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ABSTRACT

Protein structures are an ensemble of atoms

determined experimentally mostly by X-ray crys-

tallography or Nuclear Magnetic Resonance.

Studying 3D protein structures is a key point for

better understanding protein function at a molecular

level. We propose a set of accurate tools, for

analysing protein structures, based on the reliable

method of Voronoi–Laguerre tessellations. The

Voronoi Laguerre Delaunay Protein web server

(VLDPws) computes the Laguerre tessellation on a

whole given system first embedded in solvent.

Through this fine description, VLDPws gives the

following data: (i) Amino acid volumes evaluated

with high precision, as confirmed by good correl-

ations with experimental data. (ii) A novel definition

of inter-residue contacts within the given protein.

(iii) A measure of the residue exposure to solvent

that significantly improves the standard notion of

accessibility in some cases. At present, no equiva-

lent web server is available. VLDPws provides

output in two complementary forms: direct visual-

ization of the Laguerre tessellation, mostly its pol-

ygonal molecular surfaces; files of volumes; and

areas, contacts and similar data for each residue

and each atom. These files are available for

download for further analysis. VLDPws can be

accessed at http://www.dsimb.inserm.fr/dsimb_

tools/vldp.

INTRODUCTION

Protein structures are the support of most major biolo-
gical functions. Composed of a series of amino acids,
proteins owe their specific properties to their side chains
(1). Interactions between residues include covalent bonds,
such as the disulphide bridges between two cysteines (2),
and weaker bonds, such as hydrogen bonds (H-bonds),
van der Waals interactions or hydrophobic effects. These
interactions are essential for protein folding and for
stabilizing protein structures. For instance, repetitive sec-
ondary structural elements as 310-, a-, p-helices, b-sheets
and turns (3), which play a key role in protein architec-
ture, are mostly maintained by hydrogen bonds. Thus,
tools as DSSP (4,5) and STRIDE (6,7), for determining
local folding, are interesting in the structural bioinfor-
matics field.
In this article, we propose a tool for analysing protein

structures with strong mathematical grounds, the Laguerre
diagram, which is a weighted Voronoi diagram. Voronoi
diagrams and their derived variants have been used often
for the study of protein structures, protein–protein inter-
actions, packing of the protein core, packing at the inter-
face with water, protein cavities, assessing the quality of
protein crystal structures (8,9). A few studies using
Voronoi diagrams were also devoted to nucleic acids
(10–12). At this day, the number of web servers based on
this approach is limited. We can note the following: (i) The
NIH web server (http://helixweb.nih.gov/structbio/basic.
html) that computes the buried residue volumes in several
tessellation ways. (ii) MolMovDB (13), which evaluates the
packing of residues using Voronoi volumes (http://www.
molmovdb.org/cgi-bin/voronoi.cgi). (iii) Vorolign (14), a
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web server dedicated to structural alignment based on
Voronoi contacts. (iv) MOLE (15) and its latest version
MOLE2.0 (16), focused on the detection of molecular
channels, pores and tunnels, based on the search of void
paths in protein structures using the classical Voronoi
method. It is dedicated to enzyme channels. (v) DiMoVo
(17) (http://albios.saclay.inria.fr/dimovo/) proposes a
service able to discriminate the crystallographic and biolo-
gical protein–protein interactions.
In this research field, we propose Voronoi Laguerre

Delaunay Protein web server (VLDPws). This tool is
based on the Laguerre tessellation, and its aim is to
compute a panel of properties of interest: (i) residue
volumes, (ii) the residue contacts and (iii) exposure to
solvent, i.e. accessibility. An important point is that
VLDPws is the only tessellation approach that includes
an effective solvent around the protein. Another improve-
ment is the set of finely tuned weights used in the Laguerre
tessellation (8,9). It allows us to take into account all the
residues, including the accessible ones at the protein
surface.

(i) In a previous work (8), we showed that computa-
tions based on tessellations gave a good agreement
with experimental results in the evaluation of amino
acid volumes, better than the other equivalent
methodologies.

(ii) The protein contacts are a crucial feature to analyse
protein structures. The usual definition is based only
on geometrical parameters, such as distance-thresh-
old (18), and used for instance to identify small
compact units (protein units) (19–21). Information
on protein contacts led to pertinent results for
protein folding analysis or protein design. An exten-
sive analysis of protein contacts defined by Laguerre
tessellations in comparison with the classical
approach underlined its interest (22).

(iii) Another important feature is the interaction of
the protein with its environment. A classical
method is to compute the residue accessibility
using NACCESS tool (Hubbard, S.J. & Thornton,
J.M. (1993), http://www.bioinf.manchester.ac.uk/
naccess/); DSSP also provides such a measure (4).
Owing to the addition of a realistic solvent,
VLDPws evaluates the residue exposure to solvent,
measured as a ratio of exposed surface area over the
total surface area and called PIA (Polyhedral
Interface Area). PIA was shown to give results com-
patible with classical approaches, but it also
revealed some differences reflecting particular
physico-chemical interactions of the residues with
the environment, the explicit solvent.

Hence, VLDPws, based on the Laguerre tessellation,
is efficient and precise in computing various protein
properties. The good accuracy was previously
benchmarked (8,22). The computed tessellation can be
viewed in a static way owing to PyMOL software, or in
an interactive way using Jmol software (23). Moreover,
VLDPws is the only online web server including the
protein in a realistic solvent for drawing the tessellation.

MATERIALS AND METHODS

The server can be used to study residue packing, residue
accessibility and intra-protein contacts. Figure 1 summar-
izes the main steps of the VLDPws approach. At first, (a)
the 3D protein structure is (b) solvated, then (c) the
Delaunay tessellation is computed on the complete
system including protein and solvent, and (d) the
Laguerre tessellation is deduced from the Delaunay
diagram. From the Laguerre tessellation, a list of local,
global or averaged quantities are computed, including
residue volumes, areas, contacts and accessibility (see
Figure 2).

Input protein structure and solvation

The 3D protein structures must be in classical Protein
DataBank format (24). Preferentially, the structure
should be recognized like a monomeric chain (see
Figure 1a). A topology file is created using GROMACS
4.5.3 (25). The hydrogens are added using OPLS-AA force
field (26). Finally, the SOLVATE program (27) creates a
shell of water around the protein. The SOLVATE param-
eters are a shell thickness of 5 Å, a solvent boundary set
up to 2 (ngauss option). This first stage produces a pdb
file including the protein and solvent coordinates (see
Figure 1b).

Delaunay tessellation

A tessellation is a partition of space, i.e. a collection of
polyhedra filling space without overlaps or gaps. Given a
set of positions, the Delaunay tessellation is a partition of
space into tetrahedra whose vertices are the system points.
In the case of VLDPws, the points are the atom centres
given in the pdb file (see Figure 1c). The Delaunay tessel-
lation is built on the whole system (protein and solvent)
using an incremental point insertion. At each insertion,
the weighted circumscribed sphere criterion delimits a
region where the tessellation needs to be adapted.

Laguerre tessellation and weighting

By a duality relationship, the Laguerre tessellation follows
directly from the Delaunay diagram. In the Laguerre tes-
sellation, each polyhedron is convex, and most often sur-
rounds its corresponding atom centre (a vertex of the
Delaunay diagram) (In a Voronoi tessellation—special
case where all the weights are equal—all the polyhedra
contain one and only one data point. In Laguerre tessel-
lations, this one-to-one relation may be lost depending on
the weights. However, in VLDPws with finely tuned
weights, this atom polyhedron correspondence will only
be broken in extreme physical circumstances.). In
contrast to Voronoi tessellations, Laguerre tessellations
are weighted. The Delaunay and Laguerre tilings and
the duality relation all depend on the weights associated
to the input points. See (8) and references therein for
details. Here, the weights are scaled to the atom types as
assessed in Esque et al. (8). Hence, the shape of Laguerre
polyhedra depends on the weights and mutual positions of
neighbouring atoms (see Figure 1d).
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Figure 2. Protein analysis example. (a) The analysis of a fibrillarin homologue protein structure [PDB code 1FBN (29)]. (b) After constructing the
Laguerre tessellation, the polygonal surface is displayed (as image or interactively with Jmol) in comparison with the standard method (Connolly’s
Surface), (c) the contact matrix is displayed, (d) the residue volumes are given in a partial table (not illustrated) or downloadable in a text file, and (e)
the PIA accessibility is shown as a bar plot. All analysis products are downloadable individually or in a zip file.

Figure 1. Flow chart of VLDPws’ main methods. (a) A single 3D protein structure is entered as input, (b) solvent is added, (c) the Delaunay
tessellation is performed on the whole system by VLDP [on the figure, only inter-residue (red) and residue-solvent (blue) contacts are shown], (d) the
Laguerre tessellation is directly deduced as the dual of the Delaunay diagram. (e) From the tessellations, a range of analyses is carried out, i.e.
volumes, areas, connectivity, residue contacts, residue accessibility.
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Computational aspect of VLDP outputs

The source code of the program VLDP is written in
Fortran 90. Several functionalities and output formats
are available (see Figure 1e): (i) Visualization of the tes-
sellation is performed by PyMol (The PyMOL Molecular
Graphics System, Version 1.5, Schrödinger, LLC, www.
pymol.org) and interactively with Jmol (23). The output
for PyMol is in Compiled Graphics Objects format,
whereas the command ‘draw’ is used for Jmol. (ii) The
residue volumes are given as sums of corresponding
atomic volumes. An atomic volume is the volume of its
corresponding Laguerre polyhedron. The Laguerre
polyhedra are subdivided into elementary tetrahedra, the
sum of which gives the polyhedral volume (8). (iii) By
definition, the contacts are specified by the Delaunay
edges (22). (iv) The PIA is computed as the ratio of the
residue Laguerre surface of contacts with the solvent
divided by the total surface (of contacts) of the residue.
PIA is a novel measure of accessibility (8). Some add-
itional results are provided in flat files for expert users
interested in solvation and porosity, namely, the topo-
logical genus of the protein surface, the water network
decomposition into connected components, stratification
into layers starting from a pre-defined origin. For the
stratification analyses, two cases are computed: starting
from the protein surface or from the boundary of the
water box. The genus characterizes the protein/solvent
interface. The connected components and stratification
concern the organization of the water network.

DISCUSSION

The VLDP program is based on the Laguerre tessellation
used for geometrical analyses of protein structures. From
this tessellation, both metric and topological measures can
be deduced opening the way for finer analyses. The VLDP
program performs a panel of analyses, such as (i) the cal-
culation of residue volumes, (ii) the determination of
residue contacts, (iii) the residue accessibility and (iv) the
organization of the water network.
Experimentally, the protein volume is obtained by

measurements of partial specific volumes, e.g. by densi-
tometry, or dilatometry, with the help of thermodynamic
and hydrodynamic equations. Few developments had
been made to compute it through in silico approaches.
Only Tsai et al. (28) gave predictions directly deduced
from the sequence information, but this method is not
available on any web server. A benchmark on volumes
confronting results evaluated with VLDP to data from
the literature [values are taken from Tsai et al. (28)]
underlined the quality of our approach (8). It shows that
the Laguerre tessellation provides a good descriptor of the
protein surface and packing.
The notion of contact comes out naturally in the form

of a polygonal surface. Classical approaches are based on
arbitrary distance thresholds (18) while tessellations
discard this arbitrariness. The tessellation method
provides a more realistic representation of the local
packing in the structure; the contacts deduced from tessel-
lation essentially consist of a complete list of nearest

neighbours around any residue. The method is flexible
and adapts itself to non-homogeneously dense systems.
An extensive benchmark showed that the Laguerre tessel-
lation with well-tuned weights provides a better account of
the geometry of the contacts (20). Apart from VLDP, no
web server is available to perform such a task.

The presence of the solvent, numerically added to the
macromolecular data, provides a new definition of the
residue accessibility as a relative exposure to solvent,
computed from the area of Laguerre faces. A systematic
study has shown a rough linear correlation with the
standard Accessible Surface Area (8), but there is a sig-
nificant difference in precision and sensitivity mostly for
partially buried residues.

Because all these properties are important in the struc-
tural bioinformatics field and others, we have imple-
mented these analyses in the VLDPws.

FUNCTIONS AND USAGE

Web server VLDPws

VLDPws provides a user-friendly web interface to the
analysis of protein structures that combines metrics and
topology. The homepage contains a short summary
describing the interest of program and the properties
computed. The only input that must be provided is the
protein structure (preferentially monomeric or merged
into one chain), in PDB format. Two possibilities are
offered: either direct download from the Protein Data
Bank (http://www.rcsb.org/pdb/home/home.do) (24) or
supply of a file, the filename of which must be given in a
second window frame. In both cases, the pdb code and the
used chain should be imperatively specified. At the bottom
of the page, an example test with an url link is proposed.
Additional tabs are as follows: (i) ‘Contact’, pointing to
the authors’ homepage; (ii) ‘About’, giving details on the
methodology; (iii) ‘Example’, explaining or showing, on a
concrete case, the input and output of the server (see later
in the text). Figure 1 describes the successive steps that
lead from a protein structure to the output results of the
Laguerre tessellation.

Input

A single PDB structure must be provided (Figure 1a). A
check is performed to ensure that only natural amino acids
are used and that the specified chain is here.

Background step ‘VLDP running’

After checking the input PDB format, a shell of water is
first computed with SOLVATE software (27) (see
‘Materials and Methods’ section and Figure 1b). Then,
using the atom coordinates of the extended system
(protein+solvent), the Delaunay tetrahedra are built
(Figure 1c) by the sequential insertion algorithm (see
‘Materials and Methods’ section). The Laguerre tessella-
tion is constructed simultaneously as the geometric dual
of the Delaunay diagram (Figure 1d). Then, all the
properties of interest are computed by VLDP program
(Figure 1e), e.g. volume and face area of Laguerre

W376 Nucleic Acids Research, 2013, Vol. 41, Web Server issue

 by guest on January 9, 2014
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

www.pymol.org
www.pymol.org
http://www.rcsb.org/pdb/home/home.do
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


polyhedra, inter-atomic and inter-residue contacts, graph-
ical outputs and so forth.

Output

Once the job is finished, the home page is updated to show
the results. The results are given in various ways. The first
information, on the top of the web page, is a global
summary on the system under investigation: count of
residues, count of protein atoms and the selected protein
chain label. The data are confidentially stored during 2
months for later use. Confidentiality is guaranteed by an
ID supplied to the user. Three links point to the data
available for download: the first place contains a copy of
the submitted pdb file; the second one has the solvated
protein (pdb format) and the third link is a zip file con-
taining all results.

The protein (29) is displayed online through three nice
graphical representations generated with PyMol software:
cartoon, Connolly’s surface and Laguerre surface (see
Figure 2a and b). Each image can be zoomed by clicking
on it. Another graph displays the inter-residue contact
matrix with colour scale representing the contact
strength (number of atomic contacts for one given
residue, see Figure 2c); the raw values can also be down-
loaded in a text file.

The ‘volume and area’ section shows residue volumes
(and area) in a partial table. The complete data can be
downloaded as a text file. It also gives the volume per
protein atom and the volume per water molecule at the
solute-solvent interface.

The second plot on the Result web page is the PIA ac-
cessibility along the sequence. Again, a partial table is
displayed, whereas the complete table is available for
download.

Finally, an interactive visualization can be performed
through the Jmol Applet (25). The Laguerre surface
appears by clicking on the ‘Show Tessellation’ button.
Several levels of transparency are proposed: 0, 25, 50 and
75%. Some other options are available like choosing a rep-
resentation (Trace, Backbone or Cartoon) or assigning
colours (to atoms with Corey-Pauling-Koltun convention
(CPK), Amino group or Secondary Structure). The user
can also display the solvent and the surface (molecular or
Solvent-Accessible Surface (SAS)). The surfaces are
coloured according to the secondary structure on the
white-red-blue scale.

An example

Figure 2 illustrates the results of a protein structure
analysis of a fibrillarin homologue [PDB code 1FBN
(29)], using Laguerre tessellation. As a confidence descrip-
tor, the Laguerre surface is visually compared with
Connolly’s surface (Figure 2b). To study the protein
folds, the connectivity between residues is shown as a
contact matrix indicating the strength of each inter-
residue contact (Figure 2c). The contacts along the
diagonal indicate, in general, a helix pattern, whereas
off-diagonal contacts, parallel or perpendicular to the
main diagonal, indicate parallel or anti-parallel strands
(most often in b-sheets) (30).

The residue volumes given by VLDPws can be
compared with our previous study (8) (Figure 2d).
Finally the surface versus core distribution of the
residues can be probed by the accessibility analysis
through the PIA measure (Figure 2e). As we can see
along the sequence on the barplot, the fibrillarin homo-
logue has regions of low PIA values, corresponding to
buried regions, and high PIA regions which are more
exposed.

Implementation

The program VLDP is written in Fortran 90. The graph-
ical plots are done using R software, version 2.15 (http://
cran.r-project.org/). The PyMOl scripts are written in
Python. The front-end interface is based on html and
php. Perl/cgi programs control the input while VLDP
and other programs carry out the processing behind.

CONCLUSION

Very few web servers are dedicated to the analysis of
protein structures using topological graph representation
and offering several analysis methods. We propose an
original tool that combines metric and topological infor-
mation. We chose to study mostly the properties of 3D
protein structures. Three main characteristics are ex-
tracted and given in details: residue volumes for the
packing, residue contacts for the protein folds and
residue exposure to solvent for accessibility. For expert
users interested in hydration, the server also provides in-
formation on the water network organized in successive
layers. As a criterion of confidence, the results can be
compared with our previous studies (8,22), specially for
the tabulated volumes. VLDPws brings also an opportun-
ity to compare novel definitions of contacts and accessi-
bility with standard methods. The availability of our
method through VLDPws will serve structural biology
and inspire new experiments on local or global properties
of proteins.
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