
Enforcing Subcategorization Constraints in a Parser

Using Sub-parses Recombining

Seyed Abolghasem Mirroshandel, Alexis Nasr, Benôıt Sagot

To cite this version:

Seyed Abolghasem Mirroshandel, Alexis Nasr, Benôıt Sagot. Enforcing Subcategorization Con-
straints in a Parser Using Sub-parses Recombining. NAACL 2013 - Conference of the North
American Chapter of the Association for Computational Linguistics, Jun 2013, Atlanta, United
States. 2013. <hal-00936492>

HAL Id: hal-00936492

https://hal.inria.fr/hal-00936492

Submitted on 26 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47094969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00936492


Proceedings of NAACL-HLT 2013, pages 239–247,

Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Enforcing Subcategorization Constraints in a Parser Using Sub-parses

Recombining

Seyed Abolghasem Mirroshandel†,⋆ Alexis Nasr† Benoı̂t Sagot⋄

†Laboratoire d’Informatique Fondamentale de Marseille- CNRS - UMR 7279

Université Aix-Marseille, Marseille, France
⋄Alpage, INRIA & Université Paris-Diderot, Paris, France

⋆Computer Engineering Department, Faculty of Engineering,

University of Guilan, Rasht, Iran

(ghasem.mirroshandel@lif.univ-mrs.fr, alexis.nasr@lif.univ-mrs.fr,

benoit.sagot@inria.fr)

Abstract

Treebanks are not large enough to adequately

model subcategorization frames of predica-

tive lexemes, which is an important source of

lexico-syntactic constraints for parsing. As

a consequence, parsers trained on such tree-

banks usually make mistakes when selecting

the arguments of predicative lexemes. In this

paper, we propose an original way to correct

subcategorization errors by combining sub-

parses of a sentence S that appear in the list

of the n-best parses of S. The subcatego-

rization information comes from three differ-

ent resources, the first one is extracted from

a treebank, the second one is computed on a

large corpora and the third one is an existing

syntactic lexicon. Experiments on the French

Treebank showed a 15.24% reduction of er-

roneous subcategorization frames (SF) selec-

tions for verbs as well as a relative decrease of

the error rate of 4% Labeled Accuracy Score

on the state of the art parser on this treebank.

1 Introduction

Automatic syntactic parsing of natural languages

has witnessed many important changes in the last

fifteen years. Among these changes, two have mod-

ified the nature of the task itself. The first one is

the availability of treebanks such as the Penn Tree-

bank (Marcus et al., 1993) or the French Treebank

(Abeillé et al., 2003), which have been used in the

parsing community to train stochastic parsers, such

as (Collins, 1997; Petrov and Klein, 2008). Such

work remained rooted in the classical language the-

oretic tradition of parsing, generally based on vari-

ants of generative context free grammars. The sec-

ond change occurred with the use of discriminative

machine learning techniques, first to rerank the out-

put of a stochastic parser (Collins, 2000; Charniak

and Johnson, 2005) and then in the parser itself (Rat-

naparkhi, 1999; Nivre et al., 2007; McDonald et al.,

2005a). Such parsers clearly depart from classical

parsers in the sense that they do not rely anymore on

a generative grammar: given a sentence S, all pos-

sible parses for S1 are considered as possible parses

of S. A parse tree is seen as a set of lexico-syntactic

features which are associated to weights. The score

of a parse is computed as the sum of the weights of

its features.

This new generation of parsers allows to reach

high accuracy but possess their own limitations. We

will focus in this paper on one kind of weakness

of such parser which is their inability to properly

take into account subcategorization frames (SF) of

predicative lexemes2, an important source of lexico-

syntactic constraints. The proper treatment of SF is

actually confronted to two kinds of problems: (1)

the acquisition of correct SF for verbs and (2) the

integration of such constraints in the parser.

The first problem is a consequence of the use of

treebanks for training parsers. Such treebanks are

composed of a few thousands sentences and only a

small subpart of acceptable SF for a verb actually

1Another important aspect of the new parsing paradigm is

the use of dependency trees as a means to represent syntactic

structure. In dependency syntax, the number of possible syn-

tactic trees associated to a sentence is bounded, and only de-

pends on the length of the sentence, which is not the case with

syntagmatic derivation trees.
2We will concentrate in this paper on verbal SF.

239



occur in the treebank.

The second problem is a consequence of the pars-

ing models. For algorithmic complexity as well as

data sparseness reasons, the parser only considers

lexico-syntactic configurations of limited domain of

locality (in the parser used in the current work, this

domain of locality is limited to configurations made

of one or two dependencies). As described in more

details in section 2, SF often exceed in scope such

domains of locality and are therefore not easy to in-

tegrate in the parser. A popular method for intro-

ducing higher order constraints in a parser consist in

reranking the n best output of a parser as in (Collins,

2000; Charniak and Johnson, 2005). The reranker

search space is restricted by the output of the parser

and high order features can be used. One draw-

back of the reranking approach is that correct SF for

the predicates of a sentence can actually appear in

different parse trees. Selecting complete trees can

therefore lead to sub-optimal solutions. The method

proposed in this paper merges parts of different trees

that appear in an n best list in order to build a new

parse.

Taking into account SF in a parser has been a ma-

jor issue in the design of syntactic formalisms in the

eighties and nineties. Unification grammars, such

as Lexical Functional Grammars (Bresnan, 1982),

Generalized Phrase Structure Grammars (Gazdar et

al., 1985) and Head-driven Phrase Structure Gram-

mars (Pollard and Sag, 1994), made SF part of the

grammar. Tree Adjoining Grammars (Joshi et al.,

1975) proposed to extend the domain of locality of

Context Free Grammars partly in order to be able

to represent SF in a generative grammar. More

recently, (Collins, 1997) proposed a way to intro-

duce SF in a probabilistic context free grammar and

(Arun and Keller, 2005) used the same technique

for French. (Carroll et al., 1998), used subcate-

gorization probabilities for ranking trees generated

by unification-based phrasal grammar and (Zeman,

2002) showed that using frame frequency in a de-

pendency parser can lead to a significant improve-

ment of the performance of the parser.

The main novelties of the work presented here is

(1) the way a new parse is built by combining sub-

parses that appear in the n best parse list and (2)

the use of three very different resources that list the

possible SF for verbs.

The organization of the paper is the following: in

section 2, we will briefly describe the parsing model

that we will be using for this work and give accuracy

results on a French corpus. Section 3 will describe

three different resources that we have been using to

correct SF errors made by the parser and give cov-

erage results for these resources on a development

corpus. Section 4 will propose three different ways

to take into account, in the parser, the resources de-

scribed in section 3 and give accuracy results. Sec-

tion 5 concludes the paper.

2 The Parser

The parser used in this work is the second order

graph based parser (McDonald et al., 2005b) imple-

mentation of (Bohnet, 2010). The parser was trained

on the French Treebank (Abeillé et al., 2003) which

was transformed into dependency trees by (Candito

et al., 2009). The size of the treebank and its de-

composition into train, development and test sets are

represented in table 1.

nb of sentences nb of tokens

TRAIN 9 881 278 083

DEV 1 239 36 508

TEST 1 235 36 340

Table 1: Size and decomposition of the French Treebank

The parser gave state of the art results for parsing

of French, reported in table 2. Table 2 reports the

standard Labeled Accuracy Score (LAS) and Unla-

beled Accuracy Score (UAS) which is the ratio of

correct labeled (for LAS) or unlabeled (for UAS) de-

pendencies in a sentence. We also defined a more

specific measure: the SF Accuracy Score (SAS)

which is the ratio of verb occurrences that have been

paired with the correct SF by the parser. We have

introduced this quantity in order to measure more

accurately the impact of the methods described in

this paper on the selection of a SF for the verbs of a

sentence.

TEST DEV

SAS 80.84 79.88

LAS 88.88 88.53

UAS 90.71 90.37

Table 2: Subcategorization Frame Accuracy, Labeled and

Unlabeled Accuracy Score on TEST and DEV.

240



We have chosen a second order graph parser in

this work for two reasons. The first is that it is the

parsing model that obtained the best results on the

French Treebank. The second is that it allows us

to impose structural constraints in the solution of

the parser, as described in (Mirroshandel and Nasr,

2011), a feature that will reveal itself precious when

enforcing SF in the parser output.

3 The Resources

Three resources have been used in this work in order

to correct SF errors. The first one has been extracted

from a treebank, the second has been extracted from

an automatically parsed corpus that is several order

of magnitude bigger than the treebank. The third one

has been extracted from an existing lexico-syntactic

resource. The three resources are respectively de-

scribed in sections 3.2, 3.3 and 3.4. Before describ-

ing the resources, we describe in details, in section

3.1 our definition of SF. In section 3.5, we evalu-

ate the coverage of these resources on the DEV cor-

pus. Coverage is an important characteristic of a re-

source: in case of an SF error made by the parser, if

the correct SF that should be associated to a verb, in

a sentence, does not appear in the resource, it will be

impossible to correct the error.

3.1 Subcat Frames Description

In this work, a SF is defined as a couple (G,L)
where G is the part of speech tag of the element that

licenses the SF. This part of speech tag can either

be a verb in infinitive form (VINF), a past participle

(VPP), a finite tense verb (V) or a present participle

(VPR). L is a set of couples (f, c) where f is a syn-

tactic function tag chosen among a set F and c is

a part of speech tag chosen among the set C. Cou-

ple (f, c) indicates that function f can be realized as

part of speech tag c. Sets F and C are respectively

displayed in top and bottom tables of figure 1. An

anchored SF (ASF) is a couple (v, S) where v is a

verb lemma and S is a SF, as described above.

A resource is defined as a collection of ASF

(v, S), each associated to a count c, to represent the

fact that verb v has been seen with SF S c times. In

the case of the resource extracted form an existing

lexicon (section 3.4), the notion of count is not ap-

plicable and we will consider that it is always equal

SUJ subject

OBJ object

A OBJ indirect object introduced by the preposition à

DE OBJ indirect object introduced by the preposition de

P OBJ indirect object introduced by another preposition

ATS attribute of the subject

ATO attribute of the direct object

ADJ adjective

CS subordinating conjunction

N noun

V verb finite tense

VINF verb infinitive form

VPP verb past participle

VPR verb present participle

Figure 1: Syntactic functions of the arguments of the SF

(top table). Part of speech tags of the arguments of the SF

(bottom table)

to one.

Below is an example of three ASF for the french

verb donner (to give). The first one is a transitive SF

where both the subject and the object are realized as

nouns as in Jean donne un livre (Jean gives a book.).

The second one is ditransitive, it has both a direct

object and an indirect one introduced by the prepo-

sition à as in Jean donne un livre à Marie. (Jean

gives a book to Marie). The third one corresponds

to a passive form as in le livre est donné à Marie par

Jean (The book is given to Marie by Jean).

(donner,(V,(suj,N),(obj,N)))

(donner,(V,(suj,N),(obj,N),(a_obj,N)))

(donner,(VPP,(suj,N),(aux_pass,V),

(a_obj,N),(p_obj,N)))

One can note that when an argument corresponds

to an indirect dependent of the verb (introduced ei-

ther by a preposition or a subordinating conjunc-

tion), we do not represent in the SF, the category

of the element that introduces the argument, but the

category of the argument itself, a noun or a verb.

Two important choices have to be made when

defining SF. The first one concerns the dependents

of the predicative element that are in the SF (argu-

ment/adjunct distinction) and the second is the level

of abstraction at which SF are defined.

In our case, the first choice is constrained by the

treebank annotation guidelines. The FTB distin-

guishes seven syntactic functions which can be con-

sidered as arguments of a verb. They are listed in

the top table of figure 1. Most of them are straight-

241



forward and do not deserve an explanation. Some-

thing has to be said though on the syntactic function

P OBJ which is used to model arguments of the verb

introduced by a preposition that is neither à nor de,

such as the agent in passive form, which is intro-

duced by the preposition par.

We have added in the SF two elements that do not

correspond to arguments of the verb: the reflexive

pronoun, and the passive auxiliary. The reason for

adding these elements to the SF is that their pres-

ence influences the presence or absence of some ar-

guments of the verb, and therefore the SF.

The second important choice that must be made

when defining SF is the level of abstraction, or, in

other words, how much the SF abstracts away from

its realization in the sentence. In our case, we have

used two ways to abstract away from the surface re-

alization of the SF. The first one is factoring sev-

eral part of speech tags. We have factored pronouns,

common nouns and proper nouns into a single cat-

egory N. We have not gathered verbs in different

modes into one category since the mode of the verb

influences its syntactic behavior and hence its SF.

The second means of abstraction we have used is

the absence of linear order between the arguments.

Taking into account argument order increases the

number of SF and, hence, data sparseness, without

adding much information for selecting the correct

SF, this is why we have decided to to ignore it. In

our second example above, each of the three argu-

ments can be realized as one out of eight parts of

speech that correspond to the part of speech tag N

and the 24 possible orderings are represented as one

canonical ordering. This SF therefore corresponds

to 12 288 possible realizations.

3.2 Treebank Extracted Subcat Frames

This resource has been extracted from the TRAIN

corpus. At a first glance, it may seen strange to ex-

tract data from the corpus that have been used for

training our parser. The reason is that, as seen in

section 1, SF are not directly modeled by the parser,

which only takes into account subtrees made of, at

most, two dependencies.

The extraction procedure of SF from the treebank

is straightforward : the tree of every sentence is vis-

ited and, for every verb of the sentence, its daughters

are visited, and, depending whether they are consid-

ered as arguments of the verb (with respect to the

conventions or section 3.1), they are added to the SF.

The number of different verbs extracted, as well as

the number of different SF and the average number

of SF per verb are displayed in table 3. Column T

(for Train) is the one that we are interested in here.

T L A0 A5 A10

nb of verbs 2058 7824 23915 4871 3923

nb of diff SF 666 1469 12122 2064 1355

avg. nb of SF 4.83 52.09 14.26 16.16 13.45

Table 3: Resources statistics

The extracted resource can directly be compared

with the TREELEX resource (Kupsc and Abeillé,

2008), which has been extracted from the same tree-

bank. The result that we obtain is different, due to

the fact that (Kupsc and Abeillé, 2008) have a more

abstract definition of SF. As a consequence, they de-

fine a smaller number of SF: 58 instead of 666 in

our case. The smaller number of SF yields a smaller

average number of SF per verb: 1.72 instead of 4.83
in our case.

3.3 Automatically computed Subcat Frames

The extraction procedure described above has been

used to extract ASF from an automatically parsed

corpus. The corpus is actually a collection of three

corpora of slightly different genres. The first one

is a collection of news reports of the French press

agency Agence France Presse, the second is a col-

lection of newspaper articles from a local French

newspaper : l’Est Républicain. The third one is

a collection of articles from the French Wikipedia.

The size of the different corpora are detailed in ta-

ble 4.

The corpus was first POS tagged with the MELT

tagger (Denis and Sagot, 2010), lemmatized with the

MACAON tool suite (Nasr et al., 2011) and parsed

in order to get the best parse for every sentence.

Then the ASF have been extracted.

The number of verbs, number of SF and average

number of SF per verb are represented in table 3,

in column A0 (A stands for Automatic). As one

can see, the number of verbs and SF are unrealis-

tic. This is due to the fact that the data that we ex-

tract SF from is noisy: it consists of automatically

produced syntactic trees which contain errors (recall

242



CORPUS Sent. nb. Tokens nb.

AFP 2 041 146 59 914 238

EST REP 2 998 261 53 913 288

WIKI 1 592 035 33 821 460

TOTAL 5 198 642 147 648 986

Table 4: sizes of the corpora used to collect SF

that the LAS on the DEV corpus is 88, 02%). There

are two main sources of errors in the parsed data: the

pre-processing chain (tokenization, part of speech

tagging and lemmatization) which can consider as

a verb a word that is not, and, of course, parsing

errors, which tend to create crazy SF. In order to

fight against noise, we have used a simple thresh-

olding: we only collect ASF that occur more than a

threshold i. The result of the thresholding appears

in columns A5 and A10 , where the subscript is the

value of the threshold. As expected both the number

of verbs and SF decrease sharply when increasing

the value of the threshold.

Extracting SF for verbs from raw data has been

an active direction of research for a long time, dat-

ing back at least to the work of (Brent, 1991) and

(Manning, 1993). More recently (Messiant et al.,

2008) proposed such a system for French verbs. The

method we use for extracting SF is not novel with

respect to such work. Our aim was not to devise

new extraction techniques but merely to evaluate the

resource produced by such techniques for statistical

parsing.

3.4 Using an existing resource

The third resource that we have used is the Lefff

(Lexique des formes fléchies du français — Lexicon

of French inflected form), a large-coverage syntac-

tic lexicon for French (Sagot, 2010). The Lefff was

developed in a semi-automatic way: automatic tools

were used together with manual work. The latest

version of the Lefff contains 10,618 verbal entries

for 7,835 distinct verbal lemmas (the Lefff covers all

categories, but only verbal entries are used in this

work).

A sub-categorization frame consists in a list of

syntactic functions, using an inventory slightly more

fine-grained than in the French Treebank, and for

each of them a list of possible realizations (e.g.,

noun phrase, infinitive clause, or null-realization if

the syntactic function is optional).

For each verbal lemma, we extracted all sub-

categorization frames for each of the four verbal

part-of-speech tags (V, VINF, VPR, VPP), thus cre-

ating an inventory of SFs in the same sense and for-

mat as described in Section 3.1. Note that such SFs

do not contain alternatives concerning the way each

syntactic argument is realized or not: this extraction

process includes a de-factorization step. Its output,

hereafter L, contains 801,246 distinct (lemma, SF)

pairs.

3.5 Coverage

In order to be able to correct SF errors, the three

resources described above must possess two impor-

tant characteristics: high coverage and high accu-

racy. Coverage measures the presence, in the re-

source, of the correct SF of a verb, in a given sen-

tence. Accuracy measures the ability of a resource

to select the correct SF for a verb in a given context

when several ones are possible.

We will give in this section coverage result, com-

puted on the DEV corpus. Accuracy will be de-

scribed and computed in section 4. The reason why

the two measures are not described together is due

to the fact that coverage can be computed on a ref-

erence corpus while accuracy must be computed on

the output of a parser, since it is the parser that will

propose different SF for a verb in a given context.

Given a reference corpus C and a resource R,

two coverage measures have been computed, lexi-

cal coverage, which measures the ratio of verbs of C

that appear in R and syntactic coverage, which mea-

sures the ratio of ASF of C that appear in R. Two

variants of each measures are computed: on types

and on occurrences. The values of these measures

computed on the DEV corpus are summarized in ta-

ble 5.

T L A0 A5 A10

Lex. types 89.56 99.52 99.52 98.56 98.08

cov. occ 96.98 99.85 99.85 99.62 99.50

Synt. types 62.24 78.15 95.78 91.08 88.84

cov. occ 73.54 80.35 97.13 93.96 92.39

Table 5: Lexical and syntactic coverage of the three re-

sources on DEV

The figures of table 5 show that lexical cover-

age of the three resources is quite high, ranging

243



from 89.56 to 99.52 when computed on types and

from 96.98 to 99.85 when computed on occurrences.

The lowest coverage is obtained by the T resource,

which does not come as a surprise since it is com-

puted on a rather small number of sentences. It

is also interesting to note that lexical coverage of

A does not decrease much when augmenting the

threshold, while the size of the resource decreases

dramatically (as shown in table 3). This validates

the hypothesis that the resource is very noisy and

that a simple threshold on the occurrences of ASF is

a reasonable means to fight against noise.

Syntactic coverage is, as expected, lower than lex-

ical coverage. The best results are obtained by A0:

95.78 on types and 97.13 on occurrences. Thresh-

olding on the occurrences of anchored SF has a big-

ger impact on syntactic coverage than it had on lexi-

cal coverage. A threshold of 10 yields a coverage of

88.84 on types and 92.39 on occurrences.

4 Integrating Subcat Frames in the Parser

As already mentioned in section 1, SF usually ex-

ceed the domain of locality of the structures that are

directly modeled by the parser. It is therefore dif-

ficult to integrate directly SF in the model of the

parser. In order to circumvent the problem, we have

decided to work on the n-best output of the parser:

we consider that a verb v, in a given sentence S,

can be associated to any of the SF that v licenses in

one of the n-best trees. The main weakness of this

method is that an SF error can be corrected only if

the right SF appears at least in one of the n-best parse

trees.

In order to estimate an upper bound of the SAS

that such methods can reach (how many SF errors

can actually be corrected), we have computed the

oracle SAS on the 100 best trees of the DEV corpus

DEV (for how many verbs the correct SF appears

in at least one of the n-best parse trees). The oracle

score is equal to 95.16, which means that for 95.16%
of the verb occurrences of the DEV, the correct SF

appears somewhere in the 100-best trees. 95.16 is

therefore the best SAS that we can reach. Recall

that the baseline SAS is equal to 79.88% the room

for progress is therefore equal to 15.28% absolute.

Three experiments are described below. In the

first one, section 4.1, a simple technique, called Post

Processing is used. Section 4.2 describes a second

technique, called Double Parsing, which is a is a

refinement of Post Processing. Both sections 4.1

and 4.2 are based on single resources. Section 4.3

proposes a simple way to combine the different re-

sources.

4.1 Post Processing

The post processing method (PP) is the simplest one

that we have tested. It takes as input the different

ASF that occur in the n-best output of the parser as

well as a resource R. Given a sentence, let’s note

T1 . . . Tn the trees that appear in the n-best output

of the parser, in decreasing order of their score. For

every verb v of the sentence, we note S(v) the set

of all the SF associated to v that appear in the trees

T1 . . . Tn.

Given a verb v and a SF s, we define the following

functions:

C(v, s) is the number of occurrences of the ASF

(v, s) in the trees T1 . . . Tn.

F(v) is the SF associated to v in T1

CR(v, s) the number of occurrences of the ASF

(v, s) in the resource R.

We define a selection function as a function that

selects a SF for a given verb in a given sentence.

A selection function has to take into account the in-

formation given by the resource (whether an SF is

acceptable/frequent for a given verb) as well as the

information given by the parser (whether the parser

has a strong preference to associate a given SF to a

given verb).

In our experiments, we have tested two simple

selection functions. ϕR which selects the first SF

s ∈ S(v), such that CR(v, s) > 0 when traversing

the trees T1 . . . Tn in the decreasing order of score

(best tree first).

The second function, ψR(v) compares the most

frequent SF for v in the resourceRwith the SF of the

first parse. If the ratio of the number of occurrences

in the n-best of the former and the latter is above a

threshold α, the former is selected. More formally:

ψR(v) =



















ŝ = arg maxs∈S(v) CR(v, s)

if C(v,ŝ)
C(v,F(v)) > α

F(v)
otherwise

244



The coefficientα has been optimized on DEV cor-

pus. Its value is equal to 2.5 for the Automatic re-

source, 2 for the Train resource and 1.5 for the Lefff.

The construction of the new solution proceeds as

follows: for every verb v of the sentence, a SF is se-

lected with the selection function. It is important to

note, at this point, that the SF selected for different

verbs of the sentence can pertain to different parse

trees. The new solution is built based on tree T1. For

every verb v, its arguments are potentially modified

in agreement with the SF selected by the selection

function. There is no guarantee at this point that the

solution is well formed. We will return to this prob-

lem in section 4.2.

We have evaluated the PP method with different

selection functions on the TEST corpus. The results

of applying function ψR were more successful. As

a result we just report the results of this function in

table 6. Different levels of thresholding for resource

A gave almost the same results, we therefore used

A10 which is the smallest one.

B T L A

SAS 80.84 83.11 82.14 82.17

LAS 88.88 89.14 89.03 89.03

UAS 90.71 90.91 90.81 90.82

Table 6: LAS and UAS on TEST using PP

The results of table 6 show two interesting facts.

First, the SAS is improved, it jumps from 80.84 to

83.11. PP therefore corrects some SF errors made

by the parser. It must be noted however that this im-

provement is much lower than the oracle score. The

second interesting fact is the very moderate increase

of both LAS and UAS. This is due to the fact that

the number of dependencies modified is small with

respect to the total number of dependencies. The

impact on LAS and UAS is therefore weak.

The best results are obtained with resource T . Al-

though the coverage of T is low, the resource is very

close to the train data, this fact probably explains the

good results obtained with this resource.

It is interesting, at this point, to compare our

method with a reranking approach. In order to do so,

we have compared the upper bound of the number of

SF errors that can be corrected when using rerank-

ing and our approach. The results of the comparison

computed on a list of 100 best trees is reported in

table 7 which shows the ratio of subcat frame errors

that could be corrected with a reranking approach

and the ratio of errors sub-parse recombining could

reach.

DEV TEST

reranking 53.9% 58.5%

sub-parse recombining 75.5% 76%

Table 7: Correction rate for subcat frames errors with dif-

ferent methods

Table 7 shows that combining sub-parses can, in

theory, correct a much larger number of wrong SF

assignments than reranking.

4.2 Double Parsing

The post processing method shows some improve-

ment over the baseline. But it has an important draw-

back: it can create inconsistent parses. Recall that

the parser we are using is based on a second order

model. In other words, the score of a dependency

depends on some neighboring dependencies. When

building a new solution, the post processing method

modifies some dependencies independently of their

context, which may give birth to very unlikely con-

figurations.

In order to compute a new optimal parse tree

that preserves the modified dependencies, we have

used a technique proposed in (Mirroshandel and

Nasr, 2011) that modifies the scoring function of the

parser in such a way that the dependencies that we

want to keep in the parser output get better scores

than all competing dependencies. The new solution

is therefore the optimal solution that preserves the

dependencies modified by the PP method.

The double parsing (DP) method is therefore a

three stage method. First, sentence S is parsed, pro-

ducing the n-best parses. Then, the post processing

method is used, modifying the first best parse. Let’s

note D the set of dependencies that were changed in

this process. In the last stage, a new parse is pro-

duced, that preserves D.

B T L A

SAS 80.84 83.11 82.14 82.17

LAS 88.88 89.30 89.25 89.31

UAS 90.71 91.07 91.05 91.08

Table 8: LAS and UAS on TEST using DP

245



The results of DP on TEST are reported in table

8. SAS did not change with respect to PP, because

DP keeps the SF selected by PP. As expected DP

does increase LAS and UAS. Recomputing an op-

timal solution therefore increases the quality of the

parses. Table 8 also shows that the three resources

get almost the same LAS and UAS although SAS is

better for resource T.

4.3 Combining Resources

Due to the different generation techniques of our

three resources, another direction of research is

combining them. We did different experiments con-

cerning all possible combination of resources: A and

L (AL), T and L (TL), T and A (TA), and all tree

(TAL) resources. The results of these combinations

for PP and DP methods are shown in tables 9 and

10, respectively.

The resource are combined in a back-off schema:

we search for a candidate ASF in a first resource. If

it is found, the search stops. Otherwise, the next re-

source(s) are probed. One question that arises is:

which sequence is the optimal one for combining

the resources. To answer this question, we did sev-

eral experiments on DEV set. Our experiments have

shown that it is better to search T resource, then

A, and, eventually, L. The results of this combining

method, using PP are reported in table 9. The best

results are obtained for the TL combination. The

SAS jumps from 83.11 to 83.76. As it was the case

with single resources, the LAS and UAS increase is

moderate.

B AL TL TA TAL

SAS 80.84 82.12 83.76 83.50 83.50

LAS 88.88 89.03 89.22 89.19 89.19

UAS 90.71 90.79 90.98 90.95 90.95

Table 9: LAS and UAS on TEST using PP with resource

combination

With DP (table 9), the order of resource combina-

tion is exactly the same as with PP. As was the case

with single resources, DP has a positive, but moder-

ate, impact on LAS and UAS.

The results of tables 9 and 10 do not show con-

siderable improvement over single resources. This

might be due to the large intersection between our

resources. In other words, they do not have comple-

mentary information, and their combination will not

B AL TL TA TAL

SAS 80.84 82.12 83.76 83.50 83.50

LAS 88.88 89.22 89.31 89.34 89.34

UAS 90.71 91.02 91.05 91.08 91.09

Table 10: LAS and UAS on TEST using DP with resource

combination

introduce much information. Another possible rea-

son for this result is the combination technique used.

More sophisticated techniques might yield better re-

sults.

5 Conclusions

Subcategorization frames for verbs constitute a rich

source of lexico-syntactic information which is hard

to integrate in graph based parsers. In this paper, we

have used three different resources for subcatego-

rization frames. These resources are from different

origins with various characteristics. We have pro-

posed two different methods to introduce the useful

information from these resources in a second order

model parser. We have conducted different exper-

iments on French Treebank that showed a 15.24%
reduction of erroneous SF selections for verbs. Al-

though encouraging, there is still plenty of room

for better results since the oracle score for 100 best

parses is equal to 95.16% SAS and we reached

83.76%. Future work will concentrate on more elab-

orate selection functions as well as more sophisti-

cated ways to combine the different resources.

Acknowledgments

This work has been funded by the French Agence

Nationale pour la Recherche, through the project

EDYLEX (ANR-08-CORD-009).

References

A. Abeillé, L. Clément, and F. Toussenel. 2003. Building

a treebank for french. In Anne Abeillé, editor, Tree-

banks. Kluwer, Dordrecht.

A. Arun and F. Keller. 2005. Lexicalization in crosslin-

guistic probabilistic parsing: The case of french. In

Proceedings of the 43rd Annual Meeting on Associ-

ation for Computational Linguistics, pages 306–313.

Association for Computational Linguistics.

B. Bohnet. 2010. Very high accuracy and fast depen-

dency parsing is not a contradiction. In Proceedings

of ACL, pages 89–97.

246



Michael Brent. 1991. Automatic acquisition of subcate-

gorization frames from untagged text. In Proceedings

of ACL.

Joan Bresnan, editor. 1982. The Mental Representation

of Grammatical Relations. MIT Press.

M. Candito, B. Crabbé, P. Denis, and F. Guérin. 2009.

Analyse syntaxique du français : des constituants aux

dépendances. In Proceedings of Traitement Automa-

tique des Langues Naturelles.

J. Carroll, G. Minnen, and T. Briscoe. 1998. Can sub-

categorisation probabilities help a statistical parser?

Arxiv preprint cmp-lg/9806013.

Eugene Charniak and Mark Johnson. 2005. Coarse-

to-Fine n-Best Parsing and MaxEnt Discriminative

Reranking. In Proceedings of ACL.

Michael Collins. 1997. Three Generative, Lexicalised

Models for Statistical Parsing. In Proceedings of the

35th Annual Meeting of the ACL.

Michael Collins. 2000. Discriminative Reranking for

Natural Language Parsing. In Proceedings of ICML.

P. Denis and B. Sagot. 2010. Exploitation d’une

ressource lexicale pour la construction d’un étiqueteur

morphosyntaxique état-de-l’art du français. In Pro-

ceedings of Traitement Automatique des Langues Na-

turelles.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and

Ivan Sag. 1985. Generalized Phrase Structure Gram-

mar. Harvard University Press.

Aravind Joshi, Leon Levy, and M Takahashi. 1975. Tree

adjunct grammars. Journal of Computer and System

Sciences, 10:136–163.

Anna Kupsc and Anne Abeillé. 2008. Treelex: A subcat-

egorisation lexicon for french verbs. In Proceedings of

the First International Conference on Global Interop-

erability for Language Resources.

Christopher Manning. 1993. Automatic acquisition of

a large subcategorization dictionary from corpora. In

Proceedings of ACL.

M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini.

1993. Building a large annotated corpus of en-

glish: The penn treebank. Computational linguistics,

19(2):313–330.

R. McDonald, K. Crammer, and F. Pereira. 2005a. On-

line large-margin training of dependency parsers. In

Proceedings of the 43rd Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 91–98.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005b.

Non-projective dependency parsing using spanning

tree algorithms. In Proceedings of HLT-EMNLP,

pages 523–530.

C. Messiant, A. Korhonen, T. Poibeau, et al. 2008.

Lexschem: A large subcategorization lexicon for

french verbs. In Proceedings of the Language Re-

sources and Evaluation Conference.

S.A. Mirroshandel and A. Nasr. 2011. Active learning

for dependency parsing using partially annotated sen-

tences. In Proceedings of International Conference on

Parsing Technologies.

A. Nasr, F. Béchet, J-F. Rey, B. Favre, and Le Roux J.

2011. MACAON: An NLP tool suite for processing

word lattices. In Proceedings of ACL.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit,

S. Kbler, S. Marinov, and E. Marsi. 2007. Maltparser:

A language-independent system for data-driven de-

pendency parsing. Natural Language Engineering,

13(2):95–135.

Slav Petrov and Dan Klein. 2008. Discriminative Log-

Linear Grammars with Latent Variables. In J.C. Platt,

D. Koller, Y. Singer, and S. Roweis, editors, Advances

in Neural Information Processing Systems 20 (NIPS),

pages 1153–1160, Cambridge, MA. MIT Press.

Carl Pollard and Ivan Sag. 1994. Head-driven Phrase

Structure Grammmar. CSLI Series. University of

Chicago Press.

Adwait Ratnaparkhi. 1999. Learning to parse natural

language with maximum entropy models. Machine

learning, 34(1):151–175.

Benoı̂t Sagot. 2010. The Lefff, a freely available and

large-coverage morphological and syntactic lexicon

for french. In Proceedings of the Seventh conference

on International Language Resources and Evaluation

(LREC’10), pages 2744–2751, Valletta, Malta.

D. Zeman. 2002. Can subcategorization help a statistical

dependency parser? In Proceedings of the 19th in-

ternational conference on Computational linguistics-

Volume 1, pages 1–7. Association for Computational

Linguistics.

247


