the set of messages received }

8 ROUND r from 2 to t
9 send (new, old) to all processes
10 old = new
11 let Gp[r] = {v| p has received (v, v1) in this round and v < v1}
12 if Gp[r] 6= ∅ and Min{v|v ∈ Gp[r]} < new then new = Min{v|v ∈ Gp[r]}
13 if it receives less than n− t messages in this round then decides ⊥ and stops
14 if it receives at least n− r + 2 pairs (v, ∗) in this round then decides v

15 ROUND t+ 1
16 send (new, old) to all processes
17 if for some v, n− t pairs (v, ∗) are received in this round
18 then decides v
19 else if at least n− t pairs
20 and one of them is (x, y) such that x < y are received
21 then
22 let Gp = {v| p received (v, v1) in this round }
23 let Hp = {v| p received (v, v1) in this round and v < v1}
24 if Min{v|v ∈ Gp} = Min{v|v ∈ Hp} then decide Min{v|v ∈ Gp}

Figure 3.2: Anonymous Consensus Protocol with at most t general-omission processes

tion of uniform consensus. We use the same notations for p0, vmin, V, newp(r) and oldp(r)

as in the proof of Theorem 3.2.1. Let C[r] be the set of values of variable new of all correct

processes at the end of the round r: C[r] = {newp(r)|p is a correct process }, and cmax be

the largest value of set C[t].

Although here processes may commit receive omission the following lemmata may be

proved in a very similar way as in the proof of Theorem 3.2.1.

Lemma 3.3.1. V [r + 1] ⊆ V [r] for every round 1 ≤ r < t.

Lemma 3.3.2. If p0 is correct then newq(t) = vmin for every correct process q.
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Lemma 3.3.3. If a correct process changes its estimate to some value v0 in round 1 ≤ r <

t or has input v0 then newq(r′) ≤ v0 for every correct process q and every round r′ > r.

Lemma 3.3.4. If t > 1 and r ≥ 2, if some process p changes its estimate to v0 in round r

then, there is a set of processes {q1, ..., qr−1} such that for all i, 1 ≤ i ≤ r − 1, qi changes

its estimate to v0 in the round i.

Lemma 3.3.5. We have either (a) newq(t) = cmax for every correct process q, or (b)

V [t] = {vmin, cmax} and there are t faulty processes such that for every faulty process s,

news(t) = vmin. Moreover, d some correct process changes its estimate to vmin in round t.

Proof. If t = 1 then we consider the following two cases:

• p0 is correct then by Lemma 3.3.2, newq(1) = vmin for all correct processes.

• p0 is faulty. At the end of round 1, either all correct processes have the same value

new, or V [t] = {vmin, cmax} and some correct process changes its estimate then its

value new must be vmin, proving the Lemma.

If t > 1, we consider the set of values of variable new of correct processes at the end of

round t. Since n > 2t, this set is not empty.

Consider any correct process p such that newp(t) is v0. Thus either v0 = cmax or v0 < cmax.

If v0 < cmax then let us consider following two cases:

• v0 was the input value of p or p changes its estimate to v0 in a round 1 ≤ r < t then

by Lemma 3.3.3, newq(t) ≤ v0 for every correct process q. By definition of cmax, we

have cmax = v0, contradicting the hypothesis that v0 < cmax.

• p changes its estimate to v0 in round t. By Lemma 3.3.4, we have a set of processes

{q1, · · · , qt−1} such that qi changes its value of variable new to v0 in the round i,

1 ≤ i ≤ t−1. Moreover, no process among them is correct because if any process qi is
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correct then the value of variable new at the end of the round t of every process is less

than or equal to v0, hence cmax ≤ v0, contradicting the hypothesis that v0 < cmax.

On the other hand, p0 must be faulty because if p0 is correct then by Lemma 3.3.2,

newp(1) = vmin and p cannot change its estimate in round t, contradicting the

hypothesis. Therefore, we have a set of t faulty processes {q1, ..., qt−1} ∪ {p0}.

Since a process changes only its estimate to a smaller value and all processes qi

changes their estimate to v0 in some round r ≥ 1, v0 cannot be the input value of

one of these processes. On the other hand, by Lemma 3.3.3, if v0 is the input value

of a correct process then newq(t) ≤ v0 for every process q. By definition of vmax, we

must have vmax = v0, contradicting the hypothesis that v0 < vmax. Then, v0 may

only be the input value of faulty process p0. That means that newp(t) = v0 = vmin.

Moreover, after having changed the estimate to v0 = vmin, all processes qi do not

change their estimate again because vmin is the minimum value. We get news(t) =

vmin for every faulty process s ∈ {q1, ..., qt−1} ∪ {p0}.

Thus, for every correct process p, we get always either

(a) newp(t) = cmax

or

(b) newp(t) = vmin. Moreover, p changes its estimate to vmin in round t and there are t

faulty processes such that for every faulty process s, news(t) = vmin.

Therefore, we have either

(a) for every correct process q, newq(t) = cmax ,

or

(b) V [t] = {vmin, cmax} and there are t faulty processes such that for every faulty process

s, news(t) = vmin. Moreover, d some correct process changes its estimate to vmin in round

t.
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Furthermore:

Lemma 3.3.6. If at round r : 2 < r < t+ 1, a process p decides v0 at Line 14 then

(1) no process changes its estimate to a value less than v0 in round r − 1,

(2) for every correct process s and r′ ≥ r − 1, news(r′) = v0 .

Proof. As p decides v0 at Line 14, it must receive at least n − r + 2 pairs (v0, ∗). As

n− r + 2 > t, at least one correct process sent (v0, ∗) to p in round r.

To prove (1), suppose that some process changes its state to the value v1 < v0 in round

r − 1 > 1. By Lemma 3.3.4, there is some set A of r − 2 processes that changed their

estimate to v1 before round r − 1. By 3.3.3, if p0 is correct then for every correct process

s, news(r − 2) = vmin, if processes of A are correct then for every correct process s,

news(r − 1) ≤ v1. In both cases, no correct process can send (v0, ∗) in round r because

vmin ≤ v1 < v0, contradicting (*). Thus, we have r − 1 faulty processes, including p0 and

r − 2 processes in A. Moreover, at the beginning of round r, the estimates of all these

processes are less than or equal to v1. Therefore no process among them sends (v0, ∗) to

p. Therefore, at most n− r+ 1 processes may send (v0, ∗) to p, contradicting the fact that

p receives at least n− r + 2 pairs (v0, ∗), proving (1).

Now, prove (2). To derive a contradiction, suppose that there is some correct process

p′ such that newp′(r′) 6= v0 with r′ ≥ r. We showed that there is one correct process q

that sent (v0, ∗) to p in round r. Thus, either its input value equal to v0 or process q

changed its estimate to v0 in some round before r. By Lemma 3.3.3, news(r′) ≤ v0 for

every correct process s and every round r′ ≥ r. Thus, newp′(r′) < v0. Similarly, to have

current estimate newp′(r′), either the input value of p′ is equal to newp′(r′) or it changed

the estimate to a value equal to newp′(r′) in some round before r.

• if the input value of p′ is equal to newp′(r′) or p′ changes its estimate in some round

before r, then by Lemma 3.3.3 the estimate of every correct process is less than
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or equal to newp′(r′). But newp′(r′) < v0, contradicting the fact that at least one

correct process sends (v0, ∗) in round r > 2.

• if p′ changes its estimate in some round ≥ r then by Lemma 3.3.4, there is one

process that changes its estimate to a value equal to newp′(r′) in round r − 1. But

newp′(r′) < v0, contradicting (1).

Lemma 3.3.7. Suppose that newq(t) = cmax for every correct process q. Thus, if a faulty

process changes its estimate to v0 in round t then v0 ≥ cmax.

Proof. If p0 is correct then at the end of round 1, then for every correct process q,

newq(1) = vmin. They do not change their estimate again because vmin is the mini-

mum value. Thus, cmax = vmin. If a faulty process changes its estimate to v0 in round t

then obviously, v0 ≥ vmin.

Now, consider the case where p0 is a faulty process. Suppose that a faulty process q changes

its estimate to v0 in round t. By Lemma 3.3.4, we have a set of processes {q1, · · · , qt−1} such

that qi changes the value of its variable new to v0 in the round i, 1 ≤ i ≤ t− 1. Moreover,

faulty process p0 that never changes its estimate is different from all processes in the set

{q1, · · · , qt−1}. If all these processes are faulty then we have a set of t+ 1 faulty processes

(including p0, q and {q1, · · · , qt−1}), contradicting the hypothesis that there are at most t

faulty processes. Therefore, at least one process in set {q1, · · · , qt−1} is correct. Let p be

such a process. Process p changes its estimate to v0 in round 1 ≤ r < t: newp(r) = v0.

But for every 1 ≤ r < t, newp(r) ≤ newp(t). Thus, v0 = newp(r) ≤ newp(t) = cmax.

Lemma 3.3.8. If two processes decide at Line 18 then they decide the same value.

Proof. Suppose that process p decides v0 at Line 18 and process q decides v1 at Line 18.

Thus, p receives at least n−t pairs (v0, ∗) and q receives at least n−t pairs (v1, ∗) in round
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t + 1. That means that at least n − t processes sent (v0, ∗) and at least n − t processes

sent (v1, ∗). Since (n− t) + (n− t) > n, we get v0 = v1.

Proposition 3.3.1. No two processes decide different values.

Proof. Let r > 1 be the first round during which some process decides. There are two

cases to consider.

CASE 1: r ≤ t. Some process p decides v at Line 15 (it receives n− r + 2 pairs (v, ∗) in

round r). By Lemma 3.3.6, we have:

(1) no process changes its estimate to a value less than v since round r − 1,

(2) for every correct process s and every round r1 ≥ r, news(r1) = v.

To derive a contradiction, suppose that some process q decides v′ 6= v in round r′.

• if q decides v′ at round r′ ≥ r at Line 15. Thus, q receives at least n− r′ + 2 pairs

(v′, ∗) in round r′. As n−r′+2+n−r+2 > n, at least one process sends (v, ∗) to p in

round r and sends (v′, ∗) to q in round r′. Thus, r′ > r and v′ < v because a process

changes only its estimate to a value less than its current estimate. By Lemma 3.3.4,

some process has changed its estimate to v′ in round r − 1, contradicting (1).

• if q decides at round t+ 1:

– if q decides at Line 18 then q receives at least n− t pairs (v′, ∗). As n− t > t

there is one correct process that sent (v′, ∗) to q. By (2), v′ = v, contradicting

the hypothesis.

– if q decides at Line 24 then q receives at least n − t pairs and one of them is

pair (v′, y) such that v′ < y in round t + 1. As n − t > t, at least one correct

process sent a pair to q. By (2), that pair is (v, ∗). Thus, v′ ≤ v. But by (1), no

process changes its state to a value less than v since round r− 1, contradicting

the fact that some process changed its estimate to v′ and sent (v′, y) to q.
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CASE 2: r = t+ 1. By Lemma 3.3.5, either:

• At the end of round t, the value of variable new of every correct process is the same

cmax. At round t + 1, all correct processes receive at least n − t pairs (cmax, ∗). As

no process decide earlier than round t+ 1, all correct processes decide cmax at Line

18. Suppose that a faulty process q decides.

– If it decides at Line 18 then by Lemma 3.3.8 it decides cmax.

– If it decides at Line 24 then let x = Min{v|v ∈ Gq}: it receives at least n − t

pairs and one among them is (x, y) such that x < y. As q receives at least n− t

pairs, at least one pair comes from a correct process. Hence, x ≤ cmax. On the

other hand, if pair (x, y) comes from a correct process then x = cmax else it

comes from a faulty process. By Lemma 3.3.7, we get x ≥ cmax. Thus, in all

cases, x = cmax. That means that q decides cmax as correct processes.

• V [t] = {vmin, cmax}, there are t faulty processes such that for every faulty process

s news(t) = vmin. Moreover, some correct processes changes its estimate to vmin in

round t. Suppose that it is correct process p and so newp(t) = vmin. Thus, at most

n − t − 1 processes send pairs (v, ∗) such that v 6= vmin in round t + 1. It implies

that no process cannot decide at Line 18.

As p changes its estimate to vmin in round t, it sends (vmin, y) with vmin < y to all

processes at the beginning of round t + 1. Every correct process receives at least

n − t pairs (from correct processes)and one of them is (vmin, y) such that vmin < y

(comes from p). Thus every correct process decides vmin at Line 24.

Now, suppose that a faulty process q′ decides at Line 24. Then it must receive at

least n− t pairs in round t+ 1. On the other hand, at least t+ 1 processes have the

value new equal to vmin at the end of round t (including all the t faulty processes

and one correct process that changes it estimate to vmin). Thus, among these n− t
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pairs, one of them is (vmin, ∗) and we have Min{v|v ∈ Gq′} = vmin. Therefore, if a

faulty process q′ decides then it must decide vmin.

Proposition 3.3.2. Every correct process decides.

Proof. By Lemma 3.3.5, we have at the end of round t, either:

• the value new of every correct process is the same then all correct processes decide

at Lines 18.

• at least one correct process p changes its estimate to vmin and the value of variable

new of every faulty process is vmin. Thus, every correct process receives at least n−t

pairs and one of them is (vmin, y) such that vmin < y from p. It decides vmin at Line

24.

Proposition 3.3.3. if a process decides v then v is the input value of some process.

Proof. if a process decides, it decides some value in set V [t]. By Lemma 3.3.1, V [t] ⊆ V [1].

Moreover, V [1] is a subset of the inputs proposed by processes. Therefore, if a process p

decides v, then v is input value of some process.

Thus, we have:

Theorem 3.3.1. If processes are numerate, uniform consensus is solvable in t+ 1 rounds

if n > 2t even if all processes are anonymous.

Proposition 3.3.4. Early Stopping: Let us assume that there are at most f ≤ t faulty

processes. Thus, no process executes more than Min{f + 3, t+ 1} rounds. More precisely,

no correct process executes more than Min{f + 2, t + 1} rounds and no faulty process

executes more than Min{f + 3, t+ 1} rounds.
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Proof. Consider only the case where f ≤ t − 1. As we have seen in the proof of Lemma

3.3.5 replacing t by f , we have either (a) for every correct process q newq(f) = cmax, or

(b) V [f ] = {vmin, cmax}, some correct process changes its estimate to vmin in round t and

for every faulty process s, news(f) = vmin.

• if newq(f) = cmax for every correct process q. At round f + 2, every correct process

receives at least n− f values cmax and decides cmax and stops at Line 14. At round

f + 3, no faulty process receives enough n− t messages and so stops at Line 13.

• if V [f ] = {vmin, cmax} and some correct process changes its state to vmin in round

f . By Lemma 3.3.3, newq(f + 1) ≤ vmin for every correct process q. By definition of

vmin, newq(f + 1) = vmin for every correct process q. At round f + 2, every correct

process receives at least n − f values cmax, decides cmax and stops at Line 14. At

round f + 3, every faulty process does not receive more that t < n− t messages and

stops at Line 13.

3.3.2 Innumerate processes

Proposition 3.3.5. Uniform consensus is no solvable with innumerate processes if l ≤ 2t

with general-omission failures.

Proof. The proof is based on a classical partitioning argument. By contradiction, assume

that there is a protocol that solves the uniform binary consensus problem with l ≤ 2t.

Let a partition of the set of identifiers L into two sets I = {1, . . . , l/2} and J = {l/2 +

1, . . . l}, such that |I| ≤ t and |J | ≤ t. Consider the two following repartitions of identifiers.

1. In repartition R, all identifiers in I are of only one process, identifiers in J −{l} are

identifiers of only one process too and identifier l is the identifiers of the remaining
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n − l + 1 processes. R(I) and R(J) denote respectively the set of processes with

identifiers in I and the set of processes with identifiers in J for repartition R.

2. Repartition S is identical to R except that only one process has identifier l and the

other processes having identifier l for R have now identifier 1. S(I) and S(J) denote

respectively the set of processes with identifiers in I and the set of processes with

identifiers in J for repartition S.

Note that R(I) and S(J) contain at most t processes. Note also that as processes are

innumerate if all processes with the same identifier send the same messages in R and S

and have the same initial state, execution in R or S are indistinguishable for any process.

Consider the following executions:

• Execution α. The repartition is R, all processes have 0 as initial value. Processes in

R(I) are crashed form the beginning. By validity the decision value is 0.

• Execution α′. The repartition is R, the initial values are 0 for processes in R(J) and

1 for processes in R(I). Processes in R(I) commit send and receive omission failures:

no processes in R(J) receives message from processes in R(I) and no process in R(I)

receives message from processes in R(J). α′ is indistinguishable from α for processes

in R(J) and the decision value is 0.

• Execution β. The repartition is S, all processes have 1 as initial value. Processes in

S(J) are crashed from the beginning. By validity the decision value is 1.

• Execution β′. The repartition is S, processes in S(I) have 1 as initial value and

processes in S(J) have 0 as initial value. Processes in S(J) commit send and receive

omission and no process in S(I) receives message from S(J) and no process in S(J)

receives message from S(I). β′ is indistinguishable from β for processes in S(I) and

the decision value is 1.
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Now consider any process p with identifier in I both for R and S. As processes are

innumerate p receives in β′ and α′ exactly the same messages from identifiers in I, and

receives no messages from identifiers in J , both execution are then indistinguishable for

p. In β′ it decides 1 then in α′ it decides 1 too. But the decision value for α′ is 0.

In the other hand, the uniform consensus is solvable when l > 2t. The algorithm is very

similar to the one presented in Figure 3.2 with only difference at Lines 13, 14, 17 and 19.

The quorums n − t and n − r + 2 pairs are replaced by l − t and l − r + 2, respectively.

Then we get:

Theorem 3.3.2. Uniform consensus is solvable with innumerate processes with general-

omission failures if and only l > 2t.

3.4 Conclusion

The results in this chapter show that in crash failure or send omission failure models, the

uniform consensus is possible even if processes are fully anonymous and innumerate but

in general-omission failure model, the ability of processes to count identical messages they

receive or identifiers of processes is required.
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Chapter 4

Agreement in Byzantine failure

model

In this chapter, we consider the consensus problem in the case of Byzantine failure model.

For the synchronous case, 3t + 1 identifiers are necessary to reach the consensus in a

system of n processes, up to t of which can be Byzantine, using a scenario argument.

The matching synchronous algorithm is obtained by a simulation that transforms any

synchronous Byzantine agreement algorithm designed for a classical system with unique

identifiers into one in homonymmodel with l > 3t identifiers. For the partially synchronous

case, we prove using a partitioning argument that the lower bound becomes l > n+3t
2 . Using

this bound, we present a new Byzantine agreement algorithm.

4.1 The Synchronous model

In this section we prove the necessary and sufficient condition for solving agreement in a

synchronous system.
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4.1.1 Impossibility

We prove that having l > 3t is necessary for solving synchronous Byzantine agreement,

regardless of whether the processes are numerate or innumerate, using a scenario argument,

in the style of Fischer, Lynch and Merritt [34].

Proposition 4.1.1. Synchronous Byzantine agreement is unsolvable even with numerate

processes if l ≤ 3t.

Proof. It suffices to prove there is no synchronous algorithm for Byzantine agreement when

l = 3t. To derive a contradiction, suppose there is an n-process synchronous algorithm A

for Byzantine agreement with l = 3t. Let Ai(v) be the algorithm executed by a process

with identifier i when it has input value v. We divide the set of processes into 3 sets:

• The set A is the set of processes with identifiers from 1 to t

• The set B is the set of processes with identifiers from t+ 1 to 2t

• The set C is the set of processes with identifiers from 2t+ 1 to 3t

Now, we shall define three executions α, β and γ as follows:

• In execution α, for every identifier i, G(i) contains only one process excepts the

group G(3t) that contains n − 3t + 1 processes. Processes in B are Byzantine. All

correct processes have input 1. For Byzantine processes in B, they run as follows:

for t < i < 2t, Byzantine process with identifier i run Ai(0). Byzantine process

with identifier 2t has the same behavior concerning the messages sent to processes

in B and C as one correct process with input 0 while it has the same behavior

concerning the messages sent to processes in A as n−3t+ 1 processes with identifier

2t having input 0. (Here, we use the fact that each Byzantine process can send

multiple messages to each correct process in a round.)
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• In execution β, for every identifier i, G(i) contains only one process excepts group

G(2t) that contains n−3t+1 processes. Processes in C are Byzantine. All processes

in A have input 1 while processes in B have input 0. For Byzantine processes in

C, they run as follows: for 2t < i < 3t, Byzantine process with identifier i has the

same behavior concerning the messages sent to processes in A as one correct process

with input 1 while it the same behavior concerning the messages sent to processes in

B as one correct process with input 0. Byzantine process with identifier 3t has the

same behavior concerning the messages sent to processes in B and C as one correct

process with input 0 while it has the same behavior concerning the messages sent to

processes in A as n − 3t + 1 processes with identifier 3t input 1. (Here, we use the

fact that each Byzantine process can send multiple messages to each correct process

in a round.)

• In execution γ, for every identifier i, G(i) contains only one process excepts group

G(2t) that contains n− 3t+ 1 processes. Processes in A are Byzantine. All correct

processes have input 0. Byzantine process with identifier i in A run Ai(1).

The correct processes in A cannot distinguish α from β. By the validity property, even-

tually, all correct processes decide 1 in execution α. Therefore, processes in A must also

decide 1 in execution β. Thus all correct processes decide 1 in execution β.

The correct processes in B cannot distinguish β from γ. By the validity property, even-

tually, all correct processes decide 0 in execution γ. Therefore, processes in B must also

decide in execution β. Thus all correct processes decide 0 in execution β, contradicting

the previous paragraph.
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4.1.2 Algorithm

Next, we present an algorithm that solves Byzantine agreement assuming l > 3t. Our con-

struction of the agreement algorithm is generic. We begin with any synchronous Byzantine

agreement algorithm for l processes with unique identifiers that terminates in a bounded

number of rounds (such algorithms exist when l > 3t, e.g., [47]). The principle of the

transformation is as follows: processes are divided into groups according to their identi-

fiers. Each group simulates a single process. For the Byzantine failure model, a group may

be a correct group, a partially Byzantine group or a Byzantine group (see the Chapter

2). All processes within correct group can reach agreement and cooperatively simulate a

single correct process while a partially Byzantine group or Byzantine group may simulate

a Byzantine process. The correctness of our simulation relies on the fact that more than

two-thirds of the simulated processes will be correct (since l > 3t), which is enough to

achieve agreement.

Proposition 4.1.2. Synchronous Byzantine agreement is solvable even with innumerate

processes if l > 3t.

Proof. We transform any Byzantine agreement algorithm A for the classical model with

unique identifiers into an algorithm T (A) for systems with homonyms. Consider any such

A for a system with l processes {p1, . . . , pl} that terminates after a finite number of rounds.

A can be specified by:

(1) a set of local process states,

(2) a function init(i, v) that encodes the initial state of process pi when pi has input value

v,

(3) a function M(s, r) that determines the message to send in state s in round r,

(4) a transition function δ(s, r, RM) that determines the new state to which the process

moves from state s after receiving a set of messages RM in round r, and
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Code for processes with identifier i

1 s = init(i, v) /* v is the value proposed by the process */

2 for all r from 1 to k
SUPERROUND r
3 /* SELECTION ROUND 2r */
4 send 〈s〉 to all processes
5 receive 〈RM〉
6 s = deterministic choice of some element x.val such that x ∈ RM and x.id = i

7 /* RUNNING ROUND 2r + 1 */
8 send 〈M(s, r)〉 to all processes /* almost identical to original algorithm */
9 receive 〈RM〉
10 for all j in L /* eliminate messages from known Byzantine groups */
11 if there is more than one different message from identifier j in RM
12 then remove all of them from RM
13 s = δ(s, r, RM)

SUPERROUND k + 1
14 send 〈decide(s)〉 to all processes
15 receive 〈RM〉
16 if there is a v 6= ⊥ such that |{d ∈ RM : d.val = v}| > t
17 then decide such a v
18 else decide ⊥

Figure 4.1: Synchronous Byzantine agreement algorithm T (A) with n processes and l
identifiers.

(5) a decision function decide(s) which is the decision in state s, or ⊥ if there is no decision

yet (once a correct process has decided in a state s, decide(s′) remains equal to this decision

in all states s′ reachable from s).

The computation proceeds in superrounds. Superround r is composed of the two rounds

2r and 2r + 1. Let k be the number of superrounds of A. In each superround r, where

1 ≤ r ≤ k, each process sends 〈M(s, r)〉 to all processes. From the set 〈RM〉 that it

receives, it moves to the new state basing on the transition function δ(s, r, RM). At the

end of superround k + 1 1, the function decide(s) is executed to return decision value.

Our new algorithm T (A) is shown in Figure 4.1.

In rounds 2r called selection round (line 4 to 6) of superround r, the processes within
1this final superround is composed of one round
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each group try to agree on a state for superround r. We will show that in each round, the

selected state will be the same for the processes in correct group.

In rounds 2r + 1 called running round (line 8 to 13), each process simulates one step

of algorithm A with the state chosen in the preceding selection round and the messages

received in the round.

Finally, in supperound k + 1(line 14 to 17), if there is a value decided by at least t + 1

processes with different identifiers then the process can decide that value (since at least

one of the processes that decided the value must be correct). The superround k + 1 is

useful for correct processes that belong to a group with a Byzantine process.

Let αH be an execution of T (A). We first observe that in the selection round of each phase

r of αH , all processes in a correct group G(i) select the same state sr
i . This is because each

process in G(i) sends the same message to all processes, and therefore receives the same

set of messages with identifier i during the selection round. Every process in the group

then makes the same deterministic choice for the new value of s in line 6. Let winnerr
i be

a process in G(i) that sent a message containing sr
i in the selection round of phase r.

We construct an execution α of A that has the following properties for every correct group

G(i).

1. The input to pi in α is the input to some process of G(i) in αH .

2. Process pi is correct in α and for all rounds r, pi’s state s has value sr
i at the beginning

of round r in α.

We construct the execution α inductively. In the first selection round of αH , the processes

in group G(i) select a state s1
i contained in a message sent by the process winner1

i ∈ G(i)

during the first selection round. Thus s1
i = init(i, v), where v is the input to process

winner1
i . Let the input to process pi in α be v. This establishes property 1 for α. Then,

according to algorithm A, pi will be in state s1
i at the beginning of round r in α, so
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property 2 is satisfied for round 1.

Assume that property 2 holds for some r ≥ 1. We construct round r of α so that property

2 holds for r + 1. We now describe the messages sent by each process pi in round r of

α. For each correct group G(i), we let pi send the message specified by A to all other

processes. By the hypothesis, pi is in state sr
i at the beginning of round r, so this message

will beM(sr
i , r). For each incorrect group G(i), we let pi behave in the following Byzantine

manner. For each correct group G(i), pj sends to process pi the message that winnerr+1
i

has in set RM from a process with identifier j at the end of the running round of r of αH

(if any). (There is at most one such message after winnerr+1
i has executed line 12.)

We show that, for all correct groups G(i), winnerr+1
i receives the same set of messages at

the end of the running round of superround r of αH as pi receives in r of α. (Below, we

denote this common set by RM r
i .) If G(j) is correct, all processes in G(j) send M(sr

j , r)

to winnerr+1
i in the running round of superround r. Since processes are innumerate,

winnerr+1
i will only receive a single copy of M(sr

j , r) from processes with identifier j, just

as pi does in round r of α. If G(j) is not correct, then by definition, winnerr+1
i has the

same message labeled with identifier i at the end of the running round of superround r of

αH as pi receives in round r of α (if any).

Now consider any correct groupG(i). In the selection round of superround r+1, winnerr+1
i

sends δ(sr
i , r, RM

r
i ) and all processes in group G(i) choose this as their new state sr+1

i . At

the end of round r in α, pi updates its state to δ(sr
i , r, RM

r
i ). This guarantees property 2

holds for r + 1.

This completes the inductive construction of execution α satisfying property 1 and prop-

erty 2. Now, we prove the correctness of the algorithm:

Agreement property: As A is a synchronous Byzantine agreement algorithm that tol-

erates t Byzantine failures, all correct processes eventually decide some value v in α. It

follows from property 2 above that in αH , eventually for all correct groups G(i), sk+1
i is
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a state where decide(sk+1
i ) is v. As l > 3t, at least t + 1 groups G(i) are correct and all

processes in these groups eventually send v in the supperround k + 1. Thus, each correct

process in αH eventually decides v, even if it is in a group with a Byzantine process.

Validity property: If all correct processes in αH have the same input value v then by

property 1 all correct processes in α have input value v. By validity of A, all correct

processes eventually decide some value v in α. Like the proof of correctness of Agreement

property, all correct processes in αH eventually output v.

Termination property: all correct processes decide in line 18 or 19 in superround k + 1.

From Proposition 4.1.1 and Proposition 4.1.2, we have the following theorem.

Theorem 4.1.1. Synchronous Byzantine agreement is solvable if and only if l > 3t.

4.2 The Partially Synchronous model

4.2.1 Impossibility

We prove that l > n+3t
2 is the necessary condition to reach the agreement using a parti-

tioning argument. We show that if there are too few identifiers, and messages between

two groups of correct processes are not delivered for sufficiently long, then the Byzantine

processes can force processes in the two groups to decide different values.

Proposition 4.2.1. Partially synchronous Byzantine agreement is unsolvable even with

numerate processes if l ≤ n+3t
2 .

Proof. Byzantine agreement is impossible when l ≤ 3t, even in the fully synchronous

model, by Proposition 4.1.1. So, it remains to show that Byzantine agreement is impossible

when l > 3t and l ≤ n+3t
2 . To derive a contradiction, assume that there exists a Byzantine
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agreement algorithm A for such a system. Let Ai(v) be the algorithm executed by a

process with identifier i when it has input value v. Let x = l − 3t, y = n− (2l − 3t). We

divide the set L = {1, 2, ..., l} into 4 subsets:

• L0 = {1, ..., t}

• L1 = {t+ 1, ..., 2t}

• L2 = {2t+ 1, ..., 3t}

• L3 = {3t+ 1, ..., l}

We consider an initial configuration as follows: all groups G(i) contains only one process

except the group G(3t) that contains 1+x+y processes.(Note that as (l−1)+(1+x+y) =

(l − 1) + 1 + l − 3t+ (n− (2l − 3t)) = n, there are always n processes in the system.)

We define the executions of this algorithm, α, β as follows:

In execution α, processes in L0 are Byzantine and send no messages. All other processes

have input 1 and all of the messages sent are delivered. By the validity property of

algorithm, all correct processes decide 1 by some round r0.

In execution β, processes in L1 are Byzantine and send no messages. All other processes

have input 0 and all of the messages sent are delivered. By the validity property of

algorithm, all correct processes decide 0 by some round r1.

Now, we define a configuration that satisfies the following properties:

(1) For each identifier i ≤ 3t− 1, the group G(i) contains only one process,

(2) G(3t) contains y + 1 processes,

(3) For 3t+ 1 ≤ i ≤ l, G(i) contains two processes, we say that p0
i and p1

i

We define an execution γ as follows: processes in L2 are Byzantine. Processes in L1,

processes p1
i in L3 and group G(3t) have input 1. Processes in L0, processes p0

i in L3

have input 0. Messages are not delivered between correct processes that have opposite
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input value for the first r = max(r0, r1) rounds of γ. All messages sent after round r

are delivered. Byzantine processes run as follows: for Byzantine process with identifier i

different from 3t, it runs Ai(1) for groups of processes with input 1 as in α and runs Ai(0)

for groups of processes with input 0 as in β. Byzantine process with identifier 3t has the

same behavior concerning the messages sent to processes with input 1 as x + 1 processes

with identifiers 3t in α while it has the same behavior concerning the messages sent to

processes with input 0 as x+ y + 1 processes with identifiers 3t in β.

The correct processes in L1 cannot distinguish α and γ for the first r rounds. Thus, they

decide 1 in γ.

The correct processes in L0 cannot distinguish β and γ for the first r rounds. Thus, they

decide 0 in γ, contradicting the agreement property.

4.2.2 Algorithm

In this section, we present an algorithm that solves Byzantine agreement in the partially

synchronous model when l > n+3t
2 . Our algorithm is based on the algorithm given by

Dwork, Lynch and Stockmeyer [31] for the classical case where n = l, with several novel

features. First, we begin with an authenticated broadcast primitive based on [63] and then

use this primitive to implement an agreement algorithm.

4.2.2.1 Authenticated Broadcast

The algorithm is a straightforward generalization of the ones given in [31, 63] for systems

with unique identifiers. The execution as being divided into superrounds, where each

superround consists of two consecutive rounds. Let T be the first superround such that all

messages sent during or after superround T are delivered. Two primitives Broadcast(m)

by a process with identifier i and Accept(m, i) are used. Our version of authenticated
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broadcast for homonymous systems satisfies the following three properties.

1. Correctness: If a correct process with identifier i performs Broadcast(m) in super-

round r ≥ T , then every correct process performs Accept(m, i) during superround

r.

2. Unforgeability: If all processes with identifier i are correct and none of them perform

Broadcast(m), then no correct process performs Accept(m, i).

3. Relay: If some correct process performs Accept(m, i) during superround r, then every

correct process performs Accept(m, i) by superround max(r + 1, T ).

To perform Broadcast(m) in superround r, a process sends a message 〈init m〉 in the

first round of superround r. Any process that receives this message from identifier i sends

〈echo m, r, i〉 in the following round, which is the second round of superround r, and in all

subsequent rounds. In each round after superround r, any process that has so far received

〈echo m, r, i〉 from l− 2t distinct identifiers sends a message 〈echo m, r, i〉. If, at any time,

a process has received the message 〈echo m, r, i〉 from l− t distinct identifiers, the process

performs Accept(m, i).

Proposition 4.2.2. It is possible to implement authenticated broadcasts satisfying the

correctness, unforgeability and relay properties in the basic partially synchronous model,

provided l > 3t.

Proof. Correctness: If a correct process with identifier i performs Broadcast(m) in some

superround r ≥ T , then all correct processes send 〈echo m, r, i〉 messages in the second

round of superround r. All of these messages will be delivered and they will come from

at least l − t different identifiers, so all processes will perform Accept(m, i) in the second

round of superround r.
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Unforgeability: Suppose all processes with identifier i are correct and none perform

Broadcast(m). The only reason a correct process will send a message 〈echo m, r, i〉 (for

some r) is if it has previously received 〈echo m, r, i〉 messages from l − 2t > t identifiers,

one of which must have been sent by a correct process. Thus, no correct process can send

the first 〈echo m, r, i〉 message. So, no process can receive 〈echo m, r, i〉 from l − t > t

identifiers. It follows that no correct process performs Accept(m, i).

Relay: Suppose some correct process p performs Accept(m, i) during superround r. For

some r′, p has received 〈echom, r′, i〉 messages from l−t different identifiers. At least l−2t

of those messages were sent by correct processes. Each of those l−2t processes continue to

send 〈echo m, r′, i〉 in every round after superround r. Thus, in superround max(r+ 1, T )

every correct process sends 〈echo m, r′, i〉 and all of these messages are delivered, so every

correct process performs Accept(m, i).

4.2.2.2 Agreement algorithm

We now describe the Byzantine agreement algorithm. Each process keeps track of a set

of proper values, which are values that can be output without violating validity. Initially,

only the process’s own input value is in this set. Each process appends its proper set to

each message it sends. If a process receives proper sets containing v in messages from

t + 1 different identifiers, it adds v to its own proper set. Also, if a process has received

proper sets from 2t+ 1 different identifiers and no value appears in t+ 1 of them, it adds

all possible input values to its own proper set. (This can be done because t + 1 of the

proper sets are from correct processes, so there are at least two different inputs to correct

processes.)

The Byzantine agreement algorithm is shown in Figure 4.2. Whenever a correct process

sends a message, it sends it to all processes. The execution of the algorithm is broken into

phases, each of which lasts four superrounds. Processes assigned the identifier (ph mod l)+
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1 are the leaders of phase ph. In each phase, each process first performs a broadcast of a

proposal containing the set of values it would be willing to decide (line 8). These are the

values in its proper set, unless it has already locked a value, as described below, in which

case it can only send its locked value. Each phase leader chooses a value that appears in

proposals the leader has accepted from l− t different identifiers (if such a value exists) and

sends out a request for processes to lock that value (line 12) during superround 2 of the

phase. Then, in superround 3 of the phase, all processes vote on which lock message to

support, using a broadcast (line 16). In the third superround of the phase, each process

that performed accept for votes for a particular value v from l−t different identifiers sends

〈ack v〉 back to the leaders (line 20) and locks the value v (by adding the value to its locks

set, along with the phase number associated with the lock). A leader that receives l − t

ack messages for the value it wanted locked can decide that value (line 23). Finally, each

process that has decided sends a message to others (line 24); if any process receives such

a message with the same decision value from t+ 1 identifiers, it can also decide that value

(line 27). At the end of a phase, a process releases old locks (line 31) if it has accepted

enough votes for a later lock request.

To cope with homonyms, our algorithm differs from the original algorithm of [31] in the

following three ways. (1) The new algorithm uses a set of processes with l − t different

identifiers as a quorum (e.g., for vote messages). The key property of these quorums is

that any two such sets must both contain a process that is correct and does not share its

identifier with any other process, as shown in Lemma 4.2.1, below. (2) The vote messages

are needed to ensure agreement in the case where several leaders ask processes to lock

different values, something which could not occur in the original algorithm of [31], since

each phase in that algorithm has a unique leader. (3) The decide messages are used

to ensure that a correct process that shares its identifier with a Byzantine process can

eventually decide. (This is similar to the mechanism used in Section 4.1.2.) We begin by
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proving the property of quorums used by the algorithm.

Lemma 4.2.1. Assume l > n+3t
2 . If A and B are sets of identifiers and |A| ≥ l − t and

|B| ≥ l− t, then A∩B contains an identifier that belongs to only one correct process and

no Byzantine processes.

Proof. At most n − l identifiers belong to more than one process. At most t identifiers

belong to Byzantine processes. Thus, any set that has more than n− l+ t identifiers must

contain an identifier that belongs to only one correct process and no Byzantine processes.

Since 2l−3t > n, we have |A∩B| = |A|+|B|−|A∪B| ≥ |A|+|B|−l ≥ (l−t)+(l−t)−l =

2l − 3t− l + t > n− l + t.

In the original algorithm of [31], each phase has a unique leader. In our algorithm, there

may be several leaders. The new voting superround ensures this cannot cause problems,

as shown in the following lemmas.

Lemma 4.2.2. If the messages 〈ack v, ph〉 and 〈ack v′, ph〉 are sent by correct processes,

then v = v′.

Proof. Suppose a correct process p sends 〈ack v, ph〉 and a correct process p′ sends 〈ack v′, ph〉.

(We may have p = p′.) According to line 18, there is a set A of l−t identifiers j for which p

performs Accept(〈vote v, ph〉, j). Similarly, there is a set B of l− t identifiers j for which p′

performs Accept(〈vote v′, ph〉, j). By Lemma 4.2.1, A∩B contains an identifier j that be-

longs to only one correct process and no Byzantine processes. By unforgeability, the correct

process with identifier j performed Broadcast(〈vote v, ph〉) and Broadcast(〈vote v′, ph〉).

Thus, v = v′.

Lemma 4.2.3. If two correct processes decide on line 23 in the same phase, then they

decide the same value.
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Proof. Suppose two correct processes p and p′ decide values v and v′, respectively, during

some phase ph. Then, process p received 〈ack v, ph〉 from l − t > t different identifiers,

so some correct process must have sent 〈ack v, ph〉. Similarly, some correct process must

have sent 〈ack v′, ph〉. By Lemma 4.2.2, v = v′.

Lemma 4.2.4. Suppose there is a value v and a phase ph such that processes with l − t

different identifiers sent an 〈ack v, ph〉 message in phase ph. Then, at all times after phase

ph, each correct process that sent 〈ack v, ph〉 has a pair (v, ph′) with ph′ ≥ ph in its locks

set.

Proof. To derive a contradiction, suppose the claim is false. Let A be the set of l − t

identifiers of the processes that sent an 〈ack v, ph〉 message in phase ph. Consider the

first time the claim is violated: some correct process q that sent an 〈ack v, ph〉 message

removes its lock on v (on line 31). This means that there is some v′ 6= v and ph′ > ph

such that q has performed Accept(〈vote v′, ph′〉, j)) for l − t > t different identifiers j,

at least one of which must belong only to correct processes. By unforgeability, some

correct process performed Broadcast(〈vote v′, ph′〉). That process must have performed

Accept(〈propose Vj, ph
′〉, j) for l − t different identifiers j with v′ ∈ Vj. Let B be this set

of identifiers.

By Lemma 4.2.1, some identifier j ∈ A ∩ B belongs to only one correct process and

no Byzantine processes. Let r be the correct process with this identifier j. Since r’s

identifier is in A, r sent 〈ack v, ph〉 in phase ph. Since r’s identifier is in B, it follows from

unforgeability that r performed a Broadcast(〈propose Vj, ph
′〉) with v′ ∈ Vj. According

to line 7, this is possible only if (v, ∗) is not in r’s locks set at the beginning of phase

ph′. This contradicts our assumption that all correct processes that sent an 〈ack v, ph〉

message in phase ph (including r) keep the value in v in their locks set from the time they

execute line 20 of phase ph until they execute line 31 of phase ph′.
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The following lemmas are useful for proving termination. Recall that all messages sent

after T are guaranteed to be delivered.

Lemma 4.2.5. ?? At the end of any phase ph3 that occurs after T , if (v1, ph1) is in the

locks variable of a correct process p1 and (v2, ph2) is in the locks variable of a correct

process p2, then v1 = v2.

Proof. Since, at the end of phase ph3, correct processes have locks associated with phases

ph1 and ph2, we must have ph1 ≤ ph3 and ph2 ≤ ph3. If ph1 = ph2, then v1 = v2

by Lemma 4.2.2. So for the rest of the proof assume, without loss of generality, that

ph2 > ph1. Before process p2 added (v2, ph2) to its locks set in phase ph2, it performed

Accept(〈vote v2, ph2〉, j) for l − t different identifiers j. By the relay property of the

authenticated broadcasts, p1 will accept all of these messages by the end of phase ph3 and

remove (v1, ph1) from its locks set, if v1 6= v2. Thus, v1 must be equal to v2.

Lemma 4.2.6. Let p be a correct process. Let ph be a phase such that (ph mod l) + 1 is

the identifier of p and phase ph − 1 occurs after T . Then, p will send a lock message in

superround 2 of phase ph.

Proof. By Lemma 4.2.4, at most one value will be appear in the locks variables of correct

processes at the end of phase ph− 1. We consider two cases.

Case 1: the locks set of some correct process q is non-empty at the end of phase ph− 1.

Let (v, phv) be the (unique) entry in the locks set of q, where phv must be smaller than ph.

Then q performed Accept(〈vote v, phv〉, j for l − t > t different identifiers, including some

identifier j that does not belong to any Byzantine process. Thus, some correct process

q performed Broadcast(〈vote v, phv〉). So, q performed Accept(〈propose Vj, phv〉, j) from
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l − t ≥ 2t + 1 different identifiers j with v ∈ Vj. At least t + 1 of those identifiers do

not belong to any Byzantine process. So correct processes with at least t + 1 different

identifiers performed Broadcast(〈propose Vj, phv〉), which means v is in the proper set of

correct processes with at least t + 1 different identifiers at the beginning of phase phv.

Thus, by the end of phase ph− 1, v will be in the proper set of every correct process. It

follows that, in phase ph, every correct process will perform Broadcast(〈propose V, ph〉)

with v ∈ V , and process p will be able to find a value that it can send in superround 2 of

phase ph.

Case 2: the locks set of every correct process is empty at the end of phase ph−1. If there

are t+ 1 correct processes with the same input value, that value will be in the proper set

of all correct processes by the beginning of phase ph. Otherwise, all input values will be

in the proper set of all correct processes at the beginning of phase ph. Either way, some

value will appear in the propose message that is broadcast by every correct process in

phase ph, so p will be able to find a value that it can send in superround 2 of phase ph.

We are now ready to prove the correctness of the algorithm.

Proposition 4.2.3. Partially synchronous Byzantine agreement is solvable even with in-

numerate processes if l > n+3t
2 .

Proof. We prove each of the three correctness properties of the algorithm in Figure 4.2 in

turn.

Validity: Suppose all correct processes have the same input value, v0. Then no correct

process ever adds any other value to its proper set. So, a correct process can perform a

Broadcast(〈propose V, ∗〉) message only if V ⊆ {v0}. It follows from unforgeability that a

correct process can perform an Accept(〈propose V, ∗〉, j) only if V ⊆ {v0} or a Byzantine

process has identifier j. Thus, according to the test on line 15, a correct process can
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perform Broadcast(〈vote v, ∗〉) only if v = v0. Then, according to the test on line 18, a

correct process can send a message 〈ack v, ∗〉 only if v = v0. Then, according to the test

on line 21, a correct process can decide v only if v = v0. Thus, no correct process decides

a value different from v0 on line 23. A process can decide a value different from v0 on

line 27 only if at least one correct process has already decided that value on line 23, so no

correct process will decide a value different from v0 on line 27.

Agreement: If no correct processes ever decide, agreement is trivially satisfied. A correct

process decides a value v on line 27 only if some correct process has previously decided

v. Thus, for agreement, it suffices to prove that all values decided by correct processes on

line 23 are identical. So, for the remainder of the proof of agreement, we only consider

processes that decide on line 23.

Suppose phase ph1 is the first phase during which some correct process decides. By Lemma

4.2.3 there is a unique value v1 that correct processes decide during phase ph1. Let p be a

correct process that decides v1 during phase ph1. Then p received 〈ack v1, ph1〉 messages

from l − t different identifiers. Let A be this set of l − t identifiers.

Suppose some correct process p decides a value v in a phase ph > ph1. We shall prove that

v = v1. Process p must have performed Accept(〈propose Vk, ph〉, k) from l − t different

identifiers k with v ∈ Vk. Let B be this set of l − t identifiers. By Lemma 4.2.1, some

identifier k ∈ A ∩ B belongs to only one correct process and no Byzantine processes.

Let q be the correct process with this identifier k. Since k ∈ A, q sent an 〈ack v1, ph1〉

message in phase ph1. By Lemma ??, (v1, ∗) is in the locks set of q at the beginning of

phase ph. Thus, no process with identifier k performs Broadcast(〈propose Vk, ph〉) unless

Vk ⊆ {v1}. By unforgeability, no correct process can perform Accept(〈propose Vk, ph〉, k)

unless Vk ⊆ {v1}. Since k ∈ B, process p did perform accept(〈propose Vk, ph〉, k) and

v ∈ Vk. Thus, v = v1. This completes the proof of the agreement property.

Termination: First, we show that if p is any correct process that does not share its identi-
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fier with any other process, then p terminates. Let ph be a phase such that (ph mod l)+1

is p’s identifier and phase ph − 1 occurs after T . By Lemma 4.2.6, there is some value

v such that p sends a 〈lock v, ph〉 message in superround 2 of phase ph. Every correct

process receives this message, and no other lock messages are received from a process with

identifier (ph mod l) + 1 in this phase. According to the test in line 10, p must have

performed Accept(〈propose Vj, ph〉, j) for l − t different identifiers j with v ∈ Vj during

superround 1 of phase ph. By the relay property, all correct processes must have per-

formed these Accept actions by the end of superround 2 of phase ph. Thus, every correct

process performs Broadcast(〈vote v, ph〉) during superround 3 of phase ph and all correct

processes accept this broadcast. Thus, all correct processes send 〈ack v, ph〉 in round 1 of

superround 3 of phase ph. Process p receives all of these messages and decides v.

There are at least 2t+ 1 correct processes that do not share their identifier with any other

process (since n ≤ 2l−3t). By the argument above, these will all decide. By the agreement

property, they will all decide on the same value v. Eventually, all of these 2t+ 1 processes

will send 〈decide v〉 messages in superround 4 of each phase, and all correct processes will

receive these messages and decide on line 27.

Combining Proposition 4.2.1 and 4.2.3, and the classical result that Byzantine agreement

is impossible when n ≤ 3t even if l = n, yields the following theorem (for numerate or

innumerate processes).

Theorem 4.2.1. Partially synchronous Byzantine agreement is solvable if and only if

l > n+3t
2 and n > 3t.
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Code for process with identifier i ∈ {1, . . . , l}

1 locks = ∅
2 ph = 0 /* phase number */
3 proper = {v} /* v is the value proposed by the process */
4 Note: in each round, proper is updated as described on page 53
5 while true
6 /* beginning of superround 1 of phase */
7 let V be the set of values v ∈ proper such that there is no pair (w, ∗) ∈ locks for any w 6= v
8 Broadcast(〈proposeV, ph〉) /* superround 1 */
9 /* beginning of superround 2 of phase */
10 if i = (ph mod l) + 1 and there is some value vlock such that
11 the process has performed Accept(〈proposeVj , ph〉, j) from l − t different identifiers j with vlock ∈ Vj

12 then send 〈lockvlock, ph〉 to all processes /* round 1 of superround 2 */
13 /* beginning of superround 3 of phase */
14 if there is some value v for which the process received 〈lockv, ph〉 from identifier (ph mod l) + 1 and
15 has performed Accept(〈proposeVj , ph〉, j) for l − t different identifiers j with v ∈ Vj

16 then choose one such v and perform Broadcast(〈votev, ph〉) /* superround 3 */
17 /* beginning of superround 4 of phase */
18 if for some v, the process has performed Accept(〈votev, ph〉, j) from l − t different identifiers j
19 then add (v, ph) to locks and remove any other pair (v, ∗) from locks
20 send 〈ackv, ph〉 to all processes /* round 1 of superround 4 */
21 if i = (ph mod l) + 1 and
22 the process has received 〈ackvlock, ph〉 from l − t different identifiers in this round
23 then decide vlock (but continue running the algorithm)
24 if the process has already decided some value v
25 then send 〈decidev〉 to all processes /* round 2 of superround 4 */
26 if for some v, the process has received 〈decidev〉 from t+ 1 different identifiers j in this round
27 then decide v (but continue running the algorithm)
28 for each (v1, ph1) ∈ locks
29 if for some v2 6= v1 and ph2 > ph1, the process has performed Accept(〈vote v2, ph2〉, j) for l − t
30 different identifiers j
31 then remove (v1, ph1) from locks
32 ph = ph+ 1

Figure 4.2: Byzantine agreement algorithm for the partially synchronous model.
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Chapter 5

Agreement in restricted Byzantine

failure model

In this chapter, we consider the agreement in Restricted Byzantine failure model where

each Byzantine process can only send at most one message to each recipient in each round.

Concerning numerate processes, we show that t+ 1 identifiers are enough to reach agree-

ment even in a partially synchronous model. We also show that this bound is tight using

a valency argument. Note that in Chapter 4, we showed that for Byzantine failures with-

out restriction, 3t + 1 is required to reach to the agreement for synchronous system et

l > n + 3t/2 is required for partially synchronous system. Therefore, we can see that if

the power of Byzantine process is partially restricted then, we may reduce remarkably the

number of identifiers needed to reach agreement.

Concerning innumerate processes, we show that the restriction of the power of Byzantine

processes does not help to solve the agreement. In particular, our results imply that, even

for t = 1, anonymous Byzantine agreement is impossible in the synchronous and partially

synchronous models (see the Table 5.1).
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Synchronous Partially synchronous
Innumerate processes l > 3t l > n+3t

2
Numerate processes l > t l > t

Table 5.1: Necessary and sufficient conditions for solving Byzantine agreement in a system
of n processes using l identifiers and tolerating t Byzantine failures. In all cases, n must
be greater than 3t.

5.1 Numerate Processes

First, we consider the model where processes can count copies of identical messages.

5.1.1 Impossibility

Proposition 5.1.1. Synchronous Byzantine agreement is unsolvable with numerate pro-

cesses against restricted Byzantine processes if l ≤ t or n ≤ 3t.

Proof. Classical results show that if n ≤ 3t then synchronous consensus is impossible [34].

We show that it is also impossible if l ≤ t. To derive a contradiction, assume that there

exists an algorithm A that solves Byzantine agreement with l ≤ t. We consider only

executions of A with some fixed set of l Byzantine processes such that each of them has

a distinct identifier.

We consider configurations of the algorithm A at the end of a synchronous round. Such a

configuration can be completely specified by the state of each process. A configuration C

is 0-valent if, starting from C, the only possible decision value that correct processes can

have is 0; it is 1-valent if, starting from C, the only possible decision value that correct

processes can have is 1. C is univalent if it is either 0-valent or 1-valent.

First, we prove following two lemmata:

Lemma 5.1.1. There is a bivalent initial configuration.

Proof. For 0 ≤ j ≤ n − l, let Cj
0 be the initial configuration where the first j correct

63



processes have input 1 and the rest of the correct processes have input 0. By validity,

C0
0 is 0-valent and Cn−l

0 is 1-valent. Therefore, there is j so that Cj
0 is 0-valent and

Cj+1
0 is not 1-valent. Only one correct process is in a different state in these two initial

configurations. We consider a initial configuration C where this process is Byzantine at

the beginning while all other processes are correct. From this configuration, there is an

execution where the Byzantine process behaves as a correct process with input 0 and then

all correct processes must decide 0. On the other hand, there is also an other execution

where the Byzantine process behaves as a correct process with input 1 and then all correct

processes must decide 1. Thus, C is bivalent.

Lemma 5.1.2. Let C0 and C1 be two configurations of A such that the state of only one

correct process is different in C0 and C1. Then, there exist executions α0 and β that start

from C0 and C1, respectively, which both produce the same output value.

Proof. Let p be the correct process whose state is different in C0 and C1 and let i be the

identifier assigned to p. Let s0 and s1 be the state of p in C0 and C1, respectively. Let b

be a Byzantine process that has identifier i.

Let α be the execution from C0 in which b starts in state s1 and follows p’s algorithm,

and all other Byzantine processes send no messages. Let β be the execution from C1 in

which b starts in state s and follows p’s algorithm, and all other Byzantine processes send

no messages. No correct process other than p can distinguish between α and β, since p

and b send the same messages in α as b and p send in β. Thus, each correct process other

than p must output the same decision in α and β.

Now, we note Ck the configuration at end of round k. From Ck, the system can reach

to different configurations Ck+1. In an execution of A, Ck+1 is completely determined by

(1) Ck, (2) the set of correct processes C, and (3) the messages send by the Byzantine
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process to the correct processes in round k + 1. We note a configuration Ck is decision

configuration if Ck is bivalent and every configuration Ck+1 is univalent.

By Lemma 5.1.1 there is an initial configuration C0. For every execution of A from this

configuration, all correct processes must decide the same value. Therefore, there is an

execution of A in which there a decision configuration Cd, where d ≥ 1. Then, some

configuration Cd+1 is 0-valent and some successor configuration C ′d+1 is 1-valent. For

0 ≤ j ≤ n − l, let Cj
d+1 be the successor of Cd where, in round d + 1, the Byzantine

processes send the same messages to the first j correct processes as they do in C ′d+1, and

send the same messages to the rest of the processes as they do in Cd+1. Then, C0
d+1 = Cd+1

is 0-valent and Cn−l
d+1 = C ′d+1 is 1-valent. Choose j so that Cj

d+1 is 0-valent and Cj+1
d+1 is

1-valent. Only one correct process is in a different state in these two configurations, so by

Lemma 5.1.2, some execution from Cj+1
d+1 decides v. Thus, Cj+1

d+1 is bivalent, contradicting

the assumption.

This contradiction completes the proof of Proposition 5.1.1.

5.1.2 Algorithm

Proposition 5.1.2. Partially synchronous Byzantine agreement is solvable with numerate

processes against restricted Byzantine processes if l > t and n > 3t.

The algorithm used to prove this proposition is similar to the one presented in Section

4.2.2.2. We first introduce in Section 5.1.2.1 a more powerful version of authenticated

Broadcast, which can be implemented in systems with numerate processes against re-

stricted Byzantine processes. Then, we use this broadcast to give the Byzantine Agreement

algorithm in Section 5.1.2.2.
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5.1.2.1 Authenticated Broadcasts with Multiplicities

In this more powerful version of authenticated broadcast, accept actions have an extra

parameter indicating the superround in which the message was broadcast and an estimate

of the number of correct processes that performed the broadcast in that round. More

precisely, this estimate is greater than the number of correct processes that broadcasts

the message and does not exceed the number of correct broadcasters by more than the

actual number of Byzantine processes in the execution. Furthermore, all correct processes

eventually agree on the multiplicity of each message.

The computation proceeds in superrounds. Superround r is composed of the two rounds 2r

and 2r + 1. Our authenticated broadcast is defined by two primitives: broadcast(i,m, r),

where i is the identifier of the broadcaster, m is the message and r is the superround

number, and accept(i, α,m, r) where α is a strictly positive integer. α is an estimate of

the number of processes with identifier i that broadcast m in superround r.

The authenticated broadcast primitive is specified as follows. Consider any execution that

uses authenticated broadcast. Let T be the first superround such that all messages sent

during or after superround T are delivered. Let fi be the number of Byzantine processes

with identifier i. The fi values are used only in the specification of the authenticated

broadcast and are not known by the processes.

1. Correctness: If α (α > 0) correct processes with identifier i performBroadcast(i,m, r)

in superround r ≥ T then every correct process performs Accept(i, α′,m, r) with

α′ ≥ α during superround r.

2. Relay: If a correct process performs Accept(i, α,m, r) in superround r′ ≥ r then every

correct process performs Accept(i, α′,m, r) with α′ ≥ α in superround max(r′, T )+1.

3. Unforgeability: If α (α ≥ 0) correct processes with identifier i performBroadcast(i,m, r)

in superround r and some correct process performs Accept(i, α′,m, r) in superround
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Code for process with identifier i ∈ {1, 2, . . . , l}

Variable:
1 a[h,m, r] = 0 for all h,m and r
Main code:
2 for all R from 1 to ∞
3 M = ∅
4 for all h ∈ {1, 2, . . . , l}
5 for all m ∈ possible messages
6 for all k ∈ {1, . . . , R/2}
7 if a[h,m, k] 6= 0 then M =M∪ {(echo, h, a[h,m, k],m, k)}
8 if R = 2r then
9 To perform Broadcast(i,m, r) : M =M∪ {(init, i,m, r)}

10 send 〈M〉 to all processes

11 Let V be the set of valid messages received in the round
12 for all h ∈ {1, 2, . . . , l}
13 for all m ∈ possible messages
14 if (R = 2r) then
15 a[h,m, r] =number of occurrences of (init, h,m, r) in V

16 for all k ∈ {1, ..., R/2}
17 Let W be the multiset of (echo, h, ∗,m, k) occurring in V
18 if |W | ≥ n− 2t then
19 Let α1 be the max of α such that
20 there is at least n− 2t messages (echo, h, α′,m, k) in W with α′ ≥ α
21 a[h,m, k] = max(α1, a[h,m, k])
22 if R is odd and |W | ≥ n− t then
23 Let α2 be the max of α such that
24 there is at least n− t messages (echo, h, α′,m, k) in W with α′ ≥ α
25 Accept(h, α2,m, k)

Figure 5.1: Authenticated broadcast primitive for numerate processes and restricted
Byzantine processes.

r′ then r ≤ r′ and α′ ≤ α + fi.

4. Unicity: for each i,m and r, each correct process performs at most oneAccept(i, ∗,m, r)

per superround.

We give an implementation of authenticated broadcast in Figure 5.1. In the algorithm,

we call a message sent by some process with identifier i at round R valid if

• it contains at most one tuple (init, i,m, r) and 2r = R in that tuple, and
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• for each j, m and r, it contains at most one tuple (echo, j, ∗,m, r) and R ≥ 2r in

that tuple.

• α > 0 in each message (echo, ∗, α, ∗, ∗)

All messages sent by correct processes are valid.

We now prove that the implementation in Figure 5.1 satisfies the specification of authen-

ticated broadcast when n > 3t and l > t.

Let ΠR(h,m, k) be the set of correct processes that send a message containing (echo, h, ∗,m, k)

in round R.

Lemma 5.1.3. If a correct process performs Accept(∗, α, ∗, ∗) then α > 0.

Proof. To perform Accept(∗, α, ∗, ∗) line 25, correct processes consider only valid messages

(echo, ∗, β, ∗, ∗) with β > 0.

Lemma 5.1.4. Assume that α (α > 0) correct processes with identifier i perform Broadcast(i,m, r)

in round 2r. Let R ≥ 2r+1 be a round. For every q in ΠR(i,m, r), if q sends (echo, i, aq,m, r)

in round R then aq ≤ α + fi.

Proof. We prove this lemma by induction.

• R = 2r+1: Each of the α correct processes with identifier i who performsBroadcast(i,m, r)

in superround r sends (init, i,m, r) in round 2r. Each correct process receives at

most α + fi valid messages containing (init, i,m, r) in round 2r. Thus, if a process

q in Π2r+1(i,m, r) sends (echo, i, aq,m, r) in round 2r + 1 then aq ≤ α + fi.

• Let R > 2r + 1. Assume the lemma is true for round R − 1. Let q be a correct

process in ΠR(i,m, r). In line 21 of round R − 1, process q either did not change

a[i,m, r] or set it to α1. If a[i,m, r] did not change, then q sends the same tuple

(echo, i, aq,m, r) that it sent in the previous round, and the claim follows from the
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induction hypothesis. Otherwise, suppose q changed a[i,m, r] to α1 in round R− 1.

Then, q must have received at least n − 2t > t + 1 messages containing tuples of

the form (echo, h, α′,m, k) with α′ ≥ α1 in the previous round. At least one of

those messages was from a correct process, which had α′ ≤ α + fi by the induction

hypothesis. Thus, α1 ≤ α + fi and the claim follows.

Lemma 5.1.5. Assume that α correct processes with identifier i perform Broadcast(i,m, r)

in round 2r ≥ T . In round R ≥ 2r + 1, we have:

(1) if α > 0 then ΠR(i,m, r) is the set of correct processes,

(2) ΠR−1(i,m, r) ⊆ ΠR(i,m, r), and

(3) for every q in ΠR(i,m, r), q sends (echo, i, aq,m, k) in round R with aq ≥ α in round

R.

Proof. We prove this lemma by induction.

• R = 2r+1: Each of the α correct processes with identifier i who performsBroadcast(i,m, r)

in superround r sends (init, i,m, r) in round 2r. Since 2r ≥ T , every correct process

receives at least α messages containing (init, i,m, r) in round 2r. From the algo-

rithm, a correct process never sends (echo, i, ∗,m, r) in round 2r, so Π2r(i,m, r) = ∅.

Thus, we have (2). If α = 0, (3) comes from Lemma 5.1.3 and (1) is trivially satis-

fied. If α > 0, every correct process q sends (echo, i, aq,m, r) in round 2r + 1 with

aq ≥ α. Thus, we have (1) and (3).

• Let R > 2r+1. Assume properties (1), (2) and (3) are true for round R−1. Property

(2) follows from the fact that a[h,m, k] never decreases. Property (1) for round R

follows from (1) and (2) in the induction hypothesis. To prove (3), consider any

process q in ΠR(h,m, r). If α = 0, (3) comes from Lemma 5.1.3, so assume α > 0.
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In line 21 of round R− 1, process q either did not change a[i,m, r] or set it to α1. If

a[i,m, r] did not change, then q sends the same tuple (echo, i, aq,m, r) that it sent in

the previous round, and the claim follows from the induction hypothesis. Otherwise,

suppose q changed a[i,m, r] to α1 in round R − 1. By properties (1) and (3) of the

induction hypothesis each of the n− t correct processes sends (echo, i, α′,m, r) with

α′ ≥ α in round R − 1. Since R > T , all of these messages are received by q, so

α1 ≥ α. Thus, q sends (echo, i, α1,m, r) with α1 ≥ α in round R.

Proposition 5.1.3. [Unicity] For each i, m and r, each correct process performs at most

one accept(i, ∗,m, r) per superround.

Proof. This follows directly from the code.

Proposition 5.1.4. [Correctness] If α (α > 0) correct processes with identifier i performs

Broadcast(i,m, r) in superround r ≥ T then every correct process performs Accept(i, α′,m, r)

with α′ ≥ α in superround r.

Proof. Each of the α correct processes with identifier i who performs Broadcast(i,m, r) in

superround r ≥ T sends (init, i,m, r) in round 2r. By Lemma 5.1.5, every correct process

q sends (echo, i, αq,m, r) in round 2r+1, with αq ≥ α. All of these messages are delivered.

Thus, every correct process will set α2 to a value greater than or equal to α on line 23 and

then performs Accept(i, α2,m, r) at the end of superround r.

Proposition 5.1.5. [Relay] If a correct process performs accept(i, α,m, r) in superround

r′ ≥ r then every correct process performs accept(i, α′,m, r) with α′ ≥ α in superround

max(r′, T ) + 1.
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Proof. Assume some correct process p performs Accept(i, α,m, r) in superround r′. Then

it must do so in round 2r′ + 1 (since a correct process accepts only in the second round

of the superround). Process p must have received at least n − t messages containing

tuples of the form (echo, i, α′,m, r) with α′ ≥ α in this round. Among the n − t senders

of these messages, at least n − 2t are correct. Since the value stored in each sender’s

a[i,m, r] variable can only increase, each of these n− 2t correct senders also sends a tuple

of the form (echo, i, α′,m, r) with α′ ≥ α in round max(r′, T ). All of these messages are

delivered. Thus, for each correct process, the value of a[i,m, r] is at least α after the

process executes line 21 in superround max(r′, T ). Then, in superround max(r′, T ) + 1,

each of the n− t correct processes sends a tuple of the form (echo, i, α′,m, r) with α′ ≥ α.

All of these messages are delivered. Thus, each correct process performs accept(i, α′,m, r)

with α′ ≥ α in superround max(r′, T ) + 1.

Proposition 5.1.6. [Unforgeability] If α (α ≥ 0) correct processes with identifier i perform

Broadcast(i,m, r) in superround r and some correct process performs Accept(i, α′,m, r)

in superround r′ then r ≤ r′ and α′ ≤ α + fi.

Proof. Assume that some correct process q performs Accept(i, α′,m, r) in superround r′.

Then it received at least n − t messages containing tuples of the form (echo, h, α′′,m, k)

with α′′ ≥ α′. Because n− t ≥ t + 1, one of those messages came from a correct process.

By Lemma 5.1.4, the α′′ in that message is less than or equal to α+ fi, so α′ ≤ α+ fi and

α′ ≥ 0 follows directly from the code.

From Propositions 5.1.3, 5.1.4, 5.1.5 and 5.1.6, we obtain:

Theorem 5.1.1. The algorithm in Figure 5.1 implements authenticated broadcast in the

partially synchronous model if l > t and n > 3t.
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5.1.2.2 Algorithm

The approach used to design the algorithm is similar to the one used in Section 4.2.2 , but

various thresholds must be adjusted to take advantage of the restriction on the Byzantine

processes, and to make use of the processes’ ability to count copies of identical messages.

In combination, these two factors allow us to weaken the condition on number of identifiers

from l > n+3t/2 (which is required in Section 4.2.2 ) to l > t. The safety of our algorithm

depends on the condition n > 3t, while liveness is guaranteed by the condition l > t.

A partially synchronous algorithm for Byzantine agreement when n > 3t and l > t is shown

in Figure 5.2. It uses the authenticated broadcast primitive described in the previous

subsection and follows the same general pattern as the algorithm of Dwork, Lynch and

Stockmeyer [31]. Each iteration of the main loop is called a phase, which takes four

superrounds.

Each process has a proper variable, which stores a set of values that can be output without

violating validity. Initially, only the process’s own value is in this set. In each round, each

process updates its proper variable as follows. Each process appends its proper set to each

message it sends. If a process receives proper sets containing v in t + 1 messages in the

same round, it adds v to its own proper set. Also, if a process has received proper sets in

2t+ 1 messages during the round and no value appears in t+ 1 of them, the process adds

all possible input values to its own proper set.

Consider a process p executing the algorithm. During superround r′, p may performs

Accept(i, αi,m, r). For each identifier i, αi is p’s estimate of the number of processes

with identifier i that performed Broadcast(i,m, r). We say that the number of witnesses

that p has for (m, r) in superround r′ is the sum, over all i, of the αi’s that appear in

all Accept(i, αi,m, r) actions that p performs during superround r′. It follows from the

properties of authenticated broadcast that the number of witnesses will eventually be at

least as large as the actual number of correct processes that performed Broadcast(∗,m, r)
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and exceed that number by at most t.

We now prove the correctness of the algorithm Figure 5.2. Consider an execution of the

algorithm. Let f =
l∑

i=1
fi be the total number of Byzantine processes in the execution.

Lemma 5.1.6. If some correct process p has n−t witnesses for (m, r) in some superround

r′ ≥ r, then there are at least n− t−f correct processes that performed Broadcast(∗,m, r)

in round r.

Proof. For each identifier i, let αi be the number of correct processes with identifier i that

perform Broadcast(i,m, r) in round r. By unforgeability, if p performs Accept(i, α′i,m, r)

in superround r′, then α′i ≤ αi + fi. Thus, the number of witnesses that p has for (m, r)

in superround r′ is at most
l∑

i=1
(αi + fi) = (

l∑
i=1

αi) + f . So if p has n− t witnesses for (m, r)

in superround r′, then
l∑

i=1
αi ≥ n− t− f , as required.

Lemma 5.1.7. If some correct process has n − t witnesses for (m, r) and some cor-

rect process has n − t witnesses for (m′, r′), then some correct process performed both

Broadcast(∗,m, r) and Broadcast(∗,m′, r′).

Proof. By Lemma 5.1.6, there is a set A of at least n − t − f correct processes that

performed Broadcast(∗,m, r) and there is a set B of at least n− t− f correct processes

that performed Broadcast(∗,m′, r′). Since there are n − f correct processes, |A ∩ B| =

|A| + |B| − |A ∪ B| ≥ (n− t− f) + (n− t− f)− (n− f) = n− 2t− f ≥ n− 3t > 0, so

there is at least one process in A ∩B.

Lemma 5.1.8. If the messages 〈ack, v, ph〉 and 〈ack, v′, ph〉 are both sent by correct pro-

cesses, then v = v′.

Proof. Suppose a correct process p sends 〈ack, v, ph〉 and a correct process p′ sends 〈ack, v′, ph〉.

According to line 20, process p has n− t witnesses for (vote v, 4ph+ 2) in superround 3 of
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phase ph. Similarly, p′ has n− t witnesses for (vote v, 4ph+ 2). By Lemma 5.1.7, there is

at least one correct process that performed Broadcast(∗, vote v, 4ph + 2) and performed

Broadcast(∗, vote v′, 4ph+ 2) in superround 3 of phase ph, so v = v′.

Lemma 5.1.9. If two correct processes decide on line 27 in the same phase then they

decide the same value.

Proof. Suppose two correct processes p and p′ decide values v and v′, respectively, during

some phase ph. Then process p received n−t copies of 〈ack, v, ph〉, so some correct process

must have sent 〈ack, v, ph〉. Similarly, some correct process must have sent 〈ack, v′, ph〉.

By Lemma 5.1.8, v = v′.

Lemma 5.1.10. At the end of each phase, the locks set of a correct process contains at

most one pair.

Proof. Let p be a correct process. We first prove that in each phase ph, p can add at most

one pair to its locks set. For each pair (v, ph) added in phase ph, p has n − t witnesses

for (vote ∗, 4ph+ 2). By Lemma 5.1.7 this condition can be true for at most one value v.

When p adds this unique pair (v, ph) to locks, it removes all other pairs (v, ∗). Then in

line 28 to 30, p will remove all other pairs (v′, ph′) from the locks set.

Lemma 5.1.11. Suppose that some correct process receives n − t 〈ack, v, ph〉 messages.

Then at all times after phase ph, each correct process that sent 〈ack, v, ph〉 in phase ph

has a pair (v, ph′) with ph′ ≥ ph in its locks set.

Proof. Let A be the set of correct processes that sent 〈ack, v, ph〉 in phase ph. By hypoth-

esis |A| ≥ n− 2t. To derive a contradiction, suppose the claim is false. Consider the first
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time the claim is violated: some correct process q that sent an 〈ack, v, ph〉 message removes

its lock on v (on Line 22). This means that there is some v′ 6= v and ph′ > ph such that q

has n− t witnesses for (vote v′, 4ph′+ 2). By Lemma 5.1.6, some correct process performs

Broadcast(∗, vote v′, 4ph′ + 2). That process has n− t witnesses for (propose v′, 4ph′) in

superround 2 of phase ph′. By Lemma 5.1.6 there is a set B of n − t − f correct pro-

cesses that perform Broadcast(∗, propose v′, 4ph′). Since there are n−f correct processes,

|A ∩ B| = |A| + |B| − |A ∪ B| ≥ (n − 2t) + (n − t − f) − (n − f) = n − 3t > 0. Thus,

there is at least one correct process r that sends 〈ack, v, ph〉 in phase ph and performs

Broadcast(∗, propose v′, 4ph′) in phase ph′. According to Line 7, this is possible only if

(v, ∗) is not in r′s locks set at the beginning of phase ph′. This contradicts our assumption

that all correct processes that sent an 〈ack, v, ph〉 message in phase ph keep the value v

in their locks set from the time they execute at Line 15 of phase ph until they execute at

Line 30 of phase ph′.

Lemma 5.1.12. At the end of any phase ph3 that occurs after T , if (v1, ph1) is in the

locks variable of a correct process p1 and (v2, ph2) is in the locks variable of a correct

process p2, then v1 = v2.

Proof. Since, at the end of phase ph3, correct processes have locks associated with phases

ph1 and ph2, we must have ph1 ≤ ph3 and ph2 ≤ ph3. If ph1 = ph2 then v1 = v2

follows from Lemma 5.1.8 (because just after pi adds (vi, phi) to its locks set, it sends

〈ack, vi, phi〉). So for the rest of the proof assume, without loss of generality, that ph2 >

ph1. Before process p2 added (v2, ph2) to its locks set in phase ph2, it has n− t witnesses

for (vote v2, 4ph2 +2). By the relay property of the authenticated broadcast, p1 will accept

all of these messages by the end of phase ph3 and remove (v1, ph1) from its locks set, if

v1 6= v2. Thus, v1 must be equal to v2.
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Lemma 5.1.13. Let p be a correct process. Let ph be a phase such that ph mod l + 1 is

the identifier of p and phase ph − 1 occurs after T . Then, p will send a lock message in

superround 2 of phase ph.

Proof. By Lemma 8.3.2, at most one value will appear in the locks variables of correct

processes at the end of phase ph− 1. We consider two cases.

Case 1: the locks set of some correct process q is non-empty at the end of phase ph − 1.

Let (v, phv) be the entry in the locks set of q, where phv must be smaller than ph. Then q

has n− t witnesses for (vote v, 4phv +2) in superround 3 of phase phv. Thus, some correct

process performed Broadcast(∗, vote v, 4phv + 2). That process must have n− t ≥ 2t+ 1

witnesses for (propose v, 4phv). By Lemma 5.1.6, at least t+ 1 different correct processes

performed Broadcast(∗, propose v, 4phv), which means v is in the proper set of at least

t + 1 correct processes at the beginning of phase phv. Thus, by the end of phase ph − 1,

v will be in the proper set of every correct process. It follows that, in phase ph, every

correct process will perform Broadcast(∗, propose v, 4ph), and process p will be able to

find a value that it can send in superround 2 of phase ph.

Case 2: the locks set of every correct process is empty at the end of phase ph− 1. If there

are t+ 1 correct processes with the same input value, that value will be in the proper set

of all correct processes by the beginning of phase ph. Otherwise, every value will be in the

proper set of all correct processes by the beginning of phase ph. Either way, some value

will appear in the propose message that is broadcast by correct processes in phase ph, so

p will able to find a value that it can send in superround 2 of phase ph.

Proposition 5.1.7 (Validity). If all correct processes propose v then no correct process

decides a value different from v.

Proof. Suppose all correct processes have the same input value v0. Then no correct

process ever adds any other value to its proper set. So, a correct process can perform
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Broadcast(∗, propose v, ∗) only if v = v0. Thus, according to the test on Line 15, a cor-

rect process can perform Broadcast(∗, vote v, ∗) only if v = v0. Then, according to the

test on Line 20, a correct process can send a message 〈ack, v, ∗〉 only if v = v0. Thus, no

correct process decides a value different from v0 on Line 27.

Proposition 5.1.8 (Agreement). If two correct processes decide v and v′ then v = v′.

Proof. If phase ph1 is the first phase during which some correct process p decides. By

Lemma 5.1.9, there is a unique value v1 such that correct processes decide during phase

ph1. From the code, process p has received n − t 〈ack, v1, ph1〉 messages. Let A be a set

of n− 2t correct processes that sent 〈ack, v1, ph1〉.

Suppose some correct process q decides a value v2 in a phase ph2 > ph1. We shall prove

that v1 = v2. Process q has n− t witnesses for (propose v2, 4ph2). By Lemma 5.1.6, there

is a set B of n−t−f correct processes that perform Broadcast(∗, propose v2, 4ph2). Thus,

there is some correct process h ∈ A ∩B that has sent an 〈ack, v1, ph1〉 in phase ph1.

By Lemma 5.1.11 and 5.1.10, (v1, ∗) is in the lock set of h at the beginning of phase ph2 and

this is the only pair in the lock set. Thus, h performs only Broadcast(∗, propose v1, 4ph2)

in superround 1 of phase ph. But h ∈ B, so it performs Broadcast(∗, propose v2, 4ph2).

Thus, v1 = v2

Proposition 5.1.9 (Termination). All correct processes decide.

Proof. As there are l > t identifiers, there is at least one identifier, say k, such that all

processes with this identifier are correct. Let ph be a phase such that ph mod l + 1 = k

and phase ph−1 occurs after T . By Lemma 5.1.13, each process pj with identifier k sends

a 〈lock, vj, ph〉 message in superround 2 of phase ph. According to the test in Line 11, pj

must have n− t witnesses for (propose vj, 4ph) during superround 1 of phase ph. By the
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relay property, all correct processes must have n− t witnesses for (propose vj, 4ph) at the

end of superround 2 of phase ph.

Each correct process receives the same set of lock messages from all processes with identifier

k and deterministically chooses one of them. Let v be the value chosen by all correct

processes. All correct processes then perform Broadcast(∗, vote v, 4ph + 2). Thus, every

correct process has n − t witnesses for (vote v, 4ph + 2) in superround 3 and according

to the test at Line 20, sends 〈ack, v, ph〉 in round 1 of superround 4 of phase ph. Every

correct process receives all these messages and has n− t witnesses for (propose v, 4ph) in

superround 3, and thus decides v.

From Proposition 5.1.1 and 5.1.2, above. We prove the following two theorems for this

model.

Theorem 5.1.2. Synchronous Byzantine agreement is solvable with numerate processes

against restricted Byzantine processes if and only if l > t and n > 3t.

Theorem 5.1.3. Partially synchronous Byzantine agreement is solvable with numerate

processes against restricted Byzantine processes if and only if l > t and n > 3t.

5.2 Innumerate Processes

We consider the case of innumerate processes.

Theorem 5.2.1. Synchronous Byzantine agreement is solvable with innumerate processes

against restricted Byzantine processes if and only if l > 3t.

Proof. The synchronous algorithm given in Section 4.1.2 obviously still works if the Byzan-

tine processes are restricted.
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To derive a contradiction, assume that for some l and t with l ≤ 3t, there is an algorithm A

that solves Byzantine agreement in a synchronous systemH of n processes, l identifiers and

up to t Byzantine processes. Let Ai the code executed by the processes with identifier i.

Consider the classical synchronous system (where each process has its own identifier) S,

with l processes and at most t Byzantine processes. Let {q0, q1, ..., ql−1} be these processes.

Let qi run algorithm Ai. We prove that this will solve Byzantine agreement in S. This

contradicts the classical impossibility result [31, 47], since the number of processes is l ≤ 3t.

Let αS be any execution of the algorithm in S. We prove that the properties of Byzan-

tine agreement are satisfied for αS. Let Input(i) denote the input of process qi. If αS

has ł Byzantine processes, the properties of Byzantine agreement are vacuously satisfied.

Assume that αS has b < l Byzantine processes. Without loss of generality, assume the

Byzantine processes are q1, . . . , qb.

We consider an execution αH of the algorithm in H where (n− l + 1) processes have the

identifier 0, and the other processes have identifiers 1, . . . , l−1 (one process per identifier).

In the execution αH ,

1. the processes with identifier i (1 ≤ i ≤ b) are Byzantine, and they send the same

messages to the process with identifier j in round r as the Byzantine process qi sends

to qj in round r of αS,

2. the process with identifier i (b+ 1 ≤ i ≤ l− 1) is correct and has as input Input(i),

and

3. all processes with identifier 0 are correct and have input Input(0).

The processes with identifier 0 have the same input and receive the same messages, so

they send the same message m(r) in round r and have the same state at the end of each

round. The other processes receive from processes with identifier 0 only the message m(r)

in round r.
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The process qi in αS and a process with identifier i in αH have the same state at the

beginning of each round. As αH satisfies the specification of Byzantine agreement, the

execution αS satisfies the specification of the Byzantine agreement. This completes the

proof.

Next, we show that the condition for solving Byzantine agreement is more restrictive when

there is only partial synchrony.

Theorem 5.2.2. Partially synchronous Byzantine agreement is solvable with innumerate

processes against restricted Byzantine processes if and only if l > n+3t
2 and n > 3t.

Proof. The partially synchronous algorithm if l > n+3t
2 and n > 3t given in Section 4.2.2

obviously still works if the Byzantine processes are restricted. The impossibility result can

be proved in exactly the same way as in Section 4.2.1.

5.3 Conclusion

This chapter showed results concerning to necessary and sufficient conditions to solve

agreement in restricted Byzantine failure model. Results give us a good way to reduce

the number of identifiers needed to the agreement. In next chapter, we shall present an

other way to reduce the number of identifiers when processes have more knowledge of the

system.
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Code for process with identifier i ∈ {1, 2, ..., l}

1 locks = ∅ ;
2 ph = 0;
3 proper = {v}
4 /* v is the input value for the process (see page 72 for how this variable is updated each round) */
5 while true

6 /* beginning of superround 1 of phase */
7 Let V be the set of values v ∈ proper such that
8 there is no pair (w, ∗) ∈ locks for any w 6= v
9 for each v ∈ V do Broadcast(i,propose v, 4ph)

10 /* beginning of superround 2 of phase */
11 if i = ph mod l + 1
12 and there is some value v such that there are at least n− t witnesses for (propose v, 4ph)
13 then send 〈lock, v, ph〉 to all processes /* round 1 of superround 2 */

14 /* beginning of superround 3 of phase*/
15 if there is some value v
16 for which the process received 〈lock, v, ph〉 from processes with identifier ph mod l + 1
17 and there are at least n− t witnesses for (propose v, 4ph)
18 then choose deterministically one such value v and perform Broadcast(i, vote v, 4ph+ 2)

19 /* beginning of superround 4 of phase */
20 if for some v, there are at least n− t witnesses for (vote v, 4ph+ 2)
21 then
22 add (v, ph) to locks and remove any other pair (v, ∗) from locks
23 send 〈ack, v, ph〉 to all processes /* round 1 of superround 4 */
24 if for some v:
25 There are at least n− t witnesses for (propose v, 4ph) and
26 received n− t messages 〈ack, v, ph〉 in this round
27 then decide v (but continue running the algorithm)
28 for each (v1, ph1) ∈ locks
29 if for some v2 6= v1 and ph2 > ph1, there are n− t witnesses for (vote v2, 4ph2 + 2)
30 then remove (v1, ph1) from locks
31 ph = ph+ 1

Figure 5.2: Partially Synchronous Byzantine agreement algorithm with n processes and l
identifiers.
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Chapter 6

Homonymous model with the

distribution of identifiers available

6.1 Introduction

We consider here an homonymous model where processes not only know the set of identi-

fiers but also how many processes share the same identifier. To get a better understanding

of our results let us consider the following example. Assume we have a set of n clients and

a set of l servers. Each server has its own authenticated identifier (coming for example

from some authenticated digital signature system) and communication between servers is

reliable and authenticated. Each client is assigned to exactly one server, but the iden-

tity of the clients cannot be verified. Each client communicates with each other but only

through the server at which it is associated. At most t of the clients may be Byzantine

and try to act as adversaries of the system and may fool their associated server. Then

assume we have to administrate such a system and we have the choice of the number of

clients we assign to each server, we call such a choice a distribution of the identifiers and

it is in fact a partition of n into l parts. Are some distributions among servers better than
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others? Is it possible to get necessary and sufficient conditions on distributions to ensure

the solvability of Byzantine Agreement? Does the knowledge of the distribution of clients

among servers improve the solvability of the problem? We give an answer to all these

questions. We prove that:

1. For each distribution of the identifiers we give a necessary and sufficient condition

that enable us to solve the Byzantine agreement.

2. For n and l we define a distribution Dmax that is the best of all in the sense that

there is a distribution enabling to solve the Byzantine agreement if and only if Dmax

enables us to solve the Byzantine agreement.

3. For n, l and t there exists a distribution of identifiers enabling to solve the Byzantine

agreement if and only if n > 3t, l > (n−r)t
n−t−min(t,r) where r = n mod l.

Our result can imply that the Byzantine agreement is possible if l = t+ 1 and b n
t+1c > t.

This result is to compared with the result of chapter 4 that l > 3t is required to reach to

the Byzantine agreement for synchronous system.

Roadmap Section 6.2 contains several definitions. Proofs of impossibility are in Sec-

tion 7.2. Algorithms for Byzantine agreement are in Section 6.4. In the Section 6.5 we

give the main results of this paper and present some consequences. Section 6.6 concludes

this section.

6.2 Definitions

In the section Model and Definitions, we considered the definition of Distribution of iden-

tifiers and the adversary. We continue here consider the notions of solving problem and

agreement coefficient.
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6.2.1 Solving problem

We always assume that each process p knows its own identifier Id(p), the distribution D

and t the maximal number of Byzantine processes.

Informally a run of algorithm A for distribution D and failure pattern F for at most t

Byzantine processes is a run of A for which the distribution of identifiers is given by D

and Byzantine processes are given by failure pattern F . Then, we say that algorithm A

solves problem P for distribution D and adversary Ad if and only if all runs of A for D

and any failure pattern of Ad satisfy the specification of P . By extension A solves problem

P for distribution D if and only if it solves P for D and adversary Ft(D) (i.e. all failure

patterns with at most t Byzantine processes).

6.2.2 Agreement coefficient

In this section we give some definitions and properties of distributions and adversaries.

Consider distribution D = 〈n1, . . . , nl〉, the index of a distribution counts up to t the

number of groups of processes that contain more than one process. For example for the

distribution D = 〈5, 5, 3, 2, 1, 1〉 and t = 5, we have index(D) = 4 but if t = 3 then

index(D) is equal to t. More precisely:

Definition 6.2.1. index(D) = |{i|1 ≤ i ≤ t ∧ ni ≥ 2}|.

By convention if for all i, ni < 2, index(D)=0.

Let F = 〈t1, . . . , tl〉 be a failure pattern.

Definition 6.2.2. ci(F,D) the agreement coefficient of group G(i) for failure pattern F

is:

ci(F,D) =


ni, if G(i) is correct.

1, if G(i) is partially byzantine.

0, if G(i) is fully Byzantine.
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By extension the agreement coefficient of failure pattern F for distribution D is c(F,D) =∑i=l
i=1 ci(F,D).

Ft is a failure pattern of special interest in which there is at most one Byzantine process

by group and Byzantine processes are in the biggest groups:

Definition 6.2.3. Ft = 〈t1 = 1, . . . , tt = 1, tt+1 = 0, . . . , tl = 0〉 if l > t and Ft = 〈t1 =

1, . . . , tt = 1〉 if l ≤ t

For this failure pattern we get directly a relation between its agreement coefficient and

the index.

Proposition 6.2.1. c(Ft, D) = ∑i=l
i=t+1 ni + index(D).

Proof. For 1 ≤ i ≤ index(D), each group G(i) contains one Byzantine process and at

least one correct process then ∑
1≤i≤index(D) ci(Ft, D) = index(D). For index(D) < i ≤

min(l, t), each group G(i) contains only one process and this process is Byzantine then∑
index(D)<i≤min(l,t) ci(Ft, D) = 0. For min(l, t) < i ≤ l, each group G(i) is correct then

ci(Ft) = ni. Summing up we get c(Ft, D) = index(D) + 0 + ∑i=l
i=t+1 ni.

This failure pattern minimizes the agreement coefficient:

Proposition 6.2.2. If l > t, for any failure pattern F , c(F,D) ≥ c(Ft, D).

Proof. Let F = 〈t1, t2, . . . , tl〉 be any failure pattern. Consider the transformation from F

to F ′ defined by the following rules:

(a) If for some identifier i, ti = ni > 1 in F , as l > t, there is an identifier j such that

tj = 0. Then F ′ is identical to F except that in F ′, ti = ni − 1 and tj = 1.

(b) If for some identifiers i and j, ni = ti = 1 and nj > 1 and tj = 0 in F , then the

failure pattern F ′ is identical to F except that in F ′, ti = 0 and tj = 1.
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(c) If for some identifiers i and j > i, tj = 1 and ti = 0 in F , then the failure pattern

F ′ is identical to F except that in F ′, ti = 1 and tj = 0.

It is easy to verify that for each rule, c(F,D) ≥ c(F ′, D). A repetitive application of rule

(a), (b) and (c) to any F leads to Ft, hence by induction c(F,D) ≥ c(Ft, D).

6.3 Impossibility result

In this section, we prove that for a given distribution D, if there exists a failure pattern F

of F(D) such that c(F,D) ≤ 2t then there is no algorithm solving Byzantine agreement

for this distribution D.

Directly from [47] there is no algorithm solving Byzantine agreement if n ≤ 3t, moreover,

if l ≤ t then all groups G(i) may be fully or partially Byzantine and in this case it is easy

to verify by a valency argument as in [22] that there is no algorithm solving Byzantine

agreement:

Proposition 6.3.1. If l ≤ t or n ≤ 3t there is no algorithm solving Byzantine agreement.

Hence in the following we always assume l > t and n > 3t. We get the main impossibility

result:

Proposition 6.3.2. Let D be a distribution, if there exists a failure pattern F of Ft(D)

such that c(F,D) ≤ 2t then there is no algorithm solving Byzantine agreement for distri-

bution D and at most t Byzantine processes.

Proof. By contradiction assume A is an algorithm solving the Byzantine agreement for

the distribution D and a failure pattern F of Ft(D) such that c(F,D) ≤ 2t.

In particularA solves Byzantine agreement for c(Ft, D) and by Proposition 6.2.2, c(Ft, D) ≤

c(F,D), then we have c(Ft, D) ≤ 2t.
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The proof is based on a partition argument using essentially failure pattern Ft. The

partition is given by the following Lemma:

Lemma 6.3.1. If l > t and c(Ft, D) ≤ 2t, there is a partition of L into two sets B and

C such that the number of processes in C is less than or equal to t and all these processes

are correct and either:

(a) B contains only partially Byzantine groups or fully Byzantine groups and |B| ≤ t

or

(b) all correct groups are singletons and if tp is the number of partially Byzantine groups

in B, tf is the number of fully Byzantine groups in B and tc is the number of correct

groups in B, then (i) tp + tf = t, (ii) tc ≤ tf , and (iii) tp > 0.

Proof. Consider the following cases:

• index(D) = t or l ≤ 2t: then let C be the set {t+ 1, . . . , l}. C contains only correct

processes. Let B = L− C, as l > t neither C nor B are empty, proving that B and

C are a partition of L. Clearly condition (a) is ensured.

Consider now the number of processes in C. By Proposition 6.2.1 and the hypothesis,

∑
i∈C

ni ≤ c(Ft, D)− index(D) ≤ 2t− index(D)

If index(D) = t, we get directly ∑
i∈C ni ≤ t. If index(D) < t, C contains only

singletons then ∑
i∈C ni = l − t, as we assume that l ≤ 2t we get again ∑

i∈C ni ≤ t.

• index(D) < t and l > 2t: in this case all correct groups are singletons. Let B be

the set {1, . . . , l − t} and C be the set {l − t+ 1, . . . , l}. As before as l > t, neither

B nor C are empty. Moreover all groups in C are singletons and are correct, then
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the number of processes in C is less than or equal to t and all these processes are

correct.

Let tp the number of partially Byzantine groups for B, tf be the number of fully

Byzantine groups for B, and tc the number of correct groups for B.

As index(D) < t, group G(i) is partially Byzantine if and only if i ≤ index(D)

then tp = index(D). In the same way group G(i) is fully Byzantine if and only if

index(D) < i ≤ t, then tf + tp = t proving (i).

As tc and C contain only singletons, ∑i=l
i=t+1 ni = tc + t. From Proposition 6.2.1 and

hypothesis c(Ft, D) ≤ 2t:

c(Ft, D) = index(D) +
i=l∑

i=t+1
ni = tp + tc + t ≤ 2t

and then tc ≤ t− tp = tf proving (ii).

By contradiction assume that tp = 0 then all groups are singletons and the total

number of processes is tf + tc + t = 2t+ tc ≤ 2t+ t = 3t a contradiction proving (iii).

Hence following the Lemma, we can partition the set of identifiers into two sets C and B.

There are two cases to consider:

Case (a) of the Lemma: The set C contains all the correct groups and ∑
i∈C ni ≤ t, B

and C being a partition of L, B 6= ∅ and C 6= ∅. Set B contains only partially Byzantine

groups and fully Byzantine groups and |B| ≤ t.

As n > 3t, there are at least 2t + 1 processes in B and thus there are at least t correct

processes in B.

We now define three executions of the algorithm A:
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1. In execution α, the failure pattern is Ft. All correct processes have input 1. For

every identifier i in B, the Byzantine process in group G(i) has the same behavior

concerning the messages sent to processes in C as ni−1 correct processes with input

0. (Here, we use the fact that a Byzantine process can send multiple messages to

each correct process in a single round and therefore a process cannot distinguish

the messages coming from a Byzantine process with identifier i from those coming

from ni − 1 processes with identifier i). If ni = 1 then the Byzantine process with

identifier i sends nothing to processes in C. By the validity property, all the correct

processes decide 1.

2. In execution β, all the processes with identifier in C are Byzantine and all the

other ones are correct. All the correct processes have input 0. Each Byzantine

process behaves as a correct process having input value 1. By validity, all the correct

processes decide 0.

3. In execution γ, the failure pattern is Ft. All the processes in C have 1 as input. All

the correct processes in B have 0 as input. For every identifier i of B the Byzantine

process in group G(i) has the same behavior concerning messages sent to process

in C as ni − 1 correct processes with input 1, and the same behavior concerning

the messages sent to processes in B as a correct process with input 0. As before, if

ni = 1 then the Byzantine process with identifier i sends nothing to processes in C.

Consider failure pattern Ft. The correct processes in C cannot distinguish γ from α and

they decide 1 as in execution α. But the correct processes in B cannot distinguish γ from

β. Thus, in execution γ, they decide 0 as in execution β. Contradicting the agreement

property.

Case (b) of the Lemma: With failure pattern Ft, set C consists of t correct singleton

groups and set B contains tp partially Byzantine groups, tf fully Byzantine groups and tc
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correct groups such that in B all correct groups are singletons, tf + tp = t, tc ≤ tf and

tp > 0.

Let C1 be the set of the t (correct) processes in C and let B1 be the set of t Byzantine

processes in Ft. As every correct or partially Byzantine group contains at least one correct

process, define B2 as a set of tc + tp ≤ t processes in B \ B1 and finally let B3 be the set

of processes in partially Byzantine groups of B not in B1 ∪B2.

Remark that B1 ∪ B2 ∪ B3 ∪ C1 = L. All these sets being pairwise disjoint we have

|B3| = n − |B1| − |B2| − |C1| then as |C1| = t , |B1| = t, |B2| ≤ t and n > 3t we deduce

|B3| ≥ 1, proving that B3 is not empty.

As in the previous case, we construct three executions:

1. In execution α the failure pattern is Ft and the processes of B1 are Byzantine pro-

cesses. Each Byzantine process with identifier i sends the same messages to the

processes in C1 as (ni−1) processes with input 0. All the other processes have input

1. By validity, all the correct processes must decide 1.

2. In execution β, all the processes of C1 are Byzantine. A Byzantine process with

identifier i has the same behavior as in execution α where it has input 1. All the

other processes have input 0. By validity, all the correct processes decide 0.

3. In execution γ the failure pattern is Ft and the processes in B2 are Byzantine. A

Byzantine process with identifier i sends the same message to the processes in C1 as

(ni − 1) processes with input 1 while it sends to other processes the same messages

as in execution β where it has input 0. All the processes of C1 have input 1. All the

other processes have input 0.

The correct processes in C1 cannot distinguish execution γ from execution α, and they

decide 1 as in α. The correct processes in B3 cannot distinguish execution γ from execution

β, and they decide 0 as in β. Contradicting the agreement property.
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6.4 Byzantine Agreement

In this section we propose an algorithm for Byzantine agreement for any adversary Ad

such that for all F ∈ Ad we have c(F,D) > 2t. We proceed in two steps. In the first one,

we define an authenticated broadcast primitive whose the specification and the code are

given in Section 6.4.1. In the second one, we give in Section 6.4.2 an algorithm solving

the Byzantine agreement using this authenticated broadcast primitive.

6.4.1 Authenticated broadcast primitive

Our authenticated broadcast is derived from the authenticated broadcast of [63] defined

in the classical case where each process has a different identifier (n = l).

The synchronous computation proceeds in superrounds. A superround is composed of two

rounds. More precisely the superround r is composed of the synchronous round 2r and

2r+ 1. In order to ensure that a message m = (i, v, r) will be accepted in the superround

r, all the processes of the group i have to invoke propose (i, v, r) in the superround r.

More precisely, our authenticated broadcast is defined by two primitives: Propose(i, v, r)

and Accept(i, v, r), where i is the identifier of the group that proposes value v and r is the

superround number in which the message has been proposed. For message m = (i, v, r),

when a process p performs Propose(m) we say that process p proposes m, in the same way,

when a process p performs Accept(m) we say that process p accepts m. The authenticated

broadcast primitive is specified as follows:

1. Correctness: If all processes in correct group G(i) propose (i, v, r) in superround r

then every correct process accepts (i, v, r) during superround r.

2. Relay: If some correct process accepts (i, v, r) during superround r′ ≥ r then every

correct process accepts (i, v, r) by superround r′ + 1.
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3. Unforgeability: If some correct process accepts (i, v, r) in superround r′ ≥ r then all

correct processes with identifier i have proposed (i, v, r) in superround r.

We describe below the authenticated broadcast algorithm in the synchronous model for

the adversary Ad such that for all failure patterns F of Ad, c(F,D) > 2t. The code of

this algorithm is presented in Figure 6.1.

Recall first the principles of the algorithm of [63]. To propose a value v in superround r,

process p sends message (init, p, v, r) to all processes (including itself). A process receiving

such a message becomes a “witness” to (p, v, r) and sends a message of type echo to all

processes. Any process that has t + 1 witnesses for (p, v, r) becomes itself witness. Once

a process receives strictly more than (2t+ 1) witnesses, it accepts (p, v, r).

A generalization of the authenticated broadcast to our model is not straightforward. The

key solution is still to estimate the number of witnesses of messages but in a more intricate

way:

• We have as before two types of messages: init messages and echo messages. To

propose a value v, a process with identifier i sends an init message. More precisely

to propose v in superround r, this process sends (init, i, v, r). If a process becomes

a witness of m = (i, v, r) then it sends in all rounds greater than 2r, (echo, i, v, r).

In every round, every correct process sends a message and this message is in fact

a (possibly empty) set of echo or init messages. If group G(j) is correct, then all

processes receive exactly nj messages from this group.

• Differently from the classical model, in our model, to become a witness for some

message m = (i, v, r) in round 2r, a process must receive this messages from all

processes of the group G(i) namely exactly ni messages (init, i, v, r) from G(i) (Lines

17−18). In this case, the process becomes a witness of m = (i, v, r) and sends

(echo, i, v, r) in the following rounds.
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• Later a process may become witness for message m = (i, v, r) in round R > 2r if

it receives enough messages from witnesses of m in round R. But as a Byzantine

process may act as witness and sends many (echo, i, v, r) messages, the counting

of the (echo, i, v, r) messages gives only an estimate of the number of witnesses of

message m.

More precisely, Rec[i] is the set of messages from identifier i received by process p.

Rec[i] is a multiset of messages: each element of Rec[i] is the set of messages coming

from one of the processes with identifier i. If this set of messages coming from a

process contains (1) twice or more identical messages or (2) messages (∗, ∗, ∗, r) with

2r greater than the round number, we knows that it comes from a Byzantine process

and we remove this set of messages (Line 12).

Basically p counts (Line 20) for each m = (j, v, x) the number of (echo, j, v, x) it

receives from group G(i).

If |Rec[i]| 6= ni then group G(i) cannot be a correct group and due to Byzantine

processes in the group, the number of echo messages for message m is no really

significant.

P [i,m], the number of positive witnesses for m = (j, v, r) coming from group G(i)

is defined by:

P [i,m] =



α, if |Rec(i)| = ni and

Rec(i) contains α messages (echo, j, v, r)

1, if |Rec(i)| 6= ni and

Rec(i) contains at least one (echo, j, v, r)

0, if Rec(i) does not contain (echo, j, v, r).

The number of witnesses for m = (j, v, r) in round R is ∑
i∈L P [i,m]. If this sum is
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greater than t, p becomes witness of m (Line 28).

• In the same way N [i,m] is the number of negative witnesses for m = (j, v, r) coming

from group G(i):

N [i,m] =


β, if |Rec(i)| = ni and

Rec(i) contains ni − β messages (echo, j, v, r).

1, if |Rec(i)| 6= ni.

The number of negative witnesses for m = (j, v, r) in round R is ∑
i∈LN [i,m]. If

this sum is less than or equal to t, m is accepted (Line 29).

We now prove the correctness of our algorithm. Consider a distribution D and a failure

pattern F = (t1, . . . , tl) such that ∑i=l
i=1 ti ≤ t and c(F,D) > 2t.

Begin with two simple facts:

Fact 6.4.1. ξ = |{i| G(i) is partially Byzantine }| and C be the set of correct groups.

Then ∑
i∈C ni > 2t− ξ.

Fact 6.4.2. If group G(i) is correct, for each message m the sum of the number of positive

and negative witnesses is ni.

Introduce some notations for the number of negative and positive witnesses for messages:

given m = (i, v, r), let NR
p (m) be ∑

j∈LNp[j,m] for process p in round R and let PR
p (m)

be ∑
j∈L P [j,m] for process p in round R. In the following, XR

p for a variable X denotes

the value of variable X for process p in round R. When p or R are clear from the context

we omit them.

Lemma 6.4.1. For every message m = (i, v, r), for all rounds R > 2r, for every correct

process p and q, if NR
p (m) ≤ t then PR

q (m) ≥ t+ 1.
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// code for process p with identifier Id(p)
Initialization:
1 M = ∅ // messages to send
2 V = ∅ // messages to be proposed
To propose m:
3 V = V ∪ {m}
Main code:
4 for R = 0, . . . ,∞ //R: round number
5 if (R = 0 mod 2) then // superround r = R

2
6 P = ∅ // P : set of proposed messages for the superround
7 forall v ∈ V do P = P ∪ {(init, Id(p), v, R

2 )}
8 V = ∅
9 send(M ∪ P )
10 else send (M)
11 Receive all messages for round R
12 let Rec[i] the multiset of all well-formed messages from identifier i
13 Msg = ⋃

i∈L{(j, v, x)|(echo, j, v, x) ∈ Rec[i]}
//P : positive witnesses, N : negative witnesses

14 let P,N be integer arrays indexed by identifier and element of Msg
15 forall (i,m) ∈ L ×Msg do P [i,m] = N [i,m] = 0
16 forall i ∈ L do
17 if (|Rec[i]| = ni) ∧ (|{(init, i, v, R

2 ) ∈ Rec[i]}| = ni) then
18 M = M ∪ {(echo, i, v, R

2 )} //direct witness
19 forall m = (j, v, x) ∈Msg do
20 c = |{(echo, j, v, x) ∈ Rec[i]}| //number of echo for (j, v, x)
21 if |Rec[i]| = ni then //G(i) is perhaps a correct group
22 P [i,m] = c
23 N [i,m] = ni − c
24 else //G(i) is not a correct group
25 P [i,m] = min(1, c)
26 N [i,m] = 1
27 forall m = (i, v, x) ∈Msg do
28 if ∑

i∈L P [i,m] > t then M = M ∪ {(echo, i, v, x)} //witness
29 if ∑

i∈LN [i,m] ≤ t then Accept(i, v, x)

Figure 6.1: Authenticated broadcast for n processes and l identifiers.

Proof. We divide the set L of identifiers into 3 disjoint subsets: L = Lc ∪ Lpb ∪ Lfb,

where Lc is the set of identifiers of correct groups, Lpb is the set of identifiers of partially
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Byzantine groups, and Lfb is the set of identifiers fully Byzantine groups.

Let m = (i, v, r) be a message and R be a round with R > 2r, assume NR
p (m) ≤ t.

Consider first messages coming from correct groups and let j be in Lc. By Fact 6.4.2, if

group G(j) is correct, we have Np[j,m] = nj − Pp[j,m]. Then

NR
p (m) =

∑
j∈Lc

(nj − Pp[j,m]) +
∑

j∈Lpb∪Lfb

Np[j,m] ≤ t

This implies that:

∑
j∈Lc

Pp[j,m] ≥
∑

j∈Lc

nj +
∑

j∈Lpb∪Lfb

Np[j,m]− t

By Fact 6.4.1, ∑
j∈Lc

nj ≥ 2t+ 1− |Lpb|, then:

∑
j∈Lc

Pp[j,m] ≥ t+ 1 +
∑

j∈Lpb∪Lfb

Np[j,m]− |Lpb| (6.1)

Consider messages coming from partially Byzantine groups and let j be in Lpb. In the

algorithm p distinguishes between groups that may be correct and groups that may not be

correct. Then let Goodp = {j ∈ Lpb : |Rec(j)| = nj} and Badp = {j ∈ Lpb : |Rec(j)| 6= nj},

clearly Lpb is the disjoint union of Goodp and Badp. By definition, Np[j,m] = 1 if j ∈ Badp,

then:

∑
j∈Badp

Np[j,m] = |Badp| (6.2)

From (6.1) and (6.2) we have:
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∑
j∈Lc

Pp[j,m] ≥ t+ 1 +
∑

j∈Lpb

Np[j,m]− |Lpb|

≥ t+ 1 + |Badp|+
∑

j∈Goodp

Np[j,m]− |Lpb|

= t+ 1− |Goodp|+
∑

j∈Goodp

Np[j,m]

(6.3)

Now consider correct process q and Pq[j,m]. If G(j) is a correct group, p and q receive

exactly the same messages from this group then Pp[j,m] = Pq[j,m]. Then we have:

PR
q (m) ≥

∑
j∈Lc

Pq[j,m] +
∑

j∈Lpb

Pq[j,m]

≥
∑

j∈Lc

Pp[j,m] +
∑

j∈Goodp

Pq[j,m]
(6.4)

From (6.3) and (6.4), the process q has

PR
q (m) ≥ t+ 1 +

∑
j∈Goodp

Np[j,m] +
∑

j∈Goodp

Pq[j,m]− |Goodp|

.

If j ∈ Goodp, then G(j) contains at least one correct process: either Pq[j,m] ≥ 1 or

Np[j,m] ≥ 1. Therefore, for all identifiers j in Goodp, Pq[j,m] + Np[j,m] ≥ 1. Then we

have:

PR
q (m) ≥ t+ 1 +

∑
j∈Goodp

Np[j,m] +
∑

j∈Goodp

Pq[j,m]− |Goodp| ≥ t+ 1

Proving that q has at least t+ 1 witnesses for (i, v, r) in round R.

Lemma 6.4.2. If in some round R > 2r, a correct process p has at least t+1 witnesses for

m = (i, v, r) (PR
p (m) ≥ t+ 1) then at least one correct process sends message (echo, i, v, r)
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in round R.

Proof. By contradiction, assume no correct process sends message (echo, i, v, r) in round

R. Prove first that P [j,m] ≤ tj for every identifier j. For this consider the following two

cases:

• If P [j,m] = 1 it is sufficient to prove that tj ≥ 1, that is there is at least one

Byzantine process in group G(j). As set Recp(j) contains at least one message

(echo, i, v, r) and we assume no correct process sends message (echo, i, v, r) in round

R, there is at least one Byzantine process in G(j) that sent message (echo, i, v, r) to

p.

• If P [j,m] > 1 then, by definition of P [j,m], |Recp(j)| = nj for process p. Among

these nj messages, as all correct processes send messages in each round, at least nj−tj

messages are sent by correct processes, and by hypothesis, the P [j,m] messages

(echo, i, v, r) are not sent by correct processes, we get P [j,m] +nj − tj ≤ nj proving

P [j,m] ≤ tj.

Thus, for every identifier j, P [j,m] ≤ tj. By hypothesis, process p gets at least t + 1

witnesses for m = (i, v, r) in round R, hence:

t+ 1 ≤
∑
j∈L

P [j,m] ≤
∑
j∈L

tj ≤ t

a contradiction.

Lemma 6.4.3. For any message m = (i, v, r), if all correct processes send (echo, i, v, r)

in round R > 2r then all correct processes accept m in round R.

Proof. Consider a correct process p and a message m = (i, v, r). Let j be an identifier.

There are two cases:
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• If Recp[j] 6= nj then by definition Np[j,m] = 1 and by Fact 6.4.2 there is at least

one Byzantine process in group G(j). Then 1 = Np[j,m] ≤ tj.

• Recp[j] = nj. Since every correct process sends (echo, i, v, r) in round R, process

p receives at least (nj − tj) messages (echo, i, v, r) from processes of G(j) and then

Pp[j,m] ≥ (nj − tj). Thus Np[j,m] ≤ tj.

In all cases, Np[j,m] ≤ tj for all j in L. Summing up, we get NR
p (m) = ∑

j∈L tj ≤ t. Then,

every correct process accepts m during round R.

We now prove that the algorithm of Figure 6.1 satisfies the specification of authenticated

broadcast primitive.

Proposition 6.4.1. (Correctness) If all the processes in correct group G(i) propose (i, v, r)

in supperround r then every correct process accepts (i, v, r) in superround r.

Proof. Assume all processes of correct group G(i) propose m = (i, v, r) in superround

r. They send (init, i, v, r) in round 2r and every correct process receives ni messages

(init, i, v, r) in round 2r and adds (echo, i, v, r) to the list of messages to send in next

rounds (Line 18). In round 2r + 1, every correct process sends (echo, i, v, r) in Line 9 or

Line 10.

By Lemma 6.4.3, every correct process acceptsm during round 2r+1 i.e during superround

r.

Proposition 6.4.2. (Relay) If a correct process accepts (i, v, r) during superround r′ ≥ r

then every correct process accepts (i,m, r) by superround r′ + 1.

Proof. Suppose that some correct process p accepts m = (i, v, r) during superround r′.

Then it accepts m during round R with R = 2r′ or R = 2r′ + 1.

In round R we have NR
p (m) ≤ t. By Lemma 6.4.1, for every correct process q, PR

q (m) ≥

t+ 1 then q adds (echo, i, v, r) to the list of messages to send in next rounds (Line 28) and
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sends (echo, i,m, r) in round R + 1 (Line 9 or Line 10). By Lemma 6.4.3, every correct

process accepts m in round R + 1. Moreover as R = 2r′ or R = 2r′ + 1, every correct

process accepts m by superround r′ + 1.

Proposition 6.4.3. (Unforgeability) If some correct process accepts (i, v, r) in superround

r′ ≥ r then all correct processes with identifier i have proposed (i, v, r) in superround r.

Proof. Assume some correct process p accepts m = (i, v, r) in the round R with R = 2r′

or R = 2r′ + 1. In round R, NR
p (m) ≤ t. From Lemma 6.4.1, for every correct process q,

PR
q (m) ≥ t+ 1 then from Lemma 6.4.2 at least one correct process sends (echo, i, v, r) in

round R.

Let p be the first correct process sending (echo, i,m, r) in some round R1 ≤ R. There are

two cases:

• process p becomes witness in Line 17: p received from G(i) ni messages (init, i, v, r)

in round 2r. Then all correct processes in G(i) send (init, i, v, r) in this round, and

so all correct processes in G(i) have proposed (i, v, r).

• process p becomes witness in Line 28 because ∑
j∈L P

R1−1
p [j,m] ≥ t+1. From Lemma

6.4.2, at least one correct process, say q, sends message (echo, i, v, r) in this round

R1 − 1, but then q sent this message before p contradicting the definition of p.

Then if some correct process accepts m = (i, v, r) in superround r′ ≥ r then all correct

processes with identifier i propose m in superround r.

From the three previous propositions:

Theorem 6.4.1. If l > t and c(F,D) > 2t, algorithm of Figure 6.1 satisfies the correct-

ness, relay and unforgeability properties of the authenticated broadcast.
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6.4.2 Byzantine Agreement algorithm

In Figure 6.2, we present an algorithm that implements a Byzantine agreement in the

synchronous system using authenticated broadcast primitive as specified in Section 6.4.1.

We restrict ourselves to binary agreement, the extension to general agreement is standard

(e.g. [50]).

The algorithm proceeds in synchronous superrounds as defined for authenticated broadcast

in Section 6.4.1 using the Propose and Accept primitives. Value 1 is the only value that

may be proposed by processes. If this value is accepted by enough groups of processes

then the correct processes decide 1 else they decide 0.

More precisely, if the input value of a process p is 1, it proposes 1 in superround 1 (more

exactly it proposes message (id(p), 1, 1)). If the input value is 0, the process does not

propose anything. In a next superround r, processes may support value 1 (variable support

equals to true) and propose message (id(p), 1, r).

A process may become a supporter for value 1 only in odd superrounds. To become

supporter for value 1 in supperround 2r + 1, a process must (1) have accepted messages

(i, 1, 1) from at least t+ 1 identifiers and (2) have accepted r− 1 messages (i, 1, u) coming

from different identifiers one for each u between 1 and r − 1.

A process may decide 1 only in even superrounds 2r as soon as it has (i) accepted messages

(i, 1, 1) from at least t + 1 identifiers and (ii) accepted r messages (i, 1, u) coming from

different identifiers one for each u between 1 and r.

If a process does not decide 1 at the end of superround 2t+ 2 it decides 0.

We now show that the algorithm Figure 6.2 satisfies the specification of Byzantine agree-

ment. As before, V r
p denotes the value of variable V for process p in superround r. More-

over, Ar
p is the value of variable A after its assignment in superround r (Lines 6, 9 and

21)
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Code for process with identifier i ∈ {1, ..., l}
Variables:
1 input = {v} // v is the value proposed by the process
2 value = 0
3 support = false

Main code:
SUPERROUND 1

4 r = 1
5 if input = 1 then Propose(i, 1, 1)
6 A = {h|h ∈ L such that (h, 1, 1) is accepted}
7 if ∑

j∈A nj ≥ t+ 1 then support = true

SUPERROUND r
8 for r = 2 to 2t+ 1
9 A = {h|h ∈ L such that (h, 1, 1) is accepted}
10 if r = 0 mod 2
11 then //r even
12 if support = true then
13 Propose(i, 1, r)
14 support = false
15 if (α) ∑

j∈A nj ≥ t+ 1 and (β) there exist (i1, . . . , i r
2
) different identifiers

such that (i1, 1, 2), . . . , (ij, 1, 2j), . . . , (i r
2
, 1, r) are accepted.

16 then value = 1
17 else // r odd
18 if (α) ∑

j∈A nj ≥ t+ 1 and (β) there exist (i1, . . . , i r−1
2

) different identifiers
such that (i1, 1, 2), . . . , (ij, 1, 2j), . . . , (i r−1

2
, 1, r − 1) are accepted.

19 then support = true

SUPERROUND 2t+ 2
20 r = 2t+ 2
21 A = {h|h ∈ L such that (h, 1, 1) is accepted}
22 if support = true then Propose(i, 1, 2t+ 2)
23 if (α) ∑

j∈A nj ≥ t+ 1 and (β) there exist (i1, . . . , i r
2
) different identifiers

such that (i1, 1, 2), . . . , (ij, 1, 2j), . . . , (i r
2
, 1, r) are accepted.

24 then value = 1
25 if value = 1
26 then DECIDE 1
27 else DECIDE 0

Figure 6.2: Synchronous Byzantine Agreement algorithm with distribution (n1, ..., nl) and
at most t faulty processes.
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Directly from the definitions and Fact 6.4.1:

Fact 6.4.3. If c(F,D) > 2t then the number of processes of all the correct groups is greater

than t.

Proposition 6.4.4. (Validity) If all correct processes have the same initial valuev, then

no value different from v can be decided by any correct process.

Proof. Assume all correct processes have initial value 1, then in superround 1 all correct

processes p propose (id(p), 1, 1). The correctness of the authenticated broadcast ensures

that every correct process p accepts (i, 1, 1) for each correct group G(i) in superround 1.

Then, the set A1
p of identifiers j such that p accepted (j, 1, 1)(Line 6) contains at least the

identifiers of all correct groups. Hence, using Fact 6.4.3, the number of processes with

identifier in A1
p is greater than t, then every correct process becomes supporter for value

1 (sets support to true) in superround 1 (Line 7).

In superround 2, as support = true for all correct processes, every correct process p

proposes (Id(p), 1, 2). Again, the correctness of the authenticated broadcast ensures that

every correct process p accepts (i, 1, 2) for each correct group i in superround 2. As l > t

there is at least one correct group, then (1) p accepts (i, 1, 2) for at least one identifier i.

As A1
p ⊆ A2

p, (2) the number of processes with identifier in A2
p is greater than t too. From

(1) and (2), every correct process sets value to 1 in Line 16 and will decide 1 in Line 26.

Assume now that all correct processes propose 0. By contradiction, assume that some

correct process p decides 1. Before deciding, this process sets value to 1 in Line 15 in

some superround r. But in this superround condition Line 16 for p implies ∑
j∈Ar

p
nj ≥

t + 1. As there is at most t Byzantine processes, there is at least one correct process q

with identifier in Ar
p. By unforgeability property of authenticated broadcast, this process

proposes (Id(q), 1, 1) in superround 1. Contradicting the hypothesis that no correct process

proposes 1. Thus, every correct process keeps value to 0 and decides 0.
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Proposition 6.4.5. (Termination) All correct processes decide.

Proof. A correct process decides at superround 2t+ 2 Line 26 or Line 27.

Before proving Agreement property, we prove some preliminary properties of any execu-

tion.

Lemma 6.4.4. If a correct process gets the condition ∑
j∈Ax nj ≥ t + 1 in superround x

then at each superround y such that x < y ≤ 2t+ 2 each correct process gets the condition∑
j∈Ay nj ≥ t+ 1.

Proof. Let p be a correct process and let j be some identifier in Ax
p . By definition of Ax

p , p

accepted (j, 1, 1) by superround x. By relay property, every correct process accepts (j, 1, 1)

by superround y with x < y ≤ 2t + 2. Thus, for every correct process q, j is in Ay
q . It

follows that Ax
p ⊆ Ay

q at every correct process and then ∑
j∈Ay

q
nj ≥ t+ 1.

Lemma 6.4.5. If G(i) is correct and every process of G(i) proposes (i, 1, 2x) in superround

2x then every correct process sets value to 1 by superround 2x.

Proof. By correctness property, (a) every correct process accepts (i, 1, 2x) in superround

2x.

Since a process q in G(i) proposes (i, 1, 2x), it becomes supporter for value 1 in superround

2x− 1 ≥ 1. It becomes supporter for value 1 either:

• in superround x = 1 in Line 7: q finds in superround 1 that ∑
j∈A1

q
nj ≥ t + 1. By

Lemma 6.4.4, for every correct process q′ we have ∑
j∈A2

q′
nj ≥ t + 1 ensuring in

superround 2 part (α) of condition in Line 16. Part (β) of this condition is ensured

by (a). Then every correct process sets value to 1 by superround 2.

• or in superround 2x− 1 > 1 in Line 19: q finds the condition Line 18 true.
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From part (α) of this condition and by Lemma 6.4.4, for every correct process q′ we

have ∑
j∈A2x

q′
nj ≥ t + 1, then in superround 2x, part (α) of condition in Line 16 is

ensured.

As part (β) of condition in Line 18 is verified for q in superround 2x− 1, q has ac-

cepted, by superround 2x−1, x−1 messages (j′1, 1, 2), . . . , (j′u, 1, 2u) , . . . , (j′x−1, 1, 2(x−

1)) such that all the identifiers are distinct and different from i. By relay prop-

erty, all these messages will be accepted by all correct processes by superround

2x. Then with (a), every correct process accepts, by superround 2x, x messages

(j′1, 1, 2), . . . (j′u, 1, 2u), . . . , (j′x−1, 1, 2(x−1)), (i, 1, 2x) such that all the identifiers are

distinct ensuring part (β) of condition in Line 16. Then every correct process sets

value to 1 by superround 2x.

Now, assume that, in the execution, some correct process sets value to 1 Line 19 or Line 24,

and decides 1. Let r be the first superround in which some correct process p sets value to

1. As correct process sets value to 1 only in even superround, we assume that r = 2k.

Lemma 6.4.6. If r ≤ 2t, then every correct process sets value to 1 by superround r + 2.

Proof. Before setting value to 1 in superround r = 2k p evaluates condition of the test in

Line 15. By part (α) of this condition we have (i) ∑
j∈A2k nj ≥ t+1. By part (β) of this con-

dition, p has accepted, by superround 2k, k messages (j1, 1, 2), . . . (ju, 1, 2u),. . . , (jk, 1, 2k)

with distinct identifiers. Let L be this set of identifiers i.e. L = {j1, ...jk}.

As l > t, there is at least one correct group G(h), we consider two cases:

• Case h 6∈ L: by Lemma 6.4.4 and (i), for every correct process q, we have (ii)∑
j∈A2k+1

q
nj ≥ t + 1 and in particular part (α) of the condition of Line 19 in super-

round 2k+ 1 is satisfied for processes of identifier h. By relay property, we have (iii)
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for all ju in L, every correct process accepts (ju, 1, 2u) by superround 2k+ 1 then in

particular part (β) of the condition of Line 19 in superround 2k + 1 is satisfied for

processes with identifier h.

Then every correct process with identifier h proposes (h, 1, 2k + 2) in superround

2k + 2. As group G(h) is correct, by correctness property, all correct processes

accept (h, 1, 2k + 2).

With (iii), this implies that for every correct process that does not set value to 1

before, part (β) of condition of Line 15 or Line 23 is ensured in superround 2k + 2.

Then every correct process sets value to 1 by round 2k + 2.

• Case h ∈ L: as p has accepted (ju, 1, 2u) for each u from 1 to k, it accepted (h, 1, 2x)

for some x with 1 ≤ x ≤ k. By unforgability property, every process with identifier

h proposed (h, 1, 2x) in superround 2x. With help of Lemma 6.4.5, every correct

process sets value to 1 by superround 2x.

Lemma 6.4.7. If r = 2t + 2 then every correct process sets value to 1 by superround

2t+ 2.

Proof. If r = 2t+2, p accepted t+1 messages (j1, 1, 2) , . . . , (ju, 1, 2u), . . . , (jt+1, 1, 2(t+1))

with distinct identifiers. As l > t, for at least one identifier jh, G(jh) is a correct group.

By unforgeability property, every process of G(jh) proposed (jh, 1, 2h). By Lemma 6.4.5,

every correct process has set value to 1 by superround 2h, where h ≤ t+ 1.

We are now ready to prove the agreement property of the Byzantine Agreement algorithm.

Proposition 6.4.6. (Agreement) If two correct processes decide v and v′ then v = v′.

Proof. Assume that some correct process sets value to 1 in Line 19 or in Line 24, and

decides 1. Let r be the first superround where some correct process sets value to 1.
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Lemma 6.4.6 shows that if r ≤ 2t then every correct process sets its value variable to 1

by superround r + 2, then all correct processes decide 1.

Lemma 6.4.7 shows that if r = 2t + 2 then every correct process sets its value to 1 by

superround 2t+ 2.

Otherwise, if no correct process sets value to 1 then value is 0 for all correct processes

and they decide 0.

Theorem 6.4.2. Let D be a distribution and A ⊆ Ft(D) be an adversary, if for all F ∈ A

we have c(F,D) > 2t then there is an algorithm solving Byzantine agreement for adversary

A and distribution D.

6.5 Results and consequences

6.5.1 Results

From Proposition 6.3.2 and Proposition 6.4.2, we deduce that Byzantine agreement is

solvable for distribution D and at most t Byzantine failures if and only if n > 3t, l > t

and c(F,D) > 2t for every failure pattern F ∈ Ft(D).

By Proposition 6.2.1, we have: c(Ft, D) = ∑l
i=t+1 ni + index(D). Hence, we may charac-

terize the distributions for which Byzantine agreement is solvable as follows:

Theorem 6.5.1. Byzantine agreement is solvable for distribution D = 〈n1, . . . , nl〉 and

at most t Byzantine failure if and only if n > 3t, l > t and ∑i=l
i=t+1 ni + index(D) > 2t.

Proof. By Proposition 6.2.1:

c(Ft, D) =
i=l∑

i=t+1
ni + index(D)

First, assume that Byzantine agreement is solvable for distribution D = 〈n1, . . . , nl〉 and

at most t Byzantine processes. From Proposition 6.3.2, we have ∀F : c(F,D) > 2t and in
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particular c(Ft, D) > 2t. Then:

c(Ft, D) =
i=l∑

i=t+1
ni + index(D) > 2t

.

Now, assume that ∑i=l
i=t+1 ni + index(D) > 2t. By Lemma 6.2.2, we have c(F,D) ≥

c(Ft, D). But:

c(Ft, D) =
i=l∑

i=t+1
ni + index(D) > 2t

Thus, ∀F : c(F,D) > 2t. By Proposition 6.4.2, Byzantine agreement is solvable for

distribution D.

6.5.2 Consequences

A natural question that arises is: for a given number of processes n, a given set of identifiers

of size l, does it exist a distribution that tolerates t Byzantine failures? We directly know

that to give a positive answer to this question we need n > 3t and l > t. But when

these conditions are satisfied, does it always exist a distribution such that c(F,D) > 2t

for every failure pattern F ∈ Ft(D)? In this subsection we answer to this question and we

show that there exists such distribution if and only if l > (n−r)t
n−t−min(t,r) where r = n mod l.

Furthermore when it exists, we exhibit the distribution that satisfies this condition.

From now we assume n > 3t and l > t.

Let r = n mod l and

Dmax =


〈n

l
, . . . , n

l
〉, if l divides n.

〈n1 = dn
l
e, · · · , nr = dn

l
e, bn

l
c, . . . , nl = bn

l
c〉, otherwise.

We first examine the properties of Dmax:
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Lemma 6.5.1. If n ≥ 2l then index(Dmax) = t else index(Dmax) = min(r, t).

Proof. We consider two cases:

• If n ≥ 2l then dn/le > bn/lc ≥ 2, by definition index(Dmax) = t.

• If 2l > n ≥ l then bn/lc = 1 and dn/le = 2 and we have D =< 2, . . . , 2︸ ︷︷ ︸
r

, 1 . . . 1 >.

Then, index(Dmax) = min(r, t).

Lemma 6.5.2. ∑i=l
i=t+1 ni = (l − t)bn/lc+max(0, r − t)

Proof. We consider two cases :

• If r ≤ t then ∑i=l
i=t+1 ni = (l − t)bn/lc

• If r > t then ∑i=l
i=t+1 ni = (l − r)bn/lc+ (r − t)dn/le = (l − t)bn/lc+ r − t.

Dmax maximizes ∑i=l
i=t+1 ni + index(D):

Lemma 6.5.3. For any distribution D, D = 〈m1, . . . ,ml〉, of n processes and l identifiers,

if n ≥ 2l we have ∑i=l
i=t+1 mi + index(D) ≤ ∑i=l

i=t+1 ni + index(Dmax)

Proof. Let D be a distribution of n processes and l identifiers: D = 〈m1, . . . ,ml〉 with

m1 ≥ m2 ≥ . . . ≥ ml > 0.

By definition we have index(D) ≤ t. As n ≥ 2l, by Lemma 6.5.1 and definition of

index(D), we get

index(D) ≤ index(Dmax) (6.5)

We now consider ∑i=l
i=t+1 mi.
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• If mt+1 ≤ bn/lc then
∑i=l

i=t+1 mi ≤ (l − t)bn/lc.

• If mt+1 > bn/lc then
∑i=t

i=1 mi ≥ tbn/lc − t. Hence,

i=l∑
i=t+1

mi ≤ n− tbn/lc − t

≤ (l − t)bn/lc+ r − t

In all cases,

i=l∑
i=t+1

mi ≤ (l − t)bn/lc+ r − t (6.6)

Thus, from (6.5), Lemma 6.5.1 and (6.6) we have:

i=l∑
i=t+1

mi + index(D) ≤
i=l∑

i=t+1
ni + index(Dmax).

Theorem 6.5.2. There is a distribution enabling to solve Byzantine agreement if and only

if Dmax enables us to solve Byzantine agreement.

Proof. We need only to consider the necessary condition because the sufficient condition

is trivial.

Assume that there is a distribution D of n processes in l identifiers enabling to solve

Byzantine agreement for at most t Byzantine processes. D = 〈 m1, . . . ,ml 〉 with m1 ≥

m2 ≥ . . . ≥ ml > 0. By Theorem 6.5.1 we have: ∑i=l
i=t+1 mi + index(D) > 2t. We show

Dmax enables to solve Byzantine agreement for at most t Byzantine processes proving that

c(Ft, Dmax) > 2t. We consider two cases:

• 2l > n ≥ l. In this case, index(Dmax) = min(r, t) and n = l + r.

– If r ≤ t then c(Ft, Dmax) = r + (l − t)bn/lc = r + l − t = n− t > 2t.
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– If r > t then c(Ft, Dmax) = t+(l−t)bn/lc+(r−t) = t+(l−t)+r−t = n−t > 2t.

Hence, we always have: c(Ft, Dmax) > 2t. It follows that if 2l > n ≥ l then Dmax

enables always to solve Byzantine agreement.

• n ≥ 2l. In this case, by hypothesis and Lemma 6.5.3 :

2t <
i=l∑

i=t+1
mi + index(D) ≤ c(Ft, Dmax)

By Proposition 6.4.2, Dmax enables to solve Byzantine agreement for at most t

Byzantine processes.

We now characterize the value for n, l, t for which this distribution exists:

Theorem 6.5.3. There exists a distribution enabling to solve Byzantine agreement for at

most t Byzantine failure if and only if l > (n−r)t
n−t−min(t,r) where r = n mod l.

Proof. We consider two cases:

• If 2l > n ≥ l then n = l + r. Notice that in this case c(Ft, Dmax) = n− t.

If r > t then (n−r)t
n−t−min(t,r) = lt

n−2t

If r ≤ t then (n−r)t
n−t−min(t,r) = (n−r)t

n−t−r
≤ lt

n−2t
.

As n > 3t, we have t/(n − 2t) < 1. Then we get (n−r)t
n−t−min(t,r) < l. We also have

c(Ft, Dmax) > 2t. Consequently, the theorem is trivially proved.

• If n ≥ 2l then n = kl + r with k ≥ 2.
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If r ≤ t, by Lemma 6.5.1 and Lemma 6.5.2, the condition ∑i=l
i=t+1 ni +index(Dmax) >

2t is equivalent to (l − t)bn/lc > t

(n− r)t
n− t−min(t, r) < l⇔ klt/(kl − t) < l

⇔ (l − t)k > t

⇔ (l − t)bn/lc > t

If r > t, by Lemma 6.5.1 and Lemma 6.5.2, the condition ∑i=l
i=t+1 ni + index(Dmax) >

2t is equivalent to (l − t)bn/lc+ r > 2t

(n− r)t
n− t−min(t, r) < l⇔ klt/(kl + r − 2t) < l

⇔ kt < kl − 2t+ r

⇔ (l − t)k + r > 2t

⇔ (l − t)bn/lc+ r > 2t

Thus in both cases:

i=l∑
i=t+1

ni + index(Dmax) > 2t⇔ (n− r)t
n− t−min(t, r) < l (6.7)

With Theorem 6.5.2 and Theorem 6.5.1, (6.7) proves the theorem.

In particular as (n−r)t
n−t−min(t,r) < l if 2l > n ≥ l, we deduce that if 2l > n ≥ l, then there exists

a distribution D enabling to solves Byzantine agreement for at most t Byzantine failures.

If n ≥ 2l, then there exists a distribution D enabling to solves Byzantine agreement for at

most t Byzantine failures if and only if l > (n−r)t
n−t−min(t,r) where r = n mod l. In both cases,

if it exists, Dmax is such a distribution.
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Recall from [22] that if the number of identifiers is known but the size of groups of pro-

cesses with the same identifier is not known, a necessary and sufficient condition to solve

Byzantine agreement is l > 3t (assuming n > 3t too). Hence the knowledge of the distri-

bution enables us to solve Byzantine agreement in more cases. In the interesting case for

which we have many processes but few identifiers we get for example that when n = kl

Byzantine agreement is solvable as soon as l > t(1 + 1/k).

6.6 Conclusion

We have proven that the knowledge of distribution helps to solve the Byzantine agreement

and enables us to get better bounds. Here with this knowledge, adding correct processes

to the system may help. In other words, contrary to the results of [22] the number of

authenticated servers needed does not depend only on the number of Byzantine processes

but also on the number of correct processes.

The efficiency of the algorithms was not the main purpose of this paper, nevertheless it is

worth noting that the complexity concerning the number of rounds is in 2(t+ 1), It is the

same complexity as for solution using authenticated broadcast [63] in the classical case

with unique identifiers. An interesting open problem is to determine if this bound can be

improved achieving solutions for Byzantine Consensus within (t+ 1) rounds.

A first extension of this work can be to consider particular adversaries. For example, from

a practical point of view it could be reasonable to assume that the number of Byzan-

tine processes by identifier depends on the number of processes with this identifier, it is

then interesting to determine in this case necessary and sufficient conditions for solving

Byzantine agreement.

Another extension is to consider partially synchronous models like [25, 31] and try to

extend our results to these models.
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Chapter 7

Homonymous model with forgeable

identifiers

7.1 Introduction

In the previous chapters, we always assume that the identifiers are unforgeable. A way to

obtain that is to use the group signatures [19] that define a signature scheme for homonyms

in which the identifiers can be verified. However, in pratique, it may be difficult to keep

such secret key : a Byzantine process in a group can voluntary divulge this secret key and

some Byzantine processes in other groups may then usurp the identifier. Moreover some

members of groups may simply be negligent and involuntary divulge this key enabling

Byzantine processes to usurp the identifier too. Then we consider in this chapter an

extension of the original model of homonyms in which at most k identifiers are forgeable

and may be usurped by Byzantine processes.

We consider both homonym model with and without authentication. From a more prac-

tical point of view, it is easy to implement homonyms with help of digital signatures as

with [35] in which at each identifier is associated a public key and processes with the same
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identifiers share corresponding private keys. In this way we get a (strictly) stronger au-

thentication mechanism as defined in [58]. With this authentication mechanism a process

cannot retransmit falsely messages.

To determine the power of the homonymous model of homonyms with forgeable identifiers,

we consider the problem of Byzantine Agreement. Recall from the chapter 4 that Byzantine

Agreement is solvable in the homonymous model if and only if l > 3t, then considering

forgeable identifiers as groups of processes with Byzantine processes, we get directly a

solution with l forgeable identifiers if l > 3k and we could suppose that we have a solution

if and only if l > 3k. But surprisingly, we prove a better bound, we prove that there is

solution for the Byzantine Agreement with k forgeable identifiers if and only if l > 2t+ k.

In fact, this result comes from the fact that if a Byzantine process forges the identifier

of a group of processes containing correct processes, this group of processes has the same

behavior as a group of processes containing together Byzantine and correct processes. It

is proven in chapter 5 that such groups of processes are weaker adversaries than groups

containing only Byzantine processes.

From a more practical point of view, it is easy to implement homonyms with help of

digital signatures as with [35] in which at each identifier is associated a public key and

processes with the same identifiers share corresponding private keys. In this way we get a

(strictly) stronger authentication mechanism as defined in [58]. With this authentication

mechanism a process cannot retransmit falsely messages. More precisely, if the identifier

is unforgeable, then it is not possible for any process q to wrongly pretend that it received

message m coming from a process with this identifier. It is well known that with this

kind of authentication, the Byzantine Agreement problem can be solved if and only if

n > 2t in the classical case in which all processes have unique and different unforgeable

identifiers, giving a n > 2k bound with k forgeable identifiers. With homonyms and at

most k forgeable identifiers, we prove that Byzantine Agreement is solvable if and only if
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l > t+ k.

Roadmap In Section 7.2 we prove impossibility result in model without authentication.

In Section 7.3, we propose a specification of Authenticated Broadcast and give a corre-

sponding algorithm. Section 7.4 contains the algorithm for Byzantine Agreement using

Authenticated broadcast. Then, in Section 7.5 we study the authentication case. Finally

in Section 7.6, we discuss some related work and perspectives.

7.2 Impossibility

Following the spirit of the impossibility of Byzantine Agreement in [34], we prove our

impossibility results in weak homonym model.

Proposition 7.2.1. Byzantine Agreement is unsolvable in (n, l, k, t)-homonymous model

if l ≤ 2t+ k.

Proof. It suffices to prove there is no synchronous algorithm for Byzantine Agreement

when l = 2t+k. To derive a contradiction, suppose there is an algorithm A for Byzantine

agreement with l = 2t+k. Let Ai(v) be the algorithm executed by a process with identifier

i when it has input value v.

We divide the set of processes into 4 subsets:

• The set A is the set of processes with identifiers from 1 to t

• The set B is the set of processes with identifiers from t+ 1 to 2t

• The set C consists of all the processes with identifiers from 2t+ 1 to 3t

• The set D consists of all the processes with identifiers from 3t+ 1 to 2t+ k

We now define three executions of the algorithm A.
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In execution α, processes of A, B and D are correct and have input 1, all the processes

in C are Byzantine and the identifiers in D may be forged. By validity, all the correct

processes decide 1. Processes in C run AId(c)(0) for c in C. One process in C runs AId(d)(0)

for each d ∈ D.

In execution α′, processes of B, C and D are correct and have input 0, all the processes

in A are Byzantine and the identifiers in D may be forged. By validity, all the correct

processes decide 0. Processes in A run Aid(a)(1) for each a in A. One process in A runs

AId(d)(1) for each d ∈ D.

In execution β, processes of A and C are correct. Processes of A have input 1 and processes

of C have input 0. Processes in D are correct and have input 1. All the processes in B are

Byzantine and the identifiers in D may be forged. Processes in B send the same messages

to processes in A and processes in D that in α. Processes in B send the same messages

to processes in C in α′. One process in B runs AId(d)(0) for each d ∈ D and executes this

code as such a process receives from B the same message that in α′.

For the correct processes in A executions α and β are undistinguishable and they decide 1.

For the correct processes in C executions α′ and β are undistinguishable and they decide

0. This contradicts the agreement property of the Byzantine agreement.

7.3 Authenticated Broadcast

Our algorithms for Byzantine Agreement use an adaptation of Authenticated Broadcast

as introduced by Srikanth and Toueg [63] in the classical case where each process has a

different identifier (n = l).

More precisely, our authenticated broadcast is defined by two primitives: broadcast(i, v, r)

and accept(i, v, r) where i is the identifier of some group that proposes value v and r

is the superround number where the message has been proposed. We assume that a
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correct process broadcasts at most one message in a superround. The specification of

authenticated broadcast primitive is same of the one presented in Section 6.4:

1. Correctness: If all the processes in a correct group i perform broadcast(i, v, r) in

superround r then every correct process performs accept(i, v, r) during superround

r.

2. Relay: If a correct process performs accept(i, v, r) during superround r′ ≥ r then

every correct process performs accept(i, v, r) by superround r′ + 1.

3. Unforgeability: If some correct process performs accepts(i, v, r) in superround r′ ≥ r

then all correct processes in group i must broadcast(i, v, r) in superround r.

Code for process p with identifier i ∈ {1, ..., l}

Variable:
1 M = ∅;
Main code:
2 ROUND R
3 if R = 2r then if broadcast(i, v, r) to perform
4 then send (M∪ (init, i, v, r), R) to all
5 else send (M∪ (noinit, i,⊥, r), R) to all
6 else send (M, R) to all;

Reception of the messages of round R
7 For all h ∈ {1, ..., l}
8 if (R = 2r) then

LetM[h] be the set of messages (init, h, ∗, r) or (noinit, h, ∗, r) received
from processes in group h

9 if M [h] = {(init, h, v, r)}
10 then M =M∪ (echo, h, v, r)
11 For all r ∈ {1, ..., R/2}
12 For all m ∈ possible messages
13 if (echo, h, v, r) received from at least l − 2t distinct groups
14 then M =M∪ (echo, h, v, r)
15 if (echo, h, v, r) received from at least l − t distinct groups
16 then accept(h, v, r)

Figure 7.1: Authenticated Broadcast algorithm in the (n, l, k, t)-homonym model.
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The algorithm is described in Figure 7.1. A superround r is composed of the two rounds

2r and 2r + 1.

To propose a value v in supperround r process p with identifier i sends message (init, i, v, r)

to all processes (including itself) (line 4). A process receiving such a message from some

processes with identifier i becomes “witness” for (i, v, r) and sends a message of type

echo to all processes (line 10). Any process having l − 2t witnesses for (i, v, r) becomes

itself witness (if l − 2t > k at least one process in a correct group has sent this message)

(line 13). When a process receives more than (l− t) witnesses, it accepts (i, v, r) (at least

t + 1 processes from correct groups have sent this message) (lines 15 to 16). In this way

we ensure correctness and relay properties

To ensure the unforgeability property, a correct process that has no message to broadcast

in a superround broadcast a noinit message in the corresponding even round. In this

way, if some correct process with identifier i has no message to broadcast in superround

r, every correct process gets M [i] (line 9) different from one message init and will not

become witness of any message (i, ∗, r).

By a standard proof, we get :

Proposition 7.3.1. If l > 2t + k, the algorithm Figure 7.1 implements authenticated

broadcast in (n, l, k, t)-homonym model.

Proof. We prove the properties of authenticated broadcast:

Correctness: If all processes in correct group i perform broadcast(i, v, r) then they send

(init, i, v, r) in round R = 2r (Line 4). All correct processes receive (init, i, v, r) and at

least all correct processes send (echo, i, v, r) message in the second round of superround r.

Since there are at most t Byzantine groups, there are at least l − t correct groups. Thus,

a correct process receives at least l− t messages (echo, i, v, r) from these groups at end of

the second round of superround r and thus it accept(i, v, r).
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Unforgeability: We suppose that some correct process performs accepts(i,m, r) in the

round 2r′+ 1. Thus, it must receive (echo, i, v, r) from at least l− t distinct groups. Thus,

among these groups, there is at least l − t − k > 1 group whose identifer isn’t forgeable

(because there are at most k forgeable identifiers of groups). Thus, some correct process

of this group sent (echo, i, v, r).

Suppose that p is first correct process that sends (echo, i, v, r). There are two cases so

that p sends (echo, i, v, r):

• The setM [i] of p contains only (init, i, v, r). Thus, every correct process in the group

i perform broadcast(i, v, r).

• It received (echo, i, v, r) from at least l−2t distinct groups. Since l−2t > k, there is

at least group that contains one correct process that sent (echo, i, v, r) in this round

and thus, it sent before p. It is contradiction. Thus, the case 2 is impossible.

Thus, if some correct process accepts(i, v, r) in superround r′ then all correct processes

with identifier i must broadcast(i, v, r) in superround r.

Relay: Suppose some correct process p performs accept(i, v, r) during superround r′.

Thus, p has received the message (echo, i, v, r) from l− t groups with different identifiers.

At least l − 2t of those groups contain correct process. Each of those l − 2t processes

continue to send (echo, i, v, r) in every round after superround r. Thus, in superround

r′ ≥ r, every correct process sends (echo, i, v, r) and all of these messages are delivered, so

every correct process receives at least (echo, i, v, r) from at least l− t distinct groups and

performs accept(i, v, r).

7.4 Byzantine Agreement Algorithm

The algorithm is very similar to the one presented in Figure 6.2 in Section 6.4.2 of

Chapter 6 except the two differences as follows:
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1. the algorithm runs in 2k + 2 superrounds instead of 2t + 2 superrounds as the

algorithm of Figure 6.2. The condition assure that among k + 1 identifiers, there is

at least one identifier that all processes with that identifier are correct.

2. the conditions at Lines 7, 15 and 18 in Figure 6.2 replaced by |A| ≥ t+1, |A| ≥ t+1

and |A| ≥ t + 1. Recall that A = {h|h ∈ L such that (h, 1, 1) is accepted} and the

condition at these lines assures the validity property of agreement. The replacement

is needed because the distribution of identifiers is unavailable as in Chapter 6 but

there is the majority of correct groups.

Thus, we get:

Proposition 7.4.1. Byzantine agreement is solvable if l > 2t+ k.

Finally, combining Proposition 7.2.1 and 7.4.1, we get:

Theorem 7.4.1. Without authentication, Byzantine agreement is solvable in (n, l, k, t)-

homonymous model if and only if l > 2t+ k.

7.5 Homonymous model with authentication

The classical model of Byzantine failures with authentication is introduced in [58] adapted

to homonyms and forgeable identifiers. This model may be implemented with help of

authentication tools such as Public Key Infrastructure and Digital Signatures Schemes.

Messages m are authenticated by the identifier of the sender process. At each identifier is

associated a secret key K and a signature scheme Sign(K,m) that allows m to be signed

with the key associated to the identifier. Each process can verify if a message carries the

signature of a given identifier. We assume that the signatures of at most k identifiers

can be forged. With this scheme of authentication, if id is not forgeable then it is not
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possible for any process q to wrongly pretend that it received some message m coming

from identifier id. Implementation of homonyms with authentication and some forgeable

identifier is rather natural: members of groups share a secret key and every message from

a group are sent to all members of some groups and the source group of the message may

be verified by a signature scheme of the source group.

For the authentication case, we improve our bound: l > t+k is necessary and sufficient to

achieve Byzantine Agreement. (Recall that in the classical model with unique identifiers,

the bound is n > 2t.)

The proofs of the lower bound is essentially the same as for the case without authentication

in Section 7.2.

The Byzantine agreement algorithm in the case without authentication in Section 7.4

directly works with l > t+ k if we have an Authenticated Broadcast. It remains to get an

Authenticated Broadcast with l > k + t.

In [63], in the classical case with unique identifiers, Authenticated Broadcast can be ob-

tained simply with authentication: it suffices to verify the signatures: A process that

receives a message (p,m, r) accepts it if it can verify p’s signature (and then forwards this

message). But if we apply this simple mechanism in our model, we do not get the unforge-

ability property. In a forgeable group with identifier i containing some correct processes,

it is possible that some correct accepts (i,m, r). Indeed, this message has been sent by a

Byzantine process that has forged the identifier i.

To implement Authenticated Broadcast, we use the signatures and the mechanism of

witnesses as in our previous algorithm. The implementation is based on the one presented

in Section 7.3 and some easy changes.

At some point, in algorithm 7.1 when a process receives some messages in round R, it

will send echo in the next rounds. The process will forward all messages that produced

this echo. In this way it gives a proof that it has the right to send echo. We get an
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Authenticated Broadcast algorithm from algorithm Figure 7.1 by: (1) removing from the

received message all messages with a bad signature, (2) forwarding the proof of each new

echo message, (3) receipt of messages (echo, h,m, r) at lines 13 and 15 is replaced by the

receipt of message (echo, h,m, r) and the proof of (echo, h,m, r). This assures the validity

of each received message (echo, h,m, r).

We have:

Theorem 7.5.1. With authentication, Byzantine Agreement is solvable in (n, l, k, t)-

homonymous model if and only if l > t+ k,

7.6 Related works and perspectives

When processes share identifiers and some of these processes may be Byzantine, it is

rather natural that some of these identifiers may be forged. Hence this work is a natural

extension of [22] to forgeable identifiers.

At least for the authentication case, groups signature as introduced first in [20] are close

to our model. Groups signature enables to sign messages on behalf of a group and clearly

can be used to implement the model of homonyms. Note that group signatures generally

ensures other properties than the one we consider here. Groups signatures may be a

valuable way to implement models with homonyms.

In other works [9, 36, 40], a mixed adversary model is considered in the classical (l = n):

the adversary can corrupt processes actively (corresponding to Byzantine process) and can

forge the signature of some processes.

In some way, we combine here the idea of group signatures and forgeable signatures but

contrary to group signatures the goal is not to develop protocol ensuring strong properties

like anonymity or unforgeability but to develop algorithms (like agreement) in presence of

groups of processes with Byzantine processes and forgeable identifiers.
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Here we proved that with forgeable identifiers and homonyms Byzantine Agreement can

be solved in a “reasonable” way (and without any assumption about cryptographic sys-

tem). Interestingly, the solvability of Byzantine Agreement depends only on the number

of identifiers and the number of forgeable identifiers. Hence adding correct processes does

not help to solve Byzantine Agreement.

A natural extension of this work could be to consider partially synchronous models.

As Byzantine Agreement is the basis for replication systems in the classical models in

which each process has its own identity, a natural question is to know if it is still the case

and envisage to develop algorithms for more difficult problems.
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Chapter 8

Conclusion

The homonymous model considered in this thesis is new. It generalizes both the classical

(non-anonymous) and the anonymous model. In our model, several processes may share

the same identifier. As an example of the homonymous model, a network of computers

communicating by sending and receiving messages. Each computer has a MAC address.

Computers are regrouped into groups such that each group has a multicast address as

identifier of group. A computer of a group might hide its MAC address and use only its

multicast address of group to communicate. A way to avoid that the identifier of group is

forgeable, is to use the group signatures [19] that define a signature scheme for homonyms

in which the identifiers can be verified.

In homonymous model, we completely characterized the solvability of consensus, precisely

quantifying the impact of the adversary, with some surprising results. In the synchronous

case, we given the complete picture, from crash and send omission failure model to Byzan-

tine failure model, on necessary and sufficient conditions on the number of identifiers for

solving consensus in a system of n processes using l identifiers and tolerating t faulty

processes. Ours results show that for the benign failures, for example crash and omission
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failures, that fact that processes are numerate is sufficient to solve the uniform consensus.

Otherwise, the identity is really necessary to solve the problem for Byzantine failures.

l > 3t is necessary and sufficient condition to reach the Byzantine agreement. Interest-

ingly, our generic algorithm does not depend on the number of processes n. Hence, in

this case, the global parameter n is not necessary and adding more correct processes does

not affect the algorithm. However, in partially synchronous case, the global parameter n

is necessary and adding more correct processes may require more identifiers. It is differ-

ent from the result in classical systems with unique identifiers. That difference originates

from homonyms. We also showed two ways to notably reduce the number of identifiers for

Byzantine agreement, either removing the ability for a Byzantine process to send multiple

messages to the same recipient or increasing the knowledge of the system for each pro-

cess assuming each process knows the distribution of identifiers. Finally, we considered the

agreement problem in a rather natural case where Byzantine processes can forge identifiers

of correct processes.

Our algorithms for uniform consensus problem in benign failures model are new. These

algorithms are inspired from [59]. For the Byzantine agreement, our algorithms use ver-

sions of authenticated broadcast in [63]. However, the generalizations of the authenticated

broadcast to our model is not straightforward. Recall that differently from classical sys-

tems with unique identifiers where if a Byzantine process sends multiple messages to a

single recipient in a round then receiver process can easily detect that the sender of these

messages is faulty process and algorithms could simply discard such messages, in homony-

mous model there is clear advantage. This thesis also contributes to many impossibility

results using valency argument, scenario argument and partitioning argument.

Many challenging questions remain open. The paper [23] solves the uniform consensus in

anonymous systems in partially synchronous case. The uniform consensus in anonymous

systems in asynchronous case with the failure detector is considered in [13]. Also, the
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uniform consensus in asynchronous case with the failure detector is considered in [4] but

in homonymous systems as our model. All these papers consider the crash failures model.

None of these considers the general omission failures model. We conjecture that in this

failures model, the lower bound for uniform consensus is l > (n + 2t)/2 if processes are

innumerate, however if processes are numerate, the lower bound is n > 2t even if processes

are anonymous. A more difficult open problem is solve k set agreement in these models.

Concerning the complexity of the consensus algorithms, we know that t + 1 rounds is

the lower bound in classical model with unique identifiers. For benign failures model, we

showed that this lower bound remains true in our homonymous model giving algorithms in

t+ 1 rounds in Chapter 3. However, for Byzantine failures model, our algorithms required

more rounds. What is the tight lower bound on number of rounds to reach to agreement

in presence of Byzantine failures? We conjecture that the existence of homonyms and

Byzantine processes affect the complexity of solving this problem. Thus, it needs at least

t+ 2 rounds to solve Byzantine agreement.

Finally, how do homonyms affect the solvability of problems other than the consensus, for

example the leader election problem, the naming and the counting problem? In the annexe

of this thesis, we consider the leader election problem for a ring consisting of n processes

n ≥ 2 where each process is assigned an identifier in the set of l identifiers and processes

are not faulty. We show that with a few identifiers, the leader election problem is possible.

More precisely, the leader election problem is solvable if and only if l is greater than the

largest proper divisor of n. In particular, if n is prime then only with two identifiers, we

have a deterministic leader election algorithm. That result is positif in comparison to the

classical result that deterministic algorithm for leader election is impossible if processes are

anonymous. Therefore, our homonymous model may be a good way to break symmetry.

Finding an efficient algorithm or solving leader election problem in homonymous model

in other network topology remain open.
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Appendix: Leader election in the

homonymous model

8.1 Introduction

Leader election is the problem of electing a unique leader in a distributed network. Leader

election is a fundamental problem in distributed computing and has numerous applica-

tions. For example, it is an important tool for breaking symmetry in a distributed system.

Moreover, by choosing a process as the leader, it is possible to execute centralized algo-

rithms in a decentralized environment. Leader election can also be used to recover from

token loss for token-based algorithms, by making the leader responsible for generating a

new token when the current one is lost.

Without the ability to break symmetry, deterministic leader election is impossible [3].

Therefore, deterministic leader election is impossible if processes are anonymous. For

example, consider a synchronous system of anonymous processes. If all processes start in

the same state with the same environment, they will always remain in the same state as one

another. Similarly, in an asynchronous shared memory system of anonymous processors

with atomic reads and writes, where all registers have the same initial contents, or in an

asynchronous message passing system of anonymous processes, where all communication

links contain the same nonempty sequence of messages, many schedules, for example, a
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round robin schedule, will maintain symmetry among all the processes.

In share memory systems, although in the presence of a central demon, which acts as

a scheduler (a way to break the symmetry), Dijkstra [24] observed that a deterministic

leader election algorithm cannot exist if the ring size is a composite number. Several

papers [16, 41] present leader election algorithms for anonymous rings of prime size.

Randomization is a well known technique to break symmetry and randomized algorithms

for both problems have been considered on a variety of network topology (e.g. ring, tree,

complete graph) in [1, 68, 45]. However, the randomization problem is beyond the scope

of this thesis.

8.2 Model

We consider the leader election problem in homonymous model for a ring consisting of

n processes n ≥ 2. Each process is assigned an identifier in the set L = {1, 2, ..., l}.

Homonymous processes start in the same state and run the same code. Processes know

the value of n and l but do not know the identifier distribution in the ring.

The ring is unidirectional, that is, each process can only directly get information from

its left neighbour. The distance from process p to process q is denoted by d(p, q) that is

measured starting from p and moving to the right until q is reached.

Processes communicate by sending and receiving messages. Computation proceeds in

rounds. Each round consists of the three steps sending, receiving, local computation.

8.3 Our result

We prove the following result:

Theorem 8.3.1. Leader election is solvable if and only if l is greater than the largest
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proper divisor of n.

Using the Proposition 8.3.1 and Proposition 8.3.2

Proposition 8.3.1. Leader election is impossible if l is less than or equal to the largest

proper divisor of n.

Proof. If l = 1 then by the classical result that leader election is unsolvable in an anony-

mous ring and in synchronous case, the proposition holds. Now, consider that l ≥ 2.

Figure 8.1: An example: n = 8, l = 3 .

Let k be the largest proper divisor of n. Let n = kr where r is positive integer and r ≥ 2.

We call a segment be a sequence of k processes positioned in the clockwise direction as

follows: the process with identifier 1 is positioned at the first position of the segment, the

process with identifier 2 at the second position of the segment,..., process having identifier

(l− 1) at the (l− 1)th position of the segment. k− l+ 1 rest processes having identifier l

are positioned from the lth to the kth. We can construct the ring of size n by r continuous

segments. They are symmetrically distributed in the ring. For example, n = 8, l = 3. The

distribution is figured in 8.1.

It is straightforward to verify, by induction on the number of rounds, that in every round r

all processes with the identical positions of r segments are in identical states. In fact, since

all processes with the identical positions of segments are the same identifier, they start

in the same state. By induction, all processes with the identical positions send the same
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message(s), receive the same message(s), do the same local computation, and therefore

end up in the same state.

If one process in some segment decides to become a leader, then every process with the

identical positions of r−1 ≥ 1 other segments does so as well, contradicting the definition

of leader election problem. Thus, the proposition holds.

Now we prove Proposition 8.3.2.

Definition 8.3.1. Assume that Q is some subset of n processes and q ∈ Q. Let q1 be the

process that belongs to Q but is other than q and that is nearest to q in the left direction.

We denote:

dQ(q) =


d(ql, q), if |Q| ≥ 2

n, if |Q| = 1.

Lemma 8.3.1. For every Q that is a subset of set of n processes, ∑
p∈Q dQ(p) = n.

Proof. All processes of Q are numbered q1, q2, ... by some way in the clockwise direction.

Thus, d(qi) is equal to the number of processes between qi and qi−1 +1. Thus, ∑
q∈Q d(q) =

n− |Q|+ |Q| = n.

Lemma 8.3.2. Let M = {i ∈ L|∃p ∈ G(i) such that dG(i)(p) ≥ l} where G(i) is group of

all processes with identifier i. Thus, M 6= ∅.

Proof. Suppose that M = ∅. Thus for every identifier i and every p ∈ G(i), we have

d(p) < l. By Lemma 8.3.1, for every i: ∑
p∈G(i) d(p) = n < l|G(i)| where |G(i)| is

the number of processes in group G(i). Thus, ln = l(∑
i∈L |G(i)|) = ∑

i∈L l|G(i)| > ln.

Contradiction. Thus, M 6= ∅ ∑
p∈G(i) d(p) = n.

Definition 8.3.2. An identifier m is said to be the leader identifier, if m is the greatest

identifier of set M .

131



Code for process p
1 Step 1: choose the leader identifier m
2 Step 2: for each q ∈ G(m), s(q) = active
3 Let Q = G(m) and dm = Max{dQ(q)|q ∈ Q}
4 While(dm < n)
5 for each q ∈ Q
6 if dQ(q) < dm then s(q) = passive
7 Q = {q ∈ G(m) : s(q) = active}
8 dm = Max{dQ(q)|q ∈ Q}
9 Step 3: choose unique process q in Q as the leader

Figure 8.2: deterministic function for choose the leader

Proposition 8.3.2. Leader election is solvable if l is greater than the largest divisor of n

that is other than n.

Proof. We present here a simple algorithm as follows: at the first round, each process

send its identifier to its neighbour. In next rounds, each process sends to its neighbour

all messages that it received. By that way, after n rounds, each process can know the

identifiers distribution in the ring and identically choose a leader using a deterministic

function in Figure 8.2.

In fact, by the definition of leader identifier, all processes choose the same leader identifier

in step 1. All processes come to step 2. If |G(m)| = 1 then all processes pass over the

While loop and come to the step 3. Now we consider that G(m) ≥ 2. We have dm < n

and all processes enter in the loop. By Lemma 8.3.3, the number of processes of set Q

decreases strictly after each iteration. When Q only contain one process then dm of Q is

equal to n and each process comes to step 3 and chooses the unique process in Q as the

leader.

Lemma 8.3.3. Assume that if l is greater than the largest proper divisor of n. Thus, the

number of processes of set Q decreases strictly after each update at Line 7.

Proof. By update of state of processes of set Q at Line 6, after each iteration, the number
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of processes of set Q decreases (Line 7). Thus, if at some iteration r, the set Q does not

change at Line 7 then by Line 6, no process changes its state from active to passive. Thus,

for every q ∈ Q, we have dQ(q) = dm. By Lemma 8.3.1, we have ∑
q∈Q d(q) = n. Thus,

at iteration r, dm|Q| = n. On the other hand, by definition of the leader identifier m

and Lemma 8.3.2, at Line 2, we have dm ≥ l. By Lemma 8.3.4, dm increases after each

update. Thus, at the and of iteration r, we have dm ≥ l, contradicting the hypothesis that

l is greater than the largest proper divisor of n. Thus, the number of processes of set Q

decreases strictly.

Lemma 8.3.4. dm increases after each update at Line 8.

Proof. By update of state of processes of set Q at Line 6, after update of Q at Line 7,

the number of processes of set Q decreases. Assume that at some iteration r, before the

update of Q at Line 7, Q = Q1 and after update, Q = Q2 such that Q2 ⊆ Q1. If Q2 = Q1

then clearly, the value of dm does not change at iteration r. We consider the case where

Q2 ⊂ Q1. Let Q3 = Q1 − Q2 where Q3 6= ∅. All processes of set Q3 change their states

from active to passive at Line 6. Thus, at line 6, for each q ∈ Q3 : dQ3(q) < dm. Since

before update at line 7, dm = Max{dQ1(q)|q ∈ Q1}, there is some process q0 such that

dQ1(q0) = dm and by (*), q0 6∈ Q3. It implies that q0 ∈ Q2. But clearly, dQ2(q0) ≥ dQ1(q0).

After update at line 8, dm = Max{dQ2(q)|q ∈ Q2} ≥ dQ2(q0). Thus, Lemma holds.
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